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Zusammenfassung 
 
 Die Hausmaus (Mus musculus domesticus) hat sich im Laufe der Geschichte, von 

Westeuropa ausgehend, kontinuierlich über die gesamte Welt ausgebreitet. Die 

Besiedlung eines Großteils der ozeanischen Inseln der südliche Hemisphäre hingegen, 

geschah innerhalb des vergleichsweise kurzen Zeitraumes der letzten 300 Jahre. Letzteres 

macht diese Inseln zu einem hervorragenden Modellsystem, um evolutionäre Prozesse in 

frühen Stadien einer Neubesiedlung zu analysieren und Mechanismen rezenter 

Anpassung zu verstehen. 

 

 Für die vorliegende Untersuchung wurden 24 Mikrosatelliten-Marker, sowie D-

loop-Sequenzen von insgesamt 534 Mäusen typisiert. Die Tiere stammten hauptsächlich 

von den Kerguelen Inseln, zusätzlich aber auch von den Falkland-Inseln, Marion Insel, 

Amsterdam Insel, Antipodes Insel, Macquarie Insel, Auckland Insel und eine Probe kam 

aus Süd-Georgien. Trotz des starken Schiffverkehrs über die letzten 100 Jahre zeigen die 

Ergebnisse, dass ausschließlich die Mäuse die zuerst auf den Kerguelen ankamen, die 

Hauptinsel (Grande Terre) und den Großteil der kleinen, zugehörigen Inseln besiedelten. 

Diese Tiere haben sowohl den gleichen D-loop Haplotyp, als auch den gleichen Y 

chromosomalen Haplotyp. Eine zweite Besiedlung durch Mäuse fand auf den Inseln statt, 

die weniger eng mit Grande Terre assoziiert sind und wahrscheinlich keine bereits 

etablierten Mauspopulationen hatten, wie Cimetière Insel und Cochons Insel. Die 

dortigen Mäuse haben einen anderen mitochondrialen D-loop Haplotypen und 

unterschieden sich auch in den Autosomen von den Tieren der Hauptinsel. Der Y 

Haplotyp jedoch entspricht dem der Populationen auf Grand Terre und den assoziierten 

Inseln, was darauf schließen lässt, dass beide Besiedlungswellen aus verwandten 

Ursprungspopulationen kamen. Diese Daten deuten daraufhin, dass bereits besiedelte 

Habitate weiterer Zuwanderung verschlossen sind, möglicherweise durch schnelle 

Anpassung der Erstbesiedler an die lokalen Bedingungen. Bemerkenswerter Weise 

wurden auf mehreren untersuchten Inseln mitochondriale Haplotypen gefunden, die 

durch eine einzelne Mutation aus dem Haupthaplotypen hervorgegangen waren. Dies 
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weist auf eine ungewöhnlich hohe Mutationsrate oder einen „selective sweep“ im 

mitochondrialen Genom hin. 

 

 Um die genetische Grundlage der Anpassungsprozesse auf den betrachteten 

Inseln eingehender zu untersuchen, wurde ein genomweiter Mikrosatellitenscreen zur 

Identifizierung selektiert Loci („selective sweeps“) durchgeführt. Zur Vorauswahl von 

Kandidaten-Loci wurden zunächst 737 genomweit verteilte Mikrosatelliten in gepoolten 

Proben von den Kerguelen typisiert und mit europäischen Populationen verglichen. Dann 

wurden insgesamt 38 ausgewählte Kandidaten-Loci für fünf unterschiedliche Inseln 

(Kerguelen Inseln, Marion Insel, Auckland Insel, Marion Insel, Antipodes Insel) und 

sechs Populationen individuell typisiert. So sollten genomische Regionen mit ähnlichen 

Mustern identifiziert und historisch bedingte Effekte auf diesen „hitchhiking mapping“-

Ansatz reduziert werden. Auf diese Weise konnten fünf Mikrosatelliten-Kandidatenloci 

bestimmt werden, die alle mit jeweils einem Gen assoziiert waren. Einer der Kandidaten 

hat bekanntermaßen eine Funktion bei Parasiteninfektionen. Ein anderes Kandidatengen 

kodiert für Kcne1, die Untereinheit eines K+-Kanals, wobei das Gen für Kcnq1, eine 

weitere Untereinheit desselben K+-Kanals, ebenfalls unter den 38 zuvor weniger stringent 

ausgewählten Kandidatenloci war. Dies deutet darauf hin, dass dieser Kanal für die 

Mäuse eine Bedeutung für die Adaptation an die neue Umwelt hat. Zusätzliche 

Experimente sind erforderlich, um die fünf Kandidatengene weiter zu charakterisieren. 

Dennoch zeigt die vorliegende Studie, dass ein genomweiter Mikrosatellitenscreen ein 

geeigneter Ansatz zur Identifizierung von Genen darstellt, die an rezenten 

Anpassungsprozessen beteiligt sind. 
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Abstract 

 
 Starting from Western Europe, the house mouse (Mus musculus domesticus) has 

spread across the globe in historic times. However, most of the southern oceanic islands 

were colonized by mice only within the past 300 years. This makes them an excellent 

model for studying the evolutionary processes during early stages of new colonization 

and for understanding mechanisms of early adaptation.  

 

 Twenty-four microsatellite loci and the mitochondrial D-loop sequence were 

typed in a total of 534 mice mainly from the Kerguelen Archipelago but also from 

Falkland Islands, Marion Island, Amsterdam Island, Antipodes Island, Macquarie Island, 

Auckland Islands, and one sample from South Georgia. Although there was heavy ship 

traffic for over a hundred years to the Kerguelen Archipelago, it appears that only the 

mice that have arrived first have colonized the main island (Grande Terre) and most of 

the associated small islands indeed mice shared the same D-loop haplotype as well as the 

same Y chromosomal haplotype. The second mice invasion has occurred on islands that 

are detached from Grande Terre (Cimetière Island and Cochons Island) and were likely to 

have had no resident mice prior to their arrival. They displayed a different mitochondrial 

D-loop haplotype and were genetically distinct in the autosomes. However, the Y 

chromosome haplotype was related to the one found in Grande Terre, suggesting that 

they came from a related source population. These data suggest that an area colonized by 

mice is refractory to further introgression, possibly due to fast adaptations of the resident 

mice to local conditions. Interestingly, single step mutational derivatives of one of the 

major mitochondrial haplotypes were found several times in different southern 

hemisphere islands, suggesting an unusually high mutation rate or the putative presence 

of a selective sweep in the mitochondrial genome.  

 

 In order to investigate further the genetic basis of adaptation on southern 

hemisphere islands a genome-wide microsatellite screen for selective sweeps was 

performed. 737 markers dispersed around the entire genome were typed in pooled 

samples from Kerguelen Archipelago populations and compared to European populations 
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in order to pre-selected candidate loci for selective sweeps. A total of 38 pre-selected 

candidates loci were then individually typed from five different islands (Kerguelen 

Archipelago, Marion Island, Auckland Island, Marion Island, Antipodes Island) 

representing six mouse populations in order to identify genomic regions displaying 

similar patterns and to decrease the impact of the demographic history of the island on 

the hitchhiking mapping approach used. Five microsatellite candidate loci, all of them 

associated with a gene, were identified. Interestingly, one of the candidates has a known 

function during parasite infection. Another candidate gene is a sub-unit of a K+ channel 

and, surprisingly, the second sub-unit of this K+ channel was picked up during the less 

stringent pre-selection of the 38 loci, pointing to the importance of this channel for mouse 

adaptation to their new environment. Additional experiments are required in order to 

confirm these five candidate genes, but nevertheless this study demonstrates that a 

genome-wide microsatellite locus screen is a valuable approach to identify genes which 

are implicated in recent adaptations.  
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General Introduction 

 
I- MOLECULAR EVOLUTION, A BRIEF INTRODUCTION: 

 

 Darwin defined evolution as “descent with modification” meaning a change in the 

lineage of populations between generations. Nonetheless, Darwin’s theory was suffering 

from the absence of a theory of heredity. Indeed, at that time, most of the heredity 

theories were blending theories meaning that natural selection would have been much 

less powerful (Province 2001). The rediscovery of Mendel’s ideas at the beginning of the 

20th century and the consolidation of both theories gave birth to neo-Darwinism which 

spread in all the fields of biology and became widely accepted (Province 2001).  

 

 Four evolutionary forces are described: mutation, drift, selection and migration. 

