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Kurzfassung

Evolution ist der eine gemeinsame alles verbindende Nenner der Biologie, von

individuellen Allelen bis zur Sprache. Darwin glaubte, dass Mathematik eine

tiefere Einsicht gewähren kann und bedauerte stets, diese nicht zu haben. Die

heutige solide mathematische Grundlage, auf der die Evolution fußt, hätte ihm

möglicherweise gefallen. Die Gesetze der Evolution sind durch mathematische

Gleichungen darstellbar. Die Beschränkung auf die minimal notwendigen Fak-

toren sichert Einfachheit. Jedoch ist nicht einmal die genaue Zahl der möglichen

Faktoren, z.B. die eine Honigbiene auf der Blumensuche berücksichtigt, bekannt.

Wie kann diese Komplexität berücksichtigt werden, wenn das eigentliche Ziel

die Beschreibung einfacher biologischer Prinzipien ist? Diese Arbeit betrachtet

diese Problemstellung anhand zweier spezieller Szenarien: Statische- und dy-

namische Fitness-Landschaften. Eine Fitness-Landschaft ist ein Werkzeug zur

bildlichen Darstellung der Fitness einer Population in einem Raum, in dem jede

Dimension eine die Fitness beeinflussende Eigenschaft ist. Die Population sucht

immer nach Maxima in der Fitness-Landschaft. Das ist der Prozess der Adapta-

tion. In einer statischen Fitness-Landschaft ist die Fitness fest, bestimmt durch

die Gesamtheit ihrer Eigenschaften. In dieser Arbeit werden Ergebnisse für, die

Zeit präsentiert, die eine Population benötigt, um von einem Punkt zu einem

anderen zu gelangen, wenn die Wege aus breiten Tälern oder oder schmalen

Pfaden besteht. In dynamischen Fitness-Landschaften ist die Fitness abhängig

von der Bevölkerungszusammensetzung. Bewegt sich die Population innerhalb

der Landschaft, verändert die Landschaft selbst ihre Form und die Maxima

können wandern. Um diese Frequenzabhängigkeit zu beschreiben, nutzen wir

die evolutionäre Spieltheorie. Traditionell beschreibt die evolutionäre Spieltheo-

rie Zweispielerspiele mit zwei Strategien. In dieser Arbeit werden höhere Dimen-

sion durch die Einführung von vielen Spielern und vielen Strategien betrachtet.

Wichtige Ergebnisse des Zweispieler-Zweistrategienproblems werden auf viele

Spieler verallgemeinert. Schließlich werden diese Ergebnisse für eine mögliche

evolutionäre Anwendung der genetischen Schädlingsbekämpfung genutzt.
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Abstract

Evolution is the common theme linking everything in biology from individual

alleles to languages. Darwin believed that those who were mathematically in-

clined had a different insight and he regretted not having it. He probably

would feel gratified knowing that now evolution has gained a solid mathemati-

cal foundation. The general principles of evolution can be represented by precise

mathematical equations. Simplicity is invoked by making use of the minimum

factors that matter. But we cannot even imagine how many factors a single

honeybee takes into account to vouch for a particular flower. How can we take

this complexity into account if we aim at retrieving simple tractable explana-

tions of biological principles? This thesis addresses this problem particularly in

two scenarios: Static and dynamic fitness landscapes. A fitness landscape is

a tool for visualising the the fitness of a population in a space in which each

dimension is a trait affecting the fitness. The population is ever searching for

fitness maxima on this landscape. This is the process of adaptation. In a static

fitness landscape the fitness is fixed, determined by the trait combination. Here

we present results pertaining to the time required for a population to move from

one point to another on this landscape if the paths consists of broad valleys or

narrow ridges. In dynamic fitness landscapes the fitness is a function of the

population composition. Hence as the population moves over the landscape the

landscape changes shape and the fitness maxima can be eternally moving. To

analyse frequency dependence we employ evolutionary game theory. Traditional

evolutionary game theory deals with two player games with two strategies. This

thesis invokes higher dimensions and non-linearities by studying multiple players

and strategies. Important results from the two player two strategy case are

generalised to multiple players. Finally we employ this theoretical development

to analyse a possible evolutionary application in genetic pest management.
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“Nature proceeds little by little from things

lifeless to animal life in such a way that it

is impossible to determine the exact line of

demarcation”

Aristotle, History of Animals 1
Introduction

1.1 Evolution of Evolutionary Theory

Evolution is descent with modification. Biological evolution is the change in

the form and/or behaviour of organisms over generations (Ridley, 1996). The

modifications happen over time and this gives a dynamical aspect to evolution.

Evolutionary dynamics is the study of this dynamical system. Dynamical systems

have been studied for a long time in mathematics but what distinguishes the

study of dynamical systems in biology as compared to other fields is that it is

not simply change over time but also from a common ancestor.

The gradual descent with modifications creates variations which are selected

by the environment (Ridley, 1996). Some organisms are better “adapted” to

the environment that others. The ones that lag behind are left behind in the

race of evolution. They go extinct. Observing the finches in the Galápagos

archipelago, Charles Darwin was amazed at the different types of beaks which

these otherwise similar birds possessed. The causative agent for the different

types of beaks was the difference in the type of food which was available on the

islands. The different beaks were adaptations to the different food types.

Biological systems are complex dynamical systems. For example the different

beaks are no doubt selected by the different food sources but the geographical

structure of the environment, the island structure, is also an important con-

tributing factor. Thus the process of adaptation can depend on a number of

factors. Traditionally in theoretical studies and for good reasons, the number
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1.1. EVOLUTION OF EVOLUTIONARY THEORY

of factors considered are kept to a minimum. The aim of this thesis is to

explore the high dimensional space of the factors affecting the fitness of an

organism. Theoretical biology can range from theoretical ecology, population

genetics, epidemiology, theoretical immunology to protein folding, genetic reg-

ulatory networks, neural networks, genomic analysis and pattern formation, and

much more (Nowak, 2006a). To put the topic of this thesis in perspective,

we briefly review the historical theoretical developments. The following does

not aim to be an exhaustive account but rather touches upon the main points

related to the topic of the thesis.

1.1.1 Darwinism

Charles Darwin converted a speculation which was already in the air into a sci-

entific theory supported by data and observations. From  −  Charles

Darwin served on the H.M.S. Beagle as a self-funded naturalist while the ship

charted the coastline of South America (Henslow, 1831). Along with the prac-

tical experience, Darwin benefited from the scientific literature available during

that time period. Sir Charles Lyll’s Principles of Geology (Lyell, 1998), intro-

duced him to the power of gradual change: how changes over millennia can

shape the geological features we see around us such as mountains and valleys.

Economic literature such as Adam Smith’s The Wealth of Nations (Smith, 1776)

and Thomas Malthus’s Essay on the Principles of Population (Malthus, 1798,

1826) influenced Darwin into thinking about biology in an economic framework.

Adam Smith introduced the notion of the invisible hand where individuals work-

ing for their selfish benefit involuntarily contribute to the betterment of the

whole society. Malthus proposed that the growth of a population is restricted

by the carrying capacity of the environment. For him disasters such as war or

famine were the great levelers which curbed the growth of populations.

It took twenty three years for Darwin to gestate the implications of his

findings from the voyage and the input from all these ideas. But when Darwin

finally published On the Origin of Species (Darwin, 1859) and The Descent of

Man (Darwin, 1871), the result was a revolution in biology as never before. We

see the impact of all of Darwin’s peers together in a forceful manner and in a

biological context in these books. The gradual changes over time shaping up

2



1.1. EVOLUTION OF EVOLUTIONARY THEORY

evolution, the struggle for existence against the forces of nature and the puzzle

of co-operation (or the invisible hand?) is all documented in the books. Still

what Darwin did not know was the way characters were inherited nor the exact

mechanism how this was brought about.

1.1.2 Rise of Mendelism and the dethroning of Darwin

Gregor Johann Mendel (-) was a student of physics under Charles

Doppler at the University of Vienna. Becoming a monk, Mendel continued

his scientific exploits in a two hectare garden of the monastery. He studied

the variation in pea plants and after seven long years came up with findings

which were later to be known as Mendel’s Laws of Inheritance. In his pub-

lication, Mendel mainly focused on the crosses and hybridization techniques

which he had developed but less so on the method of inheritance which he

had observed (Mendel, 1866). The study of Mendel was rediscovered by Hugo

Marie de Vries (-) who was studying the stupendous variety in evening

primrose. These spontaneous variations, he termed as “mutations”. These

“mutations” were caused in the heritable elements which too he termed as the

“pangenes”, later to be known as “genes”. De Vries published The Mutation

Theory in  −  which had a two pronged effect. Firstly, it brought

into focus Mendel’s forgotten experiments and an understanding of the princi-

ples of heredity. Secondly, it directly challenged the mechanism of evolution as

proposed by Darwin. De Vries postulated that evolution may progress not by

gradual changes but more often by spontaneous and drastic changes caused due

to mutations. The irony of the situation was that the first evolutionary biologists

who actually understood Mendel’s theories, Bateson, de Vries, Johannsen and

T. H. Morgan, downplayed the role of Darwinian selection (Mayr and Provine,

1980). In his time Darwin used to deflect this assault on his theory by the

statement “Natura non facit saltum” (Nature does not make leaps). According

to Darwin, natural selection acts on the variations and selects the best suited

of them. The variations themselves are minor whereas natural selection is the

major force driving evolution. While differing camps of evolutionary biologists

came into being there was a hope for unification in the work of some people

like J. Huxley, de Beer, E. B. Ford and J. B. S. Haldane.

3



1.1. EVOLUTION OF EVOLUTIONARY THEORY

1.1.3 The Modern Synthesis and Mathematical Biology

Mutations and selection work in concert. It took twenty years for this idea to

sink in. The change was brought about by the realization that the phenotypic

traits are not just discretely connected to certain genes but each trait may be

the result of the effect of many genes each of which can have multiple alleles.

This meant that mutations by themselves could not drive evolution without

selection carefully sorting them out and also the scope of mutations relating to

a particular trait was increased.

A catalyst in this unification process was the use of a common language,

the language of mathematics. Sir Ronald Aylmer Fisher, Sewall Green Wright

and John Burdon Sanderson Haldane were at the forefront of this development.

These three are the founding fathers of the field of evolutionary theory. This

does not mean there were not disagreements between them (Mitchell, 2009).

The term “evolutionary/modern synthesis” comes from the book “Evolution,

the modern synthesis” by Julian Huxley (Huxley, 1942) written much later. The

book documents how the unification of Darwinism and Mendelism was brought

about during the first half of the twentieth century.

1.1.4 Beyond the synthesis

The synthesis helped the field of evolutionary biology to prosper rapidly. Un-

equivocally as selection was accepted as a valid force of evolution, it lead to

further questions. What exactly is the unit of selection (Mayr, 1997)? Due to

rapid growth in the field of molecular biology, many researchers shifted their

focus from the individual to the gene. It did not take much time for the same

to happen in theory. G. C. Williams proposed that the gene could be the unit of

selection (Williams, 1966). This idea was picked up and popularised by Richard

Dawkins in his book “The Selfish Gene” (Dawkins, 1976). This gene centric

view was influential in reviving the second type of selection as proposed by

Darwin, the idea of sexual selection (Darwin, 1871; Bowler, 2009).

Nothing defies the laws of physics. Not even natural selection (Mitchell,

2009). With the merger of Mendelism and Darwinism it would have seemed

that the dust had settled and science would progress using these new ideas. But

4



1.1. EVOLUTION OF EVOLUTIONARY THEORY

as the evolutionary theory reached mainstream biology and all its neighbouring

fields, cries of resistance arose. Stephen Jay Gould (1941 - 2002) along with

colleagues pointed out the basic constraints on biology imposed by the physical

world. Their view was that along with natural selection and mutations and other

biological forces, equal or more importance has to be given to the “accidents”

which facilitated the course of evolution. Along with Niles Eldredge (1943-

), Gould proposed the concept of punctuated equilibria (Eldredge and Gould,

1985; Bak and Sneppen, 1993). It states that evolution while mostly proceeding

via gradual changes is also subject to equally shocking ‘jerks’. Partial support

for this view came from the works of the theoretical biologist Motoo Kimura

(-). He is most famous for his neutral theory of molecular evolution

(Kimura, 1968). Kimura proposed that more than selection it would seem

that no selection or weak selection (as later Ohta was to show in her “nearly

neutral theory of molecular evolution” (Ohta and Gillespie, 1996)) were enough

to drive evolution towards polymorphisms which are abundantly seen in Nature.

It is often viewed that the neutral theory stands in stark opposition of the theory

of natural selection. In fact it does not discount selection but proposes that the

variation available for selection to act on is more neutral than having a positive

selective effect (Ridley, 1996).

Based on the initial work of Eigen (1971), Eigen and Schuster studied the

evolution of RNA based viruses. The virus exists not as an individual organism

which has reached a fitness peak, rather the whole virus community was sitting

dispersed on a fitness peak. In a series of papers (Eigen and Schuster, 1977,

1978a,b) about the origin of life, the term ‘quasi-species’ was introduced. The

population which is maintained at the mutation-selection equilibrium is known

as the quasi-species (Nowak, 1992). Selection acts on the population as a whole

(Eigen et al., 1989).

Going back to the the Galápagos archipelago we now see the finches in

a new light. On each island a different quasi-species is maintained by the

selective constraints while mutations push the population from this adaptation.

An equilibrium between the two maintains the populations we see thriving on

the islands.
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1.2. SCOPE OF THE THESIS

1.2 Scope of the Thesis

The earlier subsection was closed with a few loose ends. For example the use

of the term “fitness peak” without actually explaining it. This is because those

aspects are the focus of the thesis and hence they are explained here in a bit

more detail than the general story of the evolutionary theory so far.

Selection, mutation, drift and migration are known to be the driving forces

of evolution. Recently it has been proposed that co-operation may also be

another force which drives evolution (Nowak, 2008). All these are but forces

and they need to act on some characteristic of the unit of selection (we saw the

debate raging over the unit of selection in Section 1.1 and it warrants its own

experimental, theoretical and philosophical discussion (Okasha, 2006)). What is

driven by these forces is the idea of a fitness. With the vast amount of literature

in population genetics, one imagines that this is a concept which does not need

clarification. On the contrary fitness as a concept has been highly debated

(Haldane, 1932b; Cartwright, 2000; Orr, 2009). A number of definitions have

been suggested for the concept of fitness (Ariew and Lewontin, 2004; van der

Werf et al., 2009). One idea however which is agreed upon is that the fittest

organisms are able to survive long enough to reproduce and pass on their genes

to the next generation, more than others. This can be quantified as to how

much of passing occurs and then crudely termed as fitness. The reason that

this concept needs to be crystal clear is because it forms the cornerstone of

evolution. A major component of evolution is selection and selection acts on

the difference in fitnesses.

Fisher’s Geometric Model. This issue was first addressed by Fisher (1930)

in his book The Genetical Theory of Natural Selection. In the section “Nature

of Adaptation”, Fisher proposed a geometric model in which the best combi-

nation of n traits is said to be the optimum fitness of an organism and can be

imagined as to be at the origin in an n dimensional coordinate system depicting

the phenotypic state. Due to a some change in the organism or the environment

the organism moves away from the optimum. The way of reaching back to the

optimum is the one in question. This is where the phenomenon of mutation

reprises its role. Mutations occurring which bring the offset phenotype closer

6



1.2. SCOPE OF THE THESIS

to the optimum are favoured. A key point in Fisher’s model was that different

mutations could move the phenotype around in the phenotype space over dif-

ferent distance. Different mutations have different strengths. Hence even if a

mutation is in the direction of the optimum it could overshoot it and move into

a lower fitness area again.

Wright’s Adaptive landscape or Haldane’s Meta-populations. Wright

considered himself to be primarily a developmental geneticist. His work unlike

that of Fishers was based on the importance of gene interactions (Mayr and

Provine, 1980) including mutation, selection, migration, multiple alleles etc.

(Wright, 1931). He conjured up a fitness landscape which was not phenotype

based by rather genotype based. But each gene can have many different allelo-

morphs so the perfect combination is a perfect allelomorphic combination. For

simplicity consider just two genes. On the x−axis we plot all the alleles of one

gene and on the y− axis all the alleles of the other gene. This is exactly what

Wright plotted in (Wright, 1932) as shown in Figure. 1.1 (a). This is the adap-

tive fitness landscape as visualized by Sewall Wright (Wright, 1932; Gavrilets,

2004). Wright proposed that populations could split and evolve to different

adaptive peaks where the population on a fitter peak out-competes the lesser

fit ones. Often only Wright is credited with the invention of the idea of a fitness

landscape. In fact Haldane also proposed the idea of meta-populations and how

they could evolve to separate adaptive peaks in a genotypic sense (Haldane,

1932a).

Maynard Smith’s Sequence Space. In the ’s John Maynard Smith

developed a similar concept of sequence space but this time in the context of

proteins (Maynard Smith, 1970). The protein code alphabet consists of the

twenty amino acids. For a protein chain of length L there are 20L possible

combinations. Each of these combinations can be represented in an L dimen-

sional space such that the sequences next to each other differ by just a single

amino acid. Maynard Smith concocted a recipe for finding adaptive walks in

such high dimensional “sequence space”. The dimensionality increases as the

length of the sequence (L) increases. For example for a three dimensional sys-

tem we need to represent all the possible combinations in a three dimensional

hypercube. According to Maynard Smith, “if evolution by natural selection is

7



1.2. SCOPE OF THE THESIS

(a) Fitness landscape (b) Hypercubes

Figure 1.1: Wright’s high dimensional genotypic representation. Adapted

from Wright (1932) Panel (a) shows a simplified two dimensional space of “allelo-

morphs”. The contours represent the scale of the adaptive value. The second panel

(b) shows the actual high dimensional genotypic ‘hypercubes’. Each of the nodes are

the different alleles or as Wright called them, ‘allelomorphs’.

to occur, functional proteins (or DNA sequences) must form a continuous net-

work which can be traversed by unit mutational steps without passing through

non- functional intermediates” (Maynard Smith, 1970). The landscape thus

constructed is also known as “mutational landscape” as the neighbours differ

from each other by one mutational step.

Eigen and Schuster’s fusion of landscapes and fitness. Working to-

gether, Manfred Eigen and Peter Schuster combined the concepts of sequence

space and fitness. If each sequence has its own fitness value and if we add this

dimension to the already L dimensional space then we get Wright’s Adaptive

landscape. In this landscape all the L dimensions are flattened out and we see

a mountain range in the dimension of fitness. This range can have peaks and

valleys corresponding to the sequences with higher or lower fitnesses. This land-

scape has been studied in detail by John Gillespie (Gillespie, 1983, 1984a). He

was influential in utilizing the strong selection weak mutation (SSWM) assump-

tion in staunch opposition of the neutral theory of Motoo Kimura (Gillespie,

1984b).

Together these adaptive landscape models (Kauffman and Levin, 1987) are

8



1.2. SCOPE OF THE THESIS

able to capture the general properties of adaptive evolution as has been seen

from experimental studies (Betancourt and Bollback, 2006). Let us review the

commonalities between all these visualisations,

– For Fisher it was some trait combination which affected fitness and for Wright

it was the genetic makeup which affected fitness. For Maynard Smith it was

the different mutational states of a sequence. In all cases, the process involves

identifying the variable which affects fitness.

– Fisher used a sphere to demonstrate the idea of the geometrical model for

three variables. Wright used only two variables to illustrate an adaptive

landscape Fig. 1.1 (a). Although these are for illustrative purposes both of

them knew that actually the effective number of variables are many and thus

the resulting variable space is high dimensional Fig. 1.1 (b). As noted in

(Kauffman and Weinberger, 1989), “. . .the concept is very general, and can

be used to represent entire organisms or other ensembles of related objects

that are ”one mutant neighbors” of each other.”

– Fitness adds another dimension to this already high dimensional trait space.

This is the dimension which actually gives a shape to the otherwise featureless

trait space.

– Change is a major constant in biology. One major assumption with these mod-

els was that the fitness landscape remains unchanged. For example Wright

constructed the concept of an adaptive landscape assuming that the geno-

typic fitnesses remain constant over time (Provine, 1986). As the populations

moves over the fitness landscape, if the fitness is frequency dependent, then

the shape of the landscape will change. The earliest reference to frequency

dependent selection is given by Poulton (1884) about the way predators main-

tain the colour polymorphism in their prey. The explanation of one of the

most puzzling of puzzles in biology, evolution and maintenance of sex, is

hypothesised to be change. The Vicar of Bray hypothesis suggests that sex

helps produce a variability in the phenotypes of the offspring, some of which

may be better suited to a change in the ecology of the environment (Ridley,

1993). The Red Queen hypothesis tackles the question at a different level

9



1.3. THESIS OVERVIEW

(van Vaalen, 1973). Sex and the evolutionary existence of males are explained

by their ability to preserve the genes which can provide an evolutionary ad-

vantage against a changing ecology. Frequency dependent fitness effects have

been documented in a number of experimental tests carried out in Drosophila

(Ayala and Campbell, 1974; Hartl and Clark, 1997) and are proposed to be

one of the mechanisms maintaining a high degree of polymorphism for ex-

ample in the Major Histocompatibility Complex (MHC) (Borghans et al.,

2004; Milinski, 2006). Frequency dependence is also a crucial factor when

addressing the question of biodiversity (Levin, 2000).

The scope of this thesis is limited to exploring two main themes of these

approaches,

– Higher dimensions in static fitness landscapes.

– Higher dimensions in frequency dependent fitness landscapes.

The organisation of these two issues in this thesis is explained in the next

section (see Fig. 1.2).

1.3 Thesis Overview

Fisher, Wright and Maynard Smith thought about specific variables affecting

fitness. We abstract it further to another level where we just consider them as

some variables affecting fitness. In a cultural sense these could be behavioural

traits, fads or fashion or on the genetic level they could be particular alleles of

a gene, genes, genetic regulatory networks etc. . Hence thinking on a further

abstract level we free ourselves from the conditions of the dimensions being

genotypically or phenotypically determined. They could be any characteristics

which in a certain combination affect fitness.

Chapter 2 is devoted to the question of the speed of adaptation on static land-

scapes. In it two publications are documented,

2.1 Chaitanya S. Gokhale, Yoh Iwasa, Martin A. Nowak, Arne Traulsen,

The pace of evolution across fitness valleys,

Journal of Theoretical Biology, 259, (2009)

Page 13

10



1.3. THESIS OVERVIEW

Theoretical Background
Chapter 3

Evolutionary Game Theory

Chapter 1
Static Fitness landscapes

Chapter 2
Pace of evolution across 
fitness valleys
Stochastic Slowdown in 
Evolutionary processes

Chapter 4
Evolutionary Games in the 
Multiverse
The assumption of small 
mutation rates
Mutation selection equilibrium in 
evolutionary games with multiple 
players and multiple strategies
Dynamics of a linked Medea-
Underdominance Population 
Transformation System 

Research Contributions

Conclusions
Chapter 5

Conclusions

Figure 1.2: Outline of the thesis. The thesis layout follows the flow of ideas

rather than the chronology of publications. Chapter 1 provides a general background of

evolutionary theory and an introduction to static fitness landscapes. Chapter 2 directly

follows from the theory of static landscapes. We then move on to the theoretical

background of dynamic fitness landscapes and in particular the use of evolutionary

game theory in Chapter 3. Chapter 4 includes the publications relating to evolutionary

game theory and the Chapter 5 collates all the results together and concludes the thesis

with final remarks.

2.2 Philipp M. Altrock, Chaitanya S. Gokhale, Arne Traulsen

Stochastic slowdown in evolutionary processes,

Physical Review E, 82, 011925, (2010)

Page 26

Chapter 3 is an introduction to evolutionary game theory. We move from our

discussion of static fitness landscapes to frequency dependent fitness landscapes.

For addressing this issue we rely on evolutionary game theory as a tool to study

the evolutionary dynamics. In this chapter the basic concepts of evolutionary

11



1.3. THESIS OVERVIEW

game theory pertaining to the scope of this thesis are introduced.

Chapter 4 is an extension of the theory discussed in Chapter 3. It consists of

four publications. The first three are theoretical advancements while the fourth

is an evolutionary game theoretic analysis of an experimental setup.

4.1 Chaitanya S. Gokhale, Arne Traulsen,

Evolutionary games in the multiverse,

Proceedings of the National Academy of Sciences, USA, 107, (2010)

Page 64

4.2 Bin Wu, Chaitanya S. Gokhale, Long Wang, Arne Traulsen,

How small are small mutation rates?,

Journal of Mathematical Biology, In revision

Page 78

4.3 Chaitanya S. Gokhale, Arne Traulsen,

Mutation-selection equilibrium in evolutionary games with multiple players

and multiple strategies,

Submitted

Page 91

4.4 Chaitanya S. Gokhale, R. Guy Reeves, Floyd A. Reed,

Dynamics of a linked Medea-Underdominance Population Transformation

System

In preparation

Page 106

Detailed author contributions are reviewed at the end of the thesis in Table 5.1.
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“Life is a high-country adventure”

Stuart Kauffman

2
Speed of evolution

2.1 Pace of evolution across fitness valleys

“The problem of evolution as I see it is that of a mechanism by which the

species may continually find its way from lower to higher peaks [. . .]. In order

that this may occur, there must be some trial and error mechanism on a grand

scale [. . .]. To evolve, the species must not be under strict natural selection. Is

there such a trial and error mechanism?” (Wright, 1932).

Wright had asked a very interesting question in theoretical population dy-

namics. How a population which is stuck at one of the many possible local

fitness maxima evolve to the global fitness maximum. Fisher, who thought in

a much more geometrical way, envisioned that any local fitness maxima would

be a point on the slope of another adaptive hill in a higher dimension. Thus

given enough time, a population would finally make it to the global maximum.

Wright was more in favour of random drift. He believed that by drift popu-

lations could reach the foots of other hills and then selection could take over

so as to drive the populations uphill towards the peak. In his Shifting Balance

Theory, Wright postulates that a number of sub-populations could explore the

fitness landscapes and as the number of sub-populations increases, the chance

that one of them finds the global optimum also increases (Wright, 1932). Once

at the global optimum, that sub-population will outcompete all the other types

of that species and the species as a whole will have reached the global adaptive

peak (Ridley, 1996).

13



2.1. PACE OF EVOLUTION ACROSS FITNESS VALLEYS

We address the question using the mutational landscape. Mutations during

individual reproduction are either ultimately lost (when the mutants go extinct)

or fixed in a population (when the mutants take over). The probability that a

mutation reaches fixation increases with the relative fitness of the mutant. As

the fitness landscape is made up of mutants which are one mutational step away

from each other, we can ask the question how long it takes until a number of

mutations reach fixation. Of course, this depends on the fitness of the mutants.

But in addition, the order of mutations is crucial:

1. If each mutation needs another mutation as a prerequisite to occur, evo-

lution occurs on a single path or ridge in fitness landscape.

2. If the order of mutations is arbitrary, then there are many paths possi-

ble along which the mutations are accumulating and evolution typically

proceeds faster.

Figure 2.1: Single path and Hypercube. Hypothetical fitness paths where only

a fixed sequence of mutation can lead to the state of higher fitness (single path) or a

multitude of paths lead to the ultimate state (hypercube). The intermediate states are

all assumed to have the same fitness s as compared to the fitness of the initial state

considered to be 1 and the final state as rd.

We address the pace of evolution in the two scenarios (see Fig. 2.1) and show

how the size of the population affects the way a population evolves. The devel-

oped theory allows us to ask when evolution occurs faster on a narrow ridge or

through a broad valley with disadvantageous intermediate mutations.

14



2.1. PACE OF EVOLUTION ACROSS FITNESS VALLEYS

The framework developed here can serve as a reference case for evolution in

real fitness landscapes, as it can be easily extended to incorporate the complexity

and variation seen in experimental studies, Fig. 2.2. This way of approaching

the fraction of molecules aggregated rises with
protein concentration (25), missense mutations
that reduce aggregation [e.g., (M182T)] (19)
may be necessary to render g4205a beneficial.
(Compare the effects of g4205a on A42G/
E104K/G238S with that on A42G/E104K/
M182T/G238S in Table 1.) Thus, here again,
pleiotropy represents the mechanistic basis of
sign epistasis.

Seen as an analysis of clinical cefotaxime
resistance evolution, our treatment makes sever-
al simplifying assumptions about the mutational
and selective processes. For example, we have
disregarded horizontal gene transfer and have
limited attention to only five mutations. Further-
more we have assumed that selection acts only
to increase resistance to cefotaxime, whereas

microbes are exposed to a spatial and temporal
diversity of antibiotic compounds in nature as
well as in clinical settings (1). The implications
of relaxing these assumptions are explored in
the supporting online text.

However, this work was intended to answer a
more fundamental evolutionary question: Given
a set of pointmutations known jointly to increase
organismal fitness, how does Darwinian selec-
tion regard the many mutational trajectories
available? The foregoing limitations notwith-
standing, the implications of our study for this
broader question are clear: When selection acts
on TEMwt to increase cefotaxime resistance,
only a very small fraction of trajectories to
TEM* are likely to be realized, owing to sign
epistasis mediated by intramolecular pleiotropic

effects. Moreover, inasmuch as intramolecular
pleiotropy (11, 25) and concomitant sign epis-
tasis are characteristic of many missense
mutations (25), constraints on the selective
choice of trajectories like those seen here are
likely to apply to the evolution of other pro-
teins. For example, application of our popula-
tion genetic model to the fitness landscape
between an engineered NADP- and the wild-type
NAD-dependent forms of IMDH (12, 14, 26)
reveals that at most 29% of all mutational
trajectories are selectively accessible (support-
ing online text). Our conclusion is also consist-
ent with results from prospective experimental
evolution studies, in which replicate evolution-
ary realizations have been observed to follow
largely identical mutational trajectories (27).
However, the retrospective, combinatorial
strategy employed here (11) substantially en-
riches our understanding of the process of
molecular evolution because it enables us to
characterize all mutational trajectories, includ-
ing those with a vanishingly small probability
of realization [which is otherwise impractical
(27)]. This is important because it draws at-
tention to the mechanistic basis of selective
inaccessibility. It now appears that intramo-
lecular interactions render many mutational
trajectories selectively inaccessible, which im-
plies that replaying the protein tape of life (28)
might be surprisingly repetitive. It remains to
be seen whether intermolecular interactions
similarly constrain Darwinian evolution at
larger scales of biological organization.
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Fig. 2. Mutational composition of the 10 most probable trajectories from TEMwt to TEM*. Nodes
represent alleles whose identities are given by a string of five þ or – symbols corresponding (left to
right) to the presence or absence of mutations g4205a, A42G, E104K, M182T, and G238S,
respectively. Numbers indicate cefotaxime resistance (12) in mg/ml. Edges represent mutations, as
labeled. The relative probability of each beneficial mutation is represented on a log scale by color and
width of edges: green/wide, 0.316 to 1.0; purple/medium, 0.1 to 0.316; blue/narrow, 0.0316 to 0.1;
and red/very narrow, less than 0.0316. Where two edges are shown between a pair of nodes, solid and
broken edges correspond to probabilities under the equal and correlated fixation probability models,
respectively. Elsewhere values differ between models by less than a factor of ¾10 0 0.316.

Table 2. Summary of mutational effects on cefotaxime resistance.

Mutation

Number of TEM alleles on which
mean mutational effect is Mean† proportional

increase
Positive* Negative* Negligible

g4205a 8‡ 2‡ 6 1.4
A42G 12 0 4 5.9
E104K 15 1 0 9.7
M182T 8‡ 3‡ 5 2.8
G238S 16 0 0 1.0 " 103

*Differences in mean MIC values are significant at P G 0.05. †Of MIC (12); geometric mean across all 16 alleles. ‡One
of these comparisons loses significance after Bonferroni correction.
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(a)

(b) (c)

Figure 2.2: Examples of experimentally constructed fitness landscapes.

The images collated from: (a) Weinreich et al. (2006): Mutational paths in the β

lactamase gene conferring resistance to bacteria from β lactam antibiotics where were

found to be viable.(b) Lozovsky et al. (2009): The major inferred pathways for the

evolution of pyrimethamine resistance. (c) Lee et al. (1997): All paths between the

5srRNA sequences of Vibrio proteolyticus and V. nereis at the three positions where

they differ.

the problem lets us explore the different regimes of mutation rate.

• For small mutation rates the population evolves by a process where

the mutations occur one after the other, which has been termed periodic

selection (Atwood et al., 1951) and theoretically described as the strong-

selection weak-mutation regime (Gillespie, 1983, 2004 (2nd edition) (see

Fig. 2.3 (a)).
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Figure 2.3: Regimes of mutation rates. (a) If mutation rates are very low then

the system is monomorphic most of the time, occasionally a mutation occurs and it

can either go extinct or reach fixation. This scenario can be captured analytically.

(b) For intermediate mutation rates multiple mutants can coexist and the situation is

difficult to characterise analytically. (c) For high mutation rates the dynamics can be

approximated by differential equations again yielding tractable results.

• For intermediate mutation rates the population does not move from

mutational step to the next as a whole. Instead many mutants are present

in the population at the same time. This phenomenon of competition

amongst multiple mutants termed as clonal interference or stochastic tun-

neling has been a subject of in-depth theoretical and experimental studies.

(Gerrish and Lenski, 1998; Elena et al., 1998; Elena and Lenski, 2003;

Iwasa et al., 2004; Park and Krug, 2007). This process is of importance

in studies related to cancer initiation (Iwasa et al., 2004; Michor et al.,

2004; Beerenwinkel et al., 2007a,b; Bozic et al., 2010) (see Fig. 2.3 (b)).

• For high mutation rates the system we can use ordinary differential

equations to capture the behavior of the system (see Fig. 2.3 (c)).

This approach has been used to investigate how different strains of pathogens
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can evolve from one another (Alexander and Day, 2010) or how long does it

take for a population to acquire complex adaptive traits (Lynch, 2010a,b).
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a b s t r a c t

How fast does a population evolve from one fitness peak to another? We study the dynamics of
evolving, asexually reproducing populations in which a certain number of mutations jointly confer a
fitness advantage. We consider the time until a population has evolved from one fitness peak to another
one with a higher fitness. The order of mutations can either be fixed or random. If the order of mutations
is fixed, then the population follows a metaphorical ridge, a single path. If the order of mutations is
arbitrary, then there are many ways to evolve to the higher fitness state. We address the time required
for fixation in such scenarios and study how it is affected by the order of mutations, the population size,
the fitness values and the mutation rate.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary dynamics is based on natural selection, mutation
and genetic drift (Nowak, 2006). It can be illustrated as the
dynamics of a population in an abstract, typically high-dimensional
fitness landscape. Since individuals with higher fitness produce
more offspring, the average density of individuals is highest close
to the fitness maxima. Many such features as the stationary
population density in the fitness landscape or the mutation
rate under which a population can still be concentrated
around a fitness maximum have been addressed (Eigen and
Schuster, 1977; Eigen et al., 1989; Wilke, 2005; Nowak, 1992).
An important question is how a population evolves towards a
fitness peak via several intermediate states. If the intermediate
states have the same fitness as the initial state, then evolution
to higher fitness states is neutral at first and thus poses no
significant problems (van Nimwegen and Crutchfield, 2000). If the
intermediate states have lower fitness than the initial state, then
a fitness valley has to be overcome and it is more difficult to reach
the fitness peak (Weinreich et al., 2006; Poelwijk et al., 2007).
In this case, population stuck on a local peak cannot escape by
natural selection alone, because there is no evolutionary trajec-
tory with successively advantageous mutations. Instead, neutral
genetic drift becomes important.

Here, we consider the dynamics of these systems from a
different perspective. We address the average time a population
needs to transfer from one peak to another one. For small

mutation rates and finite populations, we calculate this average
time analytically. When mutation rates are high, we can describe
the system by a set of differential equations and obtain the
relevant times from a numerical integration of the differential
equations. In this framework, the relevant question is how fast a
population evolves (Traulsen et al., 2007).

In particular, we can address the question whether a popula-
tion evolves faster from one peak to another via d mutations if

(i) mutations have to occur in a certain order, i.e. only a single
evolutionary trajectory is available, or

(ii) the order of the mutations does not matter, i.e. there are d!
evolutionary paths.

In the simplest case the intermediate fitness values are identical
in both the cases and equal to that of the initial state. Thus the
only difference remaining is the number of available paths. When
the order of mutations is not fixed then multiple paths are
available and the evolutionary dynamics will be faster when
compared to a single path. We can then ask the question: Does a
population evolve faster on a narrow ridge or a broad valley? This
implies that we move away from the simplest case mentioned
above and decrease the fitness in the intermediate states of the
multiple paths compared to the fitness in the intermediate states
of the single path. We show how the pace of evolution depends
on the depth of the valley, the number of intermediate states and
the size of the population.

In general, evolutionary dynamics depends crucially on the
size of the population. In a small population a single mutation will
typically reach fixation or extinction before another mutation can
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arise. The population moves as a whole step by step on the fitness
landscape. For large populations, even for small mutation rates
usually multiple types arise at the same time. This results in a
non-zero population density in many states at the same time. For
intermediate mutation rates, the population can either move
stepwise across the fitness landscape or move several steps
without getting concentrated in one of the intermediate states.
This phenomenon has been termed stochastic tunneling (Iwasa
et al., 2004). If the mutation rates are too small, tunneling does
not occur because it is unlikely that a second mutation arises
before the first one has reached fixation or has gone extinct. If the
mutation rates are high, tunneling occurs trivially, because the
system can be approximated by differential equations for
the densities in the different states. These different scenarios
including the limiting cases of stepwise evolution (typical for
small populations) and continuous evolution (typical for large
populations) can also be observed when the population size is
kept constant, but the mutation rates are increased. For computer
simulations increasing the mutation rate is more convenient than
simulating huge populations for moderate mutation rates.

One important example for an evolutionary process in which
the timescales are of crucial importance is the somatic evolution
of cancer (Frank, 2007). Cancer progression has been investigated
mathematically since the 1950s (Fisher, 1959; Nordling, 1953;
Armitage and Doll, 1954). Of special interest are the tumor
suppressor genes (Knudson, 1971; Michor et al., 2004). In a
normal cell, there are two alleles of the tumor suppressor gene.
The mutation in the first allele is neutral if the second wild-type
allele can sufficiently perform the function. Inactivation of both
the alleles confers a selective advantage to the cell and can lead
to cancer progression. This is an example in which the order
of mutations does not matter. Many cancers also require certain
particular mutations that initiate cancer growth and pave the way
for the accumulation of further mutations (Vogelstein and Kinzler,
2004). Recently, it has been shown that after cancer initiation, a
large number of different mutations may be involved in cancer
progression (Sjöblom et al., 2006; Wood et al., 2007; Jones et al.,
2008a, b). So far, it is unclear if the mutations have to occur
in a specific order or if there is more variation in the order
(Beerenwinkel et al., 2007; Gerstung and Beerenwinkel, 2008).

For simplicity, we consider only very simple fitness landscapes
here in which the fitness in all the intermediate states is identical.
In natural systems, these fitness values will differ and also the
mutation rate may not be constant. In addition, sometimes the
order of mutations will matter and sometimes, it will not. Thus,
sometimes a particular mutation will be a prerequisite to obtain a
new function, but sometimes new mutations do not require any
prerequisites. For example, this is the case in the evolution of
resistance to b lactam antibiotics studied by Weinreich (2005)
and Weinreich et al. (2006). However, here we focus on a very
simple model to highlight the general aspects of the dynamics by
analytical and numerical considerations.

This paper is organized as follows. We begin with the
description of the two ways to order the mutations, the single
path and the hypercube. We then derive analytical approxima-
tions of the fixation times for small mutation rates and discuss the
effect of the different parameters on the fixation times. Next, we
address the dynamics for intermediate and high mutation rates.
Finally, we explore biological examples which can be modeled
using this approach.

2. Model

To model evolutionary dynamics in a haploid population of
size N, we use the Moran process (Nowak, 2006; Moran, 1962). In

each time step, one individual is selected at random, but
proportional to fitness. It produces one offspring, which replaces
a randomly chosen individual. In one generation, each individual
reproduces on average once. During reproduction, mutations
occur with probability m. We are interested in the time it takes
until d mutations reach fixation in the population, starting from a
homogeneous population in the initial state without any mutants.
Moreover, we aim to explore the dynamical features of this
process. We restrict ourselves to two different cases that allow the
derivation of some analytical results.

2.1. Single path

If the mutations can occur only in a particular order, we have a
single evolutionary path, see Fig. 1 for an illustration. Individuals
in the initial state have fitness r0 ¼ 1 and individuals in the final
state have fitness rd41. It is instructive to characterize an
individual by a string of d sites, which can either be wild-type
or mutated. If the order of mutations is fixed, then a particular
mutation requires another particular mutation as a prerequisite.
For simplicity, we assume that all the d" 1 intermediate states
have the same fitness rj ¼ sord ðj ¼ 1; . . . ;d" 1Þ. For so1, the
joint effect of the set of mutations make up for the loss of fitness
caused by the individually deleterious mutations. This can be
considered as a very special case of epistasis (Weinreich et al.,
2005).

2.2. Hypercube

If the order of mutations does not matter, evolutionary
dynamics takes place on a hypercube in d dimensions cf. Fig. 1.
Thus, there are 2d different types of individuals. In the initial state,
we have d possible mutations. In the next step, d" 1 mutations
are available. Consequently, we have d! possible paths to fixation.
Again, we assume r0 ¼ 1 and rd41. Further, all individuals with
some, but not all mutations have fitness sord.

If the mutation probability is small, we do not need to make
specific assumptions on the mutation process. But when the
mutation probability increases, we can no longer be certain that
only a single mutation occurs during reproduction. For simplicity,
we do not consider the possibility of backward mutations.
Although back mutations are often relevant, especially to escape
from evolutionary dead ends (DePristo et al., 2007), it is not
straightforward to define the speed of evolution in a system with
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Fig. 1. The order of mutations determines the geometry for evolutionary
dynamics, shown here for d ¼ 3 sites (e.g. genes, nucleotide sites etc.). If mutations
can only occur in a particular order, only a single path is available (left). If the order
of mutations is arbitrary, evolutionary dynamics occurs on a hypercube (right). The
initial states have fitness 1 and the final states fitness rX1. All intermediate states
are assumed to have the same fitness sor. States are labeled by bit-strings, 0 is an
wild-type site and 1 is a mutated site.
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backward mutations. This is due to the fact that for sufficiently
high mutation rates, fixation in the final state might never occur.
Other definitions of the end state of the system become arbitrary
to a certain extend. The probability um!mþk that the offspring
of an individual with m mutations has mþ k mutations ðmpmþ
kpdÞ is

um!mþk ¼
d"m

k

! "
mkð1" mÞd"m"k. (1)

This equation is valid for the hypercube, where the order of
mutations does not matter. Here, ðd"m

k Þ is the number of different
types of mutants with k additional mutations, mk is the probability
that mutations occur at k sites and ð1" mÞd"m"k is the probability
that no mutation occurs at the remaining d"m" k sites. For the
single path, there is only one possibility to arrange the mþ k
mutations. Thus, for k40, um!mþk is identical to Eq. (1), except
that the binomial factor has to be dropped. The probability um!m

that no mutation occurs follows from normalization, um!m ¼
1"

Pd"m
k¼1 um!mþk. Our analytical calculations for small mutation

rates as well as the considerations for high mutation rates are
independent of the precise form of the mutation rates. However,
we need to specify the form of the mutation probabilities to
perform our numerical simulations for intermediate and high
mutation rates.