Among them, mutation is the only one which can create novelty. There is a wide variety 

of mutation types, for example: single amino-acid change, transposition, unequal crossing 

over, insertion, deletion, duplication. The mutation rate can be estimated from the rate at 

which detectable new genetic variants arise. Unfortunately, in nature, the majority of 

mutations is deleterious and is eliminated from the genome prior to detection leading to 

underestimated mutation rates. Mutation rates vary between organisms. For example, 

mutation rates are generally high for RNA viruses (10-4 mutation rate per nucleotide per 

replication – Ridley 2004) whereas for humans it was calculated to be 10-8 (The 1000 

Genomes Project Consortium 2010). Mutation rate also varies between genome regions 

(Wolfe et al. 1989). For example, the mutation rate of microsatellites (DNA sequences 

containing a number of short tandem repeat (2-6 bp) sequence) is not uniform and can be 

affected by microsatellite length: mutation rate increases with an increasing number of 

repeat units (Ellegreen 2004).  

 

 One of the principal forces which drive allele frequencies is natural selection. 

Different types of selection have been described including directional selection. Positive 

directional selection can increase the frequency of an allele in the population whereas 

negative directional selection decreases the frequency of an allele. Balancing selection 
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results in the maintenance of multiple alleles. If one or several extreme phenotypes are 

favored at the same time, the selection is called diversifying. 

 

 Another force driving allele frequencies is genetic drift which is defined as the 

random fluctuation of allele frequencies in a finite population due to chance variations in 

the contribution of each individual to the next generation (Jobling et al. 2004). Genetic 

drift can lead to the loss or the fixation of an allele just by chance, meaning that it is 

impossible to predict the behavior of the allele frequency under drift from one generation 

to another (Hartl and Clark 2007). The effect of genetic drift is larger in smaller 

populations (Hartl and Clark 2007). 

 

 The last evolutionary force which influences the genome is migration. This 

process refers to the movement of some organism (or their gametes) among populations 

creating gene flow between populations leading to a limitation of genetic divergence as a 

result a homogenization of gene frequencies between populations (Hartl and Clark  

2007).   

 

Figure 1:  Effect of a 
selective sweep on the 
genome (taken from Boffelli 
et al. 2004) 

 

 

 

 A challenge for evolutionary geneticists is to differentiate between genetic drift 

and natural selection. When an advantageous allele appears in a population, natural 

selection will increase its frequency more or less faster depending of the coefficient of 

selection. Selection will also increase the frequency of neutral alleles situated near the 

advantageous allele. This phenomenon is called hitchhiking effect and such a selective 

event is called selective sweep (Figure 1 and Figure 2 - Maynard Smith and Haigh 1974) 
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 A selective sweep leaves a genetic footprint which can be investigated with 

different methods such as reduction of heterozygoty, Tajima’s D or linkage 

disequilibrium (Figure 2 – Nielsen 2005). The shape of a selective sweep is mainly 

determined by the local recombination rate and the coefficient of selection (Maynard 

Smith and Haigh 1974). Recombination tends to destroy the selective sweep “footprint” 

whereas depending on the strength of the coefficient of selection, the selective coefficient 

tends to maintain this region. The selective sweep footprint is gradually lost and the 

recovery pattern is characterized by an excess of new mutations at low frequency. 

Therefore, the timeframe in which a selective sweep could be detected is a function of the 

mutation rate of the investigated region.  

 

 

 

Figure 2: Effect of selective sweep on 
genetic variation (taken from Nielsen 
2005) 
 

  

 

 

 

 

 Recovery from a demographic change, such as bottleneck or population 

expansion, results in an excess of rare alleles leading to a comparable genome signature 

as a selective sweep (Jensen et al. 2005). Hence, the study of selective sweeps should 

include demographic analysis.  

 

II- WILD MICE AND MUS LABORATORIUS:  

 

 Laboratory mice have been extensively used in biomedical research, which has 

resulted in the mouse becoming the most popular model organism for genetic study (for a 

review see Guénet and Bonhomme 2003). Indeed, mice are easy to keep, breed with a 
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short generation time of 10-12 weeks and since 2002 the complete reference sequence of 

the mouse genome is available (Mouse Genome Sequencing Consortium 2002). 

Moreover, mouse history, phylogeny and evolutionary history are well known (for review 

see Boursot et al. 1993, and Guénet and Bonhomme 2003) making this animal a suitable 

organism to understand adaptive mechanisms (Guénet and Bonhomme 2003, Berry and 

Scriven 2005).   

 

 

 

 

 

Figure 3: Phylogeny based 
on molecular data of the 
subgenera and species in the 
genus Mus. Dashed lines 
indicate uncertainty in 
placement of taxa (taken 
from Tucker 2007) 
  

 

 

 

 There are two alternative hypotheses for the origin of wild mice: the first one 

placed the origin in the northern Indian subcontinent and the second one in west central 

Asia (Tucker 2007). Molecular data suggest that the initial radiation of Mus musculus 

occurred no more than 0.9 millions years ago and this date of divergence is consistent 

with the fossil record (Boursot et al. 1993). The house mouse ancestry split into three 

major sub-species: Mus musculus musculus present in northern Asia and Eastern Europe, 

Mus musculus castaneaus in East Asia and Mus musculus domesticus in Western Europe 

(Figure 3 and Figure 4). Hybrid incompatibilities have been described and studied but the 

three sub-species are not totally genetically isolated and can interbreed. In Europe the 

hybrid zone occurs between M. m. domesticus and M. m. musculus and in China between 

M. m. musculus and M. m. castaneaus. In Japan, these two sub-species have hybridized 
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extensively giving rise to Mus musculus molossinus (Yonekawa et al. 1988). Only M. m. 

castaneus and M. m. domesticus do not have a natural hybrid zone in the wild but they 

can breed in the laboratory.  

 

 Laboratory mouse strains are a mix of different proportions of wild mice, the 

major contribution being from M. m. domesticus, the intermediate contribution of M. m. 

musculus and a small contribution of M. m. castaneus (Wade et al. 2002, Wade and Daly 

2005, and Sakai et al. 2005). The result is an unnatural genetic constitution and in their 

review, Guénet and Bonhomme (2003) even proposed to name this new strand: “Mus 

laboratorius”.  

 

 
 

Figure 4: Mice origin and colonization routes in the world. Not shown here, M. m. 
castaneus may have crossed the Pacific Ocean to interbreed with M. m domesticus in 
Southern California (adapted from Morse 2005). 

 

 The Western European mouse subspecies M. m. domesticus colonized Europe 

using a Mediterranean colonization route during the Neolithic Age (Figure 5 - Auffray et 

al. 1990). A study based on paleontological data from Cucchi et al. (2005) demonstrated 

that mice invaded Europe only 3000 years ago even though human populations settled in 

Europe since 6000 before Christ (BC). The authors gave several explanations for the late 
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mouse invasion including an initially limited maritime exchange between the Eastern and 

Western Mediterranean Basin until the beginning of 1000 BC, leading to little migration. 

In addition, they suggest a lack of ecological niches for mice before 1000 BC and 

competition with the wood mouse. Specifically, they suggest that the ecological niches 

present in Western Europe were initially occupied by the wood mouse and the 

competition might have favored wood mice until larger and a more commensal 

environment was developed (Cucchi et al. 2005). Intensification of sea trading in the 

Bronze Age might have increased passive transport of mice and so played a major role in 

the colonization (Auffray et al. 1990). Direct proof of human mediated transport was 

found in the form of the discovery of a mouse mandible in the Uluburun shipwreck near 

the south coast of Turkey (Cucchi 2008). One thousand years ago during the Viking age, 

mice colonized Scandinavia and Madeira (Gabriel et al. 2010).  

 

 In the wake of increased human travel at the beginning of the 16th century, the 

European mice colonized America, Africa, Australia and New Zealand (Boursot et al. 

1993, Guénet and Bonhomme 2003, Searle et al. 2009a). They were also successful in the 

colonization of small South Hemisphere islands where they were most probably brought 

by seal hunters and whalers during their journeys (Kidder et al. 1876, Berry et al. 1979, 

Berry and Peters 1975, Berry et al. 1978, Jansen Van Vuuren and Chown 2007, Searle et 

al. 2009c). Because of their close relationship with humans, mice have also been studied 

as a model to infer human colonization history and expansion (Searle et al. 2009, 

Numone et al. 2010). Jones et al. (in press) found a relationship between mouse genetic 

diversity and the population size supporting the idea that mice could reflect human 

population genetics.  
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Figure 5: Maps showing possible colonization routes taken by the western house mouse 
Mus musculus domesticus, based on mitochondrial DNA evidence (taken from Gabriel et 
al. 2010). 
 

 In this thesis, I focused on mice living on islands of the Sub-Antarctic area, which 

are typically islands situated between the 40th and the 60th parallel. In order to understand 

the colonization patterns and the molecular adaptation of these mice, I compared them 

with European (France and Germany) mice as reference for an older population and with 

African (Cameroon) mice as reference for a young colonization. As shown in Figure 6, 

these 3 populations are genetically separated with no gene flow.  
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Figure 6: Allele sharing tree based on 204 
microsatellites. Mice from Kazakhstan belong to the sub-
species M. m. musculus and are clearly separate from the 
M. m. domesticus populations (France, Germany and 
Cameroon) by a longer branch. The populations appear 
genetically different with no gene flow between them 
(taken from Ihle et al. 2006). 
 

 

 

 

 This repeated and rapid adaptation to Southern Antarctic islands makes mice a 

tremendous model to study first colonization of this part of the world and also adaptation 

to this new environment.     

 

III- STUDY SITE: THE SUB-ANTARCTIC AREA:  

 

 In 1978, R.J. Berry wrote: “... the Sub-Antarctic mice must be living close to their 

physiological limits and hence likely to respond detectably to environmental stresses in 

ways unnecessary for animals in more temperate environment.” (Berry et al. 1978). This 

and all the genetic tools already available make the “sub-Antarctic” mice a model of 

choice to study rapid genetic adaptation. In the next part of the general introduction, I 

summarize the known information on mice from the sub-Antarctic area and from the 

Kerguelen Archipelago. As only two genetic studies have been performed on these mice 

so far, this section will mostly focus on mouse ecology. Understanding their ecology is 

essential for identifying the challenges the mice faced and how they adapted to it 

(behavior or genetics).   
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A°/ Sub Antarctic Area  

 

1- General data 

 

 The Sub-Antarctic area consists of several islands localized between the 40th and 

the 60th parallel (Figure 7 and Table 1). These islands are relatively small and share 

similar climatic and ecological conditions. The climate is characterized by cold summers 

and mild winters giving relatively a uniform temperature all along the year. There is high 

rainfall and strong winds.  

 

 

 

 

 

 Figure 7: Map of the South 
Hemisphere, Marion Island is part of 
the Prince Edwards Islands; the dotted 
line represents the Antarctic 
convergence (taken from Lebouvier 
and Frenot 2007)  
 

 

 

 

 

 

 Vegetation is rather poor because of the unfavorable climate and the isolation of 

these islands. Trees are usually absent except on Gough Island, Amsterdam Island and 

Auckland Island where some small trees and bushes grow. The indigenous terrestrial 

fauna is also poor and usually limited to invertebrates. However, the maritime fauna, as 

well as seabird fauna is very rich (Frenot et al. 2005).   
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Table 1: General information on the islands studied in this thesis (adapted from Frenot et 
al. 2005, Angel et al. 2009, Learder-Williams 1988) 

 

Island Latitude Longitude Area 
(km2) 

Year of 
Island 

discovery 
Introduced Animals 

Amsterdam 
Island  37.83 S 77.52 E 55 1522 Norway rats, house 

mice, cat cattle 

Gough Island  40.33 S 9.54 W 64 1505 or 
1506 House mice 

Antipodes 
Island  49.68 S 178.77 E 60 1800 House mice 

Auckland 
Island  50.83 S 166.60 E 510 1806 House mice, cats, pigs 

West Falklands  51.50 S 60.50 W 4.532 

East Falklands  51.50 S 58.50 W 6605 
1592 house mice, rat, cats and 

others  

Marion Island  46.90 S 36.75 E 290 1772 House mice 

Kerguelen 
Archipelago 49.37 S 69.50 E 7200 1772 

Black rats, house mice, 
cats, mouflon, sheep, 

reindeer, rabbits 

South Georgia  54.25 S 37.00 W 4066 1675 Norway rats, house 
mice, reindeer 

Macquarie 
Island  54.62 S 158.90 E 128 1810 Rats, house mice, rabbits 

 

 

 The islands were free of humans before their “official” discovery (Table 1) and 

even today most of them are still uninhabited except the Falkland Islands and Tristan da 

Cunha. However, some islands have a meteorological station or a scientific research 

station but the human population is rather limited.  

 

2- Mice on Southern Hemisphere islands: 

 

 a- Colonization and life:  

 

 Mice were very successful in the colonization of the Sub-Antarctic area and today 

they are known to occur in: Amsterdam Island, St Paul Island, Kerguelen Archipelago, 

Crozet Archipelago, Marion Island, Antipodes Island, Auckland Island, Macquarie, South 



 - 11 -

Georgia, Falkland Islands, Tristan da Cunha, and Gough Island (Figure 7 -  Kidder 1876, 

Berry and Peter 1974, Lésel and Derenne 1975, Berry et al. 1978b, Berry et al. 1979, 

Chapuis et al. 1994, Cuthbert and Hilton 2004, Searle et al. 2009c, Angel et al. 2009). 

The population abundance on South Georgia is relatively low when compared to the 

other islands (Frenot et al. 2005). Indeed, the mice occurred in a part of the Nuñez 

Peninsula which is cut off from the main part of South Georgia by branches of the 

Esmark Glacier (Berry et al. 1979). This remote situation might have protected them 

from rats and so from extinction (Berry et al. 1979). 

 

 A study from Marion Island showed that the mouse density increased between 

1979-80 and 1991-92 (van Aarde et al. 1996) but a recent study showed that the mouse 

population is becoming stable perhaps due to food limitation and the major die-off during 

winter which probably limits population size (Ferreira et al. 2006). Interestingly, cold 

climate is a more important factor to determine mouse survival than food supply, 

suggesting that seasonal changes in mouse numbers are not dictated by food availability 

(van Aarde and Jackson 2007). Nevertheless, Frenot et al. (2005) predicted that mouse 

populations will still continue to increase on the Kerguelen Archipelago, Marion Island, 

and Macquarie Island. The only mouse predators on these islands are cats and skuas. If 

the skuas do not limit the mouse population (Mougeot et al. 1998, Schulz and Gales 

2004), the cats do (Derenne and Mougin 1976, van Aarde 1980, Quikfeldt et al. 2007, J.-

L. Chapuis personnel observation)   

 

 b- Mouse diet:  

 

 Mice are omnivores and diet studies from Australia and North America showed 

that they are primarily seed eaters but they also consume a wide variety of plants and 

animals (see Figure 8 - John and Whitaker 1966, Singleton and Krebs 2007). On Cochons 

Island from the Crozet Archipelago, mice are apparently feeding mostly on plants 

(Derenne and Mougin, 1976). However, on Marion Island, Macquarie Island and Guillou 

Island (Kerguelen Archipelago), invertebrates are the main part of the diet (Copson 1986, 

Le Roux et al. 2002, Smith et al. 2002). Berry et al. (1979) showed that the South 
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Georgia mice feed mainly on arthropods and tussock-grass seed. Mice from the Falkland 

Islands were studied using stable isotopes, which showed that the mouse diet is terrestrial 

even if some of them have a mixed diet (terrestrial and marine) unfortunately, stomach 

contents were not sampled (Quillfeldt et al. 2007) . 

 
 Figure 8: Mouse Diet (A) Mallee Wheatland of Victoria (B) Thevenard Island, 
Western Australia (C) Marion Island (Sub-Antarctic). (Taken from Singleton and Krebs 
2007) 
 

 More surprisingly, on Gough Island and on Marion Island, the mice started to 

attack seabird chicks (Cuthbert and Hilton 2004, Wanless et al. 2007, Jones and Ryan 

2010). On Gough Island, it was reported that mice attack and kill healthy chicks up to 

300 times of their mass. Videos show up to 10 mice attacking birds, without any 

appropriate response from the victim. Indeed, if the chick did not die during the first 

attack, mice will repeatedly feed on them often opening several wounds (Wanless et al. 

2007). On Marion Island, although no direct evidence of mice attacking albatrosses was 

observed, the nature of wounds in dead animals suggests mouse attacks (Jones and Ryan 

2010). Wanless et al. (2007) suggested that this behavior might arise when the mice are 

the only introduced mammals. The Marion Island case reinforced this hypothesis because 
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the first chick attack by mice was reported a decade after cat eradication (Jones et al. 

2010). Bird predation by mice is also suspected on Antipodes Island (Imber et al. 2001). 

On Cochons Island (Crozet Archipelago), mice have been seen eating cadaver from 

mammals or birds (Derenne et Mougin 1976). Interestingly, bird attack by mice was only 

reported on islands where mice are the only introduced mammal. Indeed, there are only 5 

Sub-Antarctic islands having this characteristic (Gough Island, Marion Island, Antipodes 

Island, Australia Island (Kerguelen Archipelago), and St Paul Island) and on 3 of them 

bird predation by mice is documented or suspected (Angel et al. 2009).  

 

 c- Adaptation to Sub-Antarctic environment: 

 

 In order to preserve themselves from the cold, mice live in burrows and construct 

above ground run-away (Lésel and Derenne 1975, Avenant and Smith 2003). Indeed on 

Marion Island, burrow temperatures seldom drop below 2°C and ground-surface 

temperature seldom drops to 0°C (Avenant and Smith 2003). Consequently, burrowing 

behavior might be an important factor for mouse survival on Sub-Antarctic islands. Webb 

et al. (1997) showed that mice were physiologically adapted to the cold via a reduction in 

minimum thermal conductance. 