3. Small mutation rates

3.1. The pace of evolution for small mutation rates

For small mutation probabilities, double mutations can be
neglected. Since mutations occur rarely, we can calculate the
average time until d mutations are fixed in the population
analytically. Let us first address the evolutionary dynamics
when mutants with fitness rm are already present in a resident
population of fitness rw, but no new mutations occur.
This scenario is relevant when mutation rates are sufficiently
small. The probability to increase the number of mutants from j to
jþ 1 is

Tþ
j ¼

rmj
rmjþ rwðN " jÞ

N " j
N

. (2)

Similarly, the number of mutants decreases from j to j" 1 with
probability

T"
j ¼

rwðN " jÞ
rmjþ rwðN " jÞ

j
N
. (3)

The probability that k mutants take over the entire population is
given by Nowak (2006), Karlin and Taylor (1975), Ewens (2004)
and Crow and Kimura (1970)

fk
rm
rw

! "
¼

1þ
Pk"1

i¼1

Qi
j¼1

T"
j

Tþ
j

1þ
PN"1

i¼1

Qi
j¼1

T"
j

Tþ
j

¼
1"

rw
rm

! "k

1"
rw
rm

! "N
. (4)

If a mutant reaches fixation, the average number of generations
this process takes is given by Goel and Richter-Dyn (1974) and
Antal and Scheuring (2006)

tfix
rm
rw

! "
¼

1
N

XN"1

k¼1

Xk

l¼1

fl

Tþ
l

Yk

m¼lþ1

T"
m

Tþ
m

. (5)

For a neutral process with rm ¼ rw, this reduces to tfix ¼ N " 1.
For sufficiently large N, this is the maximum conditional fixation
time of a mutant. Even for disadvantageous mutants ðrmorwÞ the
conditional fixation time is smaller than N " 1 (Antal and

Scheuring, 2006). Since there are mN mutations per generation,
the time between two mutations is 1=mN. Thus, for m5N"2 a
mutant reaches fixation before the next one arises and mutations
will not occur when a mutant is already present. Thus the
population evolves by a process where the mutations occur one
after the other, which has been termed periodic selection (Atwood
et al., 1951) and theoretically described as the strong-selection
weak-mutation regime (Gillespie, 1983, 2004).

The total time t until a mutation reaches fixation in a
population is the sum of the waiting time until a successful
mutant occurs and the fixation time of the mutant t ¼ twait þ tfix.
The waiting time is the inverse of the mutation rate divided by the
probability that a particular mutant is successful

twait
rm
rw

! "
¼

1
mN

1

f1
rm
rw

! " . (6)

For m ! 0, we have twait ! 1, but tfix remains approximately
constant. Thus, t & twait for small mutation rates. In principle, we
could calculate tfix in the presence of mutations. But since our
approximation is only valid for small mutation rates, this will be a
minor correction.

For m5N"2, the population is homogeneous most of the time.
Only occasionally, a mutant arises and reaches fixation or goes to
extinction. The total time until d mutations are fixed in the
population is the sum of the waiting times for the successful
mutants plus the time of the d fixation events. For a single path
with initial fitness 1, intermediate fitness s and final fitness r, we
find for the total time tS

tS ¼ twaitðsÞ þ ðd" 2Þtwaitð1Þ þ twaitðr=sÞ
þ tfixðsÞ þ ðd" 2Þtfixð1Þ þ tfixðr=sÞ. (7)

For small m, we have tfix5twait and hence the total time can be
approximated by

tS ¼ 1
m

1
Nf1ðsÞ

þ d" 2þ
1

Nf1ðr=sÞ

# $
. (8)

Consider now a ‘‘fitness valley’’, in which the intermediate states
have fitness so1, but the final state has fitness r41. To move
from the fitness peak in the initial state to the fitness state
in the final state, first a disadvantageous mutation has to be fixed
in the population. Since f1ðso1Þ5 1

N, the waiting time of such
an event is very long. The waiting time for the neutral muta-
tions, twaitð1Þ ¼ 1=m and the waiting time for a successful
mutation, twaitðr=sÞ are significantly shorter. Thus, tS is dominated
by 1=mNf1ðsÞ for so1 and sufficiently high N in a fitness valley.
Fig. 2 shows a good agreement between exact numerical
simulations and our analytical approximation for small mutation
rates Eq. (8).

If the order of mutations is arbitrary, evolutionary dynamics
occurs on a hypercube. In this case, the whole process will be
faster, as we have d! possible paths instead of a single one. Now,
the waiting times in the different states depend on the number of
mutations that are still available. For the total time tH , we obtain,

tH ¼
1
d
twaitðsÞ þ

Xd"2

k¼1

1
d" k

twaitð1Þ þ twait
r
s

% &

þ tfixðsÞ þ ðd" 2Þtfixð1Þ þ tfix
r
s

% &
. (9)

Note that the time of the fixations alone is identical for the
hypercube and the single path. Neglecting these fixation times for
small m (as tfix5twait) yields

tH ¼
1
m

1
dNf1ðsÞ

þ
Xd"2

k¼1

1
d" k

þ
1

Nf1ð
r
sÞ

" #
. (10)
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Since 1=ðdNf1ðsÞÞo1=ðNf1ðsÞÞ and
Pd"2

k¼11=ðd" kÞoPd"2
k¼11 ¼ d" 2

it is obvious that tHotS, i.e. evolutionary dynamics is faster if the
order of mutations is arbitrary. For fitness valleys with so1 and a
large population size, tH is dominated by 1=dmNf1ðsÞ. As d more
mutations are available, this is always faster than the correspond-
ing equation for a single path, see Fig. 2.

3.2. Thresholds of the waiting times

Next, we derive expressions for some interesting thresholds
of the waiting times in the limit of small mutation rates. Since
evolutionary dynamics is always faster if many paths are
available, we now compare a fitness valley in which many paths
are available to a single path in which the order of mutations
is important, but fitness does not decrease in the course
of evolution. The basic question we address here is, whether it
is faster to cross a broad valley or a narrow ridge in fitness space.
In other words, we compare tSðs ¼ 1Þ to tHðso1Þ. Since we
consider only small mutation rates m, we neglect the fixation
times tfix here, although they will not be identical in the two
scenarios. For s ¼ 1, the single path is neutral. We decrease s in the
hypercube until we have identical waiting times. This yields an
implicit expression for s

d" 1þ
1
N

1"
1
rN

1"
1
r

¼
1
dN

1"
1
sN

1"
1
s

þ
Xd"2

k¼1

1
d" k

þ
1
N

1"
s
r

% &N

1"
s
r

. (11)

From this equation, we can numerically determine s for any given
N. For large N, Eq. (11) simplifies to

dðd" 1Þ "
Xd"2

k¼1

d
d" k

¼
1
N

1"
1
sN

1"
1
s

&
eNð1"sÞ"1

Nð1" sÞ
, (12)

where we used ð1" x=NÞ"N ! ex for large N. Thus, the quantity
Nð1" sÞ becomes constant for large N, see Fig. 3. Thus, we can now
say how broad and deep a fitness valley has to be to lead to the
same cumulative waiting time as a single neutral path.

Next, we address the effect of the intermediate fitness s,
which has an important influence on the cumulative waiting

time t. Fig. 2 shows how the waiting time decreases with
increasing fitness in the intermediate states s. If s comes very
close to the fitness in the final state, the waiting time increases.
This increase is seen both in the single path and the hypercube. An
increase in the intermediate state fitness will not always lead to a
reduction in waiting times. Instead, the fixation times reach a
minimum when the fitness growth is constant between any two
consecutive states (Weinreich and Chao, 2005; Traulsen et al.,
2007). For the hypercube, the fastest trajectory will be steeper
than on a single path: at first, many mutations are available and a
big fitness increase is not necessary. Later, fewer mutations are
available and thus, the fitness should increase faster. The precise
form of the trajectory will in this case depend on the number
of mutations d and the population size N. We note that a similar
reasoning can be applied to construct a fitness landscape that
allows to cross a fitness valley fastest. The fastest trajectory has
the same form regardless if a fitness peak is approached ðr41Þ
or a fitness minimum is approached ðro1Þ. Thus, the fastest way
to cross a fitness valley is to descend to the minimum with
exponentially decreasing fitness and to increase from the mini-
mum again with exponentially increasing fitness.

Now, we turn to the effect of the intermediate fitness s on the
individual waiting times. Eqs. (8) and (10) both consist of three
terms each. The first term denotes the time required to leave the
initial state. The second term is the time spent in moving through
all the intermediate states. This second term is independent of s,
because the transitions are neutral. The last term denotes the time
required to reach the ultimate state from the penultimate state.
For small values of s, the probability to fixate the disadvantageous
mutation is very small. Thus, the total time is dominated by the
first term. When s is increased to a threshold value s1, then the
time for leaving the first state is identical to the waiting time
in the intermediate states. For the hypercube, s1 is given by
ð1=dÞtwaitðs1Þ ¼

Pd"2
k¼1ð1=ðd" kÞÞtwaitð1Þ, which reduces to

1"
1

sN1

1"
1
s1

¼ dN
Xd"2

k¼1

1
d" k

. (13)
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faster (m ¼ 10"5, r ¼ 1:1, simulations averaged over a 1000 realizations).
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This equation can be solved numerically for specific values of N
and d. For the single path, the right hand side of this equation has
to be replaced by Nðd" 2Þ. For s4s1, the time to cross the
intermediate states is larger than the waiting time in the first
state. On the hypercube, we can define a second threshold for
which the waiting time in the first state is the same as the time
required to reach the final state from the penultimate state. This
arises because the effective mutation rate in state 0 is d times
larger than the effective mutation rate in state d" 1. The
threshold s2 is given by ð1=dÞtwaitðs2Þ ¼ twaitðr=s2Þ or

1
d

1"
1

sN2

1"
1

s12

¼
1"

s2
r

% &N

1"
s2
r

. (14)

Again, s2 has to be determined numerically. For a single path, the
factor d"1 in Eq. (14) has to be dropped. Thus, the threshold s2
occurs for s41 and is simply given by s2 ¼

ffiffiffi
r

p
.

The fixation time is also strongly influenced by the number of
mutations d. A larger d increases the length of the path and
usually also the fixation times. For the single path, this increase
results only from the increase in the time required to cross the
intermediate states, because the time for leaving the initial state
and the time to reach the final state from the penultimate
state are independent of d. The time required to reach the ultimate
state from the penultimate state is also independent of d for
the hypercube, but the time required to leave the initial state
decreases with increasing d. This is because as d increases, there
are more states available in the first error class and thus the
effective rate of mutation out of the initial state increases. As for
the single path, the time to cross the intermediate states increases
with d in the hypercube. For the hypercube, this interplay can lead
to a non-monotonic dependence of the fixation time on d. For
example, for N ¼ 100 and s ¼ 0:95, the fixation time tH decreases
with d for do31, but it increases with d for d431. In contrast, the
fixation time always increases monotonically with d for the single
path.

Increasing the fitness of the final state r increases the
advantage of the final state over the intermediate states. This
will result in the decrease in the time required for the population
to make the last move. Increasing r has no effect on the time
required to cross the intermediate states or the time required to
move away from the initial state. As a result, those two times
remain constant even as r increases, both in the single path and
the hypercube.

4. Intermediate mutation rates

The analytical approach is only valid as long as the mutation
rate is small, m5N"2. For higher mutation rates, the population
does not have to consist of at most two different types at any time.
Instead, d mutations can be fixed in the population without
sequentially fixing one after the other. This process has been
termed stochastic tunneling and is of great importance in the
context of cancer initiation (Iwasa et al., 2004; Michor et al., 2004;
Nowak et al., 2004; Beerenwinkel et al., 2007). Tunneling across
fitness valleys is more likely than tunneling across a flat fitness
landscape (see Fig. 4). Even for d ¼ 2, the evolutionary dynamics is
characterized by a doubly stochastic process, which makes
analytical approaches tedious (Iwasa et al., 2004). As discussed
above, for mN251 the population usually contains at most two
different types. In this case, the probability of stochastic tunneling
will be very small. On the other hand, for mN41, at least
one mutant is produced per generation. Thus, the probability
of stochastic tunneling approaches 1. For N"2omoN"1, the

mutations are sometimes fixed sequentially and sometimes via
stochastic tunneling. Fig. 5 shows how the tunneling probability
increases from 0 to 1 in this interval.

For intermediate mutation rates, it is likely that the population
contains more than two different types. The types with beneficial
mutations will compete for fixation. This process is termed clonal
interference (Crow and Kimura, 1970; Fisher, 1930; Muller, 1932;
Gerrish and Lenski, 1998; Park and Krug, 2007). Clonal inter-
ference has been considered to slow down adaptation, but
recently it has been shown that it can have a positive influence
on a rugged fitness landscape (Gerrish and Lenski, 1998; Wilke,
2004; Jain and Krug, 2007).
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rates as large as 100N"2 the probability of tunneling remains close to zero (s ¼ 1:0,
r ¼ 1:1, averaged over a 1000 realizations).
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The states in a single path can be characterized by the number
of mutations. In the hypercube, the states are characterized by the
types of mutations that have already occurred. Thus, there are
many different types that have undergone a specific number of
mutations. However, all types that have already accumulated k
mutations can be pooled into the error class k. The number of
different types in the error class k is given by ðdkÞ ¼ d!=k!ðd" kÞ!.

In a single path, a population is said to tunnel across a state if it
passes through a state without ever reaching fixation in that state.
Analogously, in a hypercube a population said to tunnel across an
error class if it passes through that error class without ever
reaching fixation in it. Within the error classes, tunneling can
occur across individual states, but also across several states at
once. This means that the whole population passes only across
that particular state and not across any other, without ever
reaching fixation in that particular state. Tunneling across an error
class can also occur in a second way: the population can use all of
the available states in the error class, but the total number
of individuals in the error class never reaches N. Thus, the
probability of tunneling via the individual states is always lower
than the probability of tunneling across the error classes. Fig. 6
shows the relation between the different probabilities of
tunneling in the hypercube with respect to the rate of mutation
m for the special case d ¼ 2.

Due to higher effective rates of mutation, the probability
of tunneling across a hypercube is expected to be greater than
or equal to the probability of tunneling across a single path.
However, numerical simulations reveal that for d ¼ 2 the prob-
ability of tunneling in a single path is higher than in the
hypercube. This is a special case: for d ¼ 2 in a hypercube, the
number of states into which the initial state can mutate into is 2.
The effective rate of mutations is thus twice as much as in the
single path. The number of states which can be mutated into next
is one, both in the single path and the hypercube. Thus the rate at
which the individuals are pushed into the first state is higher in
hypercube than in the single path while the rate of individuals
being pushed out is the same. Thus there is a higher probability of
reaching fixation in the first error class in a hypercube (see Fig. 6).
We only observe this effect for d ¼ 2, for d42, the probability of

tunneling is higher in a hypercube than in a single path, as
expected (see Fig. 4).

5. High mutation rates

For mN41, the stochastic features of the dynamics become less
important. In this case, the system can be described by a set of
dþ 1 deterministic differential equations for the fraction xkðtÞ
of the population that has k mutations (Jain and Krug, 2007).
Obviously, we have

Pd
k¼0xkðtÞ ¼ 1. Transitions out of state 0

occur with probability T0! ¼ ð1" ðx0=fÞu0!0Þx0, where f ¼ x0 þ
ð1" x0 " xdÞsþ xdr is the average fitness of the population. This
includes all the reproductive events except for the one where a
type 0 is produced. Transitions into state 0 occur with probability
T!0 ¼ ðx0=fÞu0!0ð1" x0Þ. Thus, the fraction of individuals in the
initial state follows the differential equation:

_x0ðtÞ ¼
1
N

x0
f

u0!0ð1" x0Þ " 1"
x0
f

u0!0

! "
x0

# $
. (15)

The probability that an offspring is of type k is given by lk ¼Pk
j¼0ðxjrj=fÞuj!k. The difference between the hypercube and the

single path only occurs in the quantity uj!k, which is given above
for both cases. The sum in lk is over all individuals with k or less
mutations and rj is the fitness of individuals with jmutations. This
leads to the differential equation for the fraction of individuals
with k mutations

_xkðtÞ ¼
1
N
½lkð1" xkÞ " ð1" lkÞxk(, (16)

where k ¼ 0; . . . ; d. Of course, the special case k ¼ 0 recovers
Eq. (15). This set of dþ 1 differential equations describes how the
system moves from state k ¼ 0 to state k ¼ d. In general, only a
numerical solution of this system of equations is feasible. While
this allows us to infer details of the dynamics, our main interest is
the time required for fixation of d number of mutations. Thus, we
solve the differential equation numerically using a standard
Runge–Kutta algorithm (Press et al., 2007). To find an equivalent
to the fixation time in a stochastic simulation, we average
between fixation ðxd ¼ 1Þ and the time when there are on average
less than 1 individuals outside the final state ðxd ¼ 1" 1=NÞ. Thus,
the fixation time is the time when the solution of the differential
equation crosses xd ¼ 1" 1=2N.

Fig. 7 shows an overview of the fixation times, covering the
full range of mutation rates. For small mutation rates, we have
sequential fixation of mutations and the time can be well
approximated by Eqs. (8) and (10). For high mutation rates, the
numerical solution of Eq. (16) leads to a good approximation for
the fixation times.

6. Discussion

We have determined the average time during which a
population moves from a certain initial state to a final state
of higher fitness. The initial and the final states are separated by a
fixed number of mutations d. The mutations jointly confer a
fitness advantage to the final mutant which can be represented by
a peak in the fitness landscape. If the intermediate mutations
need to occur in a specific order for the evolution of the final
mutant then it corresponds to the single path. Otherwise,
evolution occurs on a hypercube and there are d! ways of reaching
the final state.

We have explored the simplest system in which the fitness in
all intermediate states is the same. As expected, the fixation times
on a hypercube are shorter than on a single path, due to the
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presence of multiple paths available in a hypercube. This
observation leads to the question: for which parameters does
the hypercube show shorter fixation times than the single path,
even with an added disadvantage? The fitness in the intermediate
states was then set to lower values than the ones in the single
path. Up to a certain threshold value of the fitness of the
intermediate states, the hypercube shows shorter fixation times
than in the single path. The value of the threshold depends on
the population size, total number of required mutations and the
fitness in the final state.

The fixation times for large populations largely depend on the
fitness function and are qualitatively independent of the order of
mutations. Let us first focus on a flat landscape: when the
intermediate states have a fitness equal to the fitness of the initial
wild-type, then for small mutation rates large populations have
shorter fixation times than small populations. This is because the
neutral rate of evolution does not depend on the population size.
But the waiting time for fixation of the last mutation becomes
shorter with larger population size. For intermediate mutation
rates, tunneling starts earlier in larger populations. This leads to a
marked decrease in the fixation time with larger population size.
For high mutation rates, the time to fixation is no longer
dominated by the time for the first mutant to reach the final
state, but by the time until all individuals are in that state. Due to
this, for high mutation rates the time required for fixation can be
shorter in smaller population as compared to larger populations.
Next, we focus on fitness valley: if the fitness landscape consists of
a valley with reduced fitness of the intermediate states, small
populations have an advantage for small mutation rates, as they
can easily leave the initial state and enter the valley. But for high
mutation rates, large populations reach fixation faster, because
they can explore states within and beyond the fitness valley more
easily.

Our numerical simulations reveal that tunneling can be
neglected even when the mutation rate exceeds N"2, at least by
one order of magnitude. Thus, Eqs. (8) and (10) provide good
estimates for the fixation times even in relatively large populations.

Concrete values for fixation times are collected in Table 1. They
reveal that even in long-term studies of experimental evolution, it
is difficult to observe the consecutive fixation of neutral mutants
(Cooper et al., 2003). Consecutive fixation of advantageous
mutants, however, is significantly faster. For example, while
Table 1 reveals a fixation time of )1011 generations on a single
path for d ¼ 10, s ¼ 1 and N ¼ 106, an optimal choice of the
intermediate fitness values (Traulsen et al., 2007) would lead to a
fixation time of )107 generations.

While we have focused on the simplest possible system which
allows analytical approximations, experimental studies reveal of
course a much higher complexity. Weinreich et al. (2006) studied
experimentally the point mutations in the b-lactamase gene of
bacteria. b lactam antibiotics are commonly used, but the bacteria
can develop resistance to the drugs. Five point mutations in a
particular allele of the b-lactamase gene increases the resistance
of the bacteria to cefotaxime by a factor of )100;000. Theoreti-
cally the mutations leading from the wild-type allele to the
resistant allele can occur in 5! ¼ 120 ways. These can be
represented by a hypercube of d ¼ 5. But in only 18 of the 120
trajectories, the intermediate mutations are either neutral with
respect to the initial state or beneficial. Weinreich and colleagues
have shown that these have the highest probability of realization.
For all beneficial intermediates the fastest way to reach the final
state would be when the relative fitness increase between any two
consecutive mutations is constant (Traulsen et al., 2007), but
usually in nature several different mutations are available and the
population first evolves to states that provide the highest selective
advantage.

In another experimental study the sequence space of the
5s rRNA of a marine bacterium, Vibrio proteolyticus was explored
(Lee et al., 1997). The sequences from Vibrio proteolyticus and
Vibrio alginolyticus differ in only four positions. All the possible
intermediates were constructed by the authors and the fitness of
each was calculated (Chao and McBroom, 1985). Two of the valid
intermediates have a fitness lower than the initial wild-type. We
have shown how such fitness valleys can be crossed by exploring
the phenomenon of tunneling or multiple mutations (for high
mutation rates). Thus, the population does not need to move in a
Wrightian fashion (the whole population moving as a whole
across the valley).

The theory discussed herein deals with basic evolutionary
concepts which are important to the kind of biological examples
described above. More complex properties of the experimental
studies like more general cases of epistasis and compensatory
mutations can easily be incorporated, but there is a huge number
of possibilities. Even if we are only interested in the ordering of
fitness values, we can have up to 2d! distinct epistatic patterns.
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Table 1

The time required for fixation of d mutations in units of 1010 generations for a

mutation rate of m ¼ 10"10 based on Eqs. (8) and (10).

N d ¼ 3 d ¼ 10

Single path Hypercube Single path Hypercube

102 2.10999 0.943325 9.10999 2.03896

104 2.0011 0.834433 9.0011 1.93007

106 2.00001 0.833344 9.00001 1.92898

The intermediate mutations are neutral, s ¼ 1. For small mutation rates, the
fixation times scale linearly with m"1. For N ! 1, the fixation time on the single
path approaches m"1ðd" 1Þ and the fixation time on the hypercube approaches
m"1Pd"2

k¼0 ðd" kÞ. However, the mutation rates have to decrease with increasing N to
make the approximation for the fixation times valid (initial fitness 1.0 and final
fitness r ¼ 1:1).
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Fig. 7. The fixation times decrease with increasing mutation rate. Fixation always
occurs faster on the hypercube (circles) than in the single path (squares). For small
mutation rates, mutations fixate sequentially and the fixation time can be well
approximated by Eqs. (8) and (10). Here, the fixation times decrease as m"1. For
high mutation rates, the system can be approximated by a set of deterministic
differential equations and the simulation results for the fixation times can be
approximated based on the numerical solution of Eq. (16). In this case, fixation
times decrease in general slower than m"1 with increasing mutation rate
(population size N ¼ 1000, d ¼ 5, s ¼ 1, r ¼ 1:1, averages over 1000 realizations).
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Thus, one should rather focus on concrete systems instead. For
example, one could simulate the dynamics in a system with
experimentally derived fitness values and mutation rates. Not all
the paths of a hypercube might be accessible for selection, but still
some of them might prove to be significant depending upon the
particular values of the parameters, such as fitness values and
population size. Our goal here was to characterize the simplest
features of the dynamics of a population crossing a fitness valley.
This approach can be helpful when more realistic scenarios are
addressed.
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Sjöblom, T., Jones, S., Wood, L., Parsons, D., Lin, J., Barber, T., Mandelker, D., Leary, R.,
Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.,
Willis, J., Dawson, D., Willson, J., Gazdar, A., Hartigan, J., Wu, L., Liu, C.,
Parmigiani, G., Park, B., Bachman, K., Papadopoulos, N., Vogelstein, B.,
Kinzler, K., Velculescu, V., 2006. The consensus coding sequences of human
breast and colorectal cancers. Science 314, 268–274.

Traulsen, A., Iwasa, Y., Nowak, M.A., 2007. The fastest evolutionary trajectory.
J. Theor. Biol. 249 (3), 617–623.

van Nimwegen, E., Crutchfield, J., 2000. Metastable evolutionary dynamics:
crossing fitness barriers or escaping via neutral paths? Bull. Math. Biol. 62,
799–848.

Vogelstein, B., Kinzler, K., 2004. Cancer genes and the pathways they control. Nat.
Med. 10, 789–799.

Weinreich, D., 2005. The rank ordering of genotypic fitness values predicts genetic
constraint on natural selection on landscapes lacking sign epistasis. Genetics
171, 1397–1405.

Weinreich, D., Delaney, N., DePristo, M., Hartl, D., 2006. Darwinian evolution can
follow only very few mutational paths to fitter proteins. Science 312, 111–114.

Weinreich, D.M., Chao, L., 2005. Rapid evolutionary escape by large populations
from local fitness peaks is likely in nature. Evolution 59, 1175–1182.

Weinreich, D.M., Watson, R., Chao, L., 2005. Perspective: sign epistasis and genetic
constraint on evolutionary trajectories. Evolution 56 (6), 1165–1174.

Wilke, C., 2004. The speed of adaptation in large asexual populations. Genetics 167,
2045–2053.

Wilke, C., 2005. Quasispecies theory in the context of population genetics. BMC
Evol. Biol. 5, 44.

Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J., Shen, D.,
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2.2. FITTER BUT SLOWER

2.2 Fitter but slower

During the earlier study an interesting counterintuitive characteristic was noted.

Consider the following simple setup. There are only two states A and B. The

whole population (of size N) currently resides in state B. An individual can

move from state B to state A by acquiring a mutation but not vice versa.

For the dynamics we make use of the Moran process (Moran, 1962). Each time

Moran Process

T+
i

T−
i

1 − T+
i − T−

i

= A

= B

One time step

Figure 2.4: The Moran process. To describe the dynamics of a population of

finite size we resort to stochastic processes. The Moran process is a birth-death process.

That is, in time each step a birth event and a death event occur. The population size is

maintained constant by a random death. If the population consists of say i A individuals

then in one time step the number of A can increase by one (with probability T+
i ) or

decrease by one (with probability T−
i ) or stay the same (with probability 1−T+

i −T−
i ).

step of the Moran process consists of a birth even and a death event. For the

whole population to move from state B to state A means that all individuals

currently in state B have to acquire the mutation. The mutation rate is given

by µ. We consider the limit of small mutation rates such that a mutant reaches

its fate (either fixation or extinction) before a new one arises. There are no

back mutations from A to B. Thus in our variant of the Moran process in each

time step, one of the following three things can happen (see Fig. 2.4),
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2.2. FITTER BUT SLOWER

• Number of individuals in state A increases by 1. The number of

individuals in state A increases by 1 with probability,

T+
i =

i

N

N − i
N

+
N − i
N

µ
N − i
N

.
�� ��2.1

The increase can happen in two ways. The first term gives the probability

when an A state individual is chosen for reproduction and a B for death.

The second term gives the probability when a B is chosen for reproduction,

but mutates to A and again a B is chosen for death.

• Number of individuals in state A decreases by 1. The number in

state A decreases only if a B is chosen for reproduction and it does not

mutate and an A is chosen for death. This event happens with probability,

T−
i =

N − i
N

(1− µ)
i

N
.

�� ��2.2

• No change in either state. This happens with probability 1−T+
i −T−

i .

Hence in each reproductive step there is a bias towards producing an indi-

vidual with a mutation (see Fig. 2.5). Intuitively we expect that the average

B

B

B

BB

B

B

A

B

B

B

B
B

B

B

B
B

B

B

BB

B

A

A

A

A

A

AA

A

A

A. . .

All B All AN-1 B
1 A

N-2 B
2 A

Strength of bias towards A

Figure 2.5: Bias towards A. Throughout the process there is a frequency dependent

bias towards moving to an all A state. It diminishes in strength as the system gets

closer to an all A state. Yet the time time required to get to the final state is greater

than without such a bias.

conditional time required for the fixation of a single A individual in a popula-

tion of N − 1 B individuals should be smaller than in a balanced process in
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τN
1 =

N−1∑

k=1

k∑

l=1

φN
l

1

T+
l

k∏

m=l+1

T−
m

T+
m

Increases

Decreases

Figure 2.6: Effect of increasing bias on components of conditional fixation

time τN1 . The expression gives us the exact conditional fixation time τN1 for the Moran

process beginning with a single mutant. If we introduce a frequency dependent bias

such that we have T+
i > T−

i , then we see that the ratio of transition probabilities and

the inverse of T+
l decrease. On the contrary, the fixation probability, φNl , increases.

The effect of this tug of war is an increase in the conditional fixation time for a small

bias.

which there is no bias. However, we observe that for a small bias the average

conditional fixation time is larger than that of a balanced process (without bias).

To go to the heart of this counterintuitive observation we must dissect out

the quantity of interest, the conditional fixation time. Conditional fixation time

means given that the mutant does fix, what is the time required for the popula-

tion to reach a state where all individuals are mutants. For the Moran process

we can exactly calculate the conditional fixation time from a formula which

is well known for such a birth-death process (Moran, 1962; Goel and Richter-

Dyn, 1974; Ewens, 1979; Landauer and Büttiker, 1987; Antal and Scheuring,

2006; Traulsen and Hauert, 2009) (see Fig. 2.6). In the following publication

we observe what happens to this quantity of interest as we introduce a small

bias to the system. Even a simpler process than directed mutations can exhibit

such counter-intuitive behaviour. All it requires is a slight asymmetry in the

transition probabilities (T+
i and T−

i ).
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We examine birth-death processes with state dependent transition probabilities and at least one absorbing
boundary. In evolution, this describes selection acting on two different types in a finite population where
reproductive events occur successively. If the two types have equal fitness the system performs a random walk.
If one type has a fitness advantage it is favored by selection, which introduces a bias !asymmetry" in the
transition probabilities. How long does it take until advantageous mutants have invaded and taken over?
Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has
a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows
a more intuitive understanding. We show that this effect can occur for weak but nonvanishing bias !selection"
in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher
model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to
birth-death processes.

DOI: 10.1103/PhysRevE.82.011925 PACS number!s": 87.23.!n, 02.50.!r, 05.40.!a

I. INTRODUCTION

Birth-death processes belong to the simplest stochastic
models and are applied in a variety of fields #1–6$. In physics
these processes are connected, e.g., to the study of one-
dimensional classical diffusion in disordered media, anoma-
lous transport, and molecular motors #7–10$. In evolutionary
biology, birth-death processes are commonly applied to
model the evolution of traits with different reproductive fit-
ness that are under natural selection #5,11$. In the context of
evolutionary game theory, this particular class of Markov
chains has been used to model the spreading of successful
strategies in a population of small size #12–20$. Naturally,
the limit of weak selection is considered to be important in
biology. It describes situations in which the effects of payoff
differences are small, such that the evolutionary dynamics
are mainly driven by random fluctuations. While this ap-
proach has a long standing history in population genetics
#21,22$, in the context of evolutionary game dynamics it has
been introduced only recently #14$. Often, from the discrete
stochastic process a continuous limit or diffusion approxima-
tion is motivated, where typically the impact of the relevant
parameters and time scales can be studied more easily
#11,23–25$. Here, we consider the Moran process from the-
oretical population genetics and related processes. We ad-
dress the speed of evolution when a resident population is
taken over by mutants that are more fit. Under the low mu-
tation rates that typically occur in biology, a mutant type
either goes extinct or takes over the population before an-
other mutation arises. Thus, for many purposes it is sufficient
to address the evolution of two types in a one-dimensional
system.

In the following, we first recall general properties of birth-
death processes !Sec. II" and then address asymmetry in the
transition probabilities !Sec. III". In Sec. IV, we then con-

sider a more general Markov process to highlight that our
main finding is not a special property of birth-death pro-
cesses.

II. STATE DEPENDENT BIRTH-DEATH PROCESS

A one-dimensional birth-death process in position i can
move to i−1 or i+1 with probabilities Ti

− and Ti
+. With prob-

ability 1−Ti
−−Ti

+, the process stays in state i. We assume
T0

"=TN
"=0, such that i=0 and i=N are absorbing states. In

discrete time, the probability to reach boundary N in t steps,
starting from any i, obeys the master equation #6$.

Pi
N!t" = !1 − Ti

+ − Ti
−"Pi

N!t − 1" + Ti
−Pi−1

N !t − 1" + Ti
+Pi+1

N !t − 1" .

!1"

The stationary conditional nth moment of Pi
N!t" is given by

!#i
N"−1%

t=0

$

tnPi
N!t" . !2"

The normalization constant, #i
N=%t=0

$ Pi
N!t", is the probability

that the process gets absorbed at boundary N, called fixation
probability in population genetics. For #i

N a recursion is ob-
tained from Eq. !1", #i

N= !1−Ti
+−Ti

−"#i
N+Ti

−#i−1
N +Ti

+#i+1
N .

With the boundary conditions #0
N=0 and #N

N=1, the solution
reads #4$

#i
N =

1 + %
k=1

i−1

&
m=1

k
Tm

−

Tm
+

1 + %
k=1

N−1

&
m=1

k
Tm

−

Tm
+

. !3"

A measure for the duration of the process is the conditional
mean time to absorption !average fixation time" %i

N, i.e., the
first moment of Pi

N!t". This gives the average number of time
steps until one of the two absorbing states is reached, starting*altrock@evolbio.mpg.de
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from any i #7,13$. A recursion for %i
N is obtained by multi-

plying each side of Eq. !1" with t and summing over all t #6$,
which yields #i

N%i
N= !1−Ti

+−Ti
−"#i

N%i
N+Ti

−#i−1
N !%i−1

N +1"
+Ti

+#i+1
N !%i+1

N +1". A similar recursion can be found for the
conditional mean exit time %i

0, such that the mean life time of
the process amounts to %i

0+%i
N. Solving recursively with the

boundary conditions %0
N=0 and %N

N=0, leads to the condi-
tional mean time to reach state N, starting from i=1,

%1
N = %

k=1

N−1

%
l=1

k
#l

N

Tl
+ &

m=l+1

k
Tm

−

Tm
+ . !4"

One common example for a birth-death process with absorb-
ing states 0 and N is the homogenous random walk, Ti

"=c
&1 /2 for 0' i'N and T0

"=TN
"=0 #26$. This leads to #i

N

= i /N and %1
N= !N2−1" / !6c". The reference case of population

genetics is neutral evolution, where the symmetric transition
probabilities are state dependent, Ti

"= i!N− i" /N2. This re-
sults in #i

N= i /N and %1
N=N!N−1" #5,11$.

III. BIASED TRANSITION PROBABILITIES

In this section, we examine how the state dependent tran-
sition probabilities influence the conditional mean exit time.
We consider processes in which a parameter ( continuously
introduces a bias toward moving into one direction: for (
=0 the transition probabilities are symmetric, Ti

+=Ti
−, but for

()0, an asymmetry arises, Ti
+*Ti

−. In evolutionary dynam-
ics, ( is usually referred to as the intensity of selection. It
governs the selective advantage !or disadvantage" of mutants
in a wild-type population of finite size. Intuitively, it is clear
that the time %1

N does not depend trivially on (, cf. Eq. !4".
With increasing (, the probability #i

N increases, but both
1 /Ti

+ and Ti
− /Ti

+ decrease in our setup. Thus, the average
time %1

N can increase or decrease with (. In other words,
despite increasing the tendency to move in the direction of a
given boundary in each state, the conditional average time
until this boundary is reached can still increase.

In the Moran process, an individual selected for reproduc-
tion proportional to fitness produces identical offspring that
replaces a randomly selected individual from the population.
We consider the evolution of two types A and B in a finite
population of size N. Type A !with fitness fA" is usually
referred to as the mutant type, B !with fitness fB" is called the
wild type. Let i be the number of individuals of type A, such
that N− i is the number of B individuals. In general, the tran-
sition probabilities are

Ti
+ =

ifA

ifA + !N − i"fB

N − i

N
,

Ti
− =

!N − i"fB

ifA + !N − i"fB

i

N
. !5"

In the following, we discuss different choices of fA and fB, as
well as closely related, but simplified asymmetric transition
rates.

A. Constant fitness

In the simplest case, the fitness of mutants is constant and
does not depend on their abundance #11$. In our model, this
can be parametrized as fA=1+( and fB=1−(. In this case,
the fixation probability of a single mutant is #11$

#1
N = !1 − +"/!1 − +N" , !6"

where += !1−(" / !1+(". Up to linear order in ( we have
#1

N'N−1+(!N−1"N−1. The larger the fitness advantage, the
more likely the evolutionary takeover. For stronger selection
!()0" an advantageous mutant is expected to fixate faster
compared to neutral !(=0".

B. Linear density dependence

In general, the fitness of the two types will depend on
their abundance. For example, the fitness f of each type can
change linearly with i, fA=1+(!ai+b" and fB=1−(!ai+b".
The bias ( is bound such that fitness never becomes nega-
tive. Then, the transition probabilities are

Ti
" =

1 " (!ai + b"
N − (!ai + b"!N − 2i"

i!N − i"
N

. !7"

We have T0
"=TN

"=0, such that both boundaries are absorbing
#14,27$. For a'0 and aN+b)0, type A is always fitter than
type B, fA) fB, but the conditional mean exit time %1

N is
larger than neutral in a certain parameter range, compare Fig.
1!a". In this case, a mutant that is fitter than the rest of the
population needs more time to take over the population than

a d

1.00

1.05

0.95

τN
1

0 0.04 0.08
β

1.00

1.10

0.90

τN
1

0 0.04 0.08
µ

b c

1.00

1.10

τN
1

0 0.12 0.24
β

1.00

1.25

τN
1

0 0.80.4
β

β̃ β∗
β̃ β∗

FIG. 1. !Color online" The conditional mean exit time %1
N /%1

N!0"
!normalized" as a function of the bias !selection intensity" (, or the
mutation rate ,, for the four different models discussed in the main
text. Symbols are simulations, lines show Eq. !4". !a" Moran pro-
cess with a=−0.1 and b=2, see Eq. !7". !b" Parabolic-step process
with i!=11, Eq. !9". !c" Constant-step process with i!=9 and c
=0.5, Eq. !12". !d" Birth-death process with directed mutations,
Eqs. !15" and !16". The quantities %̃, (̃, and (! indicate the maximal
relative increase of %1

N, the according bias parameter, and the non-
trivial value of ( where %1

N=%1
N!0", respectively !also compare Fig.

2". The system size is N=20 in all panels, averages taken over 107

realizations.
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a less fit mutant. Intuitively, this should not be the case. The
linear approximation of %1

N for (-N−1 !weak selection"
reads

%1
N ' N!N − 1" − a

N2!N2 − 3N + 2"
18

( , !8"

see #28,29$. Note that the linear approximation of the condi-
tional mean exit time depends only on the parameter a, but
not on b, which holds for any system size. Hence, for small
bias ( and a'0, the conditional average time grows with
increasing (. This is an effect from state dependent fitness in
finite populations, as it cannot occur for a=0.

The ratio Ti
− /Ti

+ is a measure of the stochastic flow. Sto-
chastic slowdown can occur if this ratio changes with the
position !abundance of A" i, leading to an asymmetry. When
( becomes larger, %1

N decreases again with (, which is the
strong selection behavior one would expect, compare Fig.
1!a".

C. Steplike asymmetry

Is there a simpler process with similar characteristics? In-
deed, we can introduce asymmetry also as a step in the fit-
ness of the two types in our Moran process. This leads to
parabolic transition probabilities with an additional steplike
discontinuity,

Ti
" =

i!N − i"
N2 !1 " (.#i! − i$" , !9"

where .#x$ is the step function !.#x'0$=0 and .#x*0$
=1". The integer i! is the location of the step. This process
has the fixation probabilities

#i
N =( 1

#1
i

#1
i!

#1
i!!N − i!"+i! + 1

if i & i!,

#1
i!!i − i!"+i! + 1

#1
i!!N − i!"+i! + 1

if i * i!,) !10"

where #1
k = !1−+" / !1−+k" is the probability to get from 1 to

k, and += !1−(" / !1+(". Note that this general formula re-
duces to the standard fixation probability for constant fitness
in the case of i!=N, cf. Eq. !6". For weak bias, (-1 /N, we
have +'1–2(, as well as

#i
N '

i

N
+

(

N2*i#!N!1 + 2i! − i" − i!!1 + i!""$ if i & i!,

!N − i"i!!1 + i!" if i ) i!.
+
!11"

#i
N increases with ( in this approximation, whereas + de-

creases with (. Hence, the mean exit time can also increase
in an appropriate parameter range. The average delay of the
absorption is rather high in this case, cf. Fig. 1!b", where it is
10%. Fig. 2!c" illustrates that even a delay of 400% is pos-
sible, but this delay decreases with increasing i!.

An even simpler model with stochastic slowdown is the
constant-step process

Ti
" = c!1 " (.#i! − i$" if 0 ' i ' N , !12"

and T0
"=TN

"=0, with i!&N, and the constant c chosen such
that Ti

++Ti
−&1. Clearly, the fixation probability of this pro-

cess obeys Eqs. !10" and !11". Then, the remaining sums can
be expressed by means of the exact form of #i

N, respecting
that 1 /Tl

+ only gives contributions different from 1 /c if l
& i!. The conditional mean exit time %1

N can now be written
in the form

%1
N =

#1
N

c %
k=1

i!

%
l=1

k
+k−l!1 + +"

2#1
l +

#1
N

c %
k=i!+1

N−1

%
l=1

i!
+i!−l!1 + +"

2#1
l

+
#1

N

c %
k=i!+1

N−1

%
l=i!

k−1 ,!k − l"+i! +
1

#1
i!- . !13"

With +'1–2( and Eq. !11" this leads to
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FIG. 2. !Color online" Scaling with system size for the two
models with step like asymmetry: Parabolic-step model Eq. !9"
#Fig. 1!b"$ on the left, constant-step model Eq. !12" with c=1 /2
#Fig. 1!c"$ on the right. !a" The threshold value N(!, defined by
%1

N!(!"=%1
N!0". Note that (&1 permits a minimal value of i! /N

only relatively far from zero. !b" N(̃, defined as the bias parameter
where the mean exit time %1

N is maximal. When plotted against the
asymmetry parameter i!, both models approach a limit curve with
growing size N. This suggests that nontrivial values of (! and (̃ can
be found for any system size N after appropriate rescaling: the
asymptotic scaling relations are (̃.N−1, and (!.N−1. !c" The
maximal increase of the mean exit time !normalized", %̃

=%1
N!(̃" /%1

N!0", quickly approaches a limiting curve with growing N.
This suggests the asymptotic scaling relation %̃.N0. Open symbols
N=20, filled symbols N=200, lines N=2000.
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%1
N '

N2 − 1
6c

+
!N − i!"!N − 1 − i!"i!!1 + i!"

3Nc
( . !14"

The constant contribution is that of the homogenous random
walk. The correction linear in ( is always greater than or
equal to zero, i.e., within the range of this approximation it
just adds a positive value to the symmetric part. Also note
that %1

N!(=0, i! ,c" serves as an upper bound for the mean
exit time if i!*N−1. Hence, below a certain threshold of the
bias, %1

N is always greater than or equal to the homogenous
random walk between absorbing boundaries. This is surpris-
ing as the process defined by Eq. !12" fulfills Ti

+*Ti
−, and

thus never gives a disadvantage to movement toward the
boundary i=N. Moving into the direction of N is always at
least as likely as moving into the opposite direction in this
setup. In this particular process, the stochastic slowdown can
be quite large, cf. Figs. 1!c" and 2!c".

What is the effect of system size on this stochastic slow-
down? Let (! denote the upper bound of the parameter ( for
which %1

N!(")%1
N!0", which is the parameter range in which

slowdown can be observed. Additionally, with (̃ we denote
the parameter value of maximal slowdown of the exit time
%1

N. They change with N and i! in both models with a steplike
asymmetry, Eqs. !9" and !12". The expansions linear in ( are
valid if N(-1 #13,27,29$. In Figs. 2!a" and 2!b" we show
that with increasing system size N, the quantities N(̃!i!" and
N(!!i!" approach limiting curves if ( is rescaled appropri-
ately. Thus, stochastic slowdown does not rely on small sys-
tem size, but (! and (̃ asymptotically scale as N−1. However,
the maximal relative increase of the mean exit time itself,
%̃=%1

N!(̃" /%1
N!0", does not scale with system size, %̃.N0, as

illustrated in Fig. 2!c".