 

B°/ Kerguelen Archipelago:  

  

 The Kerguelen Archipelago is situated in the Indian Ocean (48°25’-50°S, 68°25’- 

70°35’E), around 4000 km from the African and Australian cost. The transport to the 

archipelago is done by the ship Marion-Dufresne four times a year. The rotation takes 

almost a month and supplies all French Sub-Antarctic territories (Crozet Archipelago, 

Kerguelen Archipelago, Amsterdam Island and sometime St Paul Island – for a map see 

Figure 7). 
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1- Geology and climate:  

 

 From volcanic origin (Giret et al. 2003), the archipelago is formed from one main 

island called Grande Terre (~6675 km2 with a stretch of 130 km from east to west and of 

120 km from north to South) surrounded by around 300 small islands and islets (~540 

km2 – see Figure 11 for a map) making its surface area comparable to the one from 

Corsica (Figure 9). The archipelago is about 50 million years old. 

 

 

Figure 9: Comparison of the Kerguelen surface when 
compared to Corsica (taken from Giret et al. 2003) 
 

 

 

 

 Situated at the Antarctic convergence (region where the cold Antarctic water 

sinks below the warmer from the North), the climate is described as oceanic cold and 

characterized by almost continuous wind which can blow up to 200km/h, no strong 

winters, 2°C on average for the coldest month, and fresh summers, 8°C on average for 

the warmest month. Although the rainfall is only 747 mm (350-1479 mm during 1951-

2009, Météo-France, Port-aux-Français), it is raining 246 days a year.  

 

2- History and exploration:  

 

 In order to understand the mouse colonization and phylogeography, I will, in the 

next section, briefly describe the general history of the Kerguelen Archipelago. This part 

is based on: Aubert de la Rüe 1953, Delépine 1964, 1975, 1995 and 2002, and Couesnon 

and Guyader 1999.  

 

  The Kerguelen Archipelago was discovered on the 13th February 1772 by Yves-

Joseph de Kerguelen-Trémarec (1734 near Quimper – 1797 Paris). Interestingly, despite 

his two trips (in 1772 and in 1774), Kerguelen never set foot on the archipelago he 
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discovered. It was Charles du Boisguéhenneuc who took possession of this new land for 

France. The 25th December 1776, Captain James Cook (1728 Marton, Middlesbrough – 

1779 Hawaii) arrived in the Archipelago and, because of its poor vegetation, baptized it 

“Desolation Island”. During his journey, Cook and his scientists discovered and 

identified the famous Kerguelen cabbage: “Pringlea antiscorbutica”. Anderson, the 

expedition surgeon, observed the presence of many whales and sea elephants and pointed 

out that this could be useful for France if oil became rare in Europe.  

 

 
Figure 10: Right: Portrait of the Yves-Joseph de 
Kerguelen-Trémarec. Left: Portrait of Captain James Cook 
by Nathaniel Dance-Holland 
 

 

 Indeed the first whaler recorded on the Kerguelen Archipelago arrived in 1792 

from Nantucket Island, USA. This journey was followed by several others during the 18th 

and 19th centuries. From 1786 to 1928, it was estimated that of all boats sent to the 

Southern Oceans, 46% were American, 19% English, and 3% French. The last American 

whaling boat observed in the Kerguelen Archipelago was the Margaret in 1909.  

 

 Many scientific expeditions also stopped at the Kerguelen Archipelago, notably 

the one from James Clark Ross with the Erebus and the Terror stayed from the 7th May to 

the 20th July 1840. Interestingly, Ross reported having seen 700 whaling boats (Delépine 

1995); this supports an intensive exploitation of the resources in this part of the world.  

 

 At the end of the 19th century, Henry and René-Émile Bossière obtained the 

permission to exploit the Kerguelen Archipelago for 50 years. This was the start of the 

first attempt of humans to live on this archipelago. A whaling station in Port-Jeanne 

d’Arc was built in 1908 and ran until 1926 in which up to 100 people were employed. 

Shepherds and their families also lived on the archipelago until 1931, this date was the 

end of the Boissière adventure in Kerguelen. 
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 In 1941, during World War Two, only four ships visited the archipelago, three 

German corsairs: the Atlantis, the Komet and the Pinguin and one Australian: the 

Australia. All of them stopped for a very short time (few days, only the Atlantic stayed 

for almost a month).  

 

 In 1949, the French government reaffirmed its sovereignty in this region. On the 

11th December 1949, the Lapérouse arrived in the Kerguelen Archipelago with the 

mission of finding a location for a future scientific base and for a runway. Finally the site 

of Port-aux-Français was chosen and on the 1st January 1950, a meteorological and a 

radio station started to work. The runway was never to be constructed. Finally, in 1951, 

yearly rotations to the archipelago started. The French Austral and Antarctic Territory 

(TAAF: Terres Australes et Antarctiques Françaises) was created in 1955 and 

administrated the islands (Crozet Archipelago, Kerguelen Archipelago, St Paul Island, 

Amsterdam Island and Éparses Islands) and the French Antarctic territory: Terre Adélie. 

Today, 60 to 120 people, depending on the season, are exclusively living in Port-aux-

Français. There is no permanent settlement on the archipelago. 

 

3- House mice on the Kerguelen Archipelago: 

 

 Mice are one of the seven terrestrial mammal species still living on the 

archipelago. In contrast to rabbits (Oryctolagus cuniculus), cats (Felis silvestris), sheeps 

(Ovis aries), mouflons (Ovis aries musimon) and reindeers (Rangifer tarandus), rats 

(Rattus rattus) and the house mouse were not voluntarily introduced (Chapuis et al. 

1994). The exact date of mouse introduction is unknown, however given the historical 

record from this archipelago, it is estimated that the mice came at the beginning of the 

19th century (Kidder 1876). Although evidence of mouse introduction on islands before 

its “official” introduction was described in Madeira (Förster et al. 2009), (when it was 

proved that the Viking introduced mice before the Portuguese invasion), this is rather 

improbable considering the localization of the Kerguelen Archipelago.  
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 The first documented observation of mice living on the archipelago was reported 

by Dr. J. H. Kidder, naturalist in the Transit-of-Venus expedition in 1876. He observed 

that: “the only mammal found on the island is the common mouse (Mus musculus), which 

abounds everywhere, and was doubtless imported by one the early sealers. It builds its 

nest in holes in sand-banks, lining it with dried grass-stems or bits of oakum, and 

appears to feed mostly on grass-seed”. The other paper mentioning the mice was 

published in 1975 by Lésel and Derenne. It is described that the mice occur on the main 

island (Grande Terre) and perhaps on other islands. The authors wrote: “The mouse was 

introduced in this way (by whalers and sealers) and it now occurs over the whole of 

Grande Terre. The species is perfectly adapted to its surroundings and lives in burrows, 

following the vegetation zone in its distribution”. These two papers are very important 

because they allow the dating of the mice introduction as well as the first observations of 

their rapid adaptation. 

 
Figure 11: Mouse distribution on the Kerguelen Archipelago (Chapuis et al. 2002 and J.-
L. Chapuis personal observation) 
 

 Today, the mice are distributed all over Grande Terre and in some islands from 

the Morbihan Gulf (Figure 11 - Chapuis et al. 2002 and J.-L. Chapuis personal 

observation). Pisanu et al. (2002) demonstrated that mouse populations on the Kerguelen 
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Archipelago are going through a succession of yearly population expansion, during 

austral summer, and contraction, during austral winter. Today the mice are still 

expanding and colonizing new territories on the archipelago; one example of this 

phenomenon is Cimetière Island. Indeed mice on this island were observed from 2002 

onwards (J.-L. Chapuis, personal observation). It is not unlikely that other islands could 

also have been colonized. The way of dispersal is unknown, however it is most probably 

a natural event even if human mediated transport cannot be excluded. Although the 

understanding of mouse colonization of Grande Terre is relatively easy, it is difficult to 

understand how the mice can migrate from one island to another. It has been reported that 

mice are able to swim (Randall et al. 1999) and direct observation of rats swimming from 

one island to another has been reported (Russell et al. 2005). However, considering the 

water temperature on these latitudes (5°C) it seems that active swimming cannot explain 

mouse migration. Moreover, since there are no trees on the archipelago, there is no 

possibility of rafting between islands. New mouse introductions from La Réunion could 

almost (but never totally) be excluded.  

 

 

Figure 12: Index of mouse 
abundance in Cochons Island in 
1997-1998 during the operation of 
rabbit poisoning (taken from 
Chapuis et al. 2001) 
 

 

 

 

 Because invasive species are damaging the Kerguelen environment, there are 

attempts to eradicate them. In 1992, 1994, and 1997, attempts to eradicate rabbits were 

performed respectively on Verte Island, Guillou Island and Cochons Island. Chapuis et 

al. (2001) used the first generation of anticoagulant: chlorophacinone. During this 

treatment, the Cochons Island mouse population was monitored (Figure 12) and mouse 

abundance dropped during several months before it regenerated again the year after. This 

suggests that the rabbit poisoning could have influenced the genetic variability of the 
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mouse population from Cochons Island but also from Guillou Island where the same 

procedure was applied (no mice are living on Verte Island).  

 
 
IV- AIMS OF THE STUDY: 

 

 Chapter 1: I investigated and described mouse genetic variability from sub-

Antarctic regions using mitochondrial and nuclear markers. These data allowed me to 

search for mechanisms and patterns of colonization. 

 

 Chapter 2: A genome-wide screen to investigated signatures of positive selection 

on Kerguelen Archipelago mice was performed using microsatellites. The candidate 

regions found in this first step were investigated also in other islands from the Sub-

Antarctic area in order to identify genomic regions of parallel adaptation. Finally, a set of 

five candidate genes which could putatively have a role in mouse adaptation to the Sub-

Antarctic environment were identified.   
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Chapter I: 

 

House mouse colonization patterns on the sub-Antarctic 

Kerguelen Archipelago suggest singular primary invasions and 

resilience against re-invasion 

 

 
I- INTRODUCTION:  

 

 Island colonization dynamics are of general interest in evolutionary biology, both 

with respect to understanding adaptive radiations, as well as for tracing migration 

patterns. In this context it is of particular interest to ask whether a single colonization can 

already result in a new established population that is refractory to further invasions, or 

whether multiple independent invaders are required before a new stable population can be 

established. This question can be particularly well studied in cases of recent island 

colonization, since this provides insights into the early phases of establishment and 

adaptation in a population context. The spread of the house mouse (Mus musculus L.) 

across many oceanic islands in contemporary times constitutes an excellent model system 

in this respect (Guénet and Bonhomme 2003, Berry and Scriven 2005). 

 

 Mus musculus originated on the Indian subcontinent within the past million years 

and there are currently at least three recognized subspecies: M. m. domesticus, M. m. 

musculus, M. m. castaneus (Boursot et al. 1993). M. m. domesticus invaded Western 

Europe about 3,000 years ago (Cucchi et al. 2005) and then colonized the rest of the 

world (i.e. Africa, America and Australia / New Zealand) mostly in the wake of increased 

human travel across the globe that started in the 16th century (Boursot et al. 1993, Guénet 

and Bonhomme 2003, Searle et al. 2009a). They were also very successful in colonizing 

isolated islands, such as those of the Southern Ocean (Berry and Peters 1975, Berry et al. 

1978, Berry et al. 1979, Jansen van Vuuren and Chown 2007, Searle et al. 2009c), where 
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they were brought by whaling ships making stops during their journeys or went for seal 

hunting. 

 

 
Figure 1: Locations of the Southern Ocean islands assessed in this study (left) and map 
of the Kerguelen Archipelago (right). The sampling sites in the Kerguelen Archipelago 
are all around the Morbihan Gulf and the research station at Port-aux-Français except 
Port-Couvreux, Pointe du Morne and the Cap Ratmanoff (see further details in Figure 5). 
 

 The Kerguelen archipelago was discovered on the 12th of February 1772 by Yves-

Joseph de Kerguelen-Trémarec. It is situated about 4,000 km away from the African and 

the Australia coast (Figure 1), has a large main island of 6,500 km2 called Grande Terre, 

and approximately 60 small islands (1–200 km²) surrounding it (Figure 1b). The climate 

is Oceanic cold, characterized by cold summers (8°C on average), no rigorous winters 

(2°C on average), by strong wind and mean annual rainfall of 747 mm (350-1479 mm 

during 1951-2009, Météo-France, Port-aux-Français). There was never an extended 

human settlement on the archipelago, but since 1951, there is a research and weather 

station with a continuous turnover of about 60 to 120 people per year. 

 

 The house mouse was most likely introduced to the Kerguelen at the beginning of 

the 19th century (Kidder 1876, Lésel and Derenne 1974, Chapuis et al. 1994), but certainly 

not before 1772, since it is too far away from the continents to have been a destination for 

ship traffic in previous times. During the high times of whale and seal hunting, there was 
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heavy boat traffic in this area, with a large potential to bring additional mice. Today, the 

mice have colonized all of Grande Terre as well as many of the small islands of the 

Morbihan Gulf (Pisanu et al. 2001, Le Roux et al. 2002). 
 

 With this defined history, as well as extensive data on the genetic diversity of the 

relevant source populations (Western Europe), we have an excellent test case to study 

population genetic consequences of island invasion, the subsequent spread to further 

islands and patterns of re-invasion. 

 

II- METHODS 

 

A°/ Mouse samples 

 
 Population samples from Cologne-Bonn (Germany), Massif Central (France) and 

Cameroon were described previously (Ihle et al. 2006). For these we had applied a 

sampling scheme that took care to sample the genetic variation within an area of about 50 

km diameter (i.e. trapping sites were at least 300 meters away from each other). Hence 

we consider these samples to reflect the local population diversity. Additional samples 

from Schleswig-Holstein (Northern Germany) were trapped in 2006 using the same 

scheme. In contrast, the mice from Paris (n=20) were caught within the confinements of 

the garden of the National French Library (BNF) in 2009, i.e. not following the extended 

sampling scheme above. The mice in the BNF are living in a space of around 1 ha at the 

center of the national library building. They are separated from other populations outside 

the BNF by poisoning. Hence, these are considered to represent a single sample from a 

local population, not necessarily reflecting the diversity in the extended area. 

 

 The Kerguelen Archipelago samples were caught mainly in the Morbihan Gulf 

area including several islands and the adjacent Grande Terre (see Table 1 for details). 

Again it was not possible to apply the extended sampling scheme in this case. Instead, the 

sampling followed the scheme described in Chapuis et al. (2001). All the mice in the 

Kerguelen Archipelago were captured in non-inhabited area except around the research 
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station in Port-aux-Français. The mice were trapped using a line system, with three 

parallel lines 40m away from each other and a length of approx. 100m each with 34 traps 

along the line (1 trap every 3m). Mice from Port-aux-Français (n=41), Guillou Island 

(n=79), Cochons Island (n=69), Isthme Bas (n=38), Mayes Island (n=18), La cabane dite 

“Jacky” (n=29), Cimetière Island (n=28), Australia Island (n=24), Port-Jeanne d’Arc 

(n=16), Cap Ratmanoff (n=8), Sourcils noirs (n=5), Port-Couvreux (n=4) and Pointe du 

Morne (n=1) were trapped in 2008 and 2009. Mice from Moules Island (n=12) and Stoll 

Island (n=4) were captured in 2005. Other Mayes Island (n=57) and Australia Island 

(n=4) mice were trapped in 1996. Amsterdam Island (n=3) samples were collected in 

December 2007. Marion Island mice (n=18) were caught at two localities across the 

island, namely at the Meteorological Station and at Mixed Pickel Cove in 1990 (n=6) and 

2004 (n=12) (Jansen van Vuuren and Chown 2007). Macquarie Island (n=12), Antipodes 

Island (n=18) and Auckland Island (n=13) mice where caught in 2005-2006 (Searle et al. 

2009c). Additional samples from Macquarie Island (n=28) from 2005 were used. 

Falkland Islands samples from New Island (n=12) were caught in 2006 (Quillfeldt et al. 

2008) and 2010 (n=18). 425 Samples from the other Falkland Islands namely Saunders 

Island (n=4), Steeple Jason Island (n=5), East Falkland (n=2) and West Falkland (n=3) 

and a mouse from South Georgia were caught in 2008/2009. 

 

B°/ D-loop sequencing 

 

 DNA was extracted using salt extraction. The D-loop was amplified using the 

primers 5’- CATTACTCTGGTCTTGTAAACC and 5’-

GCCAGGACCAAACCTTTGTGT. The reactions were carried out in 10μL final volume 

with the following cycling parameters: 95°C for 15 minutes followed by 35 cycles of 

95°C for 30s, 60°C for 1.30 min, 72°C for 1min and 15 min at 70°C for elongation time. 

Exo-Sap purification (USB Corp.) was performed with the following incubation: 37°C 

for 20min and 80°C for 20min. The cycle sequencing reaction parameters were 96°C for 

1 min followed by 29 cycles of 96°C for 10s, 55°C for 15s and 60°C for 4min. The 

sequences generated were visualized using CodonCodeAligner Ver. 2.0.1 (CodonCode 

440 Corp.) BioEdit ver.7.0.9.0 (Hall 1999) and MEGA ver. 4 (Tamura et al. 2007). The 
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haplotype data file was calculated using DnaSP 4.50.3 (Rozas et al. 2003). The network 

was calculated using the Median Joining method and drawn with Network ver. 4.5.1.0 

(Fluxus Technology Ltd), taking care that missing data did not affect the network (Joly et 

al. 2007). The sequences were submitted to Genbank and are available under accession 

numbers HQ185258 to HQ185282. 