D. Directed mutations

To stress the generality of the effect of stochastic slow-
down in asymmetric birth-death processes we briefly discuss
a model with directed mutations. Fitness does not need to be
position/state dependent to observe stochastic slowdown in
population genetics. As above we consider two types, A and
B, in a population of size N, both having the same reproduc-
tive fitness. In one reproduction step of this Moran process,
type B mutates to type A with a probability ,, back-
mutations are excluded. This introduces asymmetry in the
transition rates,

Ti
+ = / i

N
+ ,

N − i

N
0N − i

N
, !15"

Ti
− = /N − i

N
!1 − ,"0 i

N
, !16"

where i is the abundance of A. Obviously, TN
"=T0

−=0, but
with directed mutations we have T0

+*0. The process has one
absorbing boundary. The ratio of the transition probabilities
is Tm

− /Tm
+ '1−,N /m, for mutation rates ,-1 /N2. For larger

,, the dependence on the inverse mutation rate makes the
calculation of an approximation of Eq. !4" unwieldy. As ,

increases we expect that A has an advantage during repro-
duction and hence, the conditional fixation time !that a single
mutant takes over before going temporarily extinct" should
decrease. Nevertheless, we observe an increase in the value
of %1

N, see Fig. 1!d". The time shows a maximum when , is
close to N−1.

A more general process is given in the Appendix. There,
we derive an expression for the fixation probability in a
Wright-Fisher model with directed mutations. Although this
quantity increases with ,, the associated conditional mean
exit time also increases in a certain parameter range, com-
pare Fig. 3.

IV. STATE DEPENDENT WRIGHT-FISHER PROCESS

The phenomenon of stochastic slowdown is not restricted
to birth-death processes. It also occurs in the Wright-Fisher
process that is commonly used in population genetics
#11,30$. Again, we consider a population of two types A and
B. If i is the abundance of A, the fitness of each type is fA
=1+(!ai+b", and fB=1−(!ai+b", respectively. Birth-death
processes, such as the Moran model considered above, deal
with one reproductive event at a time. Now, one time step of
the Wright-Fisher process corresponds to one generation
where all individuals reproduce: In each generation, the N
individuals reproduce a large number of offspring propor-
tional to fitness. The new generation of size N is a random
sample from this offspring pool, which corresponds to bino-
mial sampling proportional to fitness. The transition prob-
ability to go from i to j A individuals reads #30$

Ti→j = /N

j
0/ ifA

ifA + !N − i"fB
0 j/ !N − i"fB

ifA + !N − i"fB
0N−j

.

!17"

For this process, a closed treatment is not possible. Apart
from simulations, for large N a diffusion approximation leads

FIG. 3. !Color online" The conditional mean exit time !normal-
ized" for the Wright-Fisher model with N=1000, as a function of
the rescaled bias !selection intensity, mutation rate". The line shows
the analytical diffusion approximation result Eq. !24", namely
%!N−1" / !2N−1". Symbols are simulation results. Left: The state de-
pendent fitness model, Eq. !17" !2/106 realizations, a=−0.1, b
=N1a1". For relatively small bias ( slowdown is observed. Right:
The directed mutations model, Eq. !A1" !5/105 realizations".
Here, a strong slowdown effect can be observed over a wide range
of the bias, N,&1. This is due to the different nature of the di-
rected mutation process, which has only one absorbing boundary.
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to analytical results #11,31–34$. With x= i /N, the process is
approximately described by the Langevin equation dx
=D1!x"dt+2D2!x"dW!t", where W!t" is the Wiener process
with zero mean and autocorrelation 3W!t"W!s"4=min!t ,s"
#1$. The drift term D1!x" can be written as

D1!x" = x!1 − x"N
fA!x" − fB!x"

xfA!x" + !1 − x"fB!x"
. !18"

For the diffusion term D2!x" we find

D2!x" = x!1 − x"
fA!x"fB!x"

!xfA!x" + !1 − x"fB!x""2 +
D1

2!x"
N

. !19"

If the initial fraction of A types is x0, the probability of ab-
sorption in x=1 !fixation probability" reads

#!x0" =
S!x0"
S!1"

, !20"

where

S!x" = 5
0

x

dy exp,− 5
0

y

dz
2D1!z"
D2!z" - . !21"

If there is no bias, (=0, we have fA!x"= fB!x" and hence
D1!x"=0. Thus, consistently with the previous section, we
obtain #!i /N"= i /N. For sufficiently weak bias, N(-1, we
have

2D1!z"
D2!z"

' 4N!aNz + b"( , !22"

which leads to

#!x0" ' x0 +
2x0!1 − x0"N#aN!1 + x0" + 3b$

3
( . !23"

The conditional mean time this process takes to exit at x=1,
%!x0", can be obtained from the associated backward Fokker-
Planck equation #11$,

%!x0" = N5
0

x0

dxt1!x,x0" + N5
x0

1

dxt2!x,x0" , !24"

where

t1!x,x0" = 2
#!x"
D2!x"

1 − #!x0"
#!x0"

S!x"exp,5
0

x

dz
2D1!z"
D2!z" - ,

t2!x,x0" = 2
#!x"
D2!x"

!S!1" − S!x""exp,5
0

x

dz
2D1!z"
D2!z" - .

!25"

For weak bias Eq. !22" holds, as well as S!x"'x
−2 /3Nx2!aNx+3b"(. This results in

%!1/N" ' 2N!N − 1"ln, N

N − 1
-

−
2
9

!N − 1"/C1 + C2 ln,N − 1
N

-0( , !26"

with

C1 = a!7N2 + 13N + 6" + 18b ,

C2 = 6N!aN!N + 2" + 3b" .

For large N, the right hand side of Eq. !26" simplifies, lead-
ing to

%!1/N" ' 2N − 1 − a
2N2!N − 3"

9
( . !27"

Hence, we can predict an increase of %!1 /N", in the case of
state dependent bias with a'0, also for the Wright-Fisher
process, in particular when A always has a fitness advantage
over B, see Fig. 3. This goes along with the findings for the
Moran model in the previous section. Thus, the slowdown
effect can also be observed in the traditional framework of
population genetics, where times of fixation !or rather extinc-
tion" have been considered typically for constant selection
#11,35$.

V. DISCUSSION

This paper addresses several stochastic evolutionary pro-
cesses asking how long an advantageous mutation needs to
take over. We have first concentrated on birth-death pro-
cesses which model population dynamics with successive re-
productive events, like the Moran process. However, the phe-
nomenon of stochastic slowdown is also present in more
general Markov processes, e.g., the Wright-Fisher process
from population genetics. Stochastic slowdown is relevant in
the invasion and fixation of beneficial traits with small state
dependent selective advantage, which is typically assumed in
evolutionary biology #36$. However, consequences of weak,
but nonvanishing selection are hard to reveal in empirical
studies, as the dynamics are still dominated by random ge-
netic drift and averages over large ensembles are necessary.
Biological examples of weak selection include amino acid
substitutions which are only slightly advantageous or delete-
rious #37–39$. Weak state dependent fitness changes !such as
the thresholds we discuss in our model with steplike asym-
metry" may help explain situations in which a substitution is
likely, but takes a very long time.

Our finding also has applications in evolutionary game
theory #40–42$: When a group of cooperative individuals is
eventually driven to extinction by defectors, this process may
take longer than the corresponding neutral process, although
the defectors always have a fitness advantage. This observa-
tion is closely related to the fact that the conditional fixation
time of an advantageous mutation is the same as the condi-
tional fixation time of a deleterious mutation #28,35$.

To sum up, we have shown that an asymmetric bias in a
random walk, which is generic in population genetics, can
lead to a counterintuitive observation that an advantageous
mutant needs longer to take over the population than a neu-
tral mutant in the same system. This is a property of weakly
biased systems, i.e., weak selection, and is recovered for any
system size if the intensity of selection is rescaled with N−1.
The relative maximal increase in time itself is independent of
the system size. Especially in the state dependent Moran or
Wright-Fisher process, this can have a crucial impact on
macroscopic observable quantities.
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APPENDIX: STATE DEPENDENT WRIGHT-FISHER
PROCESS WITH DIRECTED MUTATIONS

Consider a finite population of size N, which consists of
two types A and B. Both types have the same reproductive
rate, which is set to one. In one generation, each type pro-
duces a large number of identical offspring proportional to its
abundance. Additionally, a directed mutation from B to A can
occur with probability ,. The next generation of size N is a
random sample from the offspring pool. The transition ma-
trix reads

Ti→j = /N

j
0/ i

N
+ ,

N − i

N
0 j/N − i

N
!1 − ,"0N−j

. !A1"

The conditional moments of this Markov chain are given by
#11$

Mn!i" = %
j=0

N

!j − i"nTi→j . !A2"

In a diffusion approximation we rescale the state space as
x= i /N, and the timescale as 0t=1 /N, such that for large
system size and weak bias the process is well described by
the first two moments, Dk= 3!xt+0t−xt"k4 /0t, i.e.,

Dk!x" =
N

NkMk!i" , !A3"

k=1,2. For the given Markov chain Eq. !A1", the drift and
diffusion terms read

D1!x" = ,N!1 − x" , !A4"

D2!x" = !1 − x"#!1 − x"!N − 1",2 + !1 − 2x", + x$ .

!A5"

Next, we derive a closed expression for the probability that
the process exits at x=1 without hitting the non-absorbing
boundary x=0 first, starting form x0, #!x0", Eq. !20". The
general expressions Eqs. !20" and !21", as well as Eqs. !24"

and !25" hold. However, due to the different nature of this
process, where only one absorbing boundary at x=1 exists,
these quantities have a slightly different meaning.

We define 2D1!x" /D2!x"=2N, / D̃2!x", where

D̃2!x" = !1 − x"!N − 1",2 + !1 − 2x", + x , !A6"

and obtain

I1!z" =5 dz
2D1!z"
D2!z"

= − 1 ln D̃2!z" !A7"

with

1 =
2N,

,#!N − 1", + 2$ − 1
. !A8"

Now, with D2!0"= D̃2!0" and

I2!y" = exp6− #I1!y" − I1!0"$7 = , D̃2!y"
D2!0"

-1

!A9"

we can calculate the second integral in Eq. !21",

S!x" = 5
0

x

dyI2!y" =
1

D2
1!0"

D̃2
1+1!x" − D̃2

1+1!0"
1 − ,#2 − , + N!2 + ,"$

.

!A10"

Hence, the fixation probability, Eq. !20", reads

#!x0" =
D̃2

1+1!x0" − D̃2
1+1!0"

D̃2
1+1!1" − D̃2

1+1!0"
. !A11"

As D̃2!0"= #!N−1",+1$,, D̃2!1"=1−,, and lim,→0 D̃2!x0"
=x0, we have lim,→0 #!x0"=x0. Up to first order in mutation
rate, we see that #!x0" increases with increasing bias,

#!x0" ' x0 − !2Nx0 ln x0", . !A12"

With expressions !A10" and !A11" the conditional mean exit
time, Eq. !24", can be tackled as well. However, we do not
address the conditional mean exit time analytically, as its
explicit form is elaborate and does not lead to further insight.
From a numerical solution #Eq. !24"$ and from simulations
#Eq. !A1"$ the mean exit time of a single mutant, %!1 /N", as
a function of , is shown in Fig. 3.
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“Any fool can make things bigger, more

complex and more violent. It takes a touch

of genius and a lot of courage to move in

the opposite direction”

Albert Einstein (1879-1955) 3
Evolutionary Game Theory

3.1 Introduction

Frequency dependent fitness introduces a strategic aspect to evolution. Evolu-

tionary game theory is the study of biological systems with frequency dependent

fitness. Consider the following example.

When introduced, evolutionary game theory was used to model animal con-

flict situations. We use a classical example of hawks and doves used by May-

nard Smith and Price (1973). When fighting over resources say hawks are the

ones who escalate the fight. Doves do not fight, instead they share the resource

equally. Let the benefit of securing the complete resource be b and the cost for

fighting over it be c with the relation c > b. This problem can be represented

as,

(
Hawk Dove

Hawk b−c
2 b

Dove 0 b
2

)
.

�� ��3.1

The above way of representing the problem is known as the payoff matrix.

This particular payoff matrix denotes the payoff for the row player and it reads

as follows:

(1) I (row player hawk) meet another hawk. I will keep on fighting until

one of us relents. On winning I will get b− c but as each of us has an equal

chance of winning the expected payoff is (b− c)/2.
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3.1. INTRODUCTION

(2) I (row player hawk) meet a dove. The opponent being a dove gives in

without effort and I get the full benefit b without paying any cost.

(3) I (row player dove) meet a hawk. This is the mirror image of (2). Seeing

the Hawk I give in and gain nothing, 0.

(4) I (row player dove) meet another dove. We both do not want to fight

and just split the benefit equally between the two of us, each getting, b/2.

As c > b, that is the benefit from winning does not cover the cost hence a

dove does better in a population dominated by hawks. While the hawks fight

each other and get negative payoffs, a dove is better off getting 0. Similarly, if

all are doves then it pays to be a hawk and get b instead of b/2. Hence there

will be a stable co-existence of hawks and doves. The hawk-dove game is a bit

misleading because the interactions are described as between species. We can

consider the types to be behavioural strategies as being aggressive or docile.

Overall this example clarifies the most basic point of evolutionary game theory,

frequency dependence. This is the essence of evolutionary game theory (see

Fig. 3.1). Frequency independence can be a subset of frequency dependence

and hence studying frequency independent selection is a simple special case in

evolutionary game theory. But this is an anecdotal explanation and where can

it be actually used?

In a recent, resource utilisation experiment with the yeast Saccharomyces

cerevisiae, conflict between genes SUC2 and suc2 was analyzed (MacLean et al.,

2010). Two strains of yeast were used. One with the gene SUC2 secretes an

extra-cellular enzyme called invertase which catalyses the hydrolysis of sucrose

into glucose and fructose, which can then can be taken up by the cell (Greig

and Travisano, 2004; Doebeli and Hauert, 2005; Gore et al., 2009). The strain

with gene suc2 does not secrete invertase. Thus, suc2 bearers are free from

the manufacturing costs but they can utilise the glucose and fructose made by

the SUC2 bearing strain The secretors are termed as “co-operators”, while non-

secretors as “defectors”. In MacLean et al. (2010) the highest average fitness

is obtained in a stable coexistence of the two strains. Using the published data
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A
A
A
A

B
B

Fi
tn

es
s

Number of B 
individuals

Number of A 
individuals

Negative Frequency 
Dependence

A

Figure 3.1: A seesaw model of negative frequency dependence. If the

number of A individuals increases further then the fitness of type A will reduce even

more. But having a greater fitness in effect means that the number will increase. Hence

now when the number of B players increases the B side will go down i.e. the fitness

of B will go down. If we maintain a fixed population size then the increase in B is

compensated by a reduction in A. Thus for a small number of A individuals the fitness

of A will be greater than that of B. This in particular is an example of what is known as

negative frequency dependence, where the lower the frequency, the higher the fitness.

Positive frequency dependence means that as the number increases, fitness increases.

In general, the position of the pivot is not exactly in the centre.

we can write a payoff matrix for the interactions (Wu et al., 2011),

(
SUC2 suc2

SUC2 0.9475 1.03913

suc2 1.03912 0.9495

)
.

�� ��3.2

We see that it is better to do the opposite of what the other player is doing.

Thus this interaction can be studied as the “Hawk-Doves problem” encountered

earlier.

The first use of indirect game theoretical arguments in biology is attributed

to Fisher (1930). He was intrigued by the question, why the sex ratio in mam-

mals is usually 1 : 1? He noticed that the fitness of a male is greater in a
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population consisting of more females than males and vice versa. The relative

frequencies of both the sexes will thus tend to balance each other (the seesaw

in Fig. 3.1 would be balanced). The fitness of a sex depends on its relative

frequency in the population. The use of formal game theoretic arguments in

biology was pioneered by R. C. Lewontin (1961). John Maynard Smith champi-

oned game theory in biology and described how it can be used to aptly describe

animal conflict and other biologically strategic scenarios (Maynard Smith and

Price, 1973; Maynard Smith, 1982). From the interactions between genes or

cells (Axelrod et al., 2006; Basanta et al., 2008), between individuals (microbes

to humans) or communities (Axelrod, 1984; Turner and Chao, 1999; Archetti,

2000; Turner, 2005; Frey, 2010) and even across species like host-parasite inter-

actions (Vickery and Poulin, 2010), all can be captured by evolutionary games.

The word ‘evolutionary’ in this sense is not limited to biological evolution

but can also describe cultural evolution, dealing with the evolution of behaviours

and ideas (Hofbauer and Sigmund, 1998; Vincent and Brown, 2003; Kandori

et al., 1993). One of the most important applications of evolutionary game

theory has been in the research of evolution and maintenance of co-operation

and eusociality. The problem of co-operation is typically represented by a payoff

matrix with the following structure,

(
C D

C b− c −c
D b 0

)
,

�� ��3.3

where C and D stand for the strategies, co-operate and defect. As earlier the

matrix gives the payoffs for the row player. If the row player is a co-operator then

he/she has to pay the cost for co-operation −c. The benefit of co-operation

b is obtained only if the other player co-operates. Since the lower row of the

payoffs is consistently higher than the upper row of payoffs, it makes sense for

the row player to play the strategy D instead of C. Assuming that the column

player is at least as smart as the row player, both of them will choose to play

D. The social optimum, where both of them would have co-operated would

have resulted in a payoff of b − c to each. Instead the search for an individual

optimum led the players to obtain 0.
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An economic analysis of the scenario clearly reveals that co-operation will

be eliminated from the population. How could then a behaviour which costs

the acting individual and benefits another have evolved by natural selection? In

the seminal paper by Axelrod and Hamilton (1981) the problem of co-operation

was analysed based on artificial players. There are numerous examples of co-

operation in a natural setting:

• When viruses infect the same cell they compete for the available resources

(Turner and Chao, 1999; Turner, 2005). “Cheater” viruses get rid of the

genes for utilising resources which are available from other viruses and

thus prey on the common good.

• Evolution and maintenance of multi-cellular life forms requires the co-

operation of the composing cells (Nowak, 2006a). Evolution of cancer

is about the breakdown of co-operation amongst the cells (Dingli and

Nowak, 2006).

• Minnows demonstrate predator inspection behaviour (George, 1961). An

ingenious experiment in which sticklebacks inspect a cichlid model was

done by Milinski (1987, 1988, 1990) where a pair of fish are locked in

a dilemma. Who will take the greater risk while inspecting the fish?

A similar experiment was carried out in guppies (Dugatkin, 1988, 1990,

1997).

• Males of the Lance-tailed manakins participate in complex group courtship

displays which benefit only the alpha male (DuVal, 2007). This raises the

question of why do the subordinate males take part in the ritual.

• Blood meal sharing in vampire bats is a classic example where vampire bats

can regurgitate blood meal for others who did not get enough (Wilkinson,

1984).

• Humans and other social organisms seem to be at the pinnacle of co-

operation. Just as there is rampant incidents of cheating and selfish be-

haviour, there are also occurrences of long sustained co-operation amongst

humans (Smith, 1776; Wedekind and Milinski, 1996; Milinski and Wedekind,
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1998; Milinski et al., 2001; Fehr and Gächter, 2002; Fehr and Rockenbach,

2004; Sommerfeld et al., 2007; Henrich et al., 2006; Sigmund, 2007; Kum-

merli et al., 2007; Fehr et al., 2008; Gächter and Herrmann, 2009; Traulsen

et al., 2010).

Using games such as the Prisoners Dilemma, Snowdrift game etc. this problem

has been analysed in great depth. An in-depth discussion on this problem is

beyond the scope of this thesis and hence we just briefly refer to this application

of evolutionary game theory. For these and other interesting types of games,

see Gintis (2000) or Sigmund (2010).

The names of these games come from short anecdotes like the “Hawk-

Dove”. They represent human economic conflict situations as was useful in

classical game theory. Maynard Smith took the notations from classical game

theory (von Neumann and Morgenstern, 1944) like the payoff matrix but devel-

oped a new logic for the analysis of games in a biological context. The games

could be thus used as a proxy for animal conflict situations (Maynard Smith

and Price, 1973). The development of evolutionary game theory is split into

two parts, the static analysis initialised by Maynard Smith and the dynamical

analysis developed by Taylor and Jonker (1978), Zeeman (1980), Schuster and

Sigmund (1983), Hofbauer (1985) and Hofbauer and Sigmund (1988), as well

as many others.

3.2 Evolutionarily Stable Strategies

In “The Logic of Animal Conflict” published by John Maynard Smith and George

Price in Nature in 1973, they introduce a condition for a strategy to be evolu-

tionarily stable. But what does it mean to be evolutionarily stable? To get to

the heart of the question we do away with particular examples. In an abstract

way consider just two strategies A and B. In an infinite population of A players

imagine that a very small fraction of them start playing strategy B. What is

the condition for A to oppose this invasion of B? If we find a certain condition

and A satisfies that condition then we say that strategy A is an evolutionarily

stable strategy (ESS).
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Let us find this condition. As before we write down a payoff matrix for the

game,

(
A B

A a1 a0

B b1 b0

)
.

�� ��3.4

The matrix denotes the payoffs for the row player. The payoff entries are written

so that we immediately know where they belong in the matrix. The small a is

a payoff entry for strategy A and the subscript denotes if the other player is

A, given by 1, or not, given by 0. Now from this infinitely large population

let the frequency of the players playing strategy A be x. Hence the frequency

of players playing strategy B is given by 1 − x. The game matrix denotes the

interaction of two players. Hence an A player can meet another A player or a B

player. The probability of meeting a player of a certain strategy is the frequency

of that strategy. This is because we have assumed a well mixed population

(Maynard Smith and Price, 1973). In genetical terms this would mean random

mating. For example when an A player meets another A player (this will be with

probability x) then the focal A player gets a1 according to the payoff matrix.

From this we can calculate the average payoffs to both the strategies, namely

πA and πB as,

πA = a1x+ a0(1− x)
�� ��3.5

πB = b1x+ b0(1− x).
�� ��3.6

If the average payoff of strategy A is always larger than that of strategy B then

B will not be able to invade A,

πA > πB

a1x+ a0(1− x) > b1x+ b0(1− x).
�� ��3.7

Since we have assumed that the frequency of the invading B players is very

small, we can cancel the terms with 1 − x as x ≈ 1. Thus we arrive at the

condition,

a1 > b1
�� ��3.8
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If we are dealing with a quirky situation where a1 = b1, then we need to restart

our analysis at the earlier inequality
�� ��3.7 . In this case we cancel a1 terms with

b1 terms and are left with the condition,

a0 > b0 (given that a1 = b1)
�� ��3.9

Thus for strategy A to be an ESS either of the following conditions must be

met,

• a1 > b1 or a1 = b1 and a0 > b0.

• a1 > b1 or a1 = b1 and a0 ≥ b0 also termed as “weak ESS” (Thomas,

1984, 1985).

An intuitive understanding of an ESS is that a focal strategy (A) has to do

better when playing against itself (A) than when compared to another strategy

(B) playing against the focal strategy (A). If somehow this barrier is broken and

the invading strategy (B) pushes through, then the focal strategy (A) should

do better when playing against the invading strategy (B) as compared to the

invading strategy (B) against itself (B).

There is a deeper relationship between ESS and the traditional concept of

Nash equilibrium (Nash, 1950) (see Fig. 3.2). In classical game theory strategy

A would be a strict Nash equilibrium when an A playing against itself is better

than B playing against A i.e. a1 > b1. Strategy A is a Nash equilibrium if it

performs against itself at least as well as B performs against it, i.e. a1 ≥ b1. A

Nash equilibrium in short is the equilibrium from where no player can improve

his or her payoff by switching strategies unilaterally (Nash, 1950).

The ESS analysis tell us whether a particular configuration of the population

is resistant to invasion by a small number of mutants. But how do we know if

the population can even reach that configuration in the first place? For this we

look at the dynamics of the system.

44



3.3. EVOLUTIONARY GAME DYNAMICS

Nash

ESS

Weak ESS

Strict Nash

�A B

A 5 2

B 3 1

�

�A B

A 5 2

B 5 1

�

�A B

A 5 2

B 5 2

�

�A B

A 5 1

B 5 2

�

Equilibrium classification for strategy A Example matrices

Figure 3.2: Equilibrium classification for strategy A. Denoting the logical

relationships between ESS and Nash equilibria. All strict Nash equilibria are ESS which

are all weak ESS which are all Nash but the reverse is not always true.

3.3 Evolutionary Game Dynamics

Traditionally evolutionary game theory deals with phenotypic traits. “Evolu-

tionary game theory, [. . .], describes evolution in phenotype space” (Nowak and

Sigmund, 2004). The different phenotypic traits are termed as strategies (like

the earlier secretors and non-secretors). In this section we describe the dynamics

of such strategies. Although evolutionary game theory is developed from the

theory of games in economics (von Neumann and Morgenstern, 1944), it for-

goes an important assumption of game theory: rationality. In evolutionary game

theory natural selection is the dominant force. Individuals are born with fixed

strategies. They interact with each other and receive payoffs according to a pay-

off matrix based on their strategies. Strategies which get the higher payoff are

said to be more successful than those which do not. These successful strategies
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spread in the population at the cost of other weaker strategies. Understanding

this process is the mainstay of evolutionary game dynamics (Sandholm, 2010).

Difference and Differential equations (Box 3.3)

Before delving into game dynamics let us turn back to Malthus for

a moment. Malthus proposed one of the earliest models of population

growth now known as the Malthusian growth model or often the simple

exponential growth model.

Consider an organism which increases in number exponentially (e-

fold) at every time step. If the number of organisms at time t is pt then

the number at the next time step t+ 1 is given by,

pt+1 = ept
�� ��3.10

If we know the initial condition, i.e. the number at t = 0 then we can

calculate the number of organisms at any time t exactly as,

pt = etp0

�� ��3.11

This type of equation is known as a difference equation as it uses the

information from discrete time-points and calculates the differences to

arrive at the final position specified in this example by t.

If time is measured continuously rather than in discrete time steps

then we use a differential equation instead of a difference equation. For

the above type of system we can write a differential equation as,

dp

dt
= rp

�� ��3.12

For the sake of concise notation we use ṗ = dp
dt , where the dot denotes

the derivative taken with respect to time. The solution of this differential

equation is obtained by integrating it, which leads to,

p(t) = ertp(0),
�� ��3.13

where p(t) and p(0) are the frequencies at the respective time points.

Taylor and Jonker (1978) and Zeeman (1980) extended the realm of evo-

lutionary game theory to include dynamics. This was a major leap forward in

the field of evolutionary game theory. They introduced a differential equation

(see Box 3.3) based on the quasi-species equation initially developed by Eigen

46



3.3. EVOLUTIONARY GAME DYNAMICS

and Schuster (1977) (Eigen et al., 1989). The quasi-species equation does not

include frequency dependent fitness but mutations. Excluding mutations but

including frequency dependent fitness we arrive at the replicator equation (see

Fig. 3.3). A simultaneous generalisation of these two equations leads to the

replicator-mutator equation which includes frequency dependent fitness as well

as mutations (Stadler and Schuster, 1992; Bomze and Buerger, 1995; Nowak

and Komarova, 2001; Page and Nowak, 2002) (see Fig. 3.3). All these equa-

tions tell us how the strategies replicate and how their frequencies change over

time.

ẋi =

n∑

j=1

xjfi(x)qji − xif̄

Replicator equation

Replicator-Mutator equation

ẋi = xifi(x) − xif̄

Quasispecies equation

ẋi =

n∑

j=1

xjfiqji − xif̄

Neglecting mutations Neglecting frequency 
dependent fitness

ẋ
fi

fi(x)
f̄

Frequency of type i

Average fitness of the population

Frequency independent fitness of type i

Frequency dependent fitness of type i
Mutation probability from j to iqji

Figure 3.3: Replicator and quasi-species equations as special cases of the

Replicator-Mutator equation. The quasi-species equation includes mutations be-

tween types but the fitness of the types are frequency independent. In the replicator

equation the fitnesses of types is frequency dependent but there is no chance for mu-

tations. Hence while a certain type can go extinct in replicator dynamics it may not

in quasi-species dynamics if it is fuelled by mutations from some other type. Including

both frequency dependent and mutations leads to the replicator-mutator equation.
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3.3.1 Replicator Dynamics

At the core of evolutionary game theory lies the replicator equation. The repli-

cator equation allows the frequencies of the different types in the population to

determine the fitness landscape rather than setting the fitness of each type to

be constant (Constant fitness is a special case of the replicator dynamics).

Let us take a bottom-up approach to the replicator equation. As before,

consider two types in an infinitely large population, A and B. The frequency of

type A is given by xA and that of type B by xB. Since these are the only two

types in the population, the frequencies sum up to one, i.e. xA+xB = 1. Each

type has an average fitness denoted by fA and fB. How this fitness is actually

derived is a question pertaining to the particular context of the model we are

studying. For our purpose we just consider fitness in its meaning, a quantitative

measure of the ability of that type to pass on to the next generation. We consider

the case of frequency dependent fitness. Hence we have fA(x) and fB(x) as

the fitnesses. The bold x denotes that it is a vector, a set of frequencies of

both the types (x = {xA, xB}), as the fitness can depend on the frequencies

of both the types. Considering the classical selection ideas we know that if this

fitness is greater than the average fitness of the population then the frequency

of that type increases over time and vice versa. Using this information we write

down a set of two differential equations for the two types as follows,

ẋA = x
(
fA(x)− f̄

) �� ��3.14

ẋB = y
(
fB(x)− f̄

)
.

�� ��3.15

We keep the population size constant by defining f̄ = xAfA + xBfB. This is

just the average fitness of the population. Since we know that there are only

two types in the population, we have xB = 1 − xA. Substituting these values

of f̄ and xB in Eq.
�� ��3.14 we can use only one equation instead of the two to

describe the dynamics of the whole system,

ẋA = xA(1− xA) [fA(x)− fB(x)] .
�� ��3.16

For the sake of simplicity we consider x = xA and thus xB = 1 − x. Also

remembering that the fitnesses are frequency dependent, we drop the functional
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notation of the fitnesses and write a cleaner equation as,

ẋ = x(1− x) (fA − fB) .
�� ��3.17

Here, one differential equation suffices. In general, if we have n different types

in the population then we need a system of n− 1 differential equations,

ẋi = xi
[
fi(x)− f̄

] �� ��3.18

where i = 1, 2, . . . n−1 and the average population fitness is now f̄ = x1f1(x)+

x2f2(x) . . . + xnfn(x) =
∑n

i=1 xifi(x) where xi and fi is the frequency and

fitness of type i respectively. This is the replicator equation.

The solution of the replicator equation can be viewed in a n−1 dimensional

space. For example, the solution for a two type case can be plotted on a single

line, for three types we would need a two dimensional space and so forth. This

way of representing the solution space is known as a simplex (see Box 3.3.1).
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Simplex (Box 3.3.1)

In dynamical systems a simplex is a tool for visualizing how the

dynamics of a system proceeds. We saw how the replicator equation

can be used to study the dynamics of systems with n different types.

AB

B A

C

C

B A

D

n

n − 1

strategies

dimensional simplex

n = 2

n = 3

n = 4

In general for 

Figure 3.4: A system with n types can be

represented by an n − 1 dimensional simplex.

For n = 2 the simplex is a line. For n = 3 an

equilateral triangle and for n = 4 a tetrahedron.

For simplicity consider n =

2 and let the two types be

A and B as considered ear-

lier. We can represent the

state of the population by

the frequencies of these two

types. Either the population

can be homogeneous for A

(i.e. xA = 1 and xB = 0)

or for B i.e. xA = 0 and

xB = 1. Consider these two

states to be represented by

two points. The line join-

ing them denotes the different

possible compositions of the

population. For example at

the midpoint of the line, both

the types will have the same frequency i.e. xA = xB = 0.5.

Now if we consider n = 3, with three types A, B and C then

we represent it by a two dimensional simplex, an equilateral triangle.

Again the midpoint of the simplex is where the frequencies are equal,

i.e. xA = xB = xC = 1/3.

An Italian statistician Bruno de Finetti used the triangular simplex

to graph the frequencies of the genotypes for a diploid population with

two alleles. In that sense the vertices correspond to the states where the

population is homogeneous for a genotype (say aa, AA or aA). This

simplex is known in population genetics as the de Finetti diagram.

In 1983, Peter Schuster and Karl Sigmund unified fields ranging from ecology

to population genetics and prebiotic evolution to sociobiology in their most

basic theoretical characteristic (Schuster and Sigmund, 1983). All these fields

are essentially dynamical systems. Schuster and Sigmund abstracted out the

essence of these systems and looked plainly at the dynamics. They pointed out

that all these different models lead to the same class of differential equations and

thus a unified equation could be used to describe the essence of these systems.
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They named it the replicator equation by taking inspiration from the notion of

‘replicators’ from Dawkins (1982). Further Hofbauer and Sigmund (1998) also

showed that the set of replicator equations for n strategies are mathematically

equivalent to the well known Lotka Volterra equations for n − 1 species in

ecology. The dynamical equations developed by Lotka and Volterra pre-date

the replicator equation by almost half a century (Lotka, 1920; Volterra, 1928).

In a sense, “Ecology is the godfather of evolutionary game theory” (Hofbauer

and Sigmund, 1998).

Ultimately what the equations tell us is that the change in frequency of a

certain type over time depends on its frequency, fitness and the average fitness

of the population. If fi(x)− f̄ > 0 then the frequency will increase over time.

If fi(x)− f̄ < 0 then it will decrease.

Due to this generality of the replicator equations we have not called the

different types as “strategies”. They will be considered as strategies once we

connect this dynamical framework to evolutionary game theory. The evolution-

ary game is introduced in the dynamics via fitness.

Two strategies

We have defined fitness to be a function of the frequency of the different types.

In section 3.2 we encountered a similar entity, payoffs, denoted by Eqs.
�� ��3.5 .

For completeness let us repeat the equations,

πA = a1x+ a0(1− x)

πB = b1x+ b0(1− x).

The coefficients belong to a two player game matrix with two strategies i.e. a

2× 2 game. In the simplest case we consider the fitness of a strategy to be the

payoff (which is already frequency dependent). Thus,

fA = πA
�� ��3.19

fB = πB.
�� ��3.20

The dynamical equation for two strategies is as given earlier by Eq.
�� ��3.17 ,

ẋ = x(1− x) (fA − fB)
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where ẋ describes the change in the frequency of strategy A.

Of particular interest are the cases when ẋ = 0. This means that the

frequency of A does not change. Hence the system has reached an equilibrium.

Thus we look when ẋ = 0, which is equivalent to,

x(1− x)(fA − fB) = 0
�� ��3.21

There are three possible solutions to this equation, strategy A goes extinct,

x = 0 or the whole population consists of A players, x = 1 and lastly when

the two strategies have equal fitness, fA = fB (Bishop and Cannings, 1976).

Graphically we can plot the equation and see when it is equal to zero (see

Figs. 3.5 and 3.6). As x increases, if the solution of the replicator equation

intersects the zero line from above, then the intersection is known as a stable

equilibrium (filled circle Figs. 3.5 and 3.6). If instead it intersects from below

then it is an unstable equilibrium (open circle Figs. 3.5 and 3.6). In other

words, if the derivative of the solution at the intersection is negative then the

equilibrium is stable, if it is positive then it is unstable. For a small perturbation

from the stable equilibrium the system returns to the stable equilibrium. For a

small perturbation from an unstable equilibrium the system runs away from the

unstable equilibrium in the direction of the perturbation.

The possible outcomes can thus be represented using the simplices (see Box

3.3.1) as shown in Figs. 3.5 and 3.6. What do these outcomes mean in terms

of the evolutionary game?

(i) Dominance

(a) Dominance of A. The population will eventually lead to a state

where everyone is playing strategy A. This is possible if a1 > b1 and

a0 > b0. This leads to fA > fB. Intuitively it means that it is always

better to play strategy A regardless of which strategy the other player

is playing (Fig. 3.5 (a)).

(b) Dominance of B. This is a mirror image of the earlier case. In this

situation it is always better to play strategy B i.e. the fitness of

strategy B is always greater than that of A, fA < fB. This will be

true if a1 < b1 and a0 < b0 (Fig. 3.5 (b)).
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Figure 3.5: Examples of dominance in a two player game with two strate-

gies. Let x be the frequency of strategy A. Scenario (a) is possible when either strategy

is always fitter than the other, A fitter than B for (a) and vice versa for (b). In the

simplex notation, the filled dots are the stable equilibria and the unfilled dots are the

unstable equilibria. The arrows shows the direction of selection.

(ii) Coexistence. Co-existence of two strategies is possible if each strategy

has an advantage when rare. When A is rare then we have fA > fB but

when A becomes abundant then fA < fB. That is when a1 < b1 and

a0 > b0. It means that it is always best to play the strategy which is not

being played by the other player (Fig. 3.6 (a)).

(iii) Bi-stability. Bi-stability refers to the condition where the pure states of

the system, all A and all B, are stable. This is possible when a strategy

has an advantage when abundant. That is fA > fB when A is abundant

but fA < fB when it is rare. In this situation it is profitable to play the

same strategy as your opponent as a1 > b1 and a0 < b0 (Fig. 3.6 (b)).

(iv) Neutrality. Under neutrality both the strategies do equally well and it

does not matter which strategy we use. The payoffs you get when playing

either strategy are equal irrespective of the strategy of your opponent.

Hence a1 = b1 and a0 = b0. This leads to fA = fB.

For co-existence and bi-stability we see that the inequality between the fitnesses

of the two strategies changes sign. The exact frequency of strategy A where

this switch occurs can be explicitly calculated (the filled circle in Fig. 3.6 (a)

and the open circle in Fig. 3.6 (b)). Let us call this frequency x∗. If the system
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Figure 3.6: Examples of co-existence and bi-stability in a two player game

with two strategies. Let x be the frequency of strategy A. (a) If each strategy

is fitter than the other when it is rare then this leads to the co-existence of the two

strategies. (b) Bi-stability is observed when above a certain frequency of A (open

circle), A does better and below it B does better i.e. scenario (b). As in the earlier

figure, the filled dots are the stable equilibrium and the unfilled are the unstable. The

arrows shows the direction of selection.

is at that exact point then the fitnesses of both strategies are equal, fA = fB.

Equating the two fitnesses, fA = fB, we get,

x∗ =
b0 − a0

a1 − a0 − b1 + b0

�� ��3.22

This frequency of strategy A, x∗ is the turning point of the dynamics. For a

coexistence game if the frequency of A drops below this point then strategy

A does better than strategy B and above it, it does worse. Similarly, for a

bi-stability game strategy B is better off below this point but strategy A does

better above this point.

Multiple strategies

Consider the following biological example. Strains of Escherichia coli competing

for resources have been studied by Kerr et al. (2002) and Czaran et al. (2002).

K is a killer strain which produces a toxin harmful to strain S. Thus K will

eventually out-compete S. Considering having and not having the toxin as two

strategies, we can represent this interaction by a payoff matrix for a two player

game with two strategies. But this is not the complete story. Another strain R
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can be present, which is resistant to the toxin produced by K but pays the cost

of resistance. Due to the cost the growth rate of R is slower than that of S.

Now we have three strategies. To formally describe the game we need to write

a 3× 3 payoff matrix.

Thus in principle the number of strategies in a population may not be limited

to just two or three. Again forgoing with examples we consider n arbitrary

strategies (1, 2 . . . n) competing with each other. Now we need a larger n × n
payoff matrix,




1 2 . . . n

1 a1,1 a1,2 . . . a1,n

2 a2,1 a2,2 . . . a2,n
...

...
...

. . .
...

n an,1 an,2 . . . an,n




�� ��3.23

The payoff entries are with two subscripts denoting the payoff to the first when

interacting with the second. For example a1,2 is the payoff obtained by an

individual of strategy 1 playing against another individual of strategy 2. This is

still a two player game. The dynamics is described by the replicator equation

Eq.
�� ��3.18 ,

ẋi = xi
[
fi(x)− f̄

]

where the average fitness of a strategy i is,

fi(x) = ai,1x1 + ai,2x2 . . .+ ai,nxn =
n∑

j=1

ai,jxj

and the average fitness of the population is given by

f̄ = x1f1 + x2f2 . . .+ xnfn =
n∑

i=1

xifi(x).

The dynamics now occurs on an n− 1 dimensional simplex (see Box 3.3.1).
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3.3.2 Finite Populations

Traditional analysis in evolutionary games has relied on the assumption of an

infinite population size (Maynard Smith and Price, 1973; Taylor and Jonker,

1978; Maynard Smith, 1982; Hofbauer and Sigmund, 1998, 2003). Analysing

finite populations is mathematically challenging and earlier only a few scientists

ventured into that field, but recently rapid advances have been made (Riley,

1979; Schaffer, 1988; Fogel et al., 1998; Ficci and Pollack, 2000; Schreiber,

2001; Nowak and Sigmund, 2004; Nowak et al., 2004; Taylor et al., 2004; Wild

and Taylor, 2004; Traulsen et al., 2005, 2006a; Antal and Scheuring, 2006;

Fudenberg et al., 2006; Traulsen and Nowak, 2007; Wild and Traulsen, 2007;

Hauert et al., 2008; Antal et al., 2009c; Hashimoto and A., 2009; Altrock and

Traulsen, 2009; Altrock et al., 2010; Gokhale and Traulsen, 2010). Why should

we consider finite populations? Firstly, it is realistic. Secondly, considering finite

populations is a natural way of introducing noise in the deterministic dynamics

considered earlier.

First let us specify the evolutionary game. Consider a finite population of

size N . The individuals have one of the two strategies, A or B. The number

of players playing strategy A is given by i and the remaining (N − i) play B.

The game being played is given by,

(
A B

A a1 a0

B b1 b0

)
.

�� ��3.24

The average payoffs of the strategies A and B are given by πA and πB,

πA =
i− 1

N − 1
a1 +

N − i
N − 1

a0

πB =
i

N − 1
b1 +

N − i− 1

N − 1
b0.

�� ��3.25

Note that in the replicator dynamics case the payoff values were multiplied by

frequencies but here we have to deal with the actual number of individuals.

Due to this we need to exclude the focal individual from the payoffs. Hence if

the focal individual is an A strategist then it can interact with i − 1 other A

individuals out of N − 1 individuals and obtain a payoff of a1.
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In the traditional framework the payoffs are directly considered as the fit-

nesses of the respective strategies. Now we introduce a tunable parameter which

controls the effect of the game on the fitness termed as the selection intensity

(see Box 3.3.2).

Payoff to fitness mapping. Box (3.3.2)

Until now we considered the trivial payoff to fitness mapping for strategy

i, fi = πi (the average fitness is exactly the same as the average payoff

obtained from the game). But fitness can depend on the payoff in many

other ways. For some systems we may know the exact relationship

between payoff to fitness but in other cases we can only speculate. Two

of the many such mappings which are particularly useful are,

• fi = 1 − w + wπi where the parameter w is bound by 0 and 1

(Nowak et al., 2004). This w is known as the intensity of selection.

If it is 1 then we have fi = πi and the game determines the fitness

completely. Instead if it is 0 then we have fi = 1 for all i and we

face neutrality.

• fi = eβπi introduced by Traulsen et al. (2008) (also see (Aviles,

1999)). In this case, β plays the role of intensity of selection just

as w did earlier. Just as previously, as payoff increases so does

fitness. Also when β = 0 we observe neutral drift. For weak

selection (small β) we can approximate the exponential function

by a linear function and obtain all the results we have obtained

until now for weak selection. For strong selection the definition

using w proves to be unwieldy for analytical calculations. Instead,

β can take any positive value. Also as the exponential function

returns a positive value for any exponent, we can easily analyse

payoff matrices with negative entries.