 

 

C°/ Microsatellite typing 

 
 From a previously described set of 1,000 microsatellites (Thomas et al. 2007, 

Teschke et al. 2008), we chose 18 (Chr01_25, Chr02_01, Chr03_21, Chr03_24, 

Chr04_31, Chr05_15, Chr05_45, Chr07_38, Chr08_11, Chr09_20, Chr11_64, Chr12_05, 

Chr13_22, Chr14_16, Chr16_21, Chr17_09, Chr18_08, Chr19_08) which were known to 

be polymorphic in the German and French populations. Six Y-chromosomal loci which 

we found to be polymorphic in the German and French populations were also typed for 

all island samples where more than 8 males were available. Primer sequences used to 

type the Y-chromosome were: Y6 aaccaccactatcttcattc and acagagtatacgtacgtgtg, Y12 

cccaatctaggcatttaatt and attcaccattctccagtgtg, Y21 accatcagatgatcaccaagtgc and 

tccagcattcaatggtacaggct, Y22 tcatggtagacaccatggcaac and tcagttttctaggtggaggggtg, Y23 

acctcactcaggatgatgccctc and agcctgtgcgcacgtgtgtg, Y24 tctgggggtttcgggtggagcct and 

gcatcacagctgaggctctgtgg. Forward primers were labeled with FAM or HEX dye on the 5’ 

end. The reactions were carried out in 5μL final volumes using 10ng DNA template using 

a multiplex 460 PCR kit (Qiagen). The PCR conditions were: 95°C for 15min followed 

by 28 cycles at 95°C for 30s, 60°C for 1.30min, 72°C for 1.30 min with a final extension 

at 72°C for 10 min. PCR products were diluted 1:20 in water. 1μL of this dilution was 

added to 10μL of HiDi formamide and 0.1μL of 500 ROX size standard (Applied 

Biosystems). The denaturation step was performed with the following incubation times: 

90°C for 2min and 20°C for 5min. The alleles were analyzed using GeneMapper ver. 4.0 

software (Applied Bioscience). The distances for the allele sharing tree were calculated 

using MSA3.15 (Dieringer 2003). The tree was generated using R and drawn using 

MEGA4 (Tamura et al. 2007). Structure was analyzed using Instruct (Gao et al. 2007) 
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because this method does not assume Hardy Weinberg equilibrium within loci. The run 

parameters were as follow: 2 chain number, a burn-in period of 100,000 simulations 

followed by a run length of 2,000,000 MCMC simulations and ten iterations for each K 

(number of clusters). To draw the structure diagram the softwares CLUMPP (version 

1.1.2 - Jakobsson and Rosenberg 2007) and Distruct (Rosenberg, 2004) were used. The 

PCA was generated using the software Genetix 4.03 (Belkhir  et al. 2004). 

 

III- RESULTS 

 

A°/ Mitochondrial Data 

 
 We sequenced 834 bp of the mitochondrial control region (D-loop) from all 

samples and found that all haplotypes grouped within the known M. m. domesticus 

haplotypes (Figure 2a), i.e. belong to this subspecies. This was already known for some 

of the islands (Jansen van Vuuren and Chown 2007, Searle et al. 2009c) and we show 

here that it is also the case for the Kerguelen Archipelago, Amsterdam Island, Falkland 

Islands and South Georgia. Hence, the source populations of the mice colonizing the 

small Southern Ocean islands came most likely from Western Europe, or via Atlantic 

Islands and North America which were colonized by Western European mice.  

 

 For the Kerguelen Archipelago mice, we identified two major haplotypes. One is 

a very common one that was previously found in Western Europe, Cameroon and USA 

and occurs also on other Southern Ocean islands including the Falkland Islands and 

Auckland Islands. We find it on Grande Terre as well as adjacent islands (colored yellow 

in Figure 2a). The second major haplotype is very different from the first one and was 

previously found in Portugal and in the USA, but is also related to a haplotype known 

from Cameroon. Within the Kerguelen Archipelago, it is restricted to two small 

neighboring islands in the Morbihan Gulf, namely Cochons Island and Cimetière Island 

(colored dark pink in Figure 2a). 
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Figure 2: D-loop haplotype networks calculated using Median Joining for M. m. 
domesticus samples with M. m. musculus as outgroup. The size of the circles represents 
the frequency of the respective haplotype in our sample. Each node is one mutational step 
away from the next node, numbers indicate the cases where more than one step is 
required to join the nodes. Small red circles indicate branch splits. (A) General network 
including all published sequences that are related to the Kerguelen haplotypes. (B) Same 
network as in (A), but only with the Falkland samples highlighted. 
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 In addition to these major haplotypes, we identified eight new haplotypes in the 

Kerguelen Archipelago, which are only a single or two mutational steps apart from the 

first major Kerguelen haplotype. It is therefore likely that these have arisen on the 

Kerguelen Archipelago. A comparable pattern of one major haplotype with several single 

step derivatives is also known for the mice that have colonized Madeira (Förster et al. 

2009). 

 

 To further assess whether this is a general pattern on small islands, we have more 

closely inspected the haplotype distribution on the Falkland Islands. We find three 

closely related haplotype groups (Figure 3b). The first group is identical to the Grand 

Terre haplotypes on the Kerguelen and occurs in East Falkland, as well as on New Island, 

which is in the far West of the archipelago. The second is related to haplotypes known 

from Great Britain and occurs on Steeple Jason Island, which lies far out in the North-

West, as well as on West Falkland. The third is related to haplotypes known from 

Germany and Great Britain and is found on Saunders Island, which is very close to the 

Northern part of West Falkland. None of these islands has disparate sets of haplotypes, 

thus confirming the notion of single primary colonizations. On the other hand, the 

colonization pattern and history across the archipelago is apparently complex, since 

geographic proximity within the archipelago does not correlate with haplotype 

similarities. More intensive sampling will be required to unravel this further. 

 

B°/ Microsatellite data 

 

 A total of 18 unlinked autosomal microsatellites were typed for all samples and 

heterozygosities as well as average number of alleles were calculated for each sampling 

location (Table 1). All island samples show reduced heterozygosities (0.43 on average) 

and lower average allele numbers (2.9 on average) when compared to the standard 

samples from the European mainland populations Cologne-Bonn, Germany (0.84 /11.7) 

and Massif Central, France (0.86 / 12.1). Such a reduced heterozygosity and lower allele 

numbers on the islands is in principle in line with the assumption of a colonization 
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Table 1: Genetic parameters for 18 microsatellites loci and D-loop sequences 

 
 

 

 

 
autosomal microsatellite loci mitochondrial D-loop 

area location N Hexp Hobs 

average 
number of 
alleles per 

locus 

N number of 
haplotypes 

Schleswig-Holstein - - - - 9 6 
Germany 

Cologne - Bonn 43 0.84 0.61 11.7 44 26 
Paris 20 0.46 0.47 3.0 17 1 

France 
Massif Central 46 0.86 0.75 12.1 62 22 

Cameroon Kumba 46 0.61 0.48 6.7 58 9 
Port-aux-Français 41 0.48 0.44 4.1 28 3 

Jacky 29 0.48 0.49 3.3 21 3 
Isthme Bas 38 0.48 0.46 3.9 36 1 

Cap Ratmanoff 8 0.46 0.49 2.7 6 1 

Pointe du Morne 1 0.28 0.56 1.6 1 1 
Port-Couvreux 4 0.47 0.49 2.6 4 2 

Port-Jeanne d'Arc 16 0.42 0.42 3.3 15 3 

G
ra

nd
e 

Te
rr

e 

Sourcils Noirs 5 0.38 0.43 2.3 5 1 
Moules Island 12 0.33 0.37 2.4 10 1 

Stoll Island 4 0.38 0.48 2.1 4 1 
Australia Island 28 0.43 0.38 3.5 27 1 

Mayes Island 71 0.41 0.36 4.0 71 2 
Guillou Island 79 0.36 0.34 2.4 78 1 

Cochons Island 69 0.36 0.35 2.4 65 1 

Kerguelen 
Archipelago 

 

M
or

bi
ha

n 
G

ul
f 

Cimetière Island 28 0.38 0.37 2.5 27 1 
Marion Island 18 0.56 0.51 4.3 18 4 

Amsterdam Island 3 0.49 0.54 2.6 3 1 
South Georgia 1 0.16 0.31 1.3 1 1 

Antipodes Island 18 0.44 0.51 3.1 17 1 
Macquarie Island 40 0.42 0.38 3.3 38 3 
Auckland Island 13 0.42 0.39 3.2 13 2 

New Island 12 0.44 0.41 3.2 30 2 
Steeple Jason 5 0.33 0.33 2.3 5 3 

Saunders Island 4 0.55 0.44 3.0 4 3 
East Falkland 2 0.49 0.64 2.3 2 1 

other 
Southern Ocean 

islands 

Fa
lk

la
nd

 
Is

la
nd

s 

West Falkland 3 0.48 0.49 2.7 3 3 
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bottleneck, but the situation is more complex. It is known that local inbreeding and 

communal nesting occurs in natural populations of the house mouse (Berry and Bronson 

1992), which can lead to local reduction of genetic diversity (Ihle et al. 2006). The 

sampling scheme for the German and French standard populations took account of this 

effect and took samples from an extended area to obtain a measure of the average genetic 

diversity in the extended area (Ihle et al. 2006). But the sampling on the islands could not 

be done in this way, since many are actually smaller than the areas considered for the 

standard sampling protocol. To compare the island results with an equivalent sampling 

scheme on the mainland, we typed samples that were all caught in the garden of the 

National Library of France in Paris. Average heterozygosity (0.47) and average allele 

number (3.0) is indeed also lowered for these and thus more comparable to the island 

samples. 

 

 Previous studies found evidence that there could be differences between male and 

female mediated gene flow patterns (Jones et al. 1995, Förster et al. 2009). We have 

therefore also typed six Y-chromosomal microsatellites for those island samples where 

eight or more males were available (Table 2). For five of the Y-chromosomal loci we find 

only one major allele at most locations on the Kerguelen Archipelago, suggesting that 

only one Y chromosomal haplotype has been involved in the colonization (Table 2). Only 

Y24 on Cimetière Island is fixed for a different allele, but this is a secondary effect, since 

these mice are derived from Cochons Island (see below) that harbor this allele at low 

frequency. Additional alleles are also found at other loci, but most of these are only a 

single mutational step away from the major allele and have thus likely been generated 

after the colonization. This explains also the diversity of alleles at locus Y22, since this 

locus appears to be generally hypervariable, suggesting a particularly high mutation rate. 

Interestingly, even this hypervariable locus has only a single major allele on Cochons 

Island and Cimetière Island, indicative of very recent colonization or strong bottleneck 

effects.  



 30

Table 2: Distribution of Y-chromosomal microsatellite alleles at six loci. Top row numbers refer to allele length, the other numbers 
refer to the frequency of the respective allele (in percent). Alleles for the Cameroon samples are only included in the top part for 
comparison. The alleles for loci Y23 and Y 22 are not congruent with the major haplotype that is found on the Kerguelen Islands. 
 

 Y6 Y12 Y21 Y24 
  120 122 124 118 124 129 132 135 137 140 295 316 318 320 321 322 324 373 392 393 395 397 399 403 

Marion (8)   75 25           100   75       25     71 29           
Antipodes (12) 100         100               25   67 8         100     
Macquarie (21)   100           10 90         95 5               95 5 
Cameroon (23) 95   5   93   7       5 95           5   95         

Port-aux-Français 
(28) 100       100             100               86 14       

Jacky (13) 100       100             100               92 8       
Isthme Bas (29) 100       100             100               100         

Port-Jeanne d´Arc 
(11) 100       100             90 10             100         

Moules (8) 100       100             50 50             100         
Australia (15) 100     7 93             93 7             100         
Mayes (52) 100     2 96 2           100               92 4 4     
Guillou (38) 100       100             100               100         
Cochons (36) 100       100             100               80 20       
Cimetière (16) 100       100             100                 100       

                         
 Y23 Y22 

  315 317 319 321 323 329 239 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 291 294 
Marion (8)           100   25       13 50 13                     

Antipodes (12)     100       67           25       8               
Macquarie (21)   100               5   62 24 9                     

Port-aux-Français 
(28)       93 7                 4   4 18 40 21 11   4     

Jacky (13)       100                       38 15 15 23 8         
Isthme Bas (29)       93 7                     10 3 14 14 31 24   3 3 

Port-Jeanne d´Arc 
(11)       100                           100             

Moules (8) 50     50                             14 57 29       
Australia (15)       100             7     7   40 13 20 13           
Mayes (52)       100           10 10     2 2 35 4 25 8 2         
Guillou (38)       100                         16 84             
Cochons (36)     3 97                   97 3                   
Cimetière (16)       100                 6 94                     
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 The Y-chromosomal allele patterns from the other islands that were typed 

(Marion Island, Antipodes Island and Macquarie Island) are very distinct from the ones 

that we found in the Kerguelen, with almost no overlap in the major alleles. Thus, they 

represent distinct Y chromosomal haplotypes. All of the loci considered here were 

previously typed for the German and French populations and also showed a high 

diversity of alleles there (not shown). Intriguingly, however, for four of the loci the major 

alleles found in the Cameroon population correspond to the major alleles in the 

Kerguelen (included in the upper part of Table 2). This suggests that there is some 

relationship of the Kerguelen mice to the Cameroon mice, albeit not necessarily a direct 

one, since the Cameroon population represents a new colonization by itself. 

 

C°/ Population relationships 

 
 To assess the population structure and relationships on the basis of the 18 

autosomal microsatellites, we produced an allele sharing tree and run a PCA analysis  

(Figure 3). In the allele sharing tree, we find a coherent assignment of most populations 

and samples to distinct clades (Figure 3a). The sole exceptions are population samples 

from the Cologne- Bonn and Massif Central areas that are represented in multiple clades, 

likely reflecting their high diversity. With additional markers their genetic clustering was 

readily recovered in a previous study (Ihle et al. 2006). 

 

 Two major clades are apparent within the Kerguelen Archipelago. The 

Cochons/Cimetière island samples are very different from all the other islands, although 

they appear to be somewhat associated to the Cameroon/German clade. Among the other 

islands, the Guillou Island samples form a single distinct clade and the island pair 

Australia/Mayes a separate mixed clade (Figure 3a). The Grande Terre samples as well as 

Moules Island and Stoll Island are mixed among each other, without clear distinction. 

 

 The PCA analysis is largely congruent with the allele sharing tree, but shows a 

stronger distinction of the two Kerguelen groups and no particular association of the 
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Cochons/Cimetière island samples with the Cameroon/German clade (Figure 3b). On the 

other hand, it provides less resolution within each of the groups.  

 
Figure 3 : Population structure based on autosomal microsatellite loci. (A) 
Neighborjoining tree based on the calculation of the proportion of shared alleles 
calculated for all individuals. Samples from the same location share the symbol/color 
pattern. (B) PCA plot with three axes displayed. Every square represents an individual, 
color patterns match the ones in (A). 
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 To study the population structure within the Kerguelen Archipelago further, we 

conducted an individual-based cluster analysis with the program Instruct (Gao et al. 

2007). To assess the possible number of clusters K, we performed runs with increasing 

numbers of K and recorded the likelihoods. A plateau was reached for K = 10 to 15, 

depending on the run, but the assignment of individuals to clusters was very unstable for 

these values, indicating that the lower K values reflect the true structure better. In Figure 

4 we plot therefore only the results for values of K ranging from 4 to 8, alongside the 

number of runs that gave consistent assignments to clusters. We find that a value of K = 6 

appears to be stable and we therefore use this for evaluation.  

 

 
Figure 4: Structure analysis within the Kerguelen Archipelago. Only the results for the 
hypothesis of between 4 - 8 population groups (K = 4 to K = 8) are shown, represented by 
different colors. Each vertical bar represents a single individual, as well as its likelihood 
to belong to a given population group. The numbers below the K values represent the 
number of times that the same pattern was obtained in 10 independent runs of the 
program. 
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 The structure analysis results thus confirm the pattern seen on the allele sharing 

tree. The island pairs Australia/Mayes and Cochons/Cimetière each form a single cluster 

and Guillou Island forms a clear separate cluster. The remaining locations are much more 

intermixed, only Moules Island is relatively homogeneous, although Moules-like 

genotypes appear to occur also in other locations. Interestingly, Stoll Island is mixed into 

Grande Terre populations but given the geographical location and its proximity to the 

main island (about 20 m), the mice might have originated from there (Figure 4). Figure 5 

provides a summary diagram showing the genetic structure of all sampling sites on the 

Kerguelen Archipelago. Note the clear distinction of the two mitochondrial haplotype 

groups and the clear structure results for Guillou Island and Moules Island, as well as the 

island pairs Mayes/Australia 220 and Cochons/Cimetière. 