We consider the following mapping,

fA = 1− w + wπA
�� ��3.26

fB = 1− w + wπB,
�� ��3.27

where the parameter w is the intensity of selection. It controls the effect of the

game on fitness. This helps us move through a range of selection intensities.

For w = 0 selection is weak and for w = 1 it is strong.
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Now we move on to the dynamics. We deal with the finite populations

by considering stochastic processes developed in population biology. Two such

processes are the Wright Fisher process and the Moran process.

• Fisher had implicitly proposed a process which was formally presented by

Wright and came to be known as the Wright-Fisher process (Fisher, 1930;

Wright, 1931). In this process each individual from a population of size

N produces a large number of offspring proportional to fitness. From this

large number of offsprings, a random sample of N individuals is drawn

to obtain the next generation. Thus each time step in a Wright-Fisher

process is of the order of a generation.

• The Australian statistician Moran (1962) introduced a birth-death process

later known as the Moran process. Each time step of the Moran process

consists of two events, a birth and a death event. For birth an individual

is chosen at random. This individual produces an identical copy of itself.

For death, again an individual is chosen at random from the population

and is eliminated. In this way the population size remains constant. Thus

each time-step of a Moran process can change the composition of the

population, one individual at a time. In all, N such steps make up a

generation.

Earlier in Chapter 2 (Section 2.2) we encountered a variant of the Moran

process which included mutations. For our current purpose we will be using

another variant of the Moran process to illustrate the dynamics. In this process

when an individual is chosen for birth the choice is biased towards the type with

higher fitness. This is just a bias, we cannot say where the system will move

with certainty. Thus, we resort to probabilities. In each time step, one of the

following three things can happen (see Fig. 2.4),

• Number of A individuals increases by 1. The number of A individuals

can increase only if an A is chosen for reproduction and a B for death.

This happens with probability,

T+
i =

ifA
ifA + (N − i)fB

N − i
N

.
�� ��3.28
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The first fractional part is the probability of choosing an individual for

reproduction. The probability of choosing an A proportional to its fitness

is ifA/(ifA+(N−i)fB). The second fraction is to choose an individual for

death. The probability of choosing a B individuals by chance is (N−i)/N .

• Number of A individuals decreases by 1. The number of A individuals

can decrease only if an A is chosen for death and a B for reproduction.

This happens with probability,

T−
i =

(N − i)fB
ifA + (N − i)fB

i

N
.

�� ��3.29

• Number of A individuals remains the same. This occurs with proba-

bility 1− T+
i − T−

i .

In biology, often it is of interest to know how invasive an allele, a gene or even

a species is. If it does invade, then will it go to fixation and wipe out the wild-

type? Armed with the transition probabilities we now ask a similar question: in

a population of j A individuals and N − j B individuals what is the probability

then that at a later time point the whole population will be of A individuals.

This is known as the fixation probability of strategy A starting with j individuals,

ρA(j). A closed form expression for this probability in the Moran process is well

known from the theory of birth-death processes (Goel and Richter-Dyn, 1974;

Nowak, 2006a; Traulsen and Hauert, 2009),

ρA(j) =
1 +

∑j−1
k=1

∏k
i=1

T−
i

T+
i

1 +
∑N−1

k=1

∏k
i=1

T−
i

T+
i

.
�� ��3.30

If we begin with a single A player i.e. j = 1 then the fixation probability is

ρA(1) (see Fig. 3.7). Putting j = 1 we get,

ρA(1) =
1

1 +
∑N−1

k=1

∏k
i=1

T−
i

T+
i

.
�� ��3.31

Note that
T−
i

T+
i

= fB
fA

. If we have fA = fB, i.e. the case of neutrality when both

the strategies are just neutral variants of each other the fixation probability

reduces to ρA(j) = j/N . Thus we observe neutral drift where if we begin
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with a single mutant then the probability of that mutant taking over the whole

population is just as good as any other individual, ρA(1) = 1/N . Since for

most of the analysis we deal with the fixation probability of a single mutant for

simplicity we drop the functional notation and refer to the fixation probability

as simply ρA. Similarly we can calculate the fixation probability of strategy B

as ρB (Fig. 3.7). Formally the probability that 1 B individual reaches fixation

is equal to the probability that N − 1 A individuals do not reach fixation. That

is,

ρB = 1− ρA(N − 1)

= 1−
1 +

∑N−2
k=1

∏k
i=1

T−
i

T+
i

1 +
∑N−1

k=1

∏k
i=1

T−
i

T+
i

=
1

1 +
∑N−1

k=1

∏k
i=1

T−
i

T+
i

(
N−1∏

i=1

T−
i

T+
i

)

= ρA

N−1∏

i=1

T−
i

T+
i

.
�� ��3.32

1

ρA

0

ρB

Number of A individuals
N − 1. . .

. . .
N

= A = B

Figure 3.7: Fixation probabilities. The probability that a single A individual

will take over the whole population is known as the fixation probability of A given by

ρA. Similarly we can calculate the fixation probability of a single B individual in a

population of N − 1 A individuals as ρB . If the two strategies are neutral with respect

to each other then these fixation probabilities are just 1/N .
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3.3.3 One Third Rule

A strategy being favoured by selection means that the fixation probability is

greater than neutral. Considering strategy A that means we need to check if,

ρA >
1

N
.

�� ��3.33

For weak selection the product in the fixation probability can be approximated

by a sum,

ρA ≈
1

N
+

w

N2

N−1∑

m=1

m∑

j=1

(πA − πB)

︸ ︷︷ ︸
Γ

.
�� ��3.34

It is then apparent that for ρA > 1/N , Γ should be greater than zero. That is,

N−1∑

m=1

m∑

i=1

πA >

N−1∑

m=1

m∑

i=1

πB.

Substituting the values of πA and πB from Eqs.
�� ��3.25 ,

N−1∑

m=1

m∑

i=1

(
i− 1

N − 1
a1 +

N − i
N − 1

a0

)
>

N−1∑

m=1

m∑

i=1

(
i

N − 1
b1 +

N − i− 1

N − 1
b0

)
.

This can be simplified to,

a1(N − 2) + a0(2N − 1) > b1(N + 1) + 2b0(N − 2).
�� ��3.35

We thus arrive at Inequality 3.35 which is the condition in finite populations

and depending only on the relationship between payoff values. For a large N this

reduces to a1 + 2a0 > b1 + 2b0, which is equivalent to,

1

3
>

b0 − a0

a1 − a0 − b1 + b0
= x∗,

�� ��3.36

calculated as the position of the possible internal equilibrium in Eq.
�� ��3.22 . The

internal equilibrium x∗ can be in the interior if a1 > b1 and a0 < b0 (a bi-stability

game) or if a1 < b1 and a0 > b0 (a co-existence game). The condition means

that if a strategy at frequency one third has a fitness greater than the fitness of

the other strategy then the fixation probability of that strategy is greater than

neutral. This special relation between the internal equilibrium and the condition
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for a strategy to have a fixation probability greater than neutrality is termed

as the one-third rule (Nowak et al., 2004; Traulsen et al., 2006b; Imhof and

Nowak, 2006; Ohtsuki et al., 2007; Bomze and Pawlowitsch, 2008). This rule is

valid for all process which fall in the domain of Kingman’s coalescence (Lessard

and Ladret, 2007)

3.3.4 Risk Dominance

Having ρA > 1/N means that the fixation probability of A is greater than neu-

tral. As A approaches fixation at some time point we have N − 1 A individuals

and 1 B individual. Now if ρB > 1/N then the fixation probability of B will

be greater than neutral. Hence it is necessary to determine which strategy has

a higher fixation probability. Usually we ignore mutations between strategies.

Selection and mutations work in tandem and maintain the population at the

mutation selection equilibrium but if the mutation rate is very low then we can

calculate the approximate stationary distribution by using the fixations proba-

bilities as a proxy. In short we want to know which strategy is more likely to

replace the other. Using Eqs.
�� ��3.31 and

�� ��3.32 we get,

ρB
ρA

=
N−1∏

i=1

T−
i

T+
i

.
�� ��3.37

Let the ratio of transition probabilities be γi. Then we have,

γi =
T−
i

T+
i

=
fB
fA

=
1− w + wπB
1− w + wπA

≈ 1− w(πA − πB),
�� ��3.38

where we have assumed that selection is very weak that is w � 1. Substituting

in Eq.
�� ��3.37 we get,

ρB
ρA

≈
N−1∏

i=1

1− w(πA − πB)

= 1− w
N−1∑

i=1

(πA − πB).

Substituting the values of πA and πB from Eqs.
�� ��3.25 ,

ρB
ρA

≈ 1− w
N−1∑

i=1

(
i− 1

N − 1
a1 +

N − i
N − 1

a0 −
i

N − 1
b1 −

N − i− 1

N − 1
b0

)

︸ ︷︷ ︸
Φ

.
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Hence we have ρA > ρB if Φ > 0 which reduces to,

N(a0 + a1)− 2a1 > N(b0 + b1)− 2b0.
�� ��3.39

This result holds for a large number of birth-death processes for weak selection

(Nowak et al., 2004; Antal et al., 2009a) and also for some special processes at

any intensity of selection (Antal et al., 2009a). In the limit of a large population

size we can ignore the terms without N and thus get,

a1 + a0 > b1 + b0
�� ��3.40

Thus if the above inequality is fulfilled then for a large population under weak

selection, strategy A will have a higher fixation probability than strategy B.

This condition is also known as risk dominance (Harsanyi and Selten, 1988;

Kandori et al., 1993). Intuitively risk dominant strategy is the one which you

choose if you have no information about your opponent’s strategy. In other

words it just means knowing which is your safest bet.
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“. . . human life is a many-

person game and not just a dis-

joined collection of two-person

games”

William D. Hamilton

(− ) 4
Evolution in the multiverse

4.1 Evolutionary games in the multiverse

Stander (1992) has described the hunting behaviour of lionesses on the open

semi-arid plains of Namibia. Individual hunting tactics of lionesses were analysed

from 486 independent group hunts. The lionesses hunt in packs and employ the

flush and ambush technique (see Fig. 4.1). Some lie in ambush while others

flush out the prey from the flanks and drive them towards the ones waiting

in ambush. This technique needs an interaction of more than two players to

succeed.

Similarly, we interact with innumerable people at the same time, directly or

indirectly. Some interactions may be pair-wise, but others are not. In real life,

we may typically be engaged in many person games instead of a disjoined col-

lection of two person games (Hamilton, 1975). Evolutionary game theory which

we have discussed until now has been about two player games. It becomes

mathematically more demanding when we try to include more players. Hamil-

ton (1975) illustrates the theoretical challenges of multiplayer games as, “The

theory of many-person games may seem to stand to that of two-person games

in the relation of sea-sickness to a headache.” A special class of multiplayer

games has been experimentally and theoretically studied by economists and so-

ciologists to study social behaviour of individuals. Such a typical “public goods

game” consists of participants who have an option of contributing to a common

pot. The sum is shared equally amongst all participants. Numerous variants
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Figure 4.1: Flush and Ambush. Taken from Stander (1992) this sketch describes

the flush and ambush technique used by the lionesses in Etosha National Park. Top

panel reflects the position of the lionesses from the point of view of the prey. The

bottom panel shows the attack positions of the lionesses. A − B form the left flank

while F − G are the right flank. C − D − E take the centre position. This hunting

set-up is not possible with just two lionesses.

of this basic set-up have been explored (Wedekind and Milinski, 2000; Milinski

et al., 2001; Anderson and Franks, 2001; Hauert et al., 2002; Semmann et al.,

2003; Milinski et al., 2006; Rockenbach and Milinski, 2006; Hauert et al., 2007;

Milinski et al., 2008; Santos et al., 2008; Pacheco et al., 2009; Souza et al.,

2009; van Veelen, 2009; Traulsen et al., 2010; Connor, 2010). We develop some

general conditions for multiplayer games with multiple strategies with simplicity

in mind (Kurokawa and Ihara, 2009; Gokhale and Traulsen, 2010). To refrain

from repeating the word “multi” for player and strategies we use the short form

“games in the multiverse” for these kind of games.

Let us begin with the well known scenario of two player games with two

strategies and add one more player to this setting. The changes which happen

are reviewed below,

• The payoff matrix for a 2 × 2 games is a square matrix whereas for a
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2 × 2 × 2 player game it is an extended table of permutations (see Fig.

4.2).

• The dynamics for a 2×2 proceeds on a simplex which is one dimensional,

a single line. Even for 2× 2× 2 games there are only two strategies and

thus the simplex is a single line.

• There are five possible outcomes for a 2× 2 game, as shown in Fig. 4.2.

As the number of player increases the possible internal equilibrium points

also increase. For 2× 2× 2 games all the scenarios from 2× 2 games are

possible and in addition there is a possibility of having two equilibria in

the interior, one stable one unstable (see Fig. 4.2).

Adding a player to the usual setting increases the complexity. The level of

complexity increases as more and more players are added. In this project we

examine this complexity and extract simple relations from it.

There were two main analytical advances in evolutionary game theory in the

study of finite populations for two player games with two strategies.

1. When is the fixation probability of a strategy is greater than neutral (One

Third rule) (Sub-section 3.3.3)?

2. When is the fixation probability of a strategy is greater than the fixation

probability of the other strategy (Risk Dominance) (Sub-section 3.3.4)?

We develop general conditions for multiplayer games and two strategies without

compromising on simplicity. Using the infinite population size assumption we

also calculate the maximum number of internal equilibria of a given game with

multiple player and multiple strategies.
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B A

B A

B A

B A

B A

2 × 2 2 × 2 × 2

( A B

A a1 a0

B b1 b0

) (AA AB BB

A a2 a1 a0

B b2 b1 b0

)

Assuming AB = BA

B A

B A

B A

B A

B A

B A

B A

game game

Figure 4.2: Comparing two player games with three player games for two

strategies. Writing the payoffs for three player games cannot be done in a square

payoff matrix as two player games. Instead it is a table of permutations of a player

playing with 2 other players. For two player games there are five possible outcomes.

As the payoffs are linear in x there can be at most a single internal equilibrium. For

three player games the payoffs are not linear in x but of degree 2 leading to at most

two possible solutions in the interior of the simplex.

4.1.1 Publication: Evolutionary games in the multiverse

Chaitanya S. Gokhale, Arne Traulsen,

Proceedings of the National Academy of Sciences, USA

March 23, 2010

Volume. 107 Number. 12

Pages 5500− 5504
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Evolutionary gamedynamics of twoplayerswith two strategies has
been studied in great detail. These games have been used to model
many biologically relevant scenarios, ranging from social dilemmas
in mammals to microbial diversity. Some of these games may, in
fact, take place between a number of individuals and not just
between two. Here we address one-shot gameswithmultiple play-
ers. As long aswe have only two strategies, many results from two-
playergames canbegeneralized tomultipleplayers. Forgameswith
multiple players andmore than two strategies, we show that state-
ments derived for pairwise interactions no longer hold. For two-
player games with any number of strategies there can be at most
one isolated internal equilibrium. For any number of players d with
any number of strategies n, there can be at most ðd− 1Þn− 1 isolated
internal equilibria.Multiplayer games show a great dynamical com-
plexity that cannot be captured based on pairwise interactions. Our
results hold for any game and can easily be applied to specific cases,
such as public goods games or multiplayer stag hunts.

evolutionary dynamics | multiplayer games | multiple strategies | replicator
dynamics | finite populations

Game theory was developed in economics to describe social
interactions, but it took the genius of JohnMaynard Smith and

George Price to transfer this idea to biology and develop evolu-
tionary game theory (1–3). Numerous books and articles have been
written since. Typically, they begin with an introduction about evo-
lutionary game theory and goon to describe thePrisoner’sDilemma,
which is one of themost intriguing games because rational individual
decisions lead to a deviation from the social optimum. In an evolu-
tionary setting, the average welfare of the population decreases,
because defection is selected over cooperation. How can a strategy
spread that decreases the fitness of an actor but increases the fitness
of its interactionpartner?Variousways to solve such social dilemmas
have been proposed (4, 5). In the multiplayer version of the Pris-
oner’s Dilemma, the public goods game, a number of players take
part by contributing to a commonpot. Interest is added to it and then
the amount is split equally amongall, regardless ofwhether theyhave
contributed or not. Because only a fraction of one’s own investment
goes back to each player, there is no incentive to deposit anything.
Instead, it is tempting only to take the profits of the investments of
others. This scenario has been analyzed in a variety of contexts (6, 7).
The evolutionary dynamics of more general multiplayer games has
received considerably less attention, and we can guess why from the
way William Donald Hamilton put it: “The theory of many-person
gamesmay seem to stand to that of two-person games in the relation
of sea-sickness to a headache” (8). Only recently, this topic has
attracted renewed interest (9–14).
As shown by Broom et al. (9), the most general form of multi-

player games, a straightforward generalization of the payoffmatrix
concept, leads to a significant increase in the complexity of the
evolutionary dynamics. Although the evolution of cooperation is
an important and illustrative example, typically it does not lead to
very complex dynamics. On the other hand, intuitive explanations
for more general games are less straightforward, but only they
illustrate the full dynamical complexity of multiplayer games (9).
To approach this complexity, we discuss evolutionary dynamics

in finite as well as infinite populations. For finite populations, we
base our analysis on a variant of theMoran process (15), but under
weak selection our approach is valid for a much wider range of

evolutionary processes (see next section). We begin by recalling
the well-studied two-player two-strategy scenario. Then, we in-
crease the number of players, which results in a change in the
dynamics and some basic properties of the games. For infinitely
large populations, we explore the dynamics of multiplayer games
with multiple strategies and illustrate that this new domain is very
different as compared to the two-player situation (see also ref. 9).
We provide some general results for these multiplayer games with
multiple strategies. The two-strategy case and the two-player
scenario are then a special case, a small part of a larger and more
complex multiverse.

Model and Results
Two-player games with two strategies have been studied in detail,
under different dynamics and for infinite as well as for finite pop-
ulation sizes. Typically, two players meet, interact, and obtain a
payoff. Thepayoff is then the basis for their reproductive success and
hence for the change in the composition of the population (2). This
framework can be used for biological systems, where strategies
spread by genetic reproduction, and for social systems, where strat-
egies spread by cultural imitation.
Consider two strategies, A and B. We define the payoffs by αi,

where α is the strategy of the focal individual and the subscript i is
the number of remaining players playing A. For example, when an
A strategist meets another person playingA she gets a1. She gets a0
when she meets a B strategist. This leads to the payoff matrix

aa A B
A a1 a0
B b1 b0

: [1]

Some of the important properties of two-player games are:

(i) Internal equilibria.WhenA is the best reply toB (a0> b0) and
B is the best reply to A (b1 > a1), the replicator dynamics
predicts a stable coexistenceof both strategies. Similarly,when
both strategies are best replies to themselves, there is anunsta-
ble coexistence equilibrium.A two-player gamewith two strat-
egies can have at most one such internal equilibrium.

(ii) Comparison of strategies. In a finite population, strategy A
will replace B with a higher probability than vice versa if
Na0 + (N – 2)a1 > (N – 2)b0 + Nb1. This result holds for the
deterministic evolutionary dynamics discussed by Kandori
et al. (16), for theMoran process and a wide range of related
birth-death processes under weak selection (15, 17), and for
some special processes for any intensity of selection (17).
However, Fudenberg et al. (18) obtain a slightly different
result for an alternative variant of the Moran process under
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nonweak selection. For large populations, the condition
above reduces to risk dominance of A, a1 + a0 > b1 + b0.

(iii) Comparison with neutrality. For weak selection, the fixation
probability of strategy A in a finite population is larger than
neutral (1/N) if (2N – 1)a0+ (N – 2)a1> (2N – 4)b0+ (N+1)
b1. For a largeN, thismeans thatA has a higher fitness thanB
at frequency 1/3, termed the one-third law (19–21). The 1/3
law holds under weak selection for any process within the
domain of Kingman’s coalescence (22).

Often interactions are not between two players but between whole
groups of players. Quorum sensing, public transportation systems,
and climate preservation represent examples of systems in which
large groups of agents interact simultaneously. Starting with the
seminal work of Gordon and Hardin on the tragedy of the com-
mons (23, 24), such multiplayer games have been analyzed in the
context of the evolution of cooperation (25–28), but general
multiplayer interactions have received less attention (see, how-
ever, refs. 9–13).
We again assume there to be two strategies, A and B. We can

also maintain the same definition of the payoffs as αi. As there
are d – 1 other individuals, excluding the focal player, i can range
from 0 to d – 1. We can depict the payoffs αi in the form

Opposing A players d− 1 d− 2 . . . k . . . 0
A ad− 1 ad− 2 . . . ak . . . a0
B bd− 1 bd− 2 . . . bk . . . b0

: [2]

However, for multiplayer games an additional complication
arises. Consider a three-player game (d= 3). Let the focal player
be playing A. As d = 3 there are d – 1 = 2 other players. If one
of them is of type A and the other of type B, there can be the
combinations AAB or ABA. Do these two structures give the
same payoffs? Or, in a more general sense, does the order of
players matter? If order does matter, the payoffs are in a
d-dimensional discrete space, as illustrated by Fig. 1. There are
numerous examples where the order of the players is very
important. In a game of soccer, it is necessary to have a player
specialized as the goal keeper in the team. But it is also impor-

tant that the goal keeper is at the goal and not acting as a center-
forward. A biological example has been studied by Stander in the
Etosha National Park (29). The lionesses hunt in packs and
employ the flush-and-ambush technique. Some lie in ambush
while others flush out the prey from the flanks and drive them
toward the ones waiting in ambush. This technique needs more
than two players to be successful. Some lionesses always display a
particular position to be a preferred one (right flank, left flank,
or ambush). The success rate is higher if the lionesses are in their
preferred positions. Thus, the ordering of players matters here.
To address situations in which the order of players matters, we

have to make use of a tensor notation for writing down the
payoffs which offers the flexibility to include higher dimensions
of the payoff matrix. Consider a tensor β with d indices defined as
follows: βi0;i1;i2 ;i3 ;::::id− 1

, where the first index denotes the focal
player’s strategy. Each of the indices represents the strategy of
the player in the position denoted by its subscript. The index i
can represent any of the n strategies. Thus, the total number of
entries will be nd. This structure is the multiplayer equivalent of a
payoff matrix (see ref. 9 and Fig. 1). Consider, for example, a
game with three players and two strategies (A and B). If the
order of players matters, then the payoff values for strategy A are
represented by βAAA, βAAB, βABA, and βABB. This increase in
complexity is handled by the tensor notation but is not reflected
in the tabular notation (2). But as long as interaction groups are
formed at random, we can transform the payoffs such that they
can be written in the form of 2 (SI Text). In this case, the payoffs
are weighted by their occurrence to calculate the average pay-
offs. For example, in our three-player games, a1 has to be
counted twice (corresponding to βAAB and βABA). If we would
consider evolutionary games in structured populations instead of
random-interaction group formation, then the argument breaks
down and the tensor notation cannot be reduced.
In the case of d-player games with two strategies, we can then

write the average payoff πA obtained by strategy A in an infinite

population as πA ¼ ∑d− 1
k¼0

!
d− 1
k

"
xkð1− xÞd− 1− kak, where x is

the fraction of A players. An equivalent equation holds for the
average payoff πB of strategy B. The replicator equation of a two-
player game is given by ref. 30:

_x ¼ xð1− xÞðπA − πBÞ: [3]

Obviously, there are two trivial fixed points when the whole
population consists of A (x = 1) or B (x = 0). In d-player games,
both πA and πB can be polynomials of maximum degree d – 1 (see
SI Text). This implies that the replicator equation can have up to
d – 1 interior fixed points. In the two-strategy case, these points
can be either stable or unstable. The maximum number of stable
interior fixed points possible is d/2 for even d and (d – 1)/2 for
odd d; see also refs. 9 and 10, where it is shown that all these
scenarios are also attainable. For d = 2, πA and πB are poly-
nomials of degree 1; hence, there can be at most one internal
equilibrium, which is either unstable (coordination games) or
stable (coexistence games). For d= 3, there can also be a second
interior fixed point. If one of them is stable, the other one must
be unstable. This can lead to a situation in which A is advanta-
geous when rare (the trivial fixed point x = 0 is unstable), and
becomes disadvantageous at intermediate frequencies but
advantageous again for high frequencies, as in multiplayer stag
hunts (11).
For a d-player game to have d – 1 interior fixed points, the

quantities ak – bk and ak+1 – bk+1 must have different signs for
all k. However, this condition is necessary (because the direc-
tion of selection can only change d – 1 times if the payoff dif-
ference ak – bk changes sign d – 1 times), but not sufficient (SI
Text). Pacheco and coauthors have studied public goods games
in which a threshold frequency of cooperators is necessary for

A

A B C

B

C

A
B

3 x 3

2 x 2

2 x 2 x 2

Fig. 1. For 2 × 2 games, the payoff matrix has 4 entries. If we increase the
number of strategies, the payoff matrix grows in size. For example, the
payoff matrix of a 3 × 3 game has 9 entries. If we increase the number of
players, the payoff matrix becomes higher-dimensional. For example, two-
strategy games with three players are described by 2 × 2 × 2 payoff struc-
tures with 8 entries. In general, a d-player game with n strategies is descri-
bed by nd payoff values.
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producing any public good (11, 12). The payoff difference
changes sign twice at this threshold value and hence there can
be at most two internal equilibria.
A d-player game has a single internal equilibrium if ak – bk has

a different sign from ak+1 – bk+1 for a single value of k: In this
case, A individuals are disadvantageous at low frequency and
advantageous at high frequency (or vice versa). If ak – bk changes
sign only once, then the direction of selection can change at most
once. Thus, this condition is sufficient in infinite populations.
Nowwedeviate from the replicator dynamics,where the average

payoff of a strategy is equated to reproductive fitness, and turn our
attention to finite populations. In this case, the sampling for πA and
πB is no longer binomial but hypergeometric (SI Text). In finite
populations, the intensity of selectionmeasures how important the
payoff from the game is for the reproductive fitness. We take fit-
ness as an exponential function of the payoff, fA= exp(+ wπA) for
A players and fB=exp(+wπB) forB players (31). Ifw≫ 1, selection
is strong and the average payoffs dictate the outcome of the game,
whereas if w≪ 1, then selection is weak and the payoffs have only
marginal effect on the game. This choice of fitness recovers the
results of the usualMoran process introduced by Nowak et al. (15)
and simplifies the analytical calculations significantly under strong
selection (31). However, for nonweak selection, other payoffs to
fitness mappings lead to slightly different results (18). We employ
theMoran process to model the game, but our results hold for any
birth-death process in which the ratio of transition probabilities
can be approximated under weak selection by a term linear in the
payoff difference in addition to the neutral result. In the Moran
process, an individual is selected for reproduction at random but
proportional to its fitness. The individual produces identical off-
spring.Another individual is chosen at random for death.With this
approach, we can address the basic properties of d-player games
with two strategies generalizing quantities from 2 × 2 games.
Does A replace B with a higher probability than vice versa?

Comparing the fixation probabilities of a single A or B individual,
ρA and ρB, we find that ρA > ρB is equivalent to

∑
d− 1

k¼ 0
ðNak − ad− 1Þ> ∑

d− 1

k¼ 0
ðNbk − b0Þ [4]

(SI Text). For d = 2, we recover the risk dominance from above.
For large N, the condition reduces to (13)

∑
d− 1

k¼ 0
ak > ∑

d− 1

k¼ 0
bk: [5]

These two conditions are valid for any intensity of selection in
our variant of the Moran process.
The one-third law for two-player games is not valid for a

higher number of players (SI Text). Instead, the condition we
obtain for the payoff entries is not directly related to the internal
equilibrium points (as opposed to the two-player case, which
makes the one-third law special). For weak selection, we show in
SI Text that ρA > 1/N is equivalent to

∑
d− 1

k¼ 0
½Nðd− kÞ− k− 1%ak > ∑

d− 1

k¼ 0
½ðN þ 1Þðd− kÞbk − ðdþ 1Þb0%:

[6]

For large population size this reduces to (13)

∑
d− 1

k¼ 0
ðd− kÞak > ∑

d− 1

k¼ 0
ðd− kÞbk; [7]

which is the one-third law from above for d = 2. Inequality 7
means that the initial phase of invasion is of most importance:
The factor d – k decreases linearly with k, and the payoff values

with small indices k are more important than the payoff values
with larger indices. Thus, the payoffs relevant for small mutant
frequencies determine whether the condition is fulfilled. In other
words, the initial invasion is crucial to obtain a fixation proba-
bility larger than 1/N.
In general, conditions 5 and 7 are independent of each other.

When 5 is satisfied and 7 is not satisfied, both fixation proba-
bilities are less than neutral (1/N). But when 5 is not satisfied and
7 is satisfied, both ρA and ρB are larger than neutral (1/N). This
scenario is impossible for two-player games.
Let us now turn to multiplayer games with multiple strategies.

As illustrated in Fig. 1, the payoff matrix of a two-player game
increases in size when more strategies are added. If more players
are added, the dimensionality increases. Now we address the
evolutionary dynamics of such games. Again we assume that
interaction groups are formed at random, such that only the
number of players with a certain strategy—but not their
arrangement—matters. The replicator dynamics of a d-player
game with n possible strategies can be written as a system of n – 1
differential equations:

_xj ¼ xj
#
πj −

$
π
%&
; [8]

where xj is the frequency of strategy j, πj is the fitness of strategy j,
and hπi ¼ ∑ n

j¼ 1x jπ j is the average fitness. The evolution of this
system can be studied on a simplex with n vertices, Sn. The
simplex Sn is defined by the set of all of the frequencies which
follow the normalization ∑ n

j¼ 1 xj ¼ 1. The fixed points of this
system are given by the combination of frequencies of the
strategies which satisfy π1 = ··· = πn. The vertices of the simplex
where xj is either equal to 1 or 0 are trivial fixed points. In
addition, there can be, for example, fixed points on the edges or
the faces of the simplex. We speak of fixed points in the interior
of the simplex when all payoffs are identical at a point where all
frequencies are nonzero, xj > 0 for all j. The internal equilibria
are of special interest, because they may represent points of
stable biodiversity. For example, three strains of Escherichia coli
competing for resources have been studied (32, 33). K is a killer
strain which produces a toxin harmful to S; R does not produce
toxin but is resistant to the toxin of K. The sensitive strain S is
affected by the toxin of K. These three strains are engaged in a
kind of rock-paper-scissors game. K kills S. S reproduces faster
than R, not paying the cost for resistance. R is superior to K,
being immune to its toxin. The precise nature of interactions
determines whether biodiversity is maintained in an unstructured
population (30, 34). In our context, this is reflected by the exis-
tence of an isolated internal fixed point.
Here we ask the more general question of whether there are

internal equilibria in d-player games with n strategies. If so, then
how many internal equilibria are possible? It has been shown
that for a two-player game with any number of strategies n there
can be at most one isolated internal equilibrium (30, 35). In SI
Text, we demonstrate that the maximum number of internal
equilibria in d players with n strategies is

ðd− 1Þn− 1: [9]

The maximum possible number of internal equilibria increases as
a polynomial in the number of players, but exponentially in the
number of strategies. For example, for d = 4 and n = 3, the
maximum number of internal equilibria is 9 (see Fig. 2). Note
that for d = 2 we recover the well-known unique equilibrium.
For n = 2, we recover the maximum of d – 1 internal equilibria
(see above). Of course, not all of these equilibria are stable.
Broom et al. have shown which patterns of stability are attainable
for general three-player three-strategy games (9).
This illustrates that many different states of biodiversity are

possible in multiplayer games, whereas in two-player games only
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a single one is possible. This is a crucial point when one attempts
to address the question of biodiversity with evolutionary game
theory. In the previous example, the studies dealing with E. coli,
consider the system as a d = 2 player game with three strategies.
Do we really know that d = 2? If strains are to be engineered to
stably coexist, then multiple interactions (d > 2) would open up
the possibility of multiple internal fixed points instead of the
single one for d = 2.
If we choose a game at random, what is the probability that the

game has a certain number of internal equilibria? To this end, we
take the following approach: We generate many random payoff
structures in which all payoff entries are uniformly distributed
random numbers (36). For each payoff structure, we compute the
number of internal equilibria. It turns out that games with many
internal equilibria are the exception rather than the rule. For
example, the probability of seeing two or more internal equilibria
in a game with four players and three strategies is ≈24%. The
probability that a randomly chosen game has the maximum pos-
sible number of equilibria decreases with increasing number of
players and number of strategies (see Fig. 3). Also, the probability
of having a single equilibriumdecreases. Instead, we obtain several
internal equilibria in the case of more than two players. For two-
player games, the probability of seeing an internal equilibrium at
all decreases roughly exponentially with the number of strategies.
This poses an additional difficulty in coordinating in multiplayer
games, because several different solutions may be possible that
look quite similar at first sight.

Discussion
Multiplayer games with multiple strategies is what we find all
around. We interact with innumerable people at the same time,
directly or indirectly. Some interactions may be pairwise, but
others are not. In real life, we may typically be engaged in many-
person games instead of a disjoined collection of two-person
games (8). The evolution and maintenance of cooperation,

problems pertaining from group hunting to deteriorating cli-
mate, all are fields for a multiple number of players (29, 37, 28,
38). They can have different interests and hence use different
strategies. There are other cases such as the maintenance of
biodiversity where multiplayer interactions may lead to a much
richer spectrum for biodiversity than the commonly analyzed
two-player interactions. The presence of multiple stable states
also contributes to the intricate dynamics observed in the main-
tenance of biodiversity (39). Multiplayer games may help to
improve our understanding of such systems. The problem of
handlingmultiple equilibria is not just limited to biological games
but also appears in economics (40, 41). Many insights can be
obtained by studying two-player games, but it blurs the com-
plexity of multiplayer interactions. Here we have derived some
basic rules which apply to multiplayer games with two strategies
for finite as well as infinite populations and discussed the number
of internal equilibria in d-player games with n strategies which
determine how the dynamics proceeds.
This theory can be applied to all kinds of gameswith any number

of players and strategies and can thus be easily applied to public
goods games, multiplayer stag hunts, or multiplayer snowdrift
games. We believe that this opens up avenues where we can get
analytical descriptions of situations which are thought to be very
complex, and further discussions of these issues will prove to be
fruitful due to the intrinsic importance ofmultiplayer interactions.
We conclude this approach by quotingHamilton again: “Ahealthy
society should feel sea-sick when confronted with the endless
internal instabilities of the ‘solutions’, ‘coalition sets’, etc., which
the theory of many-person games has had to describe” (8).
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1. Multiple Players with Two Strategies
1.1. Infinite Populations.We first address the replicator dynamics of
multiplayer games with two strategies. If an A player interacts
with k other A players, it obtains the payoff ak. If a B player
interacts with k A players, it obtains the payoff bk. In an infinitely
large population in which the fraction of A players is x, the
probability that an A player interacts with k other A players is

!
d− 1
k

"
xkð1− xÞd− 1− k : [S1]

Here,
!
d− 1
k

"
is the number of possibilities of arranging the

players. Thus, the average payoffs of A and B are given by

πA ¼ ∑
d− 1

k¼0

!
d− 1
k

"
xkð1− xÞd− 1− kak

πB ¼ ∑
d− 1

k¼0

!
d− 1
k

"
xkð1− xÞd− 1− kbk:

[S2]

These average payoffs are subject to the condition that the order
of the players does not matter. For example, in a d = 3 game, let
the player in the first position play A. Then, the remaining two
players can play a combination of A and B. The possible com-
binations are AAB and ABA. By writing the payoffs in the above-
mentioned manner, we assume that such combinations have the
same payoffs.
If the order of players does matter, then the payoff values are

given by βi0;i1;i2;i3;::::id− 1
. Here, i0 is the strategy of the focal player.

The ip are the strategies of the type in position p. For random
matching of players, we can map the βi0 ;i1 ;i2 ;i3;::::id− 1

to modified
payoffs ~ak and ~bk without changing the average payoffs of the
strategies. As an example, for d = 4, we have the modified
payoffs ~ak and ~bk as

~a0 ¼ βA;B;B;B ~b0 ¼ βB;B;B;B

~a1 ¼
βA;A;B;B þ βA;B;A;B þ βA;B;B;A

3
~b1 ¼

βB;A;B;B þ βB;B;A;B þ βB;B;B;A
3

~a2 ¼
βA;A;A;B þ βA;A;B;A þ βA;B;A;A

3
~b2 ¼

βB;A;A;B þ βB;A;B;A þ βB;B;A;A
3

~a3 ¼ βA;A;A;A ~b3 ¼ βB;A;A;A:
[S3]

We just need to substitute the above payoffs in place of ak and bk in
Eq. S2 to take into account the effect of the arrangement of
players. For any number of players such a generalization can be
easily obtained. Thus, the evolutionary dynamics under random-
interaction group formation remains unaffected by the fact that
the order of players does matter. When interaction groups are not
formed at random, this argument will, of course, fail in most cases.
The following analysis deals with πA and πB as in Eq. S2, but it

also holds when the order of players matters but interaction
groups are formed at random. The replicator equation is thus
given by (1, 2)

_x ¼ xð1− xÞðπA − πBÞ: [S4]

Both πA and πB are polynomials of degree d – 1. This implies that
the replicator equation can have up to d – 1 interior fixed points (3).
Maximum number of interior fixed points. For a d-player game to have
d – 1 interior fixed points, the quantities ak – bk and ak+1 – bk+1
must have different signs for all k. For example, in a three-player

game with a0 = + 1, a1 = – λ, a2 = +1 and b0 = –1, b1 = +λ,
b2 = –1, we have two internal equilibria at 1

2ð1±
ffiffiffiffiffiffiffi
λ− 1
λþ1

q
Þ for λ > 1.

However, this condition is necessary (because the direction of
selection can only change d – 1 times if the payoff difference
ak – bk changes sign d – 1 times), but not sufficient. For example,
in the above three-player game, there are no internal equilibria
for λ < 1.
Single interior fixed point. A d-player game has a single internal
equilibrium if ak – bk has a different sign from ak+1 – bk+1 for a
single value of k: In this case, A individuals are disadvantageous
at low frequency and advantageous at high frequency (or vice
versa). If ak – bk changes sign only once, then the direction of
selection can obviously at most change once. Thus, this condition
is sufficient.

1.2. Finite Populations. Let us now turn to the evolutionary
dynamics in finite populations. In a population of size N with j
individuals of type A, the probability of choosing a group that
consists of k A players and d – 1 – k B players is given by a hy-
pergeometric distribution. The probability that an A player in-
teracts with k other A players is given by

Hðk; d; j;NÞ ¼

!
j− 1
k

"!
N − j

d− 1− k

"

!
N − 1
d− 1

" : [S5]

This leads to the average payoffs

πA ¼ ∑
d− 1

k¼0

!
j− 1
k

"!
N − j

d− 1− k

"

!
N − 1
d− 1

" ak

πB ¼ ∑
d− 1

k¼0

!
j
k

"!
N − j− 1
d− 1− k

"

!
N − 1
d− 1

" bk:

[S6]

We assume that strategies spread by a frequency-dependent
Moran process (4–6). The fitness is given by fA = exp(+ wπA) for
A players and fB = exp(+ wπB) for B players, where w measures
the intensity of selection (7). For w ≪ 1, selection is weak. For
w ≫ 1, selection is strong and only the fitter type reproduces. In
the Moran process, an individual is selected for reproduction at
random but proportional to its fitness. The individual produces
identical offspring. Another individual is chosen at random for
death. Consider j individuals of type A in a population of size N.
The number of A individuals increases with probability T+

j from j
to j + 1 if an A individual is selected for reproduction and a B
individual dies. We have

Tþ
j ¼ jfA

jfA þ ðN − jÞfB
N − j
N

[S7]

T −
j ¼ ðN − jÞfB

jfA þ ðN − jÞfB
j
N
: [S8]

The fixation probability of a single A individual in a population of
N is given by (8)
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ρA ¼ 1

1þ ∑
N − 1

m¼1
∏
m

j¼1

T −
j

Tþ
j

: [S9]

For the ratio of transition probabilities, we have

T −
j

Tþ
j

¼ fB
fA

¼ e−wðπA − πBÞ ≈ 1−wðπA − πBÞ: [S10]

The approximation is valid for weak selection, w ≪ 1. Note that
this is the only approximation we make, such that our result is
valid for any birth-death process with

T −
j

Tþ
j
≈ 1−wðπA − πBÞ: [S11]

For weak selection, the product in the fixation probabilities can be
approximated by a sum, which leads to

ρA ≈
1
N

þ w
N

∑
N − 1

m¼1
∑
m

j¼1
ðπA − πBÞf

Γ

: [S12]

In Appendix A, we show that

Γ ¼ 1
dðdþ 1Þ

$
N2

!
∑
d− 1

k¼0
ðd− kÞðak − bkÞ

"

−N
!

∑
d− 1

k¼0
ðkþ 1Þak þ ∑

d− 1

k¼1
ðd− kÞbk − d2b0

"%
:

[S13]

As seen from Eq. S12, a strategy is favored by selection; that is, it
has a fixation probability larger than 1/N if Γ > 0. For any N, Γ > 0
can be represented by

∑
d− 1

k¼0

h
Nðd− kÞ− k− 1

i
ak > ∑

d− 1

k¼0

h&
N þ 1Þðd− kÞbk − ðdþ 1Þb0

i
_

[S14]
For d=2, this condition reduces to the condition (2N – 1)a0 + (N –
2)a1> (2N – 4)b0 + (N+1)b1, exactly as developed byNowak et al.
(9). For a large population size, the condition can be simplified to

∑
d− 1

k¼0
ðd− kÞak > ∑

d− 1

k¼0
ðd− kÞbk: [S15]

In large populations, we have ρA > 1/N if the condition Eq. S15 is
fulfilled. In the usual case of d = 2, the fixation probability of
strategy A is larger than 1/N if 2a0 + a1 > 2b0 + b1. This can be
rearranged to

x% ¼ b0 − a0
a1 − a0 − b1 þ b0

<
1
3
: [S16]

This is the 1/3-law first derived in ref. 9: A mutant takes over the
population with probability larger than neutral if the mutant is
advantageous when it has reached a fraction of 1/3. Condition
Eq. S15 represents a generalization of the 1/3 law for general d-
player games.
We can also compare the fixation probability ρA of a single A

player to the fixation probability ρB of a single B player. It has
been shown (7, 8) that

ρB
ρA

¼ ∏
N − 1

j¼1

T −
j

Tþ
j

¼ exp

"

−w ∑
N − 1

j¼1
ðπA − πBÞf

Φ

#

: [S17]

Note that if our previous approximation Eq. S11 holds, then we
obtain ρB

ρA
≈ 1−wΦ. Because we do not make any further ap-

proximations, our calculation remains valid for any birth-death
process fulfilling Eq. S11 under weak selection. As shown in
Appendix B,

Φ ¼ N
d

∑
d− 1

k¼0
ðak − bkÞ þ b0 − ad− 1: [S18]

From Eq. S17, it is clear that ρA > ρB if Φ > 0. This is equivalent
to the condition

∑
d− 1

k¼0
ðNak − ad− 1Þ> ∑

d− 1

k¼0
ðNbk − b0Þ: [S19]

Note that this condition is valid for any intensity of selection for
the process we use. For weak selection, it is valid for all processes
with

T −
j

Tþ
j
≈ 1−wðπA − πBÞ. For d = 2, expression Eq. S19 reduces

to (N – 2) (a1 – b0) > N(b1 – a0), which is the risk dominance
condition developed in ref. 10 for finite population size (see also
ref. 11 for the generality of this finding). For a large population,
the condition can be further simplified:

∑
d− 1

k¼0
ak > ∑

d− 1

k¼0
bk: [S20]

For two-player games, this reduces to risk dominance, a0 + a1 >
b0 + b1.
We can also incorporate mutations, which will complicate the

transition probabilities. For symmetric mutation rates, μA → B =
μB → A, the condition ρA > ρB is equivalent to a higher average
abundance of A compared to B given that μA → B and μB → A are
small. For d = 2, it has recently been shown that the abundance
condition does in fact depend neither on the mutation rate nor
on the intensity of selection (11). For d > 2, this statement
no longer holds, which can be seen from the high mutation
limit: If the mutation rates are very high, then the system will
be driven toward the point where the two abundances are
identical. The dynamics at this point, however, does not depend
on the parameters in the same way as ρA > ρB when it comes to
d-player games.

2. Multiplayer Games with Multiple Strategies
2.1. Infinite Populations. In the full multiverse, we have multiple
players playing multiple strategies. We are interested in the
maximum number of internal equilibria of a system, which will
help us understand the general features of the dynamics.
Consider a system with d players with n possible strategies.
Here we resort to the payoff values as given by βi0;i1;i2;i3;::::id− 1

,
because for random group formation a system where the
order of players does matter can always be reduced to a sys-
tem where the order does not matter. Here, i0 is the strategy
of the focal player. The ip are the strategies of the type
in position p. Then the average payoff of the focal player is
given by

πi0 ¼ ∑
n

i1¼1
∑
n

i2¼1
. . . ∑

n

id− 1¼1

!
∏
id− 1

k¼ i1
xk

"
βi0;i1;i2;i3 ;::::id− 1

: [S21]

From this it is clear that each variable xk is at most of degree d – 1.
Also, as there are n strategies, we have i0 = (1, 2, . . ., n), that is, n
such multivariate polynomials. Each multivariate polynomial is

in n – 1 variables (because of the normalization ∑
n

l¼1
xl ¼ 1). At the

fixed points, all these polynomials will be equal. Hence, if we
subtract one of the polynomials (say πn) from all, we have a
system of n – 1 multivariate polynomials, Δπi0 , equal to zero
(where i0 goes from 1 to n – 1). In each variable xk, the multi-
variate polynomial Δπi0 is at most of degree d – 1. Hence, there
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are at most d – 1 roots of Δπi0 in xk. Because this is valid for all
n – 1 functions of Δπi0 , there can be up to (d – 1)n−1 simulta-
neous roots of all Δπi0 . These are the interior fixed points of the
replicator dynamics. Thus, there can be at most

ðd− 1Þn− 1 [S22]

fixed points in the interior of the system. This holds for the full
system but also for any subspace in which fewer strategies are
available. For example, a game with d = 3 players and n = 4
strategies has up to 8 fixed points in the interior of the simplex
S4. On the faces of the simplex S4, represented by the simplex S3,
there can be up to 4 fixed points.
We now have an analytical method to deduce the maximum

number of internal equilibria. The question that now arises is:
With what probability do we see this maximum number of
equilibria? We address the problem by generating 108 payoff
matrices where the payoff values ak, bk, . . ., are drawn from a
uniform distribution for different configurations of d and n. As
discussed in the main text, the probability of obtaining the
maximum number of internal equilibria in a game with ran-
dom payoff entries reduces as the complexity increases in d as
well as n.
An example for d = 4 and n = 3. In this section, we describe the
parameters of Fig. 2 in the main text. The number of players d= 4
and the number of strategies n = 3. The total number of payoff
values is therefore nd, which is 81. Thus, for each strategy there
are 27 payoff values. This is the number of values we have to
consider when the order of player matters. If the payoffs are the
same for different arrangements then we reduce the payoff val-
ues, but we have to weight them by the number of their occur-
rence. Consider the three strategies to be A, B, and C. Solving
the replicator equation using the average payoffs calculated from
the payoffs from Table S1, we numerically obtain 9 fixed points
in the interior of the simplex. At these points, the frequencies of
all of the strategies are nonzero and the average payoff to each
strategy is equal.

2.2. Finite Populations. For finite populations and more than two
strategies, few analytical tools are available. The average abun-
dance under weak selection can be addressed using tools from
coalescence theory (12, 13).
For small mutation rates, the dynamics reduces to an

embedded Markov chain on the pure states of the system [see
Fudenberg and Imhof (14) for a proof]. Essentially, this means
that the dynamics is governed by dynamics on the edges of the
simplex Sn where only two strategies are present. This result can
be applied in a variety of contexts (15–17).
Both approaches can be adapted to d-player games.

Appendix A
Condition for the Comparison of One Strategy with Neutrality. We
first repeat the condition to prove

∑
N − 1

m¼1
∑
m

j¼1
ðπA − πBÞ

¼ 1
dðdþ 1Þ

$
N2

!
∑
d− 1

k¼0
ðd− kÞðak − bkÞ

"

−N
!

∑
d− 1

k¼0
ðkþ 1Þak þ ∑

d− 1

k¼1
ðd− kÞbk − d2b0

"%
;

[S23]

where the payoffs are defined in Eq. S6. Because all of the aks
come from πA and all of the bks from πB, we can solve each
separately. For πA we have to show that

∑
N − 1

m¼1
∑
m

j¼1
∑
d− 1

k¼0

!
j− 1
k

"!
N − j

d− k− 1

"

!
N − 1
d− 1

" ak ¼ ∑
d− 1

k¼0

N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ ak:

[S24]
Because this should hold for any choice of aks, we must show that

∑
N − 1

m¼1
∑
m

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"

!
N − 1
d− 1

" ¼ N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ : [S25]

We take out the factor
!
N − 1
d− 1

"− 1

on the left-hand side and get

back to the full expression only at the end. We consider the quantity

∑
N − 1

m¼1
∑
m

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
: [S26]

Using the identity ∑
N − 1

m¼1
∑
m

j¼ 1
¼ ∑

N − 1

j¼ 1
∑

N − 1

m¼ j
, we obtain

∑
N − 1

m¼ 1
∑
m

j¼ 1

!
j− 1
k

"!
N − j

d− k− 1

"

¼ ∑
N − 1

j¼ 1
∑

N − 1

m¼ j

!
j− 1
k

"!
N − j

d− k− 1

"

¼ ∑
N − 1

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
ðN − jÞ;

[S27]

where we performed the sum over m. Let us use the factor N – j
to split this expression into two sums. The first sum with the
factor N is given by

∑1 ¼ N ∑
N − 1

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
: [S28]

We change the summation index by one, i = j – 1, and then
extend the sum up to N – 1,

∑1 ¼ N ∑
N − 2

i¼0

!
i
k

"!
N − i− 1
d− k− 1

"

¼ N
$

∑
N − 1

i¼0

!
i
k

"!
N − i− 1
d− k− 1

"
−
!
N − 1
k

"!
0

d− k− 1

"%
:

[S29]
The last term is zero as long as d – k – 1 > 0, that is, k < d – 1. We
can now apply a variant of Vandermonde’s convolution,

∑
l

i¼0

!
l− i
m

"!
qþ i
n

"
¼

!
lþ qþ 1
mþ nþ 1

"
(18), on the first term and

obtain for k < d – 1 the result Σ1 ¼ N
!
N
d

"
: For the special case

of k = d – 1, we start from Eq. S28,

Σ1 ¼ N ∑
N − 1

j¼1

!
j− 1
d− 1

"!
N − j
0

"
¼ N ∑

N − 1

j¼1

!
j− 1
d− 1

"
: [S30]

Using the identity ∑
N − 1

j¼1

!
j− 1
d− 1

"
¼

!
N − 1
d

"
, we obtain

Σ1 ¼ N
!
N − 1
d

"
¼ ðN − dÞ

!
N
d

"
. To summarize, we have for Σ1
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Σ1 ¼
N
!
N
d

"

for 0≤ k< d− 1

N
!
N − 1
d

"
¼ ðN − dÞ

!
N
d

"
for k ¼ d− 1

:

8
>>><

>>>:
[S31]

The second sum in Eq. S27 involving the additional factor j can
be rewritten as

Σ2 ¼ ∑
N − 1

j¼1
j
!
j− 1
k

"!
N − j

d− k− 1

"

¼ ðkþ 1Þ ∑
N − 1

j¼1

!
j

kþ 1

"!
N − j

d− k− 1

"
; [S32]

where we have used j
!
j− 1
k

"
¼ ðkþ 1Þ

!
j− 1
kþ 1

"
. We again shift

the summation index by one, i = j – 1, and extend the sum up to
N – 1,

Σ2 ¼ ðkþ 1Þ ∑
N − 2

i¼0

$!
iþ 1
kþ 1

"!
N − i− 1
d− k− 1

"%

¼ ðkþ 1Þ ∑
N − 1

i¼0

$!
iþ 1
kþ 1

"!
N − i− 1
d− k− 1

"%

− ðkþ 1Þ
$!

N
kþ 1

"!
0

d− k− 1

"%
_ [S33]

The last term is zero for k < d – 1. For the first term, we can apply
the same variant of Vandermonde’s convolution as above,

∑
l

i¼0

!
l− i
m

"!
qþ i
n

"
¼

!
lþ qþ 1
mþ nþ 1

"
, and obtain

Σ2 ¼ ðkþ 1Þ
!
N þ 1
dþ 1

"
: [S34]

For k = d – 1, we again start from Eq. S32, which yields

Σ2 ¼ d ∑
N − 1

j¼1

!
j
d

"!
N − j
0

"
¼ d ∑

N − 1

j¼1

!
j
d

"
¼ d

!
N

dþ 1

"
: [S35]

We slightly rearrange these two results to a common binomial,

Σ2 ¼
ðkþ 1Þ N þ 1

dþ 1

!
N
d

"
for 0≤ k< d− 1

d
dþ 1

ðN − dÞ
!
N
d

"
for k ¼ d− 1

:

8
>><

>>:
[S36]

Combining these results with Eq. S31, we obtain

Σ1 −Σ2 ¼
!
N
d

"
1

dþ 1
× Nðd− kÞ− k− 1 for 0≤ k< d− 1

N − d for k ¼ d− 1 :

'

[S37]
Note that these two expressions have the same form, such that
we obtain a single expression for Σ1 – Σ2 or, equivalently, for
Eq. S27,

∑
N − 1

m¼1
∑
m

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
¼ Σ1 −Σ2 ¼

!
N
d

"
Nðd− kÞ− k− 1

dþ 1
:

[S38]

Together with the common factor
!
N − 1
d− 1

"− 1

, we obtain

∑
N − 1

m¼1
∑
m

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"

!
N − 1
d− 1

" ¼ N2ðd− kÞ−Nðkþ 1Þ
dðdþ 1Þ

; [S39]

which is Eq. S25.
The sums over πB can be solved in a similar way. In that case,

the special case is k = 0 rather than k = d – 1, which also in-
dicates the symmetry of the result. For the sums over πB, we
obtain

∑
N − 1

m¼1
∑
m

j¼1

!
j
k

"!
N − j− 1
d− k− 1

"

!
N − 1
d− 1

" ¼

NðN − dÞ
dþ 1

for k ¼ 0

NðN þ 1Þðd− kÞ
dðdþ 1Þ

for 1≤ k≤ d− 1
:

8
>>><

>>>:

[S40]

Appendix B
Condition for the Comparison of Two Strategies. The statement to
prove is

∑
N − 1

j¼1
ðπA − πBÞ ¼

N
d

∑
d− 1

k¼0
ðak − bkÞ þ b0 − ad− 1: [S41]

As the aks are contributed only by πA and the bks only by πB, we
first need to show that

∑
N − 1

j¼1
πA ¼ N

d
∑
d− 1

k¼0
ak − ad− 1; [S42]

with the payoffs from Eq. S26. This holds for any choice of aks.
Thus, we only have to show that

1!
N − 1
d− 1

" ∑
N − 1

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"

¼
N
d

for 0≤ k< d− 1
N
d
− 1 for k ¼ d− 1

:

8
><

>:
[S43]

The sum has been solved above, cf Eq. S28, where we have shown

that ∑
N − 1

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
¼

!
N
d

"
for 0 ≤ k < d – 1 and

∑
N − 1

j¼1

!
j− 1
k

"!
N − j

d− k− 1

"
¼ N − d

N

!
N
d

"
for k = d – 1. Using the

identity
!
N
d

"
¼ N

d

!
N − 1
d− 1

"
, we directly obtain Eq. S43.

The equivalent condition for πB can be derived based on a
similar argument. As above, we have k = 0 as the special case
instead of k = d – 1 in the equivalent of Eq. S43,

1!
N − 1
d− 1

" ∑
N − 1

j¼1

!
j
k

"!
N − j− 1
d− k− 1

"
¼

N
d
− 1 for k ¼ 0

N
d

for 0< k≤ d− 1
:

8
>><

>>:

[S44]

1. Taylor PD, Jonker L (1978) Evolutionary stable strategies and game dynamics. Math
Biosci 40:145–156.

2. Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics
(Cambridge Univ Press, Cambridge, UK).

3. Hauert C, Michor F, Nowak MA, Doebeli M (2006) Synergy and discounting of
cooperation in social dilemmas. J Theor Biol 239:195–202.

4. Moran PAP (1962) The Statistical Processes of Evolutionary Theory (Clarendon, Oxford).
5. Ewens WJ (2004) Mathematical Population Genetics (Springer, New York).

Gokhale and Traulsen www.pnas.org/cgi/content/short/0912214107 4 of 5



6. Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science
303:793–799.

7. Traulsen A, Shoresh N, Nowak MA (2008) Analytical results for individual and group
selection of any intensity. Bull Math Biol 70:1410–1424.

8. Nowak MA (2006) Evolutionary Dynamics (Harvard Univ Press, Cambridge, MA).
9. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and

evolutionary stability in finite populations. Nature 428:646–650.
10. Kandori M, Mailath GJ, Rob R (1993) Learning, mutation, and long run equilibria in

games. Econometrica 61:29–56.
11. Antal T, Nowak MA, Traulsen A (2009) Strategy abundance in 2×2 games for arbitrary

mutation rates. J Theor Biol 257:340–344.
12. Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolution of cooperation

by phenotypic similarity. Proc Natl Acad Sci USA 106:8597–8600.

13. Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009) Mutation-selection
equilibrium in games with multiple strategies. J Theor Biol 258:614–622.

14. Fudenberg D, Imhof LA (2006) Imitation process with small mutations. J Econ Theory
131:251–262.

15. Imhof LA, Fudenberg D, Nowak MA (2005) Evolutionary cycles of cooperation and
defection. Proc Natl Acad Sci USA 102:10797–10800.

16. Hauert C, Traulsen A, Brandt H, Nowak MA, Sigmund K (2007) Via freedom to
coercion: The emergence of costly punishment. Science 316:1905–1907.

17. Van Segbroeck S, Santos FC, Lenaerts T, Pacheco JM (2009) Reacting differently
to adverse ties promotes cooperation in social networks. Phys Rev Lett 102:
058105.

18. Graham RL, Knuth DE, Patashnik O (1994) Concrete Mathematics (Addison-Wesley,
Reading, MA), 2nd Ed.

Table S1. The reduced payoff table for the d = 4 and n = 3 game in Fig. 2 in the main text

Weight
(Total 27) 1 3 3 3 6 3 1 3 3 1

Configuration AAA AAB AAC ABB ABC ACC BBB BBC BCC CCC
A −9.30 3.83 3.86 −1.03 −1.00 −0.96 0.10 0.33 0.16 0.20
B 0.10 −1.03 0.13 3.83 −1.00 0.16 −9.30 4.06 −0.96 0.20
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00

In total, there would be nd = 34 = 81 payoff entries. For each strategy, we would have had 27 entries. But
when we consider that the ordering does not matter, we just weight each configuration by the different ways
of ordering; for example, there are three orderings for AAB, that is, AAB, ABA, and BAA. In this way, we reduce
the number of payoff entries from 81 to 30.
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4.2. THE ASSUMPTION OF “SMALL” MUTATION RATES

4.2 The assumption of “small” mutation rates

Until now we dealt with selection. Now in this project, we incorporate mutations

as well. Mutations or random explorations seem to be inherent in human nature.

Mutations and selection work in concert to develop the population to a possible

equilibrium state. Traditionally analyzing multiplayer games with mutations is

possible if we assume the mutation rate to be negligible (Fudenberg and Imhof,

2008). Consider the situation when we have three strategies A, B and C.

Every time a reproductive event occurs, there is a small probability µ that the

offspring will be of a random strategy and not necessarily like the parent. The

average time between two mutations is thus µ−1. We also know that the time

for fixation of a single neutral mutant is N(N−1) (Antal and Scheuring, 2006).

Therefore if the mutation probability, µ, is much smaller than N−2 then the

time between two mutations will be much larger than the time required for

either extinction or fixation of a single mutant. Thus at a time we will have to

deal with only two strategies. For two strategies we can calculate exactly the

fixation probability of a mutant in finite populations (Nowak, 2006a) even for

multiplayer games (Gokhale and Traulsen, 2010). For small mutation rates the

transition probabilities between different strategies consist of just the fixation

probabilities. For example for the three strategies A, B and C the transition

matrix, T looks like,

T =




1− ρAB − ρAC ρAB ρAC

ρBA 1− ρBA − ρBC ρBC

ρCA ρCB 1− ρCA − ρCB




�� ��4.1

where the fixation probability of strategy A in a population consisting predom-

inantly of strategy B is given by ρAB. Each element of the matrix denotes the

probability of the row strategy to move into the column strategy. Strategy A

(first row) can either stay in an all A population (first column) or move to a

population of B (second column) individuals or in a population of C (third col-

umn) individuals. Since these are the only three probable events, the sum of all

elements in a row is one. To find which strategy does the best at the mutation
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selection equilibrium we need to know which strategy has the highest frequency

on an average in the stationary distribution. The stationary distribution of the

system is given by the normalised right eigenvector for the largest eigenvalue of

the transition matrix T. However this analysis is only valid for small mutation

rates. The question asked in this section is,

- How small do the mutation rates have to be so that the error due to the

approximation is below a tolerable threshold?

This issue was can be tackled by using time scale separation analysis based

on Antal and Scheuring (2006). Since then this approach has been used ex-

tensively in many papers to explore the the dynamics of strategies in the limit

of strong selection and weak mutations (Imhof et al., 2005; Fudenberg and

Imhof, 2006; Traulsen and Nowak, 2007; Hauert et al., 2007, 2008; Van Seg-

broeck et al., 2009; Sigmund et al., 2010). Our approach takes the route of

the stationary distribution. If we let the system evolve for a long time it will

reach an equilibrium state such that we can denote it by a distribution of the

frequencies of the different strategies. For small mutation rates this distribution

is approximated by the ones based on the fixation probabilities. We check for

the difference between these two distributions. To check mathematically if the

approximation is “good” we calculate the total variation distance between the

distributions.

Herein we also provide a numerically accessible bound which can be calcu-

lated for any given system of two player games and two strategies. Hence now it

is possible to determine exactly how low the mutation rate should be to reduce

the error below a certain threshold.

4.2.1 Publication: How small are small mutation rates?

Bin Wu, Chaitanya S. Gokhale, Long Wang, Arne Traulsen

Journal of Mathematical Biology, In revision

79



How small are small mutation rates?

Bin Wu†‡,∗ Chaitanya S. Gokhale†, Long Wang‡, and Arne Traulsen†
† Research Group for Evolutionary Theory,

Max-Planck-Institute for Evolutionary Biology,
August-Thienemann-Straße 2, 24306 Plön, Germany

‡ Center for Systems and Control,
State Key Laboratory for Turbulence and Complex Systems,

College of Engineering,
Peking University, Beijing, China

We consider evolutionary game dynamics in finite population of size N . When mutations are rare, the
population is monomorphic most of the time. Occasionally a mutation arises. It can either reach fixation
or go extinct. The evolutionary dynamics of the process under small mutation rates can be approximated
by an embedded Markov chain on the pure states. Here we analyze how small the mutation rate should
be to make the embedded Markov chain a good approximation by calculating the difference between the
real stationary distribution and the approximated one. While for a coexistence game it is necessary that
the mutation rate µ is less than N−1/2 exp[−N ] to ensure that the approximation is good, for all other
games, it is sufficient if the mutation rate is smaller than (N lnN)−1. Our results also hold for a wide
class of imitation processes under arbitrary selection intensity.

Keywords: Evolutionary game theory, Mutation rates, Perturbation analysis

I. INTRODUCTION

For evolutionary dynamics in finite populations with mu-
tations, one can think of the evolutionary dynamics on two
time scales. In the short run, what is the likelihood that a
single mutant or a group of mutants takes over a popula-
tion? If there is a single A type individual in a population
of type B, the probability of fixation of A is termed φA.
This quantity has been analytically characterized in popu-
lation genetics [9, 11, 22] and has more recently also been
applied to evolutionary games [7, 14, 24–26, 30, 31]. On a
longer time scale, one can address the average abundance of
the available strategies over time [2–4, 29]. [14], following
the work of [12, 13] and [21], have developed an approach
to deal with this issue. For small mutation rates, the time
required for a mutation to occur is much larger than that re-
quired for fixation itself. Thus there are at most two strate-
gies in the population simultaneously most of the time. In
this case the original stochastic evolutionary process can be
approximated by an embedded Markov chain on those states
where the population is homogeneous for one strategy. The
probability of transition from one homogenous population
to another is the corresponding mutation rate multiplied by
the fixation probability of the mutant strategy. For simplic-
ity, we assume that all mutation rates are identical.

In particular, when there are only 2 types of strategies, A
and B, the 2× 2 payoff matrix is given by

(A B

A a b
B c d

)
, (1)

where, a is the payoff of A against A, b is the payoff of A
against B, c is the payoff of B against A, and finally, d is

∗ bin.wu@evolbio.mpg.de

the payoff of B against B. In a well mixed population, an
individual interacts with all other individuals with the same
probability. Excluding self interactions, the average payoff
for each individual of each strategy is given by

πA(i) = a
i− 1

N − 1
+ b

N − i
N − 1

and (2)

πB(i) = c
i

N − 1
+ d

N − i− 1

N − 1
. (3)

Here, i is the number of individuals playing strategy A.
Since often the payoff difference is of interest, we substitute
πA(i) − πB(i) by ui + v, where u = a−b−c+d

N−1 and v =
N(b−d)−a+d

N−1 .
In this case, the pure population states are ‘All play A’

and ‘All play B’. The transition probability from ‘All play
A’ to ‘All play B’ is the mutation rate µ times the fixa-
tion probability of strategy B, φB . In analogy to this, the
transition probability from ‘All play B’ to ‘All play A’ is the
mutation rate µ times the fixation probability of strategy A,
φA. Thus, the stationary distribution for this Markov chain
is

(
φA

φA + φB
,

φB
φA + φB

)
(4)

The first element is the average proportion of time spent
in state “All play A” while the second element is the
average proportion of time spent in state “All play B”.
This approach opens up a way to analytically investi-
gate the evolutionary dynamics under mutation, selection
and drift provided the mutation rate is sufficiently small
[17, 18, 27, 34, 35]. However, how small do the mutation
rates have to be? Numerical simulations and time scale sep-
aration analysis show that µN2 � 1 ensures the validity of
the approach if the game does not show any stable coexis-
tence [1, 17, 33]. However, time scale arguments are often
viewed as intuitive tools from physics and are hard to cast
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into the form of a mathematical proof. Moreover, they do
not provide a precise bound for the mutation rate.

Here, by perturbation analysis, we analytically investigate
how small the mutation rate must be to make this embed-
ded Markov chain a good approximation of the original one.
To this end, we use the total variation distance of proba-
bility measures to measure the quality of the approximation
of the stationary distribution. For simplicity, we employ the
Fermi process [5, 28, 31], a specific yet widely used imi-
tation process. In contrast with the result by time scale
separation analysis, we show that for all games except for
the coexistence game, it is sufficient that the mutation rate
is smaller than (N lnN)

−1 to ensure that the approximation
of small mutation rates is good, i.e. µN lnN � 1 relaxing
µN2 � 1. For a coexistence game, however, it is necessary
that the mutation rate µ is less than N−1/2 exp[−N ]. Our
result is also valid for other imitation processes with continu-
ous derivative of the imitation function [36] as well as for the
Moran process with different fitness mappings [32, 36]. For
any birth death processes with mutations, we also provide a
numerically accessible quantity to determine how small the
mutation rate should be to make the approximation good.

II. THE FERMI PROCESS WITH MUTATIONS

The Fermi process is a particular birth-death process used
to model evolutionary game dynamics in a finite population.
In each time step, a random individual is selected. With
probability µ < 1/2, a mutation or exploration event occurs
and the focal individual chooses the opposite strategy. With
probability 1−µ, no mutation occurs. In this case, the focal
individual compares its payoff to another randomly chosen
individual. If the focal player is playing A and the other
plays B, then the focal player adopts the strategy of the
other player with probability

1

1 + exp [+β (πA(i)− πB(i))]
(5)

where β is the intensity of selection. For small β, selection
is weak and strategy changes occur almost at random. For
large β, only strategies with higher payoff are adopted. Let
i be the number of strategy A individuals in the population.
Then the transition probabilities from i to i ± 1, T±i , are
given by

T+
i = (1− µ)

i

N

N − i
N

1

1 + exp [−β(πA(i)− πB(i))]
+ µ

N − i
N

T−i = (1− µ)
i

N

N − i
N

1

1 + exp [+β(πA(i)− πB(i))]
+ µ

i

N
.(6)

The probability to stay in state i is 1− T+
i − T−i .

When the mutation rate is nonzero, this Markov process
has no absorbing states. Our birth-death process satisfies
the detailed balance condition

ψj−1T
+
j−1 = ψjT

−
j for 1 ≤ j ≤ N (7)

where ψj is the probability that the system is in state j
[8, 16, 20]. The stationary distribution is given by (see
Appendix A)

ψj =

T+
0

T−j

∏j−1
i=1

T+
i

T−i

1 +
∑N
k=1

T+
0

T−k

∏k−1
i=1

T+
i

T−i

, 1 ≤ j ≤ N. (8)

where the empty product is one,
∏0
i=1

T+
i

T−i
= 1. For j = 0,

we obtain

ψ0 =
1

1 +
∑N
k=1

T+
0

T−k

∏k−1
i=1

T+
i

T−i

. (9)

For µ → 0, we have T+
0 = µ = T−N → 0 and thus ψ0 →(

1 +
∏N−1
i=1

T+
i

T−i

)−1

. On the other hand, the numerators

of Eq. (8) approach zero for 1 < j < N due to µ →
0. Thus ψj approach zero as µ → 0 for 1 < j < N .

Considering the normalization condition,
∑N
j=0 ψj = 1, we

have ψN → 1 − ψ0. Therefore, the ratio between ψ0 and

ψN is ψ0

ψN
=
∏N−1
i=1

T+
i

T−i
. Since

∏N−1
i=1

T+
i

T−i
= φB/φA [24],

this recovers Eq. (4).

III. ESTIMATING THE ERROR IN THE
APPROXIMATION OF THE STATIONARY

DISTRIBUTION

For our Markov chain, all possible stationary distributions
form a set S denoted by

S = {(ψ0, ψ1 · · ·ψN ) |ψi ≥ 0,
N∑

i=0

ψi = 1}. (10)

We follow [10] (See also [6, 19, 23]) to define a measure for
the similarity of two such distributions.

Definition: Let z = (z0, z1 · · · zN ) and w =
(w0, w1 · · ·wN ) ∈ S be two distributions. The total varia-
tion distance dTV (z, w) between v and w is defined by

dTV (z, w) =
1

2

N∑

i=0

|zi − wi| (11)

In particular, two distributions are identical if and only if
the total variation distance between them is zero. If they
are maximally different, we have dTV (z, w) = 1. We use
this total variation distance as a measure for the quality of
the approximation based on the embedded Markov chain
described above.

As discussed above, we have from Eqs. (8) and (9)

lim
µ→0

ψ0(µ) =
φB

φA + φB
lim
µ→0

ψi(µ) = 0 for 0 < i < N

lim
µ→0

ψN (µ) =
φA

φA + φB
(12)
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This is consistent with the approach of [14], Eq. (4), which
can be viewed as a zeroth order term of an approximation
for small mutation rates.

Up to first order, ψj(µ) can be approximated by

ψj(µ) ≈ ψj(0) +
d

dµ
ψj(0)µ. (13)

Our goal is to show under which circumstances the second
term can be neglected compared to the first one. Based on
Eqs. (8) and (9), we can address the derivative in Eq. (13)
(See Appendix B 1), which involves the terms

d

dµ
ψ0(µ)|µ=0 = − (ψ0(0))

2
(C1 + C2) (14)

d

dµ
ψj(µ)|µ=0 =

(
1

T−j

j−1∏

i=1

T+
i

T−i

)∣∣∣
µ=0

ψ0(0), 0 < j < N,

(15)

where

C1 =

(
N−1∑

k=1

1

T−k

k−1∏

i=1

T+
i

T−i

)∣∣∣
µ=0

(16)

=

N−1∑

k=1

N2 {1 + exp [(uk + v)β]}
k(N − k)

× exp

[(u
2

(k − 1)2 +
(u

2
+ v
)

(k − 1)
)
β

]
(17)

and

C2 =
d

dµ

(
N−1∏

i=1

T+
i

T−i

)∣∣∣
µ=0

(18)

= N exp

[(
N − 1

2
(uN + 2v)

)
β

]

× exp[−vβ] (1− exp [(uN + 2v)β])

×
N−1∑

i=1

exp [−uiβ]

i
(19)

Here, we have replaced πA(i) − πB(i) by ui + v. The

normalization of the distribution,
∑N
j=0 ψj = 1, is deter-

mined by the zeroth order term, cf. Eq. (12). Thus, we

have
∑N
j=0

d
dµψj = 0, which implies

d

dµ
ψN (µ)|µ=0 = −

N−1∑

j=0

d

dµ
ψj(µ)|µ=0 (20)

We emphasize that Eqs. (14),(15),(16),(18), and (20) are
valid for all the birth death processes with mutations. Eqs.
(17) (19) are the special cases obtained by substituting the
transition probabilities for the Fermi process, Eqs. (6).

In the following, we denote ψ(µ) = (ψ0(µ), · · · , ψN (µ))
and ψ(0) = limµ→0ψ(µ). Next, we state our main
theorem.

Theorem:
Assume that the population size N is sufficiently large
compared to the product of the selection intensity β and
the payoff entries in Eq. (1). Evolutionary game dynamics
is given by the Fermi process described above.

Given an arbitrary ε > 0, for all games with a > c
or d > b there exists a µ∗ = ε/G1(N), with G1(N) of
the order of N lnN , such that if the mutation rate fulfills
µ < µ∗, then dTV (ψ(µ),ψ(0)) < ε.

For games with a < c and d < b, however, there ex-
ists µ∗ = ε/G2(N), where G2(N) is of order

√
N exp[N ],

such that if dTV (ψ(µ),ψ(0)) < ε then µ < µ∗ .

For the proof of this Theorem, we have to infer when the
total variation between the distribution with and without
mutation is smaller than ε. By Eqs. (11) and (13), we have

dTV (ψ(µ),ψ(0)) =
1

2

[
N∑

i=0

|ψ′i(0)|
]
µ (21)

Replacing ψ′N (0) by Eq. (20) leads to

dTV (ψ(µ),ψ(0)) =
1

2

[
N−1∑

i=0

|ψ′i(0)|+ |
N−1∑

i=0

ψ′i(0)|
]
µ

≤ 1

2

[
N−1∑

i=0

|ψ′i(0)|+
N−1∑

i=0

|ψ′i(0)|
]
µ

=

N−1∑

i=0

|ψ′i(0)|µ (22)

First, note that ψ′i(0) > 0 for i = 1, . . . , N−1, cf. Eq. (15).
Thus, we have

N−1∑

i=1

|ψ′i(0)| =
N−1∑

i=1

ψ′i(0)

=

(
N−1∑

i=1

1

T−i

i−1∏

k=1

T+
k

T−k

)
|µ=0ψ0(0)

= C1ψ0(0). (23)

On the other hand, we have

|ψ′0(0)| = (ψ0(0))
2 |C1 + C2| (24)

Taking Eq. (23) and (24) into Expression.(22) as well as
considering ψ0(0) ≤ 1 leads to

dTV (ψ(µ),ψ(0)) =
(
|C1 + C2|ψ0(0) + C1

)
ψ0(0)µ

≤
(
|C1 + C2|+ C1

)
µ (25)

C1 is positive as seen directly from the definition Eq. (16).
For C2, it is positive when uN + 2v < 0 and it is negative
otherwise. However, for the game fulfilling uN + 2v > 0,
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we can look at a transformed game in which A and B are
exchanged. This leads to ũ = u and ṽ = (N(c− a)− d +
a)/(N − 1). Using v + ṽ = −ũN leads to ũN + 2ṽ <
0. Since the exchange of strategies does not affect our
general result, we thus always consider the game satisfying
uN + 2v < 0. In this case, both C1 and C2 are positive,
yielding

dTV (ψ(µ),ψ(0)) ≤
(

2C1 + C2

)
µ (26)

Thus, the scaling of 2C1+C2 with N allows us to asses how
the total variation distance scales with N . For games except
for the coexistence game, we can derive an upper bound for
the mutation rate: 2C1 + C2 is smaller than a quantity
G1(N) of order N lnN for large N (See Appendix B 2 a
and Appendix B 2 b). Hence, we have dTV (ψ(µ),ψ(0)) ≤
G1(N)µ. For any ε > 0, we define u∗ = ε/G1(N) and
whenever u < u∗, the error we are making when considering
the stationary distribution without mutations instead of the
one with mutations is smaller than ε, dTV (ψ(µ),ψ(0)) < ε.
Since we can specify an upper bound for u∗, the condition
is sufficient.

For the coexistence game (a < c and b > d), we only find
a lower bound: 2C1+C2 is greater than a quantity G2(N) of

order
√
N exp[N ] for large N (See Appendix B 2 c). For any

ε > 0, we can define u∗ = ε/G2(N). Only when u < u∗,
the error of our approximation is small, dTV (ψ(µ),ψ(0)) <
ε.

This completes the proof of our Theorem.
Corollary: As per the above Theorem, for games with

a > c or d > b, i.e. 2× 2 games except for the coexistence
game, if µ is smaller than the error ε times (N lnN)

−1,

then dTV (ψ(µ),ψ(0)) < ε. Thus µ < ε (N lnN)
−1 is

a sufficient condition to ensure that the embedded Markov
chain is a good approximation of the original one. In analogy
to this, for coexistence game, the Theorem implies that
µ < ε exp[−N ]N−1/2 is only a necessary condition.

In the following we investigate what the mutation rate
should be for neutral evolution, β = 0. In this case, the
selection is absent and the strategies evolve due to mutation
and neutral drift. Eq. (24) still holds since we do not employ
β to obtain Eq. (24). In this case, we have C2 = 0 and

C1 =
N−1∑

i=1

2N2

i(N − i)

= 2N
N−1∑

i=1

(
1

i
+

1

N − i

)

= 4NHN−1 (27)

where HN−1 =
∑N−1
i=1 1/i is the Harmonic number, which

is of order lnN for large N . Therefore 2C1 + C2 is of
order N lnN for large N . ¿From Eq. (26), we have that

mutation rate of order (N lnN)
−1 is sufficient to make the

approximation good.
Finally, we address the validity of our approach for other

processes. The Fermi process is a special imitation process
whose imitation function is the Fermi function, Eq. (5).

For a general imitation function, we show the Theorem is
also valid, provided the first order derivative of the imitation
function is continuous (See Appendix C).

IV. DISCUSSION AND CONCLUSION

We have investigated how small the mutation rate should
be to make the stationary distribution obtained with a
mutation rate going to zero a good approximation of the
“real” stochastic process with nonzero mutation rate. For
a non-coexistence game, it is sufficient that the mutation
rate is smaller than a quantity of the order of (N lnN)

−1.
For a coexistence game, however, it is necessary that the
mutation rate µ is less than a quantity of the order of(√

N
)−1

exp[−N ]. These results are valid for any nonzero

selection intensity. When the selection intensity vanishes,
the mutation rate µ of order (N lnN)

−1 is sufficient to
make the approximation good. Therefore, we can say that
the order of µ, which makes the approximation good, does
not change compared to the neutral case provided the game
allows no coexistence.

For a non-coexistence game, our results can also be in-
terpreted in a time scale separation analysis framework: For
large population size N , the conditional fixation time is of
order N lnN [1]. On an average the time between two mu-
tations is 1/µ. The embedded Markov chain is valid as long
as there are at most two strategies in the population, i.e.
1/µ � N lnN . Thus time scale separation analysis also

yields µ� (N lnN)
−1.

To formulate the problem mathematically, we introduced
the total variation distance to measure how “good” the em-
bedded Markov chain is compared to the original one. We
can also introduce other measures of distances. A natural
question arises: How much does the definition of the dis-
tance influence the results? In analogy to Eq. (11), the
distance between z and w induced by the p−Norm is given
by

‖z − w‖p =

(
N∑

i=0

|zi − wi|p
) 1

p

, p ≥ 1 (28)

In particular, we have ‖ψ(µ) − ψ(0)‖1 =
2dTV (ψ(µ),ψ(0)) by the definition of the total vari-
ation distance. Since ‖ψ(µ) − ψ(0)‖p ≤ ‖ψ(µ) − ψ(0)‖1
for p > 1 as well as dTV (ψ(µ),ψ(0)) ≤ G1(N)µ for a non-
coexistence game, we have ‖ψ(µ) − ψ(0)‖p ≤ 2G1(N)µ
for p > 1. By identical arguments, the Theorem is also
valid for non-coexistence games under this definition of
distance. For a coexistence game, however, we have
‖ψ(µ)−ψ(0)‖p ≥ ‖ψ(µ)−ψ(0)‖1/(N + 1) for p > 1. In
analogy to the above discussion, the Theorem should be re-
formed by replacing G2(N) =

√
N exp[N ] by exp[N ]/

√
N .

Therefore, our Theorem is robust with respect to the
definition of distance for a non-coexistence game while
needs reformation for a coexistence game. But the
reformed theory illustrates that the critical mutation rate
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for a coexistence game decreases more rapidly compared
to that of the non-coexistence games. Thus the results are
qualitatively robust with respect to the definition of the
distance.

We have shown that the Theorem is not only valid for the
Fermi process, but also for a general imitation process with
continuous derivative of the imitation function [36]. By def-
inition an imitation process involves an imitator and a role
model and the strategy of the role model can be adopted
by the imitator. Individuals are more likely to imitate those
with higher fitness. This has been termed as ‘monotonic-
ity’ in [15]. In addition, the Theorem is also valid for the
Moran process with continuous differentiable fitness map-
pings. The proof is quite similar to that of the general imi-
tation process and thus we do not show it in the appendix.
For the Moran process, the monotonicity of the payoff to
fitness mapping is also needed. This ensures that individuals
with higher payoff have more chance to reproduce.

Since the proof of the Theorem depends only on C1 and
C2 as defined in Eqs. (16) and (18) and the triangle in-
equality used in Eq. (22), Eq. (25) is valid for general evo-
lutionary processes that can be described by a birth death
process with mutations. The Moran processes with differ-
ent fitness functions are of this kind [36]. Therefore, for any
such process, given the error bound ε, the critical mutation
bound that ensures that the approximation by the embed-
ded Markov chain is good, i.e., dTV (ψ(µ),ψ(0)) ≤ ε, is
ε/ (|C1 + C2|+ C1). In other words, the numerical value
of |C1 +C2|+C1 is sufficient to determine the critical mu-
tation bound. Considering that |C1+C2|+C1 is numerically
accessible, it paves the way to determine the critical muta-
tion bound. This mutation bound for the Fermi process is
given in Appendix B 3

In contrast with the 2× 2 games, it would be challenging
to address what the mutation rate has to be for more than
two strategies. For multi-strategy games it is difficult to
obtain the exact stationary distribution. However, when
there are at most two strategies in the population, then
pairwise competition between all strategies is the main force
of selection, therefore, our results for 2 × 2 can still shed
light on how small the mutation rate should be. In fact, for
n×n games, we optimistically speculate that our Theorem
is also valid, whenever there are no stable internal equilibria
in the simplex and the sub-simplices.
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Appendix A: The stationary distribution

Here, we recall the calculation of the stationary distribu-
tion ψj for a one dimensional birth-death process without
absorbing states [8, 16, 20]. The stationary distribution ful-
fills the detailed balance condition ψj−1T

+
j−1 = ψjT

−
j . We

rearrange this to

ψj =
T+
j−1

T−j
ψj−1. (A1)

Therefore

ψ1 =
T+

0

T−1
ψ0

ψ2 =
T+

1

T−2
ψ1 =

T+
0 T

+
1

T−2 T
−
1

ψ0

ψ3 =
T+

2

T−3
ψ2 =

T+
0 T

+
1 T

+
2

T−3 T
−
1 T
−
2

ψ0. (A2)

In general, we have

ψj =
T+

0

T−j

j−1∏

i=1

T+
i

T−i
ψ0, 1 ≤ j ≤ N. (A3)

On the other hand,
∑N
j=0 ψj = 1. Thus, we have

1 =

N∑

j=0

ψj = ψ0


1 +

N∑

j=1

T+
0

T−j

j−1∏

i=1

T+
i

T−i


 (A4)

and hence

ψ0 =
1

1 +
∑N
j=1

T+
0

T−j

∏j−1
i=1

T+
i

T−i

. (A5)

Therefore, by Eq.(A2)

ψj =

T+
0

T−j

∏j−1
i=1

T+
i

T−i

1 +
∑N
k=1

T+
0

T−k

∏k−1
i=1

T+
i

T−i

, 1 ≤ j ≤ N. (A6)

Appendix B: Estimating the critical mutation rate for the
Fermi process

In this section, we consider the first order term of the
Taylor approximation of the stationary distribution for small
mutation rates. This provides part of the proof of the The-
orem in the main text.

1. The first order term of the stationary distribution in
the mutation rate

We calculate the first order expansion of the stationary
distribution at state 0 under small mutation. Since T−N =



6

µ = T+
0 , we have

ψ0(µ) =
1

1 + µ
(∑N−1

k=1
1
T−k

∏k−1
i=1

T+
i

T−i

)
+
∏N−1
i=1

T+
i

T−i

.(B1)

Thus, d
dµψ0|µ=0 is given by

d

dµ
ψ0|µ=0 = −ψ2

0(0)

[(
N−1∑

k=1

1

T−k

k−1∏

i=1

T+
i

T−i

)
|µ=0

︸ ︷︷ ︸
C1

+
d

dµ

(
N−1∏

i=1

T+
i

T−i

)
|µ=0

︸ ︷︷ ︸
C2

]
(B2)

This equation is valid for all evolutionary birth-death pro-
cesses. Substituting Eq.(6) into C1 yields

C1 =

N−1∑

k=1

N2 {1 + exp [(uk + v)β]}
k(N − k)

k−1∏

i=1

exp [(ui+ v)β]

=
N−1∑

k=1

N2 {1 + exp [(uk + v)β]}
k(N − k)

exp

[
k−1∑

i=1

(ui+ v)β

]

=

N−1∑

k=1

N2 {1 + exp [(uk + v)β]}
k(N − k)

exp
[(u

2
k + v

)
(k − 1)β

]

(B3)

Next, we address C2. Let g(µ) =
∏N−1
i=1

T+
i

T−i
, therefore

ln g(µ) =
∑N−1
i=1 (lnT+

i − lnT−i ). The derivative of this

quantity is given by d
dµ ln g(µ) = g′(µ)

g(µ) , which results in

C2 = d
dµg(µ)|µ=0 = g(0) d

dµ ln g(µ)|µ=0. On the other

hand, d
dµ ln g(µ) =

∑N−1
i=1

(
T+′
i

Ti
+ − T−

′
i

Ti
−

)
. Therefore,

C2 =

N−1∏

i=1

(
T+
i

T−i

)
|µ=0

N−1∑

i=1

(
T+′

i

Ti+
− T−

′

i

Ti−

)
|µ=0. (B4)

By Eq.(6), we have T+′

i |µ=0 = N−i
N − T+

i |µ=0 and

T−
′

i |µ=0 = i
N − T−i |µ=0. Substituting these expressions

into Eq.(B4) yields

C2 =
N−1∏

i=1

(
T+
i

T−i

)
|µ=0

N−1∑

i=1

(
N − i
NTi+

− i

NTi−

)
|µ=0 (B5)

= exp

[
N−1∑

i=1

(ui+ v)β

]

×
[
N−1∑

i=1

N {1 + exp [−β(ui+ v)]}
i

−
N−1∑

i=1

N {1 + exp [β(ui+ v)]}
N − i

]

= exp

[(
u

(N − 1)N

2
+ v(N − 1)

)
β

]

×
[
N−1∑

i=1

N {1 + exp [−β(ui+ v)]}
i

−
N−1∑

i=1

N {1 + exp [β(u(N − i) + v)]}
i

]

(B6)

where we have exchanged the summation variable in the
second sum, i↔ N − i. Next, we can drop common terms
in the two sums and arrive at

C2 = N exp

[(
N − 1

2
(uN + 2v)

)
β

]

× exp[−vβ] (1− exp [(uN + 2v)β])

×
N−1∑

i=1

exp [−uiβ]

i
(B7)

2. Scaling of the first order term with N

Next, we estimate the order of 2C1 + C2. To facilitate
the calculation, we classify the 2 × 2 games by the payoff
difference parameters, u and v

Classification of the game

Neither u nor v is zero

(i) u < 0 and v < 0
(ii) u < 0 and v > 0, coexistence game
(iii) u < 0 and v > 0, non-coexistence game
(iv) u > 0 and v > 0
(v) u > 0 and v < 0, coordination game
(vi) u > 0 and v < 0, non-coordination game

Either u or v is zero

(vii) u = 0 and v < 0
(viii) u = 0 and v > 0
(ix) u > 0 and v = 0
(x) u < 0 and v = 0

Both u and v are zero (xi) u = 0 and v = 0
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With this classification, we have to prove that for case (ii),
i.e. the coexistence game, 2C1 +C2 is greater than G2(N)

which is of order
√
N exp [N ], whereas for all the other

cases, 2C1+C2 is less than G1(N) which is of order N lnN .
We only show the calculations for case (i) (ii) and (v), for
the rest of the cases it can be proved by identical techniques.
For case (xi) though, it is identical with the case without
selection intensity. Further, without loss of generality, we
assume that the payoff entries are of order 1. Thus u is of
the order of 1/N and v as well as λ = uN + 2v < 0 are
of order 1 when N is large. On the other hand, for large
N , λ < 0 is equivalent to the risk dominance condition of
strategy B. Also, since β can be absorbed into the payoff
entries in the transition probabilities, we let β be one for
simplicity.

a. Dominance of strategy B with u < 0 and v < 0

For C1, we have

C1 =
N−1∑

i=1

N2 (1 + exp[ui+ v])

i(N − i)

exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

<
N−1∑

i=1

2N2

i(N − i) exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

< 2N2
N−1∑

i=1

1

i(N − i)

= 2N

(
N−1∑

i=1

1

i
+
N−1∑

i=1

1

N − i

)

= 4NHN−1 (B8)

The Harmonic number HN−1 is of order lnN for large N ,
thus C1 is smaller than a quantity of order N lnN .

For C2, we have (with λ = uN + 2v < 0)

C2 = N exp

[
N − 1

2
λ− v

]
(1− exp [λ])

N−1∑

k=1

exp [−uk]

k

6 N exp

[
N − 1

2
λ− v

]
(1− exp [λ]) exp [−u(N − 1)]

N−1∑

k=1

1

k

= N exp

[
N − 1

2
λ− v

]
(1− exp [λ]) exp [−u(N − 1)]HN−1

(B9)

u < 0 is of order 1/N and λ < 0 is of order 1. Thus,
N exp

[
N−1

2 λ− v
]

(1− exp [λ]) exp [−u(N − 1)]HN−1 is
of order N lnN exp[−N ], which is much smaller than
N lnN . Thus, C2 can be neglected compared to C1;
G1(N) = 8NHN−1 > 2C1 + C2 scales at most with
N lnN .

b. Coordination game with u > 0 and v < 0

To estimate the order of C1, let

F (i) =
u

2
i2 +

(u
2

+ v
)
i, (B10)

We have F (0) = 0 and F (N−1) = (N−1)(uN+2v)/2 =
(N − 1)λ/2 < 0. On the other hand, F ′′(i) = u

2 . Since
u > 0, F (i) is a convex function which implies

F (i) = F

(
i

N − 1
(N − 1) +

(
1− i

N − 1

)
0

)

≤ i

N − 1
F (N − 1) +

(
1− i

N − 1

)
F (0)

≤ 0, (B11)

where equality holds for i = 0 only. Therefore for C1, we
have

C1 =

N−1∑

i=1

N2 (1 + exp [ui+ v])

i(N − i)

exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

︸ ︷︷ ︸
F (i−1)

(B12)

<
N−1∑

i=1

N2 (1 + exp [ui+ v])

i(N − i)

<
N−1∑

i=1

N2 (1 + exp [u(N − 1) + v])

i(N − i)

= N (1 + exp [u(N − 1) + v])

(
N−1∑

i=1

1

i
+
N−1∑

i=1

1

N − i

)

= 2 (1 + exp [u(N − 1) + v])NHN−1 (B13)

Considering that u and v are of order 1/N and 1. C1 is less
than a quantity of order N lnN .

For C2, since u > 0, we have

C2 =

N exp

[
N − 1

2
λ− v

]
(1− exp [λ])

N−1∑

k=1

exp [−uk]

k

6 N exp

[
N − 1

2
λ− v

]
(1− exp [λ]) exp [−u]

N−1∑

k=1

1

k

= N exp

[
N − 1

2
λ− v

]
(1− exp [λ]) exp [−u]HN−1

(B14)

In analogy to the order analysis for Eq. (B9), C2 is
much smaller than C1. Hence, 2C1 + C2 scales with
N as N lnN . Thus our quantity G1(N) in the proof is
4 (1 + exp [u(N − 1) + v])NHN−1.
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c. Coexistence of strategy A and B with u < 0 and v > 0

We show that for a coexistence game, 2C1 +C2 is greater
than a quantity of order

√
N exp(N). For C1, we have

C1 =
N−1∑

i=1

N2 (1 + exp [ui+ v])

i(N − i) exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

> 4
N−1∑

i=1

exp [ui+ v] exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

= 4
N−1∑

i=1

exp
[u

2
i2 +

(u
2

+ v
)
i
]

(B15)

= 4 exp

[
−u

2

(
1

2
+
v

u

)2
]
N−1∑

i=1

exp

[
u

2

(
i+

1

2
+
v

u

)2
]

(B16)

When the population size N is large, we can set x = i/(N−
1) and approximate the sum in the above equation by an
integral,

(N − 1)

∫ 1

0

exp

[
−1

2

(√
−u
(

(N − 1)x+
1

2
+
v

u

))2
]
dx

(B17)

Let t =
√−u[(N − 1)x+ 1

2 + v
u ], then the above integral is

1

N − 1

√
−2π

u

×
[
Φ

(√
−u
(
N − 1

2
+
v

u

))
− Φ

(√
−u
(

1

2
+
v

u

))]

(B18)

where Φ(x) = 1√
2π

∫ x
−∞ e−t

2/2 dt is the cumulative dis-

tribution function of the Gaussian distribution. For a co-
existence game, ui + v = 0 has a solution i between 1
and N − 1. Thus − v

u ≤ N − 1. With this, we have

0 < N − 1
2 + v

u . Hence,
√−u

(
N − 1

2 + v
u

)
is of order

+
√
N and approaches +∞ as the population size N goes

to infinity. Thus, Φ
(√−u

(
N − 1

2 + v
u

))
approaches 1 as

N approaches infinity. Similarly, a coexistence game implies
0 < − v

u and thus
√−u

(
1
2 + v

u

)
scales as −

√
N . There-

fore, the second term Φ
(√−u

(
1
2 + v

u

))
approaches 0 as N

approaches infinity. This means that the sum in Eq. (B16)

is larger than
√
− 2π

u for large N , yielding a lower bound for

C1,

C1 > 4

√
−2π

u
exp

[
−u

2

(
1

2
+
v

u

)2
]
. (B19)

Now, u < 0 scales as 1/N , whereas v becomes indepen-

dent of N for large N . Hence, C1 scales as
√
N exp[N ],

i.e. it increases more than exponentially with N . For C2,
the order estimation is identical to Eq.(B9), C2 becomes
infinitely small for large N . Therefore, 2C1 + C2 scales

as
√
N exp[N ] and the mutation rate has to go to zero

rapidly to ensure that the approximation remains good
when the population size is increased. Thus G2(N) is

8
√
− 2π

u exp
[
−u2

(
1
2 + v

u

)2]
.

3. A numerically accessible bound for the mutation rate

In this part of the Appendix, we show, for a given non-
coexistence game, how the critical mutation rate depends
on the payoff entries. By the proof provided above, this
mutation rate is (2C1)−1ε for large population size, where
ε is the given tolerance of the error. Thus we only need to
derive the relationship between C1 and the payoff entries.

For coordination games, Eq. (B13) provides such a rela-
tionship. For dominance games, however, it is not straight-
forward from Eq. (B8). But based on Eq. (B8), we have

C1 <

N−1∑

i=1

2N2

i(N − i) exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

(B20)

By the Cauchy-Schwarz inequality,

C1 <

(
N−1∑

i=1

2N2

i(N − i)

) 1
2



N−1∑

i=1

exp
[u

2
(i− 1)2 +

(u
2

+ v
)

(i− 1)
]

︸ ︷︷ ︸
R(i−1)




1
2

(B21)

By using
∑N−1
i=1 R(i − 1) =

∑N−2
i=0 R(i) =

∑N−1
i=1 R(i) +

R(0)−R(N − 1), the above inequality can be rewritten as

C1 <

(
N−1∑

i=1

2N2

i(N − i)

) 1
2

×
(
N−1∑

i=1

exp
[u

2
i2 +

(u
2

+ v
)
i
]

+1− exp

[
(N − 1)

Nu+ 2v

2

]) 1
2

(B22)

The first factor of the r.h.s of the inequality, by Eq. (27),

scales as 2
√
N lnN . The second factor is similar to the

expressions obtained by Eqs. (B15) (B16) (B17) (B18). It
can be approximated by the square root of

exp

[
−u

2

(
1

2
+
v

u

)2
]√
−2π

u
[
Φ

(√
−u
(
N − 1

2
+
v

u

))
− Φ

(√
−u
(

1

2
+
v

u

))
+ 1

]
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for large N where Φ(x) is the standard Gaussian distribution
function. Thus

C1 < 2
√
N lnN

4

√
−2π

u
exp

[
−u

4

(
1

2
+
v

u

)2
]

×
√

Φ

(√
−u
(
N − 1

2
+
v

u

))
− Φ

(√
−u
(

1

2
+
v

u

))
+ 1

(B23)

This allows to estimate a numerical value for the critical mu-
tation bound for given payoff entries of a non-coexistence
game and error tolerance without the need to evaluate sums.
If the system is not too large such that sums can be eval-
uated numerically, the first line of Eq. (B13) gives a more
precise estimate.

Appendix C: Estimating the critical mutation rate for
general imitation processes

For the general imitation process with mutations, an in-
dividual is picked up from the well mixed population of size
N . With probability 1−µ, imitation occurs: The focal indi-
vidual imitates another random individual with a probability
g(β∆πi), where ∆πi = πA − πB and β is the selection in-
tensity. Here g(x) is an increasing function. This implies
that the more successful the opponent is, the more likely the
focal individual imitates it. With probability µ < 1/2, mu-
tation or exploration occurs: The focal individual switches
to the opposite strategy.

In analogy to the transition probabilities given by Eq. (6),
we have

T+
i = (1− µ)

i

N

N − i
N

g(+β∆πi) + µ
N − i
N

T−i = (1− µ)
i

N

N − i
N

g(−β∆πi) + µ
i

N
. (C1)

and 1 − T+
i − T−i . In this Appendix, we show that the

Theorem is also valid for a wide class of imitation processes.
The only technical requirement is that the imitation function
is increasing and that its derivative is continuous.

1. The form of the first order term

For the general imitation process with mutations, we still
have C1 and C2 defined in Eqs. (16) and (18). For C1, we
obtain

C1 =

(
N−1∑

i=1

1

T−i

i−1∏

k=1

T+
k

T−k

)
|µ=0

=
N−1∑

i=1

N2

i(N − i)
1

g(−β∆πi)

i−1∏

k=1

g(+β∆πk)

g(−β∆πk)
(C2)

By making use of the identity x = exp [lnx] for x =∏i−1
k=1

g(+β∆πk)
g(−β∆πk) , we arrive at

C1 =

N−1∑

i=1

N2

i(N − i)
1

g(−β∆πi)
exp

[
i−1∑

k=1

ln

[
g(+β∆πk)

g(−β∆πk)

]]

(C3)

For C2, note that the derivation of Eq. (B5) is indepen-
dent of the imitation function given, thus it is valid for all
imitation processes. We have

C2 =

N−1∏

k=1

(
T+
k

T−k

)
|µ=0

N−1∑

k=1

(
N − k
NTk+

− k

NTk−

)
|µ=0

=
N−1∏

k=1

g(+β∆πk)

g(−β∆πk)

N−1∑

k=1

N

N − k

(
1

g(+β∆πN−k)
− 1

g(−β∆πk)

)

= exp

[
N−1∑

k=1

ln

[
g(+β∆πk)

g(−β∆πk)

]]

×
N−1∑

k=1

N

N − k

(
1

g(+β∆πN−k)
− 1

g(−β∆πk)

)
(C4)

For C2, if 1
g(+β∆πN−k) − 1

g(−β∆πk) is non-negative for all

the k, then C2 is non-negative. Since g(x) is an increas-
ing function, this is equivalent to ∆πN−k ≤ −∆πk, i.e.,
uN+2v ≤ 0. If this is not the case, we can exchange strat-
egy A and B, as described in the main text. This yields a
transformed game which fulfills ũN + 2ṽ ≤ 0 without in-
fluencing the main results. Therefore, we always consider
the case for uN + 2v ≤ 0, such that both C1 and C2 are
non-negative.

2. Scaling of the first order term with N

To estimate the order of 2C1+C2, we absorb the selection
intensity β into the payoff difference term in analogy to the
proof above, i.e. we formally set β = 1. The quantity u is
of order 1/N and v is of order 1. Without loss of generality
(see above), uN+2v ≤ 0 is also assumed to ensure C2 > 0.

For the coordination game, u > 0 and v < 0, we only
need to prove that 2C1 +C2 is less than a quantity of order
N lnN . For C1, we have

C1 =

N−1∑

i=1

N2

i(N − i)
1

g (−∆πi)
exp

[
i−1∑

k=1

ln

[
g(∆πk)

g(−∆πk)

]]

<

N−1∑

i=1

N2

i(N − i)
1

g (−∆πN )
exp

[
i−1∑

k=1

ln

[
g(∆πk)

g(−∆πk)

]]

(C5)

By Lagrange mean value theorem, for every 1 ≤ k ≤ N − 1
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there exists ξk ∈ [0, 1], s.t.

ln [g (∆πk)]− ln [g (−∆πk)]

= uN
g′(uNξk + v)

g(uNξk + v)
(∆πk − (−∆πk))

≤ 2uN
M

g(v)
∆πk (C6)

where M is the maximum of g′(x) for x ∈ [v, uN + v].
Since v and uN + v are of order 1, M only depends on
the imitation function and payoff entries rather than the
population size N for large N . Thus we can consider it to
be of order 1 in what concerns the scaling of N . On the
other hand, since g′(x) is continuous as we assume, there
exists y∗ ∈ [0, 1] such that M = g′(y∗) > 0. Therefore,
uN M

g(v) > 0 becomes independent of N for large N . This

implies

C1 <

N−1∑

i=1

N2

i(N − i)
1

g (−∆πN )
exp

[
2uN

M

g(v)

i−1∑

k=1

∆πk

]

(C7)

Therefore, it degenerates to Eq. (B12) for coordination
game of the Fermi process. Following the proof therein,
finally we arrived at

C1 < 2
1

g (−∆πN )
NHN−1. (C8)

Since g(−∆πN ) = g(−uN − v) is only dependent on the
imitation function and the payoff entries, it is independent
of N . Thus, C1 is smaller that a quantity of order N lnN .

Next, we consider C2. We have

C2 = exp

[
N−1∑

k=1

ln

[
g(∆πk)

g(−∆πk)

]]

︸ ︷︷ ︸
D1

N−1∑

k=1

N

N − k

(
1

g(∆πN−k)
− 1

g(−∆πk)

)

︸ ︷︷ ︸
D2

, (C9)

which is a product of exp[D1] and D2. For D1, we have

D1 =
N−1∑

k=1

ln

[
g(∆πk)

g(−∆πk)

]

=
N−1∑

k=1

ln [g(∆πk)]−
N−1∑

k=1

ln [g(−∆πk)]

=

N−1∑

k=1

ln [g(∆πk)]−
N−1∑

k=1

ln [g(−∆πN−k)]

=
N−1∑

k=1

(ln [g(∆πk)]− ln [g(−∆πN−k)]) (C10)

Again, by Lagrange mean value theorem, for every 1 ≤ k ≤
N − 1, there exists ζk ∈ [0, 1], s.t.

ln [g (∆πk)]− ln [g (−∆πN−k)]

= uN
g′(uNζk + v)

g(uNζk + v)
(∆πk − (−∆πN−k))

≤ uN M

g(v)
(uN + 2v) (C11)

where M > 0 is the maximum of g′(x) on [v, uN + v] as
defined above. Thus we have

N−1∑

k=1

ln

[
g(∆πk)

g(−∆πk)

]
< u(N − 1)N

M

g(v)
(uN + 2v)

(C12)

Remembering that uN + 2v is negative and of order 1,
u(N−1)N M

g(v) (uN + 2v) is smaller than zero and of order

N for large N . Therefore, exp
[∑N−1

k=1 ln
[
g(∆πk)
g(−∆πk)

]]
is

smaller that a quantity of order exp[−N ].
For D2, since u > 0, ∆πk is increasing with k. In addi-

tion, g(x) is increasing, we have

1

g(+∆πN−k)
− 1

g(−∆πk)
=
g(−∆πk)− g(+∆πN−k)

g(−∆πk)g(+∆πN−k)

<
g(−∆πk)− g(+∆πN−k)

g(−∆πN )g(+∆π0)

(C13)

By Lagrange mean value theorem, there exists ηk ∈ [0, 1]
s.t.

g (−∆πk)− g(∆πN−k)

= g′ (−∆πk + ηk (−∆πk −∆πN−k)) (−∆πk −∆πN−k)

< −H (uN + 2v) (C14)

where H > 0 is the maximum of g′(x) on [−v,+v], where
∆πk and −∆πk lie. In analogy to previous discussion, it is
independent of N when N is large. Thus we have

1

g(+∆πN−k)
− 1

g(−∆πk)
<
−H (uN + 2v)

g(−uN − v)g(v)
(C15)

Further, we have

N−1∑

k=1

N

N − k

(
1

g(+∆πN−k)
− 1

g(−∆πk)

)

<

( −H (uN + 2v)

g(−uN − v)g(v)

)N−1∑

k=1

N

N − k

=

( −H (uN + 2v)

g(−uN − v)g(v)

)
NHN−1 (C16)

Note that −H(uN+2v)
g(−uN−v)g(v) positive and independent of N for

large N . D2 is smaller than a quantity of order N lnN .
Finally, C2 = exp[D1]D2 is of order N lnN exp[−N ]; it
becomes infinitely small for large N . This means that the
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scaling of 2C1 +C2 is determined by the scaling of C1 and
thus the critical mutation rate scales as N lnN .

For the coexistence game and dominant game, the proce-
dure of the proof for general imitation function is also iden-
tical to that of the coordination game: For C1, we make use
of Lagrange mean value theorem to establish a relationship

between ln
[
g(∆πk)
g(−∆πk)

]
and ∆πk, then it can be deduced by

the proof the corresponding game for the Fermi process. For
C2, for all games, it is infinitely small for large population
size. The proof is identical with that of the coordination
game for general imitation function.
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4.3. MUTATION SELECTION EQUILIBRIUM IN EVOLUTIONARY
GAMES.

4.3 Mutation selection equilibrium in evolutionary games.

Multiplayer games are the representations of many social dilemmas. Even for

multiplayer games we can use the replicator equation with a complicated payoff

structure to derive the time evolution of the strategies. This includes only the

effect of selection. Including mutations in a given evolutionary game is relatively

easy if we assume the mutation rate to be very small. This allows us to derive

important quantities such as fixation probabilities with relative mathematical

ease. For high mutation rates the concept of fixation itself becomes problematic

and so does fixation probability. Even with high mutation rates, if a system

continues to evolve for a long time then we can calculate the average frequency

of a strategy. This average frequency of a strategy in the stationary distribution

(hereafter termed as abundance) for arbitrary mutation rates has been calculated

previously by Antal et al. (2009a,b,c). The procedure can even be applied in

some cases when a population is structured (Tarnita et al., 2009). The analysis

has remained possible only for two player games.

We develop an approach for estimating the abundance for multiple players

and multiple strategies.. The theory hinges on the calculation of the following

term, the average change in the frequency of strategy k under weak selection

(δ � 1),

〈∆xselk 〉δ.

Once we know this then we can add the effect of mutations (u) which gives

us the abundance of a strategy (here strategy k) in the mutation-selection

equilibrium (Antal et al., 2009a,b,c) as,

〈xk〉δ =
1

n
+N

1− u
u
〈∆xselk 〉δ

�� ��4.2

For the calculations we employ tools from coalescence theory (Kingman, 1982a,b,c,

2000; Wakeley, 2008). Small mutation rates make sense in genetical sense but

for cultural traits such as fashion or plastic behaviour, high mutation rates are

more realistic (Traulsen et al., 2010; Grujic et al., 2010). The theory devel-

oped herein can be used for a variety of applications ranging from finding the

abundance of alleles in an allelic polymorphism to the best strategy in a social

setting.
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Figure 4.3: Available space in the simplex with increasing mutation proba-

bility. In infinitely large populations as mutation probability increases, the area where a

stable coexistence is possible decreases. (a) If a population is at a certain homogeneous

state, all A, all B or all C then it will stay there forever. For very low mutation rate if

a system is in a homogeneous state then occasionally a mutant arises and the edges of

the simplex are explored. (b) For sufficiently high mutation rates the system leaves the

edges. the possible space for a stable coexistence becomes constricted (white interior).

(c) As mutation probability increases the system is driven towards a state of eternal

heterogeneity where all strategies coexist. (d) For a mutation probability of 1 all three

strategies coexist at equal frequencies in the center of the simplex at
(
1
3 ,

1
3 ,

1
3

)
.
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strategies
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Evolutionary game theory is an abstract and simple, but very powerful way to model evolutionary
dynamics. Even complex biological phenomena can sometimes be abstracted to simple two player games.
But often, the interaction between several parties determines evolutionary success. In this case, one can
resort to multiplayer games, which are inherently more complicated than the usual two-player games,
yet they can yield simple results. In this manuscript we derive the composition of a multiplayer multiple
strategy system in the mutation-selection equilibrium. This results in a simple expression which can be
obtained by recursions using coalescence theory. This approach can be modified to suit a variety of
contexts, e.g. to find the equilibrial frequencies of a finite number of alleles in a polymorphism or the
equilibrial frequencies of different strategies in a social dilemma in a cultural context.

Keywords: multi-player game theory, multiple strategies, coalescence theory, mutation-selection equilibrium

I. INTRODUCTION

Game theory was originally developed in the field of eco-
nomics to study strategic interactions amongst humans [48].
The “agents” who play against each other have a set of
“strategies” to choose from. The payoff which an agent
gets depends on its own strategy and the strategy of the op-
ponent. A player can decide which strategy to play against
an opponent of a given strategy.

In evolutionary game theory players are born with fixed
strategies instead, [25] which are considered to be inherited
traits. As usual, we assume a population game in which
every player effectively plays against the average opponent.
The success of a strategy depends on the number of players
of that strategy and also the number of players with other
strategies. A classical example is the Lotka-Volterra equa-
tion [16, 24, 47]. If the number of wolves increases then the
numbers of hares will decrease in turn leading to a decrease
in the number of wolves. Evolutionary game dynamics stud-
ies the change in the frequencies of the strategies [28], which
depends on mutation selection and drift.

A recurrent and obvious question asked in the study of
games is which is the best strategy? Assuming an infinitely
large population we can approach this question by the tradi-
tional replicator dynamics [16]. The frequency of a strategy
will increase if its average payoff is greater than the average
payoff of the whole population. That is, if the individuals of
a particular strategy are doing better on average than the
individuals of other strategies then that strategy spreads.
The average payoff of a strategy is also dependent on the
frequency of the strategy. For finite populations one must
resort to stochastic descriptions [7, 29, 37]. One important
quantity is the fixation probability. Consider two strategies
A and B in a population of size N . Let the population be

∗ gokhale@evolbio.mpg.de
† traulsen@evolbio.mpg.de

almost homogenous for B with only a single A. If there is
no fitness difference amongst the strategies, i.e. selection
is neutral, then the probability that the A individual will
take over the entire population is 1/N . If this probability
is greater than 1/N we say that strategy A is favoured by
selection. When there are multiple strategies in the popula-
tion, then a pairwise comparison between the fixation prob-
abilities of all the strategies will reveal which is the most
abundant strategy [9, 12, 13, 38, 45]. This analysis requires
the assumption of low mutation rates.

When mutations become more frequent then the concept
of fixation itself is problematic and hence also that of fix-
ation probability. In such a case we resort to the average
frequency of a strategy which is maintained at the mutation-
selection balance. This has been termed as the abundance
of a strategy [3].

Consider n strategies which are effectively neutral against
each other. In such a case the abundance of all the strate-
gies in the stationary state will be just 1/n. Usually there
are fitness differences between the strategies. In such a
case if the abundance of a strategy is greater than that of
all the other strategies then we can say it is favoured un-
der the effects of mutation, selection and drift. Hence for
n strategies, the kth strategy will be favoured if the abun-
dance of k is greater than 1/n. Calculating the abundance
of a strategy is a non-trivial exercise even when assuming
weak selection. [3] have developed such an approach based
on coalescence theory for the case of two player games and
n strategies. Under certain conditions and weak selection,
one can calculate the most abundant strategy for arbitrary
mutation rates even in structured populations [2, 42, 43]
and bimatrix games [31].

Usually two players interactions are studied in evolution-
ary game theory. The analysis of Antal et al. also is
for two player games. The interactions which we usu-
ally use as examples in evolutionary game theory are in
general multiplayer interactions making the systems non-
linear [30]. Evolutionary dynamics of multi-player games
has received growing interest in the recent years [10–
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12, 22, 26, 32, 33, 36, 39, 46]. We extend the approach
developed by [3] for two player games and multiple strate-
gies to multi-player population games. We show that in the
limit of weak selection it is possible to calculate analytical
results for n strategies and d players for arbitrary mutation
rates. For a three player game the mathematical analysis is
described in detail. It is followed by an example with sim-
ulations supporting the analytical result. Lastly we discuss
how the methodology can be extended for d player games
and argue that a general approach is possible, but tedious.

II. ABUNDANCES IN THE STATIONARY STATE FOR
THREE PLAYER GAMES

[3] have developed an approach to find the abundances
of n strategies in a two player game (d = 2). For a two
player game even with n strategies, the payoff values can
be represented in the usual payoff matrix form. They can
be represented as quantities with two indices, ak,h. We
increase the complexity first by adding one more player (d =
3). This adds another index for the third player’s strategy
set, ak,h,i. To calculate the average change in the frequency
of a strategy we thus need to take into account this payoff
‘tensor’.

We calculate the abundance of a strategy at the
mutation-selection equilibrium. We begin by checking if
there is a change in the frequency of a strategy, say k on
average, due to selection. The average change under weak
selection is given by

〈∆xselk 〉δ =
δ

N


∑

h,i

ak,h,i〈xkxhxi〉 −
∑

h,i,j

ah,i,j〈xkxhxixj〉


 ,

(1)

where the angular brackets denote the average in the neutral
stationary state. The δ (selection intensity) as a lower index
on the left hand side, however, denotes that the average is
obtained under (weak) selection. If we pick three individuals
in the neutral stationary state, then the probability of the
first one to have strategy k, the next one h and the last i,
is given by the angular brackets in the first sum, 〈xkxhxi〉.
Furthermore, ak,h,i denotes the payoff values obtained by
a strategy k player when pitted against two other players
of strategy h and i. For n strategies the sums run from 1
to n. This equation is the special case of a d = 3 player
game. The derivation for arbitrary d is given in A. The
above equation is similar to the replicator equation, which
is also based on the difference between the average payoff
of a strategy and the average payoff of the population, but
as we will see below here the averages on the right hand
side also include mutations.

To incorporate mutations in the process, we write the
total expected change due to mutation and selection as

∆xtotk = ∆xselk (1− u) +
u

N

(
1

n
− xk

)
. (2)

The first term is the change in the frequency in the absence
of mutation. In presence of mutations, the second term
shows that the frequency can increase by 1/(nN) by ran-
dom mutation and decrease by xk/N due to random death.
A mutation means that with a certain probability u, the
strategy k can mutate to any of the n strategies.

We are interested in the abundance of a strategy in the
stationary state. In the stationary state, the average change
in frequency is zero, 〈∆xtotk 〉δ = 0, as the mutations are
balanced by selection. Averaging Equation 2 under weak
selection thus gives us

〈xk〉δ =
1

n
+N

1− u
u
〈∆xselk 〉δ. (3)

This is our quantity of interest, the abundance of a strategy
when the system has reached the stationary state. For d = 2
player games, this quantity is given by [3]. For the abun-
dance of a strategy to be greater than neutral, 〈xk〉δ > 1

n ,
the change in frequency in the stationary state due to se-
lection must be greater than zero, 〈∆xselk 〉δ > 0.

Thus, we need to resolve the right hand side of Equation
1. Consider the first term in the brackets. In the neutral
stationary state the number of combinations in the sums
reduces due to symmetry, e.g. 〈xixjxj〉 = 〈xjxixj〉 =
〈xjxjxi〉. Hence, we need to calculate only three different
terms, 〈x1x1x1〉, 〈x1x2x2〉 and 〈x1x2x3〉. Also for d player
games, the terms in the sums are reduced. For the sec-
ond term in the brackets we need to calculate five different
types of averages, 〈x1x1x1x1〉, 〈x1x2x2x2〉, 〈x1x1x2x2〉,
〈x1x1x2x3〉 and 〈x1x2x3x4〉. These averages are derived
in the B. Using an approach from coalescence theory, we
derive si, the probability that i individuals chosen from the
stationary state all have the same strategy. Hence s4 is
the probability that four individuals chosen in the station-
ary state all have the same strategy. If there are in all n
strategies, then the probability that all have exactly strat-
egy 1 is s4/n. Hence 〈x1x1x1x1〉 = 〈x2x2x2x2〉 = . . . =
〈xnxnxnxn〉 = s4/n. Conversely, s̄i is the probability that
if we choose i individuals in the stationary state, each has
a unique strategy. Knowing these averages helps us resolve
Eq. (1),

〈∆xselk 〉δ =
δµ(Lk +Mkµ+Hkµ

2)

Nn4(1 + µ)(2 + µ)(3 + µ)
(4)

where µ = Nu and Lk, Mk and Hk are functions consisting
only of the number of strategies n and the payoff values
ak,h,i (see B). Using this and evaluating Eq. (3) gives us
the abundance of the kth strategy.

〈xk〉δ =
1

n

[
1 +

δ(N − µ)(Lk +Mkµ+Hkµ
2)

n3(1 + µ)(2 + µ)(3 + µ)

]
. (5)

This expression is valid for large population sizes, Nδ � 1
and any constant µ = Nu.

We arrive at the result with an implicit assumption that
there are at least four strategies. For n ≤ d, each player
cannot have a unique strategy and hence we need to set the
corresponding terms to zero (see B). If there are less than
n = 4 strategies then s̄4 vanishes. This does not affect
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our general result as the affected terms in Lk, Mk and Hk

simply vanish. In general Eq. (5) is valid for all of the n
strategies.

〈∆xsel
k 〉δ =

δ

N


∑

h,i

ak,h,i〈xkxhxi〉 −
∑

h,i,j

ah,i,j〈xkxhxixj〉




〈x1x1x1〉 =
s3

n

〈x1x2x2〉 =
s2 − s3

n(n − 1)

〈x1x2x3〉 =
1 − 3s2 + 2s3

n(n − 1)(n − 2)

〈x1x1x1x1〉 =
s4

n

〈x1x2x2x2〉 =
s3 − s4

n(n − 1)

〈x1x1x2x2〉 =
s̄4 + 3s4 − 8s3 + 6s2 − 1

3n(n − 1)

〈x1x1x2x3〉 =
1 − 3s2 + 2s3 − s̄4

3n(n − 1)(n − 2)

〈x1x2x3x4〉 =
s̄4

n(n − 1)(n − 2)(n − 3)

Antal T, et al. J Theor Biol. 2009, 259 Supplementary Material

Three- player game

FIG. 1. The average change in the frequency of strategy k
due to selection, 〈∆xselk 〉δ for a three player game. Notice first
the similarity to the replicator equation where also we look
at how a strategy is faring compared to the population. The
first term in the bracket is analogous to the average fitness of
strategy k. If we pick three individuals in the stationary state,
then the probability that the first one has strategy k, second
h and the third i is given by 〈xkxhxi〉 (dashed box). Even for
n strategies there are only three possible combinations, either
all can have the same strategy, a pair has the same strategy
or all three have different strategies. These probabilities were
calculated by [3]. The si’s appearing in the averages are the
probabilities that if we choose i individuals from the station-
ary distribution then they all have the same strategy. The
second term in the bracket is analogous to the average fitness
of the population in the stationary state. For this we need
to pick four individuals and look for all the different combi-
nations (solid box). For n strategies, five combinations can
explain all the different configurations. These range from all
the individuals having the same strategy 〈x1x1x1x1〉 to all
having a different strategy 〈x1x2x3x4〉 (B). For the latter, we
calculate s̄i, the probability that we choose i individuals from
the stationary distribution and each of them has a unique
strategy. For a general d player game we need to pick d indi-
viduals for the first term and d+ 1 for the second.

III. AN EXAMPLE FOR THREE PLAYER GAMES WITH
THREE STRATEGIES

To illustrate the analytical approach we explore an evo-
lutionary three player game with three strategies A, B and
C. Let our focal individual play strategy A. The other two
player can play any of the three strategies. This can lead to
a potential complication. Consider the combinations AAB
or ABA. If the order of players does not matter, then both
these configurations give the same payoffs but if they do
matter then we need to consider them separately. Here we
assume random matching, and hence the order drops out

(e.g. AAB and ABA are equally likely). We consider an
arbitrary game as denoted in Table I.

We need to calculate the average change in the frequency
of strategy A due to selection, i.e. Eq. (1). We denote
the co-efficients of the averages in the first sum by α1,
α2 and α3. Hence for example, α3 = aA,B,C + aA,C,B .
Similarly for the second sum we have β1 to β4 (Note that
β1 = α1 = aA,A,A). Thus we have,
∑

h,i

aA,h,i〈xAxhxi〉 = α1〈xAxAxA〉+ α2〈xAxBxB〉+ α3〈xAxBxC〉(6)

and
∑

h,i,j

ah,i,j〈xAxhxixj〉 = β1〈xAxAxAxA〉+ β2〈xAxBxBxB〉

+β3〈xAxAxBxB〉+ β4〈xAxAxBxC〉. (7)

Note that the term 〈xAxBxCxD〉 which would appear with
a factor β5, does not appear, as we have only three strate-
gies and thus s̄4 = 0. This also alters the definition of
〈xAxAxBxC〉 and 〈xAxAxBxB〉 (see Figure 1, all terms
dependent on s̄4 are affected).

We know the form of Lk, Mk and Hk from B as,

Lk = n2 [2α1(n− 1) + 3α2 − 2β2 − β3] (8)

Mk = n [(3n− 3)α1 + (n+ 3)α2 + 3α3 − 3β2 − 2β3 − β4)]

(9)

Hk = n(α1 + α2 + α3)− (β1 + β2 + β3 + β4 + β5) (10)

With Lk, Mk and Hk as above, Eq. (5) for n = 3 reduces
to,

〈xA〉δ =
1

3

[
1 +

δ(N − µ)(Lk +Mkµ+Hkµ
2)

27(1 + µ)(2 + µ)(3 + µ)

]
.(11)

This gives us the abundance of strategy A at the mutation
selection equilibrium. Repeating the procedure for strategies
B and C gives the analytical lines in Figure 2. Although the
analytical solutions are valid for large population sizes only,
we still see a good agreement between the simulation and
theory results, even for a population size as small as 60.

IV. ABUNDANCES IN d > 3 PLAYER GAMES.

We can repeat the whole procedure for d = 4 player
games with n strategies. The formula for the abundance
remains the same, Eq. (3), but the average change due to
selection, Eq. (1), becomes more complicated. We need to
add an index in the sums,

〈∆xselk 〉δ =
δ

N

( ∑

l,m,n

ak,l,m,n〈xkxlxmxn〉

−
∑

l,m,n,o

al,m,n,o〈xkxlxmxnxo〉
)

(12)

The first term is comparatively simple as we already know all
the different ways of picking four individuals. For the second
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Weights
( Total 9 ) 1 2 2 1 2 1

AA AB AC BB BC CC
A 2 1 2 1 1 3
B 3 1 1 1 1 1
C 1 5 1 1 1 2

TABLE I. An example payoff table for d = 3 and n = 3.
Consider a three player game with three strategies A, B and
C. The strategy of the focal individual is in the column on
the left. For example the payoff received by a C individual
when playing in a configuration of CAB is 5. From the focal
individual’s point of view there are two ways of this config-
uration CAB and CBA as it is twice as likely as compared
to e.g. CAA. Hence we weight that payoff value by 2 when
calculating the average payoff of strategy C.
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FIG. 2. For a three player game with three strategies
(d = 3;n = 3) we plot the average abundances of the three
strategies as a function of the mutation probability u. The
payoff table from Table I is used. The lines are the solu-
tions of Eq. (3) and the symbols are the simulation results for
the three strategies. Although the calculations are valid for
large populations we see a good agreement even for a popula-
tion size of N = 60 (selection intensity δ = 0.001, simulation
points are obtained averaging over 100 independent runs, each
over 108 time steps after a transient phase of N time steps).

term we need to know the different possible combinations
of strategies when picking five individuals from the neutral
stationary state.

For d players and n strategies we can construct an ex-
pression analogous to Equation. 1. Consider for ex-
ample the strategies played by d individuals denoted by,
r1, r2, r3 . . . rd. Note that each of these can be a strategy
from the strategy set 1, 2, 3 . . . n. Let p be our strategy of
interest. Then the expression for the change of strategy p

due to selection is given by,

〈∆xselp 〉δ =
δ

N

( ∑

r2,...rd

ap,r2,...rd〈xpxr2xr3 . . . xrd〉

−
∑

r1,...rd

ar1,r2,...rd〈xpxr1xr2 . . . xrd〉
)

(13)

where the sums range as usual from 1 to n (A). Solving this
and plugging it in Eq. (3) gives the generalized expression
for the abundance of strategy p for an n strategy, d player
game. We see that in the first sum the averages are for
choosing d players but for the second its d + 1. Hence we
need to calculate the probabilities of the form sd+1, but
sd+1 depends on sd. Thus we have to solve the expression
recursively e.g. for d = 6, we will need to pick 7 players at
most and we must solve the expression for d = 2, 3, 4, 5, 6
before (but d = 2 has been solved by [3] and d = 3 in this
manuscript). As d increases calculating sd+1 is not enough
and we will also need to calculate terms such as s̄d+1 which
is already the case for d = 3.

V. SPECIAL CASE: TWO STRATEGIES, n = 2

Games with two strategies have been very well studied.
In two player games with two strategies, one strategy can
replace another with a higher probability if the sum of its
payoff values is greater than the sum of the payoff values of
the other strategy. This is valid under small mutation rates
for deterministic evolutionary dynamics [17]. The result also
holds for for different dynamical regimes under specific limits
of selection intensity and mutation rates [1, 8, 29]. Recently
it has been shown that this result can be generalized for d
player games with two strategies [10, 22].

Hence the condition which we find for d player games
should be identical to Lk > 0 derived in this manuscript for
d players. We check this for d = 3,

Lk = 22 [2α1(2− 1) + 3α2 − 2β2 − β3] (14)

= 4[2a1,1,1 + 3(a1,1,2 + a1,2,1 + a1,2,2)

−2(a1,1,2 + a1,2,1 + a2,1,1 + a2,2,2)

−a1,2,2 − a2,1,2 − a2,2,1] (15)

Thus Lk > 0 is equivalent to,

2a1,1,1 + a1,1,2 + a1,2,1 + 2a1,2,2 > 2a2,1,1 + a2,1,2 + a2,2,1 + 2a2,2,2

(16)

If we assume that the order of players does not matter then
we have a1,1,2 = a1,2,1 and a2,1,2 = a2,2,1. This yields

a1,1,1 + a1,1,2 + a1,2,2 > a2,1,1 + a2,1,2 + a2,2,2, (17)

which is exactly the condition that has been obtained previ-
ously using different methods and different notation by [22],
see also [10].
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VI. DISCUSSION

Public goods games are often used as examples of multi-
player games. In the beginning there were the cooperators
and defectors. Then came the punishers and then the loners
[11, 41]. Now we talk about second order punishers, pool
and peer punishers [38] and more. Studying these systems
for small mutation rates and arbitrary selection intensity is
almost becoming standard [9, 12, 13, 38, 45]. In the limit of
weak selection our method allows to find out which strategy
is most abundant for arbitrary mutation rates.

Yet, another important aspect of most social dilemmas
and many other biological examples is that they involve
multiple-players [4, 23, 27, 40]. [2, 3] have made use of
the coalescence approach to characterize the mutation pro-
cess under neutrality and then apply it under weak selection
to two player games with n strategies (n × n). Here we
extend the approach to d player games with n strategies.

We give an example for an n × n × n game and derive
the analogous expressions for abundances of the strategies
for arbitrary mutation rates. When we increase the number
of players to d the payoff matrix becomes a d dimensional
object. We run into the problem of whether the order of
players matters or not. Either way this does not influence
our results but notation-wise it is easier if the order of play-
ers does not matter. Adding a new player adds a new index
to the payoff values. For calculating the abundance we need
to assess Eq. (13). For solving the two sums in Eq. (13) we
need to know the different combinations of choosing d play-
ers and d+ 1 players from the neutral coalescent stationary
state.

To illustrate the complexity of the situation take for ex-
ample s4. This is the probability that four chosen individual
have the same strategy. In C we have shown that deriving s4
depends on s3 which depends on s2 in turn. Hence in gen-
eral to derive sd+1, we need to know sd, sd−1, sd−2 . . . , s2.
In addition, s̄d+1 is the probability that d + 1 individuals
chosen in the stationary state all have different strategies.
If n < d then s̄d+1 is zero and hence the terms dependent
on it need to be recalculated. After recalculation the terms
which are affected either vanish or are automatically ad-
justed such that the result can be written again in the form
for Lk’s, Mk’s and Hk’s. However, for a d player game,
d− 2 intermediate terms such as Mk appear.

For two strategies, Lk reduces to the general condi-
tion derived in [10, 22] and again holds for arbitrary d.
For Hk for any number of strategies we conjecture that

it will always be of the form n
(∑

r2,...rd
ap,r2,...rd

)
−

(∑
r1,r2,...rd

ar1,r2,...rd

)
from Eq. (13). Addressing a gen-

eralization for d player games is not a fundamental problem
of the approach but requires a tedious recursive effort and
poses a notational challenge. At the coalescence level the
problem rests on permutations and combinations.

Arbitrary mutation rates can be interpreted in different
ways. In the social learning context [44] it can be thought
of as the exploration rate where the players experiment with
different strategies. Small mutation rates are most relevant

in population genetic contexts where the strategies can be
thought of as alleles. While most people think of evolu-
tionary game theory as a phenotypic approach, one can
as well consider evolutionary games on the level of genes
[5, 14–16, 34, 35]. The abundances of the alleles can be
calculated in the limit of neutrality and assuming the in-
finite alleles model by the Ewens sampling formula. The
approach developed herein is not based on the assumption
of infinite alleles; the recursions can be performed for any
given number of alleles n.

Making use of our approach we can precisely determine
the composition of a population with a finite number of
different types under weak selection for arbitrary mutation
rates. Another convenient way of finding the strategy which
performs the best is the limit of small mutation rates. For
small mutation rates, the system spends most of its time in
a monomorphic state. We can approximate the system by
just looking at fixation probabilities of the different types.
Our approach illustrates that the interaction of d players
is significantly more complex than the usual two player
games. General multiplayer games pose exciting challenges
way beyond the usual intricacies of public goods games.
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Appendix A: Deriving the average change due to selection

We begin the Appendix by first deriving the average
change in the frequency of a strategy under selection for
an arbitrary number of players (d) and strategies (n). In
B, we consider the special case d = 3. The more technical
calculations based on coalescence theory can be found in
Section C.

Let us begin with the simple case of a two player game.
The payoff matrix for a two player game, A with n strategies
is an n× n matrix,

A =




1 2 . . . n

1 a1,1 a1,2 . . . a1,n
2 a2,1 a2,2 . . . a2,n
...

...
...

. . .
...

n an,1 an,2 . . . an,n


 (A1)

The average fitness of strategy 1 can be written down as,

f1 = 1 + δ

(
n∑

h=1

a1,hxh

)
(A2)

where the leading 1 is the baseline fitness and δ > 0 is the
intensity of selection. The variable xh is the frequency of
players with strategy h,

∑n
h=1 xh = 1. We assume that the

δ is so small that the fitness is always positive. Similarly, for
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a three player game the payoffs have an additional index.
Thus we can write the average fitness of strategy 1 as,

f1 = 1 + δ


∑

h,i

a1,h,i (xhxi)


 (A3)

As usual, the sums run from 1 to n, the number of strate-
gies. Continuing up to d players we now consider r2 . . . rd
the strategies of players 2 . . . d as the strategy of one of the
players is set to p, i.e. r1 = p. We see that the average
payoff of strategy p can be written as,

fp = 1 + δ

( ∑

r2,...,rd

ap,r2,...,rd (xr2xr3 · · ·xrd)

)
(A4)

The average payoff of the whole population is given by F
as,

F =

n∑

p=1

xpfp (A5)

Now we need to consider the dynamics of the process. The
Moran process is used, where in each time-step an individ-
ual is chosen proportional to its fitness to reproduce and a
randomly chosen individual dies. With probability 1−u the
individual chosen for reproduction produces an exact copy
as itself, but with probability u, a mutation occurs and the
offspring can be of any of the n strategies.

If the abundance of a strategy is greater than 1/n, then it
is favoured at the mutation-selection equilibrium. To calcu-
late the abundance of strategy p we begin with the average
number of offsprings of an individual of strategy p, which is
given by,

ωp = 1− 1

N
+

1

N

fp
F
. (A6)

The first term captures the survival of the parent. The
second and third terms refer to the random death and fitness
proportional reproduction. For δ � 1, we have,

ωp ≈ 1 +
δ

N

[( ∑

r2,...,rd

ap,r2,...,rd (xr2xr3 · · ·xrd)

)
−

(∑

r1

xr1
∑

r2,...,rd

ar1,r2,...,rd (xr2xr3 · · ·xrd)

)]
.(A7)

The change in the frequency of strategy p, xp, due to se-
lection is given by,

∆xselp = xpωp − xp. (A8)

The vector x = (x1, . . . , xn) contains all possible frequency
compositions of the system. The system will be in state x
with probability Qδ(x). Hence by averaging ∆xselp in the

leading order of δ we obtain,

〈∆xselp 〉 ≈
∑

x

∆xselp Qδ(x)

= δ
∑

x

(
1

N
xp

[( ∑

r2,...rd

ap,r2,...rd (xr2xr3 . . . xrd)

)

−
( ∑

r1,r2,...rd

ar1,r2,...rd (xr1xr2xr3 . . . xrd)

)])
Qδ(x)

(A9)

Thus we reach the expression for the average change in the
frequency of strategy p due to selection in the stationary
state as,

〈∆xselp 〉δ =
δ

N

〈
xp

[( ∑

r2,...rd

ap,r2,...rd (xr2xr3 . . . xrd)

)

−
( ∑

r1,r2,...rd

ar1,r2,...rd (xr1xr2xr3 . . . xrd)

)]〉

=
δ

N

( ∑

r2,...rd

ap,r2,...rd〈xpxr2xr3 . . . xrd〉

−
∑

r1,r2,...rd

ar1,r2,...rd〈xpxr1xr2xr3 . . . xrd〉
)

(A10)

Notice the form of a replicator like equation in the above
terms. We look for the difference between the average pay-
off of a strategy and the average payoff of the population.
The first sum consists of a product of d frequencies while
the second sum requires a product of d+1. Particularly, we
consider the case d = 3. For strategy k the average change
due to selection is given by

〈∆xselk 〉δ =
δ

N


∑

h,i

ak,h,i〈xkxhxi〉 −
∑

h,i,j

ah,i,j〈xkxhxixj〉


 .

(A11)

Next, we will consider the special case of d = 3 in more
detail.

Appendix B: Three player games

1. Choosing a set of players

To solve Eq. (A11) we need to solve the two sums on the
right hand side. The first sum can be solved using the tech-
nique derived by [3]. For the second sum we need to know
the different forms of the averages possible. Using symme-
try arguments such as 〈x1x2x2x3〉 = 〈x1x2x3x3〉 (this is
valid because we average under neutrality) only five differ-
ent kinds of averages are required, 〈x1x1x1x1〉, 〈x1x2x2x2〉,
〈x1x1x2x2〉, 〈x1x1x2x3〉 and 〈x1x2x3x4〉. The quantities
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〈x1x1x1x1〉 and 〈x1x2x3x4〉 are derived in section C based
on coalescence theory. The rest of the averages can be
written down as,

(i) Three of a kind, 〈x1x2x2x2〉.

〈x1x2x2x2〉 =

〈(
1−

n∑

i=2

xi

)
x2x2x2

〉

= 〈x1x1x1〉 − 〈x1x1x1x1〉 − (n− 2)〈x1x2x2x2〉

=
〈x1x1x1〉 − 〈x1x1x1x1〉

n− 1
(B1)

(ii) Two pairs, 〈x1x1x2x2〉.

〈x1x1x2x2〉 =

〈
(1− x2 −

n∑

i=3

xi)x1x2x2

〉

= 〈x1x2x2〉 − 〈x1x2x2x2〉 − (n− 2)〈x1x1x2x3〉
(B2)

(iii) Single pair, 〈x1x1x2x3〉.

〈x1x1x2x3〉 =

〈(
1− x2 − x3 −

n∑

i=4

xi

)
x1x2x3

〉

= 〈x1x2x3〉 − 2〈x1x1x2x3〉 − (n− 3)〈x1x2x3x4〉

=
〈x1x2x3〉 − (n− 3)〈x1x2x3x4〉

3
. (B3)

Thus we can write all averages in terms of 〈x1x1x1x1〉,
〈x1x2x3x4〉 and the known quantities from [3],

〈x1x2x2x2〉 =
〈x1x1x1〉 − 〈x1x1x1x1〉

n− 1
〈x1x1x2x2〉 = 〈x1x2x2〉 − 〈x1x2x2x2〉 − (n− 2)〈x1x1x2x3〉

〈x1x1x2x3〉 =
〈x1x2x3〉 − (n− 3)〈x1x2x3x4〉

3
(B4)

From [3] we know the form of,

〈x1x1x1〉 =
s3
n

〈x1x2x2〉 =
s2 − s3
n(n− 1)

〈x1x2x3〉 =
1− 3s2 + 2s3
n(n− 1)(n− 2)

, (B5)

where the probability that if we choose i individuals from
the stationary state of a neutral coalescent then all i have
the same strategy is si. The quantities s2 and s3 have
been previously derived in [3]. For completeness we repeat
the derivation in Section C. In Section C s4 is calculated,
which is the probability of choosing four individuals from the
neutral stationary state and all have the same strategy. If
there are n strategies then the probability that all four have
strategy 1 is s4/n. Thus 〈x1x1x1x1〉 = s4/n. Similarly, the

probability that all four have different strategies is s̄4. The
exact case when the first individual has strategy 1 , second
has 2 , third has 3 and the fourth has 4 is just 〈x1x2x3x4〉 =
s̄4/(n(n−1)(n−2)(n−3)). Using this information we can
get the expression for all the five averages as,

〈x1x1x1x1〉 =
s4
n

〈x1x2x2x2〉 =
s3 − s4
n(n− 1)

〈x1x1x2x2〉 =
s̄4 + 3s4 − 8s3 + 6s2 − 1

3n(n− 1)

〈x1x1x2x3〉 =
1− 3s2 + 2s3 − s̄4
3n(n− 1)(n− 2)

〈x1x2x3x4〉 =
s̄4

n(n− 1)(n− 2)(n− 3)
. (B6)

The quantities s2, s3, s4 and s̄4 are derived in Section
C. Substituting these values in the above set of equations
yields,

〈x1x1x1〉 = n(n+ µ)(2n+ µ)(3 + µ)C

〈x1x2x2〉 = nµ(n+ µ)(3 + µ)C

〈x1x2x3〉 = nµ2(3 + µ)C

〈x1x1x1x1〉 = (n+ µ)(2n+ µ)(3n+ µ)C

〈x1x2x2x2〉 = µ(n+ µ)(2n+ µ)C

〈x1x1x2x2〉 = µ(n+ µ)2C

〈x1x1x2x3〉 = µ2(n+ µ)C

〈x1x2x3x4〉 = µ3C. (B7)

where C =
[
n4(1 + µ)(2 + µ)(3 + µ)

]−1
.

2. Number of strategies with respect to the number of
players

Now that we know the form of the averages, we can begin
expanding the sums from Eq. (A11), first for d = 3 and for
n > 3. Consider the first sum,
∑

h,i

ak,h,i〈xkxhxi〉 = 〈x1x1x1〉ak,k,k + 〈x1x2x2〉
∑

h,i
k 6=h=i 6=k
h=k,i 6=k
i=k,h 6=k

ak,h,i

+〈x1x2x3〉
∑

h,i
k 6=h6=i 6=k

ak,h,i. (B8)

For the ease of notation we denote the co-efficients on the
right hand side by α1 = ak,k,k, α2 =

∑
h,i

k 6=h=i6=k
h=k,i 6=k
i=k,h 6=k

ak,h,i,

α3 =
∑

h,i
k 6=h6=i 6=k

ak,h,i. Hence, we have,

∑

h,i

ak,h,i〈xkxhxi〉 = 〈x1x1x1〉α1 + 〈x1x2x2〉α2 + 〈x1x2x3〉α3.

(B9)



8

Similarly, the second sum in Eq. (A11) becomes,

∑

h,i,j

ah,i,j〈xkxhxixj〉 = 〈x1x1x1x1〉β1 + 〈x1x2x2x2〉β2

+〈x1x1x2x2〉β3 + 〈x1x1x2x3〉β4
+〈x1x2x3x4〉β5 (B10)

Note that β1 = α1. Substituting the expressions for the
averages from Eqs. (B7),

∑
h,i ak,h,i〈xkxhxi〉

C
= n(n+ µ)(2n+ µ)(3 + µ)α1

+nµ(n+ µ)(3 + µ)α2

+nµ2(3 + µ)α3

= 6n3α1 + n
[
2n2α1 + 3n(3α1 + α2)

]
µ

+n [n(3α1 + α2) + 3(α1 + α2 + α3)]µ2

+n(α1 + α2 + α3)µ3 (B11)

for the first sum. For the second sum,
∑
h,i,j ah,i,j〈xkxhxixj〉

C
= (n+ µ)(2n+ µ)(3n+ µ)α1

+µ(n+ µ)(2n+ µ)β2

+µ(n+ µ)2β3 + µ2(n+ µ)β4 + µ3β5

= 6n3α1 + n2(11α1 + 2β2 + β3)µ

+n(6α1 + 3β2 + 2β3 + β4)µ2

+(α1 + β2 + β3 + β4 + β5)µ3.

(B12)

Going back to our original Equation (A11) and organising
it in powers of µ, we obtain,

N〈∆xselk 〉δ
δC

=

(∑

h,i

ak,h,i〈xkxhxi〉

−
∑

h,i,j

ah,i,j〈xkxhxixj〉
)

= [n2(2α1(n− 1) + 3α2 − 2β2 − β3)]︸ ︷︷ ︸
Lk

µ

+ [n((3n− 3)α1 + (n+ 3)α2 + 3α3 − 3β2 − 2β3 − β4))]︸ ︷︷ ︸
Mk

µ2

+ [nA− B]︸ ︷︷ ︸
Hk

µ3 (B13)

where A = α1 +α2 +α3 =
∑
h,i ak,h,i and B = β1 + β2 +

β3 + β4 + β5 =
∑
h,i,j ah,i,j . Notice that the co-efficients

of the different orders of µ consist only of the number of
strategies and the payoff values. Let the coefficients of µ,
µ2 and µ3 be denoted by Lk, Mk and Hk. Thus we get to
the following result.

〈∆xselk 〉δ =
δµ(Lk +Mkµ+Hkµ

2)

Nn4(1 + µ)(2 + µ)(3 + µ)
(B14)

Next we consider d = 3 and n = 3. In this case the sums
in Eq. (A11) are,
∑

h,i

ak,h,i〈xkxhxi〉 = 〈x1x1x1〉α1 + 〈x1x2x2〉α2 + 〈x1x2x3〉α3

(B15)

and
∑

h,i,j

ah,i,j〈xkxhxixj〉 = 〈x1x1x1x1〉α1 + 〈x1x2x2x2〉β2

+〈x1x1x2x2〉β3 + 〈x1x1x2x3〉β4.
(B16)

Thus s̄4 = 0 and we do not have the term 〈x1x2x3x4〉. This
changes the averages, 〈x1x1x2x2〉 and 〈x1x1x2x3〉 as they
were dependent on 〈x1x2x3x4〉 (see Eqs. (B6)). Eqs. (B7)
do not change, but β5 = 0. Solving the two sums using
these expressions and evaluating Eq. (A11), specifically for
n = 3,

N〈∆xselk 〉δ
δC

=




3∑

h,i

ak,h,i〈xkxhxi〉 −
3∑

h,i,j

ah,i,j〈xkxhxixj〉




= 9 [4α1 + 3α2 − 2β2 − β3]µ

+3 [6α1 + 6α2 + 3α3 − 3β2 − 2β3 − β4]µ2

+ [3A− B]µ3 (B17)

which can be written in the form of Eq. (B14).
Finally for d = 3 and n = 2 the sums in Eq. (A11)

consist only of the following terms,

2∑

h,i

ak,h,i〈xkxhxi〉 = 〈x1x1x1〉α1 + 〈x1x2x2〉α2.

(B18)

and

2∑

h,i,j

ah,i,j〈xkxhxixj〉 = 〈x1x1x1x1〉α1 + 〈x1x2x2x2〉β2

+〈x1x1x2x2〉β3 (B19)

The form of the averages does not change from the general
form given in Eqs. (B6) except for 〈x1x1x2x2〉 which de-
pends on s̄4. Due to n = 2, s̄4 = 0 and also β5 = β4 = 0.
For this special case thus, we have

N〈∆xselk 〉δ
δC

=




2∑

h,i

ak,h,i〈xkxhxi〉 −
2∑

h,i,j

ah,i,j〈xkxhxixj〉




= 4 [2α1 + 3α2 − 2β2 − β3]µ

+2 [(3α1 + 5α2 − 3β2 − 2β3)]µ2

+ [2A− B]µ3 (B20)

which can be cast in the form of Eq. (B14).
This case is actually very well studied. For multiple play-

ers and two strategies it has been recently shown that the
condition for strategy A replacing strategy B with a higher
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probability simply depends on the sums of the payoff values
of the two strategies [10, 22]. This result is valid for ran-
dom matching of players and small mutation rates. In our
case, the condition for small mutation rates is obtained by
checking the condition Lk > 0, i.e.,

4(2α1 + 3α2 − 2β2 − β3) > 0. (B21)

Inserting the definitions of α1, α2, β1 and β2 and rearrang-
ing leads to

2a1,1,1 + a1,1,2 + a1,2,1 + 2a1,2,2 > 2a2,1,1 + a2,1,2 + a2,2,1 + 2a2,2,2

(B22)

Under random matching we have a1,1,2 = a1,2,1 and
a2,1,2 = a2,2,1. Thus, this is equivalent to

a1,1,1 + a1,1,2 + a1,2,2 > a2,1,1 + a2,1,2 + a2,2,2

(B23)

which is the condition derived in [10, 22]. When we do the
same analysis for n = 2 and increasing d, and compare the
Lk for each d, we will find a general form of the condition
already given in [10, 22] for small mutation rates.

Appendix C: Calculating probabilities based on Coalescence
Theory

In the coalescence approach, we take a sample from the
present generation and look back in time with respect to the
sample. Consider two copies of a gene. Sometime back in
the past they come together to a common ancestor. This
means the lineages of the two copies “coalesce” back in
time. In general if we have a sample of d individuals from
the present then sometime back the lineages of two of the
individuals will coalesce and there will be d− 1 individuals.
In all thus there will be d − 1 coalescence events until we
arrive at the most recent common ancestor, the root of the
coalescent. [18–21] showed that the mathematical process
of joining lineages leading up to the common ancestor can
be analytically understood. He also showed that the coa-
lescent encompassess a broad class of population dynamics
models including Wright-Fisher and Moran processes.

There are three assumptions of the most basic coalescent
theory [49],

• The population is not subdivided or structured.

• The population size remains constant over time.

• Genetic differences have no effect on the fitness of
an individual. In our case this means that different
strategies have the same fitness, the neutral case.

We follow the approach developed in [2, 3]. In a neutral
Moran process two individuals will have the same ancestor in
one update step with probability 2/N2. We use a continu-
ous time limit by rescaling the time such that τ = t(2/N2).
We determine the results for a large, but finite population
size N .

τ2

τ3

τ4

s2

s3

s4

s∗4

s∗3 family

family

familys∗2

FIG. 3. The coalescent as it evolves through time. The
probability that at time τi the i individuals have the same
strategy is given by si. Immediately after τi there are i + 1
individuals. The strategy configuration at that time point
depends if si was 1 or not. If not then exactly what was
the configuration? All these factors determine the possible
configuration of the immediate i + 1 individuals and these
different possibilities are grouped in the s∗i+1 family.

The beauty of the coalescence process lies in the separa-
tion of the genealogical part and the mutation process. This
is due to the assumption of neutrality. Mutations occur at
the rate of µ/2 where µ = Nu and u is the probability with
which the offspring obtains any one of the n strategies at
random. The mutation probability u can range from 0 to 1,
but when the mutation probability is 1 then the strategies
would oscillate. Hence we rescale the mutation rate by 1/2.
It has been shown by [19, 20] that when N is large, the
coalescent time is exponentially distributed as,

fi(τ) =

(
i

2

)
e−(i2)τ . (C1)

On each trajectory no mutation occurs in time τ with prob-
ability

γ = e−
µ
2 τ . (C2)

1. Calculation of s2

First we repeat the derivations of [3] for completeness of
the process. Also this will help simplify the terminologies
used in the next subsection. The quantity s2 is the prob-
ability that two individuals chosen randomly in a neutral
coalescent process have the same strategy. According to
the coalescent back in time there was a single common an-
cestor of the two chosen individuals. Immediately after the
ancestor split there were two individuals of the same type.
Thus the s∗2 family consists of only one configuration, a pair
of identical individuals. From then onwards to τ2 mutations
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can play a role. Hence, the probability that the two individ-
uals drawn have identical strategies when at the s∗2 family

level they have identical strategies, is given by s
∗[2]
2 ,

s
∗[2]
2 (τ) = γ2 +

2

n
γ(1− γ) +

1

n
(1− γ)2. (C3)

The index [2] in the superscript describes the composition
of the configuration. In this case denoting that both the
individuals are of the same strategy. The terms on the right
hand side from first to last can be described as follows. (i)
None of the trajectories mutate and hence the individuals
have identical strategies with probability 1. (ii) At least one
mutation occurs on one of the trajectories and the chance
that the new strategy is identical to the other is 1/n. As
there are two trajectories this can happen in 2 ways. (iii)
When both the trajectories mutate the first one gets some
strategy with probability 1 and the second also mutates to
the same strategy with probability, 1/n.

This has to be weighted by the probability that we begin
with two identical individuals at the s∗2 family level. As
this is the only possible configuration, the probability is 1.
Further we also need to integrate with the coalescent time
density (Eq. (C1)) to finally get s2 as,

s2 = 1

∫ ∞

0

s
∗[2]
2 (τ)f2(τ)dτ

=
n+ µ

n(1 + µ)
. (C4)

This is a the case of a k-allele Moran model with replace-
ment [6].

2. Calculation of s3

Now we take a step further. What is the probability that
three randomly chosen individuals will have the same strat-
egy ? The distribution of coalescent times is given by the
density function for the coalescent event for three individu-
als which is given by f3(τ) = 3e−3τ .

Similarly as above we first investigate the s∗3 family. At
time τ2 in the coalescent tree, one of the two individuals
splits. Thus in the s∗3 family, two individuals will always
have identical strategies. In all there can be only two con-
figurations, all three are identical or two have the same
strategy and the third differs.

We consider the two cases separately. If all three individ-
uals have the same strategy at the s∗3 family level, then the
probability that they have identical strategies after time τ
is,

s
∗[3]
3 (τ) = γ3 +

3

n
γ2(1− γ) +

3

n2
γ(1− γ)2 +

1

n2
(1− γ)3.

(C5)

If two individuals have the same strategy and the third one
is different at the s∗3 family level, then the probability that

they have identical strategies after time τ is given by,

s
∗[2|1]
3 (τ) = 0 γ3 +

1

n
γ2(1− γ) +

3

n2
γ(1− γ)2 +

1

n2
(1− γ)3

=
1

n
γ2(1− γ) +

3

n2
γ(1− γ)2 +

1

n2
(1− γ)3. (C6)

In the superscript the index [2|1] denotes that two indi-
viduals are of the same strategy and one is of a different
strategy. In this case we see that the first term for all three
trajectories not mutating vanishes. This is because when
we begin with the case when all the individuals do not have
identical strategies, they cannot be identical later in time if
no mutation occurs.

To get the full probability s3 we need to weight the above
two cases with the probabilities of their realizations. Three
individuals will be the same at the s∗3 family level if the two
individuals at τ2 are identical. This happens with probability
s2. The probability that they are not the same is thus 1−s2.
Putting in these weights and integrating over all possible
times, we get s3 as

s3 = s2

∫ ∞

0

s
∗[3]
3 (τ)f3(τ)dτ + (1− s2)

∫ ∞

0

s
∗[2|1]
3 (τ)f3(τ)dτ

=
(n+ µ)(2n+ µ)

n2(1 + µ)(2 + µ)
. (C7)

3. Calculation of s4

s
∗[4]
4

s
∗[3|1]
4

s
∗[2|2]
4

s
∗[2|1|1]
4

FIG. 4. The s∗4 family. All possible starting configurations
where there are 4 individuals. Two of them have the same
strategy. The figure shows all the possible combinations for
the remaining two individuals.

Here we calculate s4, i.e. the probability that four ran-
domly chosen individuals have the same strategy out of a
collection of n strategies.

We are interested in the probability that the four leaves of
the coalescent have the same strategy, cf. Fig. C.3. At time
τ3, two of the four trajectories coalesce with rate 1. Hence
there is a coalescence at rate 6, and the density function
is given as, f4(τ4) = 6e−6τ4 . Before the bifurcation occurs
at τ3 the three players can have the same strategy with
probability s3 or at least one is different with probability
1− s3.
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If the three players have the same strategy then imme-
diately after the coalescence there will be four players with
the same strategy. If the three player do not have the same
strategy then there are three different possible configura-
tions. This is the family of configurations we denote by s∗4.
Thus beginning with four individuals of different configura-
tions we are interested in the probability that after time τ
all four of them will have the same strategy.

The s∗4 family consists of four cases:

• Four identical individuals (Fig. C.4 , s
∗[4]
4 ). In this

case they will be the same at time τ4 if none of them
mutate. If one of them mutates that can happen
with probability 4(γ)3(1 − γ) and they are the same
with probability 1/n. Similarly, we can write down
when two or three or all can mutate and we get the
expression,

s
∗[4]
4 (τ) = γ4 +

4

n
γ3(1− γ) +

6

n2
γ2(1− γ)2

+
4

n3
γ(1− γ)3 +

1

n3
(1− γ)4.

(C8)

• Three of a kind (Fig. C.4 , s
∗[3|1]
4 ). If only three are

the same then if no one mutates its impossible for all
four to be the same at time τ4. Similarly we can argue
what happens if one, two, three or all four mutate and

we get the expression for s
∗[3|1]
4 ,

s
∗[3|1]
4 (τ) =

1

n
γ3(1− γ) +

3

n2
γ2(1− γ)2

+
4

n3
γ(1− γ)3 +

1

n3
(1− γ)4.

(C9)

• Two pairs (Fig. C.4 , s
∗[2|2]
4 ). At least two need to

mutate such that we can end up with four identical
individuals. Additionally the two mutating must be-
long to the same pair. The last two terms are the
same as before.

s
∗[2|2]
4 (τ) =

2

n2
γ2(1− γ)2 +

4

n3
γ(1− γ)3

+
1

n3
(1− γ)4. (C10)

• Single pair (Fig. C.4 , s
∗[2|1|1]
4 ). At least two mu-

tations are necessary for all four individuals to have
the same strategy. The two mutations have to be on
the trajectory of the non-paired individuals. Again the
last two terms are the same as before.

s
∗[2|1|1]
4 (τ) =

1

n2
γ2(1− γ)2 +

4

n3
γ(1− γ)3

+
1

n3
(1− γ)4. (C11)

To obtain the final probability s4 (all four individuals have
the same strategy), we combine all the above scenarios. But
we need to weight each of the scenarios with the probabil-
ity of the realization of the starting configuration. E.g. if
the system reaches the state of all individuals having the
same strategy from the second element of the s∗4 family, i.e.

s
∗[3|1]
4 , then we have to weight it by the probability of that

configuration, three of the same type and one different, Fig
C.4. This is possible if at τ3 we do not have all three of the
same type, but they must be of one of the the type 〈x1x2x2〉
or 〈x2x1x2〉 or 〈x2x2x1〉. Not only this, but the bifurcation
should occur at one of the two identical types (x2) and not
the different type (x1), the probability of which is 2

3 . Thus

we have to weight s
∗[3|1]
4 by 2

3 × (s2−s3)×3. We calculate
these weights for all the family members of s∗4 and thus get
an expression for s4 as,

s4 = s3

∫ ∞

0

s∗4(τ)f4(τ)dτ + 2(s2 − s3)

∫ ∞

0

s
∗[3|1]
4 (τ)f4(τ)dτ

+(s2 − s3)

∫ ∞

0

s
∗[2|2]
4 (τ)f4(τ)dτ

+(1− 3s2 + 2s3)

∫ ∞

0

s
∗[2|1|1]
4 (τ)f4(τ)dτ

=
(3n+ µ)(2n+ µ)(n+ µ)

n3(1 + µ)(2 + µ)(3 + µ)
. (C12)

4. Calculation of s̄4

Here we calculate the probability s̄4 of picking four indi-
viduals in the stationary state all having different strategies.
As before we can have four different starting configurations,
the same as shown in Figure C.4.

Hence basically now we want to calculate the probability
that starting with each of the s∗4 family members what is
the probability of ending with all different individuals:

• Four identical individuals (Fig. C.4 , s̄
∗[4]
4 ). We term

the probability to start with four identical strategy
individual to four different strategy individuals to be

s̄
∗[4]
4 . For four to be different at least three have to

mutate. It can be calculated as follows,

s̄
∗[4]
4 (τ) = 4γ(1− γ)3

(n− 1)(n− 2)(n− 3)

n3

+(1− γ)4
(n− 1)(n− 2)(n− 3)

n3
. (C13)

• Three of a kind (Fig. C.4 , s̄
∗[3|1]
4 ). For all four indi-

viduals to be different now we need at least two indi-
viduals to mutate as we already have one individuals
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of a different type. Hence,

s̄
∗[3|1]
4 (τ) = 3γ2(1− γ)2

(n− 2)(n− 3)

n2

+4γ(1− γ)3
(n− 1)(n− 2)(n− 3)

n3

+(1− γ)4
(n− 1)(n− 2)(n− 3)

n3
. (C14)

• Two pairs (Fig. C.4 , s̄
∗[2|2]
4 ). Here again we need at

least two individuals to mutate for all the individuals
to be different. Of the two individuals mutating each
should be of different types. Hence, in all there are 4
such combinations.

s̄
∗[2|2]
4 (τ) = 4γ2(1− γ)2

(n− 2)(n− 3)

n2

+4γ(1− γ)3
(n− 1)(n− 2)(n− 3)

n3

+(1− γ)4
(n− 1)(n− 2)(n− 3)

n3
. (C15)

• Single pair (Fig. C.4 , s̄
∗[2|1|1]
4 ). For this starting con-

figuration a single mutation is enough to create all
different individuals provided it happens in one of the
paired individuals. If two individuals are to mutate,
then except for the two unpaired individuals together,
all other groupings of two can give four different in-

dividuals, hence in 5 different ways,

s̄
∗[2|1|1]
4 (τ) = 2γ3(1− γ)

(n− 3)

n
+ 5γ2(1− γ)2

(n− 2)(n− 3)

n2

+4γ(1− γ)3
(n− 1)(n− 2)(n− 3)

n3

+(1− γ)4
(n− 1)(n− 2)(n− 3)

n3
. (C16)

To get the final probability s̄4 we need integrate all the
different starting configurations over the coalescent time
density and add them all together. Hence,

s̄4 = s3

∫ ∞

0

s̄∗4(τ)f4(τ)dτ + 2(s2 − s3)

∫ ∞

0

s̄
∗[3|1]
4 (τ)f4(τ)dτ

+(s2 − s3)

∫ ∞

0

s̄
∗[2|2]
4 (τ)f4(τ)dτ

+(1− 3s2 + 2s3)

∫ ∞

0

s̄
∗[2|1|1]
4 (τ)f4(τ)dτ

=
µ3(n− 1)(n− 2)(n− 3)

n3(1 + µ)(2 + µ)(3 + µ)
. (C17)

Due to the notational challenge, possible errors can arise
hence to check our results, we simulated a neutral Moran
process and computed the different averages, 〈x1x1x1x1〉,
〈x1x2x2x2〉, 〈x1x1x2x2〉, 〈x1x1x2x3〉 and 〈x1x2x3x4〉.
These quantities depend on all the probabilities calculated
in the Appendix namely s2, s3, s4 and s̄4. The results of
the simulation and analytical method are shown in Figure
C.5.

[1] Antal, T., Nowak, M. A., Traulsen, A., 2009. Strategy abun-
dance in 2x2 games for arbitrary mutation rates. J. Theor.
Biol. 257, 340–344.

[2] Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P. D., Nowak,
M. A., 2009. Evolution of cooperation by phenotypic simi-
larity. Proc. Natl. Acad. Sci. USA 106, 8597–8600.

[3] Antal, T., Traulsen, A., Ohtsuki, H., Tarnita, C. E., Nowak,
M. A., 2009. Mutation-selection equilibrium in games with
multiple strategies. J. Theor. Biol. 258, 614–622.

[4] Broom, M., 2003. The use of multiplayer game theory in
the modeling of biological populations. Comments on The-
oretical Biology 8, 103–123.

[5] Cressman, R., 1992. The stability concept of evolutionary
game theory. Lecture Notes in Biomathematics 94.

[6] Ewens, W. J., 2004. Mathematical Population Genetics.
Springer, NY.

[7] Ficici, S., Pollack, J., 2000. Effects of finite populations on
evolutionary stable strategies. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.-G.
(Eds.), Proceedings GECCO. Morgan-Kaufmann, San Fran-
cisco, pp. 927–934.

[8] Fudenberg, D., Harris, C., 1992. Evolutionary dynamics
with aggregate shocks. J. Econ. Theory 57, 420–441.

[9] Fudenberg, D., Imhof, L. A., 2006. Imitation process with
small mutations. J. Econ. Theory 131, 251–262.

[10] Gokhale, C. S., Traulsen, A., 2010. Evolutionary games
in the multiverse. Proc. Natl. Acad. Sci. U.S.A. 107 (12),
5500–5504.

[11] Hauert, C., De Monte, S., Hofbauer, J., Sigmund, K., 2002.
Volunteering as red queen mechanism for cooperation in
public goods games. Science 296, 1129–1132.

[12] Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., Sig-
mund, K., 2007. Via freedom to coercion: the emergence
of costly punishment. Science 316, 1905–1907.

[13] Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., Sig-
mund, K., 2008. Public goods with punishment and abstain-
ing in finite and infinite populations. Biological Theory 3,
114–122.

[14] Hofbauer, J., Schuster, P., Sigmund, K., 1982. Game dy-
namics in mendelian populations. Biological Cybernetics 43,
51–57.

[15] Hofbauer, J., Sigmund, K., 1984. Evolutionstheorie und dy-
namische Systeme – Mathematische Aspekte der Selektion.
Verlag Paul Parey, Berlin, Hamburg, 22 (SUB GOE).

[16] Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and
Population Dynamics. Cambridge University Press, Cam-
bridge.

[17] Kandori, M., Mailath, G. J., Rob, R., 1993. Learning, mu-
tation, and long run equilibria in games. Econometrica 61,
29–56.



13

0.01 0.05 0.1 0.5 1.0
10!5

10!4

10!3

10!2

10!1

100

Mutation probability

Pr
ob

ab
ili

tie
s o

f a
ve

ra
ge

s

u

〈x1x1x1x1〉

〈x1x2x2x2〉

〈x1x2x3x4〉

〈x1x1x2x2〉
〈x1x1x2x3〉

FIG. 5. For a neutral Moran process with four strategies if we
pick four individuals from the stationary state then the prob-
ability that all of them have the same strategy is given by, s4,
Eq. (C12). For four strategies (n = 4), the probability that
all four have strategy 1 is s4/4 given by 〈x1x1x1x1〉. Similarly
the probabilities for 〈x1x2x2x2〉, 〈x1x1x2x2〉, 〈x1x1x2x3〉 and
〈x1x2x3x4〉 are plotted as a function of the mutation prob-
ability for a population size of N = 40. The symbols are
simulations while the lines are the analytical results.

[18] Kingman, J., 1982. Exchangeability and the evolution of
large populations. In: Koch, G., Spizzichino, F. (Eds.), Ex-
changeability in probability and statistics. North-Holland,
Amsterdam, pp. 97–112.

[19] Kingman, J. F. C., 1982. The coalescent. Stochastic Pro-
cesses and Their Applications 13, 235–248.

[20] Kingman, J. F. C., 1982. On the genealogy of large popu-
lations. J. Appl. Probability 19A, 27–43.

[21] Kingman, J. F. C., 2000. Origins of the coalescent. 1974-
1982. Genetics 156 (4), 1461–1463.

[22] Kurokawa, S., Ihara, Y., April 2009. Emergence of cooper-
ation in public goods games. Proc. R. Soc. B 276, 1379–
1384.

[23] Levin, S. A. (Ed.), 2009. Games, Groups and the Global
Good. Springer Series in Game Theory. Springer.

[24] Lotka, A. J., 1910. Contribution to the theory of periodic
reactions. J. Phys. Chem. 14 (3), 271–274.

[25] Maynard Smith, J., 1982. Evolution and the Theory of
Games. Cambridge University Press, Cambridge.

[26] Milinski, M., Semmann, D., Krambeck, H. J., Marotzke, J.,
2006. Stabilizing the earth’s climate is not a losing game:
Supporting evidence from public goods experiments. Proc.
Natl. Acad. Sci. USA 103, 3994–3998.

[27] Milinski, M., Sommerfeld, R. D., Krambeck, H.-J., Reed,
F. A., Marotzke, J., 2008. The collective-risk social dilemma
and the prevention of simulated dangerous climate change.
Proc. Natl. Acad. Sci. USA 105 (7), 2291–2294.

[28] Nowak, M. A., 2006. Evolutionary Dynamics. Harvard Uni-
versity Press, Cambridge, MA.

[29] Nowak, M. A., Sasaki, A., Taylor, C., Fudenberg, D., 2004.

Emergence of cooperation and evolutionary stability in finite
populations. Nature 428, 646–650.

[30] Nowak, M. A., Tarnita, C. E., Wilson, E. O., 2010. The
evolution of eusociality. Nature 466, 1057–1062.

[31] Ohtsuki, H., 2010. Stochastic evolutionary dynamics of bi-
matrix games. J. Theor. Biol. 264, 136–142.

[32] Pacheco, J. M., Santos, F. C., Souza, M. O., Skyrms, B.,
2009. Evolutionary dynamics of collective action in n-person
stag hunt dilemmas. Proc. R. Soc. B 276, 315–321.

[33] Rockenbach, B., Milinski, M., 2006. The efficient interac-
tion of indirect reciprocity and costly punishment. Nature
444, 718–723.

[34] Rowe, G. W., 1987. A dynamic game theory model of diploid
genetic system. J Theor Biol 129, 243–255.

[35] Rowe, G. W., 1988. To each genotype a separate strategy -
a dynamic game theory model of a general diploid system.
J Theor Biol 134, 89–101.

[36] Santos, F. C., Santos, M. D., Pacheco, J. M., 2008. Social
diversity promotes the emergence of cooperation in public
goods games. Nature 454, 213–216.

[37] Schreiber, S. J., 2001. Urn models, replicator processes, and
random genetic drift. Siam J. Appl. Math. 61, 2148–2167.

[38] Sigmund, K., De Silva, H., Traulsen, A., Hauert, C., 2010.
Social learning promotes institutions for governing the com-
mons. Nature 466, 861–863.

[39] Souza, M. O., Pacheco, J. M., Santos, F. C., 2009. Evo-
lution of cooperation under n-person snowdrift games. J.
Theor. Biol. 260, 581–588.

[40] Stander, P. E., 1992. Cooperative hunting in lions: the role
of the individual. Behavioral Ecology and Sociobiology 29,
445–454.
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4.4 Evolutionary games and Medea allele dynamics

The previous publications in this thesis dealt with extending the theoretical

limits of frequency independent and frequency dependent models of evolution.

This publication stands apart as it is an application of the theories developed

so far. Herein, evolutionary game theoretic arguments are employed to

1. show how the dynamics of the Medea alleles can be used to an advantage

in genetic pest management techniques and

2. explain the evolution of natural Medea elements.

Maternal effect dominant embryonic arrest (Medea) is a selfish gene (Hurst

et al., 1996; Hurst and Werren, 2001). It was first discovered in Tribolium flour

beetles (Beeman et al., 1992). The Medea allele increases in frequency at the

cost of the wildtype allele. The effect of the Medea allele can be seen if the

mating involves a female heterozygous for Medea. The Medea system works

by producing a “poison” and a “rescue”. Females possessing a Medea allele

deposit the “poison” in the germline. If the resulting zygotes do not contain

an endogenous rescue then they do not survive; in effect heterozygous (carrier)

mothers can effectively kill off their homozygous wildtype offspring (see Fig.

4.4). Thus, Medea elements can increase in frequency in a population, even

if they are not beneficial to the organism (Beeman et al., 1992; Wade and

Beeman, 1994). The dynamics of the Medea allele have been well studied in

theory and in the laboratory (Wade and Beeman, 1994; Smith, 1998). These

maternal-effect selfish alleles have also been reported in the mouse (Peters and

Barker, 1993; Weichenhan et al., 1996).

A synthetic Medea system has been engineered in Drosophila melanogaster

that mimics the natural Medea system and has the same invasive properties

(Chen et al., 2007). It has been proposed as a transformation system to genet-

ically modify wild populations (Chen et al., 2007). Many proposed genetic pest

management approaches rely on the introduction of genetic modifications, such

as disease resistance in a vector species, using an evolution based population-

transformation system. Gene drive mechanisms, engineered to genetically trans-

form wild populations, are of little use in the real world unless they can be con-
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p♂ q♂
p♀ 1 1

q♀ 1 1
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The payoff matrix for codominance:




p q

p 1 1 − s/2

q 1 − s/2 1 − s
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p q

p 1 1 − s/2

q 1 − s/2 1 − s
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The payoff matrix for underdominance:




p q

p 1 1 − ω

q 1 − ω 1


. (3)

♂♀

1

++ die with probability t
∼ Normal offspring 

Figure 4.4: Effect of the Medea allele is seen in offsprings when mothers

are heterozygous for Medea. If the mother is a Medea carrier then she deposits

a poison in the germline. Only the offspring who have a copy of the Medea allele can

produce the antidote and can survive. Thus the wild-type homozygous offspring of

heterozygote parents or of heterozygote mother and wild-type homozygous father are

affected.

trolled. While Medea elements can, in theory, transform populations, they are

very difficult to control once spread and can wipe out the resident population.

Here, we describe the predicted properties of a combined system genetically

linking a Medea construct with underdominance. Underdominant systems typi-

cally require the release of very large numbers of individuals to result in a stable

population transformation but are more likely to be spatially contained and, if

desired, completely removed from the wild. When combined with Medea this

release threshold can be reduced (see Fig. 4.5). A combination of currently

available techniques can results in a system with desirable theoretical proper-

ties, which in broad circumstances surpass those of the single systems considered

individually. These enhanced properties include more ideal population transfor-

mation thresholds with potential reversibility, mutational stability, and enhanced

spatial stability.

In small finite populations Medea elements can invade from very low fre-

quencies with elevated probabilities, even with corresponding fitness costs. This
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has implications for understanding the evolution of natural Medea elements.

M+

+ MMedea System

Medea System + Underdominance

Simplex for the Medea Allele

Underdominance M+

(a)

(b)

(c)

Figure 4.5: Benefits of a combined Medea-Underdominant system. (a)

The Medea system by itself allows the selfish gene to sweep through the population. If

the Medea allele has a small cost then the threshold frequency from where it can sweep

through the population is very low. Also due to the cost it will not be able to fix in the

population. (b) Underdominant systems usually have very high natural transformation

thresholds and very large releases are necessary to overcome them. (c) A combination

of Medea and underdominance brings together the best features of both the systems.

The high transformation threshold of underdominance is lowered by Medea to practical

release frequencies and the Medea element is more controllable.

4.4.1 Publication: Dynamics of a linked Medea-Underdominance

Population Transformation System

Chaitanya S. Gokhale, R. Guy Reeves, Floyd A. Reed,

In preparation
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Dynamics of a linked Medea-Underdominance
Population Transformation System

Chaitanya S. Gokhale1, R. Guy Reeves2, and Floyd A. Reed2∗
1Research Group for Evolutionary Theory,

2Department of Evolutionary Genetics,
Max-Planck-Institute for Evolutionary Biology,

August-Thienemann-Straße 2, 24306 Plön, Germany

Many proposed genetic pest management approaches rely on the introduction of genetic modifications,
such as disease resistance in a vector species, using an evolutionary based population-transformation sys-
tem. Predominantly, only systems with a single selective element have been envisioned. Here we describe
the predicted properties of a combined system genetically linking a Medea construct with underdomi-
nance. While Medea elements can, in theory, transform populations with the release of small numbers
of individuals, they are poorly suited to being spatially contained or removed from the wild. Conversely,
underdominant systems typically require the release of very large numbers of individuals to result in a
stable population transformation but are more likely to be spatially contained and can be, if desired,
completely removed from the wild. We show that a combination of currently available techniques results
in a system with desirable theoretical properties, which in broad circumstances surpass those of the single
systems considered individually. These enhanced properties include more ideal population transformation
thresholds with potential reversibility, mutational stability, and enhanced spatial stability. Finally, we
also show that in small finite populations Medea elements can invade from very low frequencies with
elevated probabilities, even with corresponding fitness costs. This has implications for understanding
the evolution of natural Medea elements as well as consequences for the use of synthetic Medea in
population-transformations.

Keywords: applied evolution, disease elimination, dynamical systems, gene drive, genetic pest management

I. INTRODUCTION

There are cases where the use of genetic methods to mod-
ify pest populations can be argued to be preferable to alter-
natives such as insecticides and classical biological control
(release of non-native predators or parasites), for example,
tropical conservation settings. Current approaches to devel-
oping genetic mechanisms that usefully transform a species,
predominantly envisage the development of transgenic con-
structs that render insect vectors refractory to acting as dis-
ease vectors. There has been rapid success in the malaria
and dengue fever models (e.g. Ito et al. 2002; Franz et al.
2006; Jasinskiene et al. 2007; Corby-Harris et al. 2010).
However, for these refractory constructs to spread effec-
tively into experimental or ultimately wild populations, it is
widely recognized that they will need to be linked to ele-
ments that, through evolutionary effects over several gen-
erations, have the capacity to transform wild populations
(reviewed in Sinkins and Gould 2006; see also Hay et al.
2010). There are also broad potential applications of this
type of technology beyond insects (e.g. Gould 2008).

The earliest such proposed population-transformation
system exploited the predicted underdominant fitness con-
figurations of chromosomal translocations (Curtis 1968). In
a single population rarer alleles tend to be heterozygous,
with underdominance, where heterozygotes are less fit than
homozygotes. Hence a threshold allele frequency arises that

∗ reed@evolbio.mpg.de

is an unstable equilibrium (Fisher 1922; Wright 1931; Li
1955). Once this threshold is surpassed, for instance with
releases of insects with rearranged chromosomes, an allele
with underdominant effects is predicted to proceed to fix-
ation within the population and to be stable over the fol-
lowing generations (Fig. 1 A). This process is inherently re-
versible. If the removal of genetically modified organisms is
desired, releases of wildtype individuals that bring the popu-
lation allele frequency below this threshold is predicted to re-
sult in the complete removal of underdominant alleles from
the wild. For small migration rates this system also exhibits
spatial stability (Karlin and McGregor 1972; Piálek and Bar-
ton, 1997; Altrock et al., 2010). This implies that initial
wild releases can be made on a restricted local scale where
permissions and informed consent for the study (which by
nature are geographically restricted) are more possible to
attain and more appropriate (cf. Angulo and Gilna 2008).
Laboratory generated organisms were generally too unfit to
result in useful underdominant constructs. It has proved ex-
ceedingly difficult to engineer viable, fit translocated stocks
(e.g. Lorimer et al. 1972; Robinson 1977; Boussy 1988).
Thus, the low fitness of individuals homozygous for lab en-
gineered chromosomes appeared to be the main disadvan-
tage of utilizing engineered underdominance to stably and
reversibly transform wild populations.

In a different kind of genetic system, alleles at multiple
loci in Tribolium flour beetle species have been discovered
where there is a specific distortion in expected Mendelian
transmission (Beeman et al. 1992). These maternal-effect
selfish alleles are known as Medea elements and have also
been reported in the mouse (Peters and Barker 1993; We-
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ichenhan et al. 1996). In Medea systems, by producing both
a poison and a rescue, organisms that contain Medea ele-
ments can be viable. However, if the poison is deposited by
the mother into oocytes and the resulting zygote does not
contain an endogenous rescue; heterozygous (carrier) moth-
ers can effectively kill off their homozygous wildtype off-
spring. Thus, Medea elements can increase in frequency in
a population, even if they are not beneficial to the organism
in the sense of Darwinian adaptation (Beeman et al. 1992;
Wade and Beeman 1994). A synthetic Medea system has
also recently been engineered in Drosophila melanogaster
that exhibits the properties found in natural Medea systems
and has been proposed as a transformation system to genet-
ically modify wild populations (Chen et al. 2007). There is
also interest in screening for inducible maternal-effect lethal
phenotypes in order to develop Medea systems in additional
species (Hay et al. 2010).

Medea elements have very different predicted dynamics
from underdominant systems and can potentially invade a
population from very low frequencies (Wade and Beeman
1994). This predicts that, with low rates of migration,
Medea elements can spread from population to population,
possibly species wide. This also implies that it may be very
difficult or impossible to reverse Medea transformed pop-
ulation(s) to the wildtype state and remove all genetically
modified alleles from the wild. If there is a fitness cost to
the organism carrying Medea elements, an unstable thresh-
old equilibrium at a low frequency may arise (Fig. 1 B).
This point must be surpassed in order for the Medea ef-
fect to overcome the fitness loss and for the allele to rise
in frequency in the population, in a manner similar to un-
derdominance. However, this unstable equilibrium can be
much lower in frequency than that expected from under-
dominance between engineered and wildtype chromosomes
(i.e. � 50% versus � 50%). A fitness cost also predicts a
second high-frequency stable equilibrium that the frequency
of Medea elements is predicted to approach but is not ex-
pected to surpass (Fig. 1 B). Thus, unlike underdominance,
Medea is not necessarily predicted to completely fix in a pop-
ulation (Wade and Beeman 1994). However, if the Medea
effect is 100% efficient (complete lethality) with a fitness
cost a population can still result in all Medea carriers, some
of which are heterozygous (e.g. Chen et al. 2007). If a
linked effector construct (e.g. disease resistance) is domi-
nant then this may have the desired effect. However, if an
effector is recessive, a disease may not be completely erad-
icated from a population (Boëte and Koella 2002, 2003).
Also, if a Medea allele does not achieve complete fixation,
matings between heterozygotes still experience a loss of off-
spring, which provides selective pressure for resistance to
Medea to evolve and can disrupt the system (Smith 1998).

We have briefly introduced two very different genetic sys-
tems, underdominance and Medea. These are not always
mutually exclusive. Underdominance is a result of the or-
ganismal fitness associated with the genotypes of an al-
lele. Medea effect results from a selfish genetic process
during gametogenesis and formation of the zygote that can
be thought of as separate from the underlying organismal

genotype fitnesses (in the adaptive sense). Here, we present
some of the predicted dynamics of a combined Medea-
underdominant system in a population genetic framework
(Fig. 1 C). The effects of combining different types of artif-
ical selective systems have been considered before (Huang et
al. 2007), but not this particular combination. We discuss
the advantages of this combined system over the individ-
ual systems and briefly discuss the feasibility of engineering
such a system.
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FIG. 1. Dynamics of Medea and underdominance in
a single population. Example trajectories of allele frequen-
cies over several generations from a range of starting frequen-
cies are plotted, thin solid lines. Allele frequencies, p, are
on the y-axis and generations on the x-axis. Discrete, non-
overlapping, Wright-Fisher generations were assumed. The
underlying genotype frequencies were actually used to calcu-
late trajectories, starting at Hardy-Weinberg equilibrium in
the initial generation, and are summarized by reducing them
to a corresponding allele frequency. Homozygote fitness is in-
dicated by ν and heterozygote fitness by ω, relative to a wild-
type homozygote fitness of 1. The degree of Medea lethality is
given by t. An unstable equilibrium is indicated by a dashed
line. A stable equilibrium is indicated by a thick line. A)
Underdominance with a high transformation threshold. B)
Medea with a semi-dominant fitness cost. C) A combination
of underdominance and Medea.
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II. METHODS AND RESULTS

A. Ideal Minimum Release Sizes

In order to reach a target frequency in a population of
p̂ , releases would have to be made of a minimum size of
R = p̂/(1− p̂) relative to the wild population size. To cross
this boundary and then recross it (i.e. to reverse the popu-
lation transformation after an engineered allele has reached
fixation) requires two releases with a minimum combined
size of R = p̂/(1−p̂)+(1−p̂)/p̂ = 1/(1−p̂)+1/p̂−2. This
function approaches positive infinity at p̂ = 0 and p̂ = 1 and
has a minimum at p̂ = 1

2 , with R = 2 (Fig. 2). Thus, an

unstable threshold of p̂ = 1
2 is ideal from the perspective

of potential population transformation and reversibility. It
is still much lower than releases sizes used in successful ap-
plications of the sterile insect technique (e.g. Asman et al.
1981; Krafsur 1998).

In an actual applications, genotypes will be released in-
stead of alleles. Thus it may be possible to enter the basin of
attraction for transformation and reversal at different points
in the full genotype space to take advantage of specific dy-
namics in these two-dimensions.However, the essential con-
sideration remains the same; elements that can invade from
arbitrarily low frequencies are all but impossible to reverse
and remove from the wild, elements with very high thresh-
old values are difficult to impossible to succesfully establish.
Threshold equilibria near the center of the state space are
optimal with regard to local spatial stability and reversibility.

FIG. 2. Directional and reversible transformation
thresholds. The release size relative to the wild population
is given by R. The corresponding threshold allele frequency,
an unstable equilibrium, is p̂. Simplistically, in order to ge-
netically transform a population, R must be above the red
line (in the region of light red or purple). The reverse mini-
mum transformation back to a wildtype state is indicated by
the blue line. The combined total release size required for
reversibility is above the black line. If releases can be made
in the red area but not in the purple area, i.e. very low p̂,
the system is not reversible. Individual releases that can be
made in the purple area (or combined sums above the black
line) are reversible.

B. Genotype fitnesses and expected dynamics

When selection is only dependent on the organisms geno-
type, expected genotype frequencies can be generated under
the random mating assumption (Hardy-Weinberg indepen-
dent pairing of alleles). These frequencies are then adjusted
each generation according to their corresponding fitnesses.
However, in cases where the action of selection extends over,
or is conditional on, more than one generation, this assump-
tion can not be used, and the contribution to the next gen-
eration from each genotype class must be accounted for
individually. With Medea the action of selection on wild-
type homozygotes depends not only on their current state
but is also coupled to the maternal genotype. For exam-
ple, the number of wildtype homozygotes (and thus the
allele frequency) expected in the next generation after se-
lection is very different in a population composed entirely
of heterozygotes (where all wildtype homozygotes in the
next generation are exposed to the Medea effect) versus
one near Hardy-Weinberg equilibrium (where only a frac-
tion of wildtype homozygotes are exposed). In both cases
the allele frequencies may be identical. Thus, the expected
proportions of zygotes produced under random mating are
expected to be equal, but not the fitness effects. Here we
have a Medea allele, M , and a wildtype allele, +; which
generate three genotypes, MM , M+, and ++. We set
the fitness of the wildtype homozygote, ++, to 1; use ω
to indicate the heterozygote, M+, fitness relative to wild-
type; and ν to indicate the MM fitness. The parameter
t measures the degree of lethality of homozygous wildtype
offspring from Medea carrying mothers. This can range
from zero, no lethality and no Medea effect, to 1, complete
lethality of homozygous wildtype offspring from heterozy-
gote mothers. From Table. I we can calculate the expected
frequencies of all three genotypes in the next generation as,

Ḡx′ = ν

(
x2 + xy +

y2

4

)

Ḡy′ = ω

(
xy + yz + 2xz +

y2

2

)
(1)

Ḡz′ = 1

(
z2 +

yz

2
+ (1− t)yz

2
+ (1− t)y

2

4

)

where x, y, and z are the frequencies of MM , M+, and ++
respectively in the current generation and x′, y′, and z′ are
the expected frequencies in the next generation (note that
in Wade and Beeman (1994) differences in fitness were only
ascribed to differences in maternal fecundity rather than
zygotic genotypes as is done here). The total contribution
from all genotypes in the population (i. e., the average
fitness) is given by Ḡ. It is the sum of the right hand sides
of the set of Eqs. (1) (Hofbauer et al. 1982). Some example
dynamics of the expected change in frequency of genotypes
in a population are given in Fig. 3.
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FIG. 3. Example evolutionary dynamics in infinite
populations. Here the full two-dimensional simplexes are
shown for dynamics in changes in genotype frequencies. The
corner of each triangle represents 100% frequency of each
genotype, which are at intermediate frequencies as distance
from the corner increases, and are at a frequency of zero on
the opposite edge. The black line indicates Hardy-Weinberg
equilibrium for reference. Arrows indicate direction of change
and arrow length and background color indicate rate of change
(from blue, fast, to red, slow). Stable internal or edge equi-
libria are indicated with a black circle and unstable or saddle
equilibria are indicated with a white circle. A) This repre-
sents the conditions given in Fig. 1 B, with a lower unstable
equilibria and a stable point on the M+ to MM edge where
wildtype homozygotes have disappeared from the population.
In this case the equilibria are near Hardy-Weinberg. B) This
illustrates a case where the sable equilibrium lies far from
Hardy-Weinberg. C) An example with a high homozygote
fitness and low degree of lethality that has an unstable equi-
librium at approximately an allele frequency of p = 1/2 in the
population (t = 2−2ν, see Appendix). D) An example where
the unstable equilibrium is at p = 1/2 for a high degree of
lethality and low homozygote fitness, see Eq. 11.

C. Dynamics at the corners of the system

When an allele is at the extreme limit of being fixed or
lost it is expected to be present as either one copy in a
heterozygote or as all copies but one, also in a heterozygote.
Thus the change in frequency of the heterozygote near z =
1 and x = 1 gives the conditions for an allele to invade
and/or go on to fixation. The slope of y′ at z = 1 is

∂y′

∂y
|z=1 =

ω

1
(2)

Thus, the heterozygote fitness must be greater than the
wildtype homozygote for the Medea allele to invade. Note
that this condition is independent of the maternal lethal
parameter t. In smaller finite populations the starting fre-
quency will be at greater initial frequencies and, in this

TABLE I. The expected next generation contribution of in-
dividual genotypes in an underdominant Medea system under
hard selection.

Parents Offspring
♂ ♀ MM M+ ++

++ ++ 1
++ M+ ω/2 (1 − t)/2
++ MM ω
M+ ++ ω/2 1/2
M+ M+ ν/4 ω/2 (1 − t)/4
M+ MM ν/2 ω/2
MM ++ ω
MM M+ ν/2 ω/2
MM MM ν

sense, a t > 0 will promote invasions. The corresponding
dynamic at x = 1 is similar,

∂y′

∂y
|x=1 =

ω

ν
(3)

The Medea homozygote fitness has to be greater than the
heterozygote to go to fixation (in an infinite population),
and this condition is independent of t and consistent with
underdominance. Using alternative models, Wade and Bee-
mans (1994) and Marshalls (2009) results are also consistent
with this condition for invasion and fixation.

D. Average genotype fitnesses

Another way to view the recursion equations is as a fre-
quency multiplied by its fitness then normalized, for example
x′ = xfx/Ḡ, where fx is the average fitness of the MM
genotype, according to discrete time replicator dynamics
(e.g., section 2.8.1 of Cressman 2003). This allows us to
solve for the average fitness of each genotype (known as
marginal fitness in population genetics),

Ḡx′

x
= fx = ν

(
x+ y +

y2

4x

)

Ḡy′

y
= fy = ω

(
x+ z +

2xz

y
+
y

2

)
(4)

Ḡz′

z
= fz = z +

y

2
+ (1− t)y

2
+ (1− t)y

2

4z

Using this set of equations we can solve for the fixed points
in the two-dimensional simplex as illustrated in Fig. 3. Con-
sidering the average fitness of the genotypes in a pairwise
fashion, two genotypes are neither increasing or decreasing
relative to each other if their average fitnesses are equal,
e.g., fx = fy. If all three of these zero fitness differences
intersect in the interior of the simplex an equilibrium (fixed)
point exists. Additionally, if one of these curves intersects
an edge corresponding to the genotypes being considered
(e.g., fx = fy on the z = 0 edge), a fixed point exists on
that edge.
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E. Edge dynamics, analytical solutions for t = 1

For t = 0 the system is governed only by genotypic fit-
nesses which have well understood properties and reduces
to a simpler one dimensional simplex in terms of allele fre-
quency rather than genotypes (e.g., Altrock et al. 2010).
Setting t = 1 also allows some analytical results to be de-
rived. Along the edges of the simplex, we look separately at
fx = fy, fx = fz and fy = fz and set the third genotype
frequency to zero to solve for equilibria. We find that only ,
i.e., only the MMM+ edge can posses a fixed point on the
boundary. Setting t = 1 and solving for x in this case gives
a solution of

x =
ν

2ω − ν . (5)

This is a stable solution for all ω > ν, for ω < ν, there
is no solution within the edge (compare to Eq. 3 above).
Since there are no edge fixed points for t = 0 (the classic
case along the Hardy-Weinberg simplex) this suggests that
for t < 1 the fixed points will move away from the edge to
the interior. This also makes intuitive sense because some
wildtype homozygotes should survive if Medea lethality is
not 100% and thus z > 0. This higher frequency interior
equilibrium is expected to remain stable according to the
reasoning of small parameters (Karlin and McGregor 1972)
and this is confirmed numerically.

F. Internal dynamics, analytical solutions for t = 1

Solving fx = fz and fy = fz for x and y, and realizing
that z = 1 − x − y, gives the following coordinates of an
internal equilibrium, if it exists within the two-dimensional
simplex,

x̂ =
(ω − 1)2

1 + ν − ω
ŷ =

2ω(1− ω)

1 + ν − ω (6)

ẑ =
ω2 − ω + ν

1 + ν − ω
Subtracting the frequency from both sides of Eqs. 1 gives
the change in genotype frequency per unit time,

x′ − x =
xfx
Ḡ
− x

Ḡ∆x = xfx − xḠ. (7)

This can be rescaled by Ḡ without affecting the dynamical
properties of the system. All fixed points remain at the
same positions in the state space and flows are rescaled but
remain in the same direction. Thus, we can write down the
dynamics for all three genotypes in a simplified non-rational
form as,

∆x = x(fx − Ḡ)

∆y = y(fy − Ḡ) (8)

∆z = z(fz − Ḡ)

Using Eqs. 8, the eigenvalues of the Jacobian at the equi-
librium point given in Eqs. 5 are

λ± =
−νω ±

√
ν (ν(2− ω)2 − 4ω(1− ω)2)

2(1 + ν − ω)
. (9)

If λ± < 0 then the equilibrium is stable, if both eigenvalues
are positive it is unstable and if the values have opposite
signs it is a saddle point.

Of interest is the case where the unstable equilibrium
frequency is equal to one half,

x+ y/2 = 1/2, (10)

because this is an ideal transformation threshold according
to the reasoning given in the previous section. Substituting
the equilibrium values in Eqs. 5 into Eq. 10 gives

ν + ω = 1 (11)

at t = 1 (Fig. 3 D). Again, coupled with the reasoning for
the stable point on the edge above, for t < 1, there may
exist two internal equilibria, the lower allele frequency one is
unstable and the higher frequency one is stable, this is ver-
ified numerically (e.g., Fig. 3) and supported by the Hardy-
Weinberg approximation given in the Appendix. However,
if 1 > ν > ω (underdominance) and (Eq. 11) only the
unstable internal equilibrium at p = 1/2 exists.

G. Dynamics in finite populations with overlapping
generations

The Moran process is a tractable birth-death process used
to model well-mixed finite populations (e.g. Karlin and Tay-
lor 1975; see Traulsen and Hauert 2009 for a general intro-
duction). Here, in each time step, a single individual is
chosen at random to be removed from the population and
another individual is chosen for reproduction according to
fitness.

One quality of particular interest in Medea systems are the
properties of invasion when rare due to the female killing ef-
fect. If genotype fitnesses are equal, M alleles are predicted
to invade infinitely slowly in infinitely large populations (Eq.
(2) and Wade and Beeman 1994). In small finite popula-
tions, a single M allele has a greater starting frequency
and the wildtype individuals killed by Medea also make up
a greater proportion of a smaller population. In larger fi-
nite populations, selection is more able to overcome drift
when rare, but the allele has a smaller starting frequency.
It is not intuitively clear how these trade-offs affect fixation
probabilities. The two-dimensional simplex of genotype fre-
quencies prevents us from using standard analytical tools of
the Moran model.

To address this, we simulated the trajectories of loss or
fixation of initially a single Medea allele present in a het-
erozygous individual. In each time step a “mother” and
“father” are chosen from the population with a probability
proportional to their number and relative fitnesses. Condi-
tional on the parental genotypes, an offspring is generated
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TABLE II. The expected next generation contribution of
individual genotypes in an underdominant Medea system with
soft selection.

Parents Offspring
♂ ♀ MM M+ ++

++ ++ 1
++ M+ ω(1 + t)/2 (1 − t)/2
++ MM ω
M+ ++ ω/2 1/2
M+ M+ ν(1 + t/3)/4 ω(1 + t/3)/2 (1 − t)/4
M+ MM ν/2 ω/2
MM ++ ω
MM M+ ν/2 ω/2
MM MM ν

according to the genotype cross (Table. I) and the degree of
Medea lethality (if the offspring dies due to Medea the par-
ents are repicked and another child is generated). Then the
resulting offspring replaces a single individual in the popu-
lation at random. If population sizes are small then, even
with a modest fitness cost relative to wildtype of 10−20%,
a single Medea allele can invade a new population with a
probability elevated over that of neutrality. However, het-
erozygote fitness reductions of 30% or greater help prevent
Medea invasion in new populations. The scenario just de-
scribed represents a “hard selection” regime.

However, if there is resource limiting sibling competition,
where a larger number of initial zygotes result, according
to fitness, in a smaller number of individuals that survive to
reproduction, (and/or remating compensation effects) there
can be a “soft selection” scenario (cf. Wade 1985). This
case assumes that a given pairing will ultimately produce
an offspring (i.e., wildtype homozygotes lost due to Medea
are replaced by alternative genotypes, Table. II). This was
also modeled as before except that when offspring lethality
was encountered offspring were repicked within the pairing
instead of picking new parents (i.e., these two scenarios rep-
resent the extreme limits of hard and soft selection). This
soft selection scenario corresponds to the following recur-
sions,

Ḡx′ = ν

(
x2 + xy +

y2

4
+ t

(
1

3

y2

4

))

Ḡy′ = ω

(
xy + yz + 2xz +

y2

2
+ t

(
yz

2
+

2

3

y2

4

))
(12)

Ḡz′ = 1

(
z2 +

yz

2
+ (1− t)yz

2
+ (1− t)y

2

4

)
.

In this second regime, one result that becomes clear is that
Medea alleles can invade and fix in a population with a prob-
ability that is dramatically elevated over that of neutrality
(a similar result is also found in Wade and Beeman 1994).
If there is no fitness cost, this probability is approximately a
constant Φ ≈ 1/3 over a wide range of population sizes (Fig.

4 B). A large heterozygous fitness reduction of 40%− 50%
relative to wildtype is required to bring the fixation proba-
bility down to approximate neutrality (Φ = 1/2N). Even
in an infinite population, a dominant fitness cost as high as
30% can still yield an invasion/fixation trajectory (Fig. 5 A).
A closer look at some individual examples reveals a highly
asymmetric trajectory. Even when genotype fitnesses are all
equal to one, the initial rise in frequency is quite fast, then
there is a long time spent waiting at high frequencies before
ultimate fixation (Fig. 5 B). This potentially increases the
opportunity for alleles resistant to Medea to arise which can
destabilize the system and return to a wildtype state (Smith
1998).

FIG. 4. The probability of invasion of a Medea al-
lele. Fixation probability versus diploid population size for a
Medea allele starting as a single heterozygote in the popula-
tion. The probability of fixation under neutrality is given by
the black dashed line with circles for reference. A heterozy-
gote fitness equal to homozygotes, ω = 1, is given by the top
dark blue line with circles, ω = 0.9 red squares, ω = 0.8 yellow
diamonds, ω = 0.7 light blue triangles, ω = 0.6 blue upside
down triangles, ω = 0.5 red open circles. A) Fixation proba-
bilities under the standard hard selection model. B) Fixation
probabilities under soft selection with, for example, sibling
competition.

H. Population structure dynamics

Next we consider a two-deme model of population struc-
ture, where two discrete populations of large size are couple
by a symmetrical fraction of migrants between the popula-
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tions each generation. Genotype frequencies in each popula-
tion are adjusted each generation for exchanging migrants,
at a fraction m, and retaining non-migrants, at fraction
1−m. In population i the expected genotype frequency for
genotype k after migration (g′) is

g′k,i = (1−m)gk,i +mgk,j , (13)

where here gk,i is the frequency of the kth allele in popu-
lation i and gk,j is the kth allele frequency in population
j. These adjusted genotype frequencies can then be substi-
tuted into Eqs. 1 and the equivalent recursion for the second
population, g′k,j , can be found by interchanging i and j in
Eq. 13.

Simulations were performed of the two-population system
to find the critical migration rate allowing stable differences
in allele frequencies between the two populations. To do
this the allele frequencies were started at opposite values
(p1 = 0, p2 = 1) with an initial migration rate of zero. The
migration rate was slowly incremented in units of 10−4. For
each value of migration, the allele frequency recursions were
iterated until the difference in allele frequencies between
generations was less than 10−12 (i.e. effective equilibrium
was reached). This process was stopped once the absolute
difference in allele frequencies between the two populations
fell below 1% and the corresponding migration rate was
recorded as the critical migration rate boundary where sta-
bility is lost (i.e., at lower migration rates the combined
systems will not spread far from a successfully transformed
zone, and will be resistant to loss by immigration). Results
plotted for a range of fitness and Medea values show that
the combined system can have enhanced stability against
migration, tolerating higher migration rates while maintain-
ing geographic stability (Fig. 6). However, at ω = 0, there
are no heterozygotes reproducing and thus Medea has no ef-
fect and the dynamics are equivalent to that expected with
only underdominance (Fig. 6).

III. DISCUSSION

The major disadvantage of classical underdominance is its
high transformation thresholds. The major disadvantages of
Medea systems are their low transformation thresholds and,
possibly, a lack of complete fixation within a population if
there is a fitness cost. A reduction in homozygote fitness
seems to be unavoidable with classically engineered translo-
cations (see also Boussy 1988). Note that radiation induced
translocations are rare single events that are then made ho-
mozygous, and translocations typically suppress recombina-
tion over a neighboring chromosomal region (Dobzhansky
1931, Wallace 1956).

In a Medea system, even with a fitness cost, if migration
rates are sufficiently high, once a single population is above
a transformation threshold, the accumulation of the M al-
lele in neighboring populations by migration can be suffi-
cient to also raise the neighboring allele frequency above this
threshold and the system is expected to spread. Further-
more, in some cases, results from infinite population models

can be misleading when intuitively applied to finite popula-
tions. As illustrated above, Medea alleles that are otherwise
equivalent to wildtypes in terms of fitness, have an elevated
probability of invasion in finite populations with overlapping
generations and can even overcome the effects of mild un-
derdominance (Fig. 4). A related caution in using fertility
reducing translocations to help limit the spread of Medea is
that soft selection can also act to relax the fitness cost of the
translocation in addition to promoting the invasiveness and
spread of Medea. Thus, the degree of sibling competition
and/or remating compensation should be studied for target
species to better understand if this may be a relevant fac-
tor; e.g. if a singly mated female mosquito predominantly
laid all the eggs present in a small pool with density depen-
dant larval mortality (cf. Madder et al. 1983; Dye 1984;
Teng and Apperson 2000; see also the discussion of this in
Hay et al. 2010). Related examples from Tribolium and
mouse can be found in (Beeman and Friesen 1999; Loren-
zen et al. 2008, Winking et al. 1991) Perhaps, if Medea
alleles were more common across species (as suggested by
Beeman and Friesen 1999), they, in conjunction with soft
selection, could contribute to explanations of how chromo-
somal rearrangements accumulate between species despite
underdominance (suggested for meiotic drive, Sandler and
Novitski 1957; Bengtsson and Bodmer 1976). Thus, local
fine-scaled population stratification (in addition to density
regulated soft selection within families, Wade and Beeman
1994) may promote the invasion of rare Medea migrants and
is an important consideration in the applicability of analytic
results.

By linking Medea and underdominance the combined sys-
tem can result in ideal properties in terms of population
transformation ability and reversibility. Medea gives poten-
tially underdominant alleles an “upward boost” at interme-
diate frequencies, where Medea acts most efficiently, and
underdominance can give Medea alleles an “outward push”
at lower and higher allele frequencies, where underdomi-
nance acts more efficiently (Fig. 1). These complemen-
tary properties not only potentially include a transforma-
tion threshold closer to p = 1/2 (at ν + ω = 1 for t = 1,
Eq. 11, or at t = 2 − 2ν, from Eq. A6 using the Hardy
Weinberg approximation) for reversibility (Fig. 2), but also
the property that the genetic construct can completely fix
within a single population and can also be completely re-
moved (if ν > ω < 1, Fig. 1). Furthermore, a combined
system can have enhanced stability against migration along
the edges of a transformed zone, even beyond that of un-
derdominance alone, both in terms of preventing unwanted
spread of genetic modifications and in maintaining a local
transformation against wildtype immigrants (Fig. 6).

The tools already exist to attempt to engineer a system
with these combined properties in Drosophila. A Medea
poison-rescue element (Chen et al. 2007) could be inserted
near a translocation breakpoint that has underdominant
properties (a reduction in heterozygote fertility). New ap-
proaches have been developed to target insertions to specific
points in the genome (such as the ϕC31 − attP integra-
tion system; Bischof et al. 2007) and translocations can
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also be designed with breakpoints at specific sites (for ex-
ample, by using the FRT-FLP system, Beumer et al. 1998;
or by double strand breaks and homologous recombination,
Egli et al. 2004), so it should be possible to accomplish
this insertion close to a breakpoint. If an effector construct
designed to provide disease refractoriness has a substantial
fitness cost, then even a ”fit” translocation that may other-
wise be equivalent to wildtype fitness. This system will have
a predicted threshold frequency near p = 1/2 and may ben-
efit from being combined with a Medea element to give an
upward boost to the fitness reducing effector. Since translo-
cations essentially reduce fertility by 1/2, but not to zero,
genetic variation in the wild can introgress into the geneti-
cally modified population. This could allow local adaptation
to persist in the majority of the genome alongside a targeted
genetic transformation. It should also be possible to engi-
neer a system that is resistant to recombination breaking
up the linkage both between Medea and the translocation
as well as the effector gene (Dobzhansky 1931, Coyne et al.
1993; Sherizen et al. 2005). (Alternative efforts to design
a system resistant to disruption by recombination result in
a greater fitness cost, Chen et al. 2007.)

There are methods to engineer underdominance with
much lower threshold frequencies than the single locus sys-
tem considered here (two-locus poison-rescue underdomi-
nance, Davis et al. 2001); however, this also results in
lowered stability against spread by migration. Geographic
stability may have particular value both in initial testing of
genetically modified vectors and in species conservation ap-
plications (e.g. the Galápagos, Bataille et al. 2009, and
Hawaiian, Warner 1968, archipelagoes).

In a combined system, if the Medea effect was inacti-
vated by mutation, the presence of a translocation enables
reversibility, and possibly stability, to be maintained. How-
ever, it can be seen that disruption of the Medea effect in
a combined system would shift the system closer to loss of
the transgene (compare Fig. 1 C to Fig. 1 A), providing
a degree of fail-safe to restore the system to a wildtype
state. Also, if a third allele resistant to the female killing
Medea effect arose in the population, the presence of un-
derdominance may inhibit a resistance allele from becoming
established in the population (Altrock et al. 2010).

We agree that it is not a trivial engineering challenge to
combine the two systems in a way that meets optimal fitness
combinations. However, we also feel that the combined sys-
tem described here should not be simply viewed as a baroque
second-generation elaboration on existing technologies. A
system with these predicted advantages; enhanced spatial
stability, reversibility, and robustness to mutation and re-
combination would be ideal not only for reducing the like-
lihood of artificial Medea constructs becoming irreversibly
established in the wild in model organisms, but additionally
for first generation testing of population-transformation sys-
tems.
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Appendix A: Hardy-Weinberg Approximations

Here we briefly present some general analytic solutions
assuming one-dimensional dynamics along Hardy-Weinberg
equilibrium within the two-dimensional simplex of genotype
frequencies. As described in the main text, this is inade-
quate to fully describe the system; however, there are some
useful approximations that can be made , particuarly when
t is small and/or ν is large (in these cases the stable points
can approach the Hardy-Weinberg axis).

Assuming Hardy-Weinberg equilibrium allows the dynam-
ics to be written in terms of allele frequency. Let the fre-
quency of the Medea allele (M) be written as p with a
corresponding fitness fM and the frequency of the wildtype
allele (+) is (1 − p) with a fitness f+. The Medea allele
is unaffected by (i.e. rescues) maternal induced lethality,
thus the average fitness of an M allele is only the relative
genotype fitness weighted by the probability of appearing in
heterozygote or homozygote form,

fM = pν + (1− p)ω. (A1)

The mean population fitness is the sum of the Medea allele’s
average fitness and the average fitness of the wildtype allele,
f+, weighted by their corresponding frequencies,

w̄ = pfM + (1− p)f+. (A2)

The average fitness of the wildtype allele can be written as,

f+ = pω + (1− p)(1− pt). (A3)

The wildtype allele is heterozygous at frequency p, with a
relative fitness of ω. Alternatively, the wildtype allele is
paired with another wildtype allele at a frequency of 1− p,
and its average fitness is reduced from 1 by an amount pro-
portional to the frequency of the Medea allele in the popual-
tion and the degree of lethality due to Medea, pt. Medea
lethality only reduces the expected proportion of wildtype
homozygotes by t from Medea carrying mothers. In this
case we know that one allele in the mother has to be wild-
type, given that the offspring is wildtype homozygous, and
the chance that this wildtype allele is paired with a Medea
allele in the mother is p. The remaining wildtype homozy-
gotes that do not have heterozygous mothers have a relative
genotype fitness of 1.

The equilibria in this approximate treatment are found
when the two average allele fitnesses are equal, which is
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given by

fM − f+ = −tp2 + (1 + t+ ν − 2ω)p− 1 + ω = 0. (A4)

Solving for p gives the two possible internal equilibria along
the Hardy-Weinberg axis (e.g. Fig. 1 B),

p̂± =
1 + t+ ν − 2ω ±

√
(1 + t+ ν − 2ω)2 + 4t(ω − 1)

2t
(A5)

Eq. A4 is a quadratic polynomial of the general form ax2 +
bx + c. The coefficient of the squared term, a, is −t and
t can either be zero or positive. Hence, whenever t > 0
the parabola determined by this function will always open
downward. Thus, if both roots exist inside the simplex, the
lower root (closer to p = 0) will always be unstable and the
greater root will always be stable for any combination of ν,
ω, and t > 0.

As described before, a ”threshold” unstable equilibrium
of p̂− = 1/2 can be thought of as an ideal situation from
the standpoint of systems that are stable and reversible in
terms of release numbers required to repeatedly cross this
threshold. Setting p̂− = 1/2 and solving Eq. 18 for ν
results in

ν = 1− t/2. (A6)

In other words, with this approximation, in order to maintain
an unstable equilibrium at p̂− = 1/2, a lower homozygote
fitness can be compensated for by a higher degree of Medea
lethality (Fig. 3 C and D).
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Biol. Sci. 276: 3769-3775.

Beeman, R. W., and K. S. Friesen, 1999 Properties and natural
occurrence of maternal-effect selfish genes (“Medea” factors)
in the red flour beetle, Tribolium castaneum. Heredity 82: 529-
534.

Beeman, R. W., K. S. Friesen and R. E. Denell, 1992 Maternal-
effect selfish genes in flour beetles. Science 256: 89-92.

Bengtsson, B. O. and W. F. Bodmer, 1976 On the increase
of chromosome mutations under random mating. Theoretical
Population Biology 9: 260-281.

Beumer, K. J., S. Pimpinelli, and K. G. Golic, 1998 Induced
Chromosomal Exchange Directs the Segregation of Recombi-
nant Chromatids in Mitosis of Drosophila. Genetics 150: 173-
188.

Bischof, J., R. K. Maeda, M. Hediger, F. Karch, and K. Basler.
2007 An optimized transgenesis system for Drsophila using
germ-line-specific ?C31 integrases. Proc. Natl. Acad. Sci.
U.S.A. 104:3312-3317.
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FIG. 5. Illustrative dynamics for examples of soft se-
lection. A) A simplex similar to those in Fig. 3 except the
soft selection genotype frequency recursions given in Equa-
tions 12 are used. B) Example trajectories for 20 replicate
simulations. Time steps here refer to a single birth-death
replacement under the Moran model. Eleven of the replicate
frequencies were lost while rare; nine trajectories achieved fix-
ation but segregated at high frequency for a substantial period
of time before fixing (note that time is on a log scale). This
may increase the time for alleles resistant to Medea lethality
to occur in the population. With underdominance, fixation is
rarer but achieved faster.
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FIG. 6. Critical migration rates allowing stable local
transformations over a range of genotype fitness and
Medea parameter configurations. Migration rates are on
the y-axis and homozygous MM fitness on the x-axis for four
different heterozygous fitness values. Simulated parameter
combination outcomes are indicated with dots. Pure under-
dominance with no Medea effect (t = 0) is plotted in black.
Full Medea, 100% lethality (t = 1), is plotted in red. Interme-
diate Medea strengths that maintain an approximate unstable
equilibrium at p = 1/2 are plotted in blue (t = 2 − 2ν). Note
that for ω = 0 the points with Medea exactly correspond to
the points without Medea (i.e., Medea has no effect and only
underdominance determines the stability).



“It is vain to do with more what

can be done with fewer.”

William of Occham

(c. -)

5
Summary and Outlook

In the Introduction we mentioned biological systems as complex dynamical sys-

tems. The theory of dynamical systems has its roots in Newtonian mechanics

(Strogatz, 2000). In dynamical systems we write down a difference or differen-

tial equation which has all the parameters crucial for describing the dynamics

of a system. Depending on the interactions of those parameters the equation

gives us the time development of the system.

Analysing evolutionary dynamics in higher dimensions we face the question,

is it is really necessary to include all this complexity? To comment on this

question we go through the following argument. Consider the publications based

on static fitness landscapes. How long does it take for a population to switch

peaks if there are two possibilities, a narrow ridge or a broad valley? A basic

requirement of this approach is that there have to be multiple states. If there

were just two states then the question becomes irrelevant. Multiple states are

very realistic for example in cases where fitness is determined by multiple traits.

Accepting this idea, we see that even if one has to go through the valley, it can

be faster if there are multiple paths available in it instead of a fixed path with

no fitness reduction. Next, a peculiar property relating to the time for fixation

is studied. In this case there is no need for multiple states. The whole study is

based on a population moving from state B to A with a slight bias for moving

towards A. All else being same if there is a small frequency dependent bias for

the population to move from one state to the next then the time for fixation

is actually larger than if there is no bias. We can extend this knowledge to

multiple states and conjecture the following: Imagine a population moving on a

flat landscape. Even if there is a small bias for moving in a particular direction

for each transition, the time required will be greater than neutral and hence in

all it will take longer to cross the landscape as compared to a balanced process.
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To study frequency dependent scenarios we use evolutionary game theory.

Evolutionary game theory has become quite popular amongst behavioral ecol-

ogists, sociologists, philosophers and also back among economists from where

game theory originated (Hammerstein and Hagen, 2005). Evolutionary game

theory usually deals with two player games with two strategies. The publica-

tions relating to evolutionary game theory, collated, in Chapter 4, increase the

dimensions of analysis by including multiple players and multiple strategies. Is

the analysis of this increased complexity justified?

The evolution and maintenance of co-operation is definitely one of the most

active research areas in biology, sociology and economics. Social dilemmas

have been extensively analysed using evolutionary game theory (Ostrom, 1990;

Nowak, 2006b; Taylor and Nowak, 2007). Using the Prisoners Dilemma and

many other such social dilemma games the problem has been tackled both

theoretically and experimentally. At the heart of many of these experiments

are problems which involve multiple players. Multiplayer games span a wide

range of topics, worldwide co-operation to combat global warming, inferring

social structure from communities of social animals and even breakdown of co-

operation between cells in a multi-cellular organism leading to cancerous growth.

The multiplayer versions of these social settings are used in experiments, but

theoretical development of general multiplayer games had not received as much

attention.

The publications about evolutionary game theory in Chapter 4, aim at incorpo-

rating these complexities of multiplayer games:

1. Develop analogous condition to the one third rule and the risk dominance

conditions in multiplayer games with two strategies. Sabin Lessard has

shown that our conditions are also valid for any process in the Kingman’s

coalescent (personal communication). Also we calculate the maximum

number of equilibria possible in a system with multiple player and multiple

strategies for infinitely large populations.

2. The replicator dynamics approach only includes selection. Assuming small

mutation rates, many important and analytically accessible quantities like

the fixation probability still remain meaningful. We derive a method to
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calculate a bound on the mutation rate under which making the assump-

tion minimizes the error under a certain threshold.

3. When mutations are incorporated, it is difficult to quantify how the strate-

gies will fluctuate. We develop a method to calculate the long term fre-

quencies of strategies for arbitrary mutation rates for weak selection. This

analysis is also valid for multiple strategies and generalises previous results

to multiplayer games.

The analysis reveals that multiplayer games can show different properties than

the regular two player games with two strategies. Under mutation selection

equilibrium we find that the result is an extension of the framework used for

two player games with multiple strategies. Hence we see that depending on

the problem being addressed, the addition of multiple parameters is sometimes

useful and sometimes redundant. The inclusion of the extra complexity is a

matter of what kind of question is being asked. So what more can we add to

the theory which has been developed in here so far?

We have come a long way from two players two strategies to multiple players

and strategies but almost all this still happens in the same game, the public

goods game. A certain game may have an impact on another game in which

the same individual(s) is(are) involved. So what about multiple game(s) theory

(Bednar and Page, 2007)?. Also earlier we had quoted Nowak and Sigmund

(2004) for the inability of evolutionary game theory to describe evolutionary

dynamics at the genotypic level. This is true for traditional evolutionary game

theory which cannot handle situations when the fitness is a non-linear function

such as in genetic conflict situations. The development of multiplayer game

theory can tackle this problem as it can incorporate non-linearity via the addition

of multiple players.

One of the important mathematical theories in the biological sphere is pop-

ulation genetics. It was thus natural to draw parallels with evolutionary game

theory as soon as the latter gained reputation (Rowe, 1987, 1988; Cressman,

2003) as a credible theoretical tool. In comparison evolutionary game theory

is looked upon in biology as a tool giving us a good insight into a biological

process but at the cost of ignoring the details of the evolutionary process. We
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see a different picture when we look at evolutionary game theory from the point

of view of economics. A field predominated by classical game theory, evolution-

ary game theory has first been looked upon to bring unnecessary complications

and is thought of to be too complex (Friedman, 1991). However this view has

changed in recent years (Hammerstein and Hagen, 2005; Sandholm, 2010). One

is warned against going overboard with simplicity by this quote supposedly by

Einstein, “Everything should be made as simple as possible, but not simpler.”

Evolutionary theory has always been evolutionary dynamics. This is because

evolution is a dynamic process, change over time. Evolutionary dynamics which

we know of as population genetics, evolutionary game theory, adaptive dynam-

ics, optimisation theory etc. are just different faces of the study of dynamical

systems. They all describe more or less the same properties. This is so because

these different fields make more or less assumptions as per the rules which define

them and hence the predictions which they make can be quantitatively more

accurate or less. For example, population genetics can handle the complexities

of sexual selection, recombination and speciation. In turn it has not analysed

themes such as spread of infectious agents, somatic evolution of cancer or the

evolution of human language (Nowak, 2006a). We need different evolutionary

dynamics to study different systems. Yet qualitatively they all point in the same

direction. How do we justify this pluralism? Interdisciplinary studies, like this

thesis, try to answer this. Interdisciplinary studies can cover up the shortcom-

ings of one theory by the developments from another or remove the redundancy

in one theory by the simplicity of another. An aim of this thesis was to have

a dialogue between biology and the basic mathematics of dynamical systems

theory using terminology from both the fields.

“Realistic models may describe nature more accurately, but they are less

illuminating when explaining principles ...” (Hartl and Clark, 1997). Testing

Newton’s laws in the real world we understand that they almost never hold.

Friction, drag, moisture, viscosity etc. are not taken into account in Newton’s

equations, yet we can launch a rocket to the moon based on them. The same

holds true for evolutionary dynamics.
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