 

 
 
Figure 5: Summary of population structure analysis and mitochondrial haplotype 
distributions across the Kerguelen Archipelago. 
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IV- DISCUSSION 

 

A°/ Primary colonization 

  

 Our data are compatible with the notion of an initial colonization of the Kerguelen 

Archipelago by a small group of mice, at the minimum the genetic equivalent of two 

females and one male. This can be inferred from the presence of two major mitochondrial 

haplotypes, as well as a single major Y-chromosomal haplotype. However, the distinct 

placement of the Cochons/Cimetière island samples in the allele sharing tree and the PCA 

analysis, as well as the presence of a single mitochondrial halotype only (i.e. no single 

step derivatives), suggests that these mice are in fact derived from a second more recent 

colonization event. Intriguingly, however, there is a similarity of the Y-chromosomal 

haplotypes of these mice with the rest of the Kerguelen mice. This seems unlikely to have 

occurred by chance, since the loci we have typed are generally polymorphic in the 

Western European mice. The three other island samples in our study (Macquarie Island, 

Antipodes Island and Marion Island) have indeed different major Y-chromosomal 

haplotypes (Table 2). Given that the Y-chromosomal haplotype from Cameroon is closely 

related to the Kerguelen haplotype, one could propose that both, the first and the second 

colonization came from Cameroon, which was itself colonized from Western Europe. 

The fact that both major mitochondrial haplotypes in the Kerguelen Archipelago are also 

identical or closely related to haplotypes found in Cameroon supports this notion. 

However, we are not confident that such a direct connection exists. Although historical 

ship journeys are known to have stopped both at Cameroon and the Kerguelen 

Archipelago, for example the German scientific expedition “Deutsche Tiefsee” in 1898 

from La Valdivia (Chum 1903), these usually have had several additional stops on other 

islands and it is very difficult to trace how many boats went on to the Kerguelen 

Archipelago and the routes they took. Thus, it seems also possible that other Atlantic 

islands or Atlantic harbors of the USA, where most whaling boats that went to the 

Kerguelen Archipelago came from (the first whaling expedition known came from 

Nantucket Island (USA) in 1792 - Delépine 1995), share the allele patterns with the 

Cameroon population and could thus have been the source population for a secondary 
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invasion on Cochons/Cimetière Islands. Again we note that the two major mitochondrial 

haplotypes found in the Kerguelen occur also in the USA. More intensive sampling of the 

USA locations needs to be done before this question can be answered in a satisfactory 

way. Still, it remains noteworthy, and also unexpected, that two separate primary 

invasions on the Kerguelen have come from related source populations. Although our 

study is focused on the Kerguelen Archipelago, we also identified interesting patterns for 

mice on the Falklands Islands. Both in the mitochondrial haplotype analysis, as well as in 

the allele sharing tree, different locations in the archipelago can be molecularly 

differentiated, and therefore may be regarded as different populations. Three 

mitochondrial haplotype groups were detected, whereby two of them are shared between 

disparate islands. Interestingly, West Falkland and Steeple Jason Island, which are about 

40km away from each other, share not only the mitochondrial haplotypes but are also 

grouped together in the allele sharing tree (Figure 3a). On the other hand, New Island and 

East Island, which share also the mitochondrial haplotypes, are very different in the allele 

sharing tree. The Falkland Islands have been regularly visited by boats from different 

nations (e.g. England, Spain, France etc.) and even today a population of around 3,000 

Falkland Islanders lives there. Thus, the geographical location (near South America) and 

the presence of an extended human population should have increased the number of 

potential colonization events in the Falklands Islands. Still, it appears from our limited 

data that the different colonizations that have occurred on different islands of the 

archipelago may also have been resilient to re-invasions. 

 

B°/ Subsequent spread 

 

 As expected, the population and allele patterns found within the Kerguelen 

Archipelago allow some general conclusions on the fate of populations after initial 

colonization. First of all, we note that these mice have retained a certain amount of 

genetic diversity. The heterozygosity values, as well as the average number of alleles, are 

comparable to the sample that we caught within a single deme in Europe (Paris). Since 

the mice that came with the first ship would likely represent the deme from the harbor 

where the ship started, we can assume that the mice entering these ships had a similarly 
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reduced diversity (when compared to the diversity across demes in the French and 

German populations). Hence, there may have been only little additional loss of genetic 

diversity during the ship passage and after colonization. In population genetic terms this 

means that the mouse population would have quickly expanded after arrival on the 

Kerguelen Archipelago, which would have prevented further loss of genetic diversity due 

to drift in small populations. Mice generally go through successions of population 

expansions and contractions between seasons every year (for Guillou Island, see Pisanu 

et al. 2002) suggesting that their life history patterns are well compatible with such a 

scenario. There were further colonization cycles within the Kerguelen Archipelago, 

namely the ones that lead to the colonization of the islands in the Morhiban Gulf. The 

islands Guillou, Mayes and Australia are close to Grande Terre (<500 m) and initial 

colonization might have occurred by animals that drifted there, or were transported by 

humans. Active swimming, as it was directly observed for rats (Russell et al. 2005) can 

also not be excluded, but seems less likely for small rodents due to the cold water 

temperatures (about 5°C in summer). Nevertheless, many small islands close to Grand 

Terre harbor mouse colonies. The initial colonizers on the small islands would have 

quickly expanded and retained much of their genetic variation, although the allelic 

patterns are sufficiently distinct to make them genetically separable from the Grande 

Terre population. The Grande Terre samples, on the other hand, are not genetically 

distinct from each other, suggesting that they are connected by continuous gene flow. 

This shows at the same time that very little re-invasion of the smaller islands appears to 

occur, since their genetic distinctness appears to be maintained (i.e. not subjected to the 

high levels of gene flow that occur on Grande Terre). In contrast to the islands close to 

Grand Terre, Cochons Island and Cimetière Island are located further away in the 

Morbihan Gulf and these are the ones where we indeed see a different pattern, namely a 

secondary invasion by mice not coming from Grand Terre (see above). They harbor only 

a single mitochondrial haplotype with no additional mutational variants (Figure 2) and 

also only a single major allele at the hypervariable Y-chromosomal locus Y22 (Table 2). 

This implies that the colonization has occurred later than that of the rest of the 

Archipelago. Indeed for Cimetière Island mice have only been recorded from 2002 

onwards and it is possible that they were inadvertently transferred from the neighboring 
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Cochons Island by humans. Another possibility could be a natural migration, since the 

distance between the islands is only tenths of meters a low tide. There is evidence to 

suggest that the island was frequently visited for whaling and fishing activities around 

100 years ago when the first mice could have arrived, although cauldrons used for 

extracting fat from penguin can be found only on Cochons Island today. On Cochons 

Island the mouse population was also inadvertently affected by a rabbit eradication 

program using poison from 1992 to 1997 (Chapuis et al. 2001). This could have resulted 

in a bottleneck and could thus explain the lowered genetic diversity. The same 

eradication program was also conducted on Guillou Island and could be the reason for 

low genetic diversity on this island as well as the different cluster in the structure and the 

allele sharing tree compared to other Kerguelen samples. Apart from the 

Cochons/Cimetière Islands case, we have no evidence for secondary successful 

colonization across the entire Kerguelen Archipelago, although new mice must have 

frequently arrived every year during whaling times. In other island mice colonization 

studies, it was found that although mitochondrial patterns similarly suggest only a single 

invasion, there could still be continued male mediated gene flow (Jones et al. 1995, 

Förster et al. 2009). However, given that we have only one major Y-chromosomal 

haplotype throughout the archipelago, this seems unlikely for the Kerguelen Archipelago. 

Hence, we can conclude that it must be difficult for newly arriving mice to invade the 

already occupied territory in the Kerguelen. Thus, our findings of single primary 

invasions and resilience to re-invasions corroborate the studies by Searle et al. (2009a, b, 

c), which have suggested that the phylogeographic patterns seen for mouse populations 

reflect ancient human movements, with only little disturbance by later movements. The 

successful experimental introduction of house mice into the Scottish Isle of May (Berry 

et al. 1991) does not contradict this conclusion, since in this case the mice came from 

another Scottish island with similar ecology, i.e. are expected to have had the same 

environmental adaptations at the time where they arrived. 

 

 

 

 



 39

C°/ D-loop mutation rate 

 
 We identified several new mitochondrial haplotypes, mainly in Kerguelen, but 

also on the Falklands, Marion Island and Macquarie Island, most of which are only one 

step away from the major resident haplotype (Figure 2). These can be expected to have 

arisen only after colonization of the respective islands. We can therefore estimate a 

mutation rate based on the colonization time of approximately 200 years ago. A single 

mutation among 834 bp is equivalent to 0.12% sequence divergence which, when divided 

by 200 years, gives a mutation rate of 6 x 10-6
 per year. This is a factor of 150 higher than 

the estimate of 4 x 10-8
 per year for the intraspecific mutation rates of the same D-loop 

region suggested by Geraldes et al. (2008) and Rajabi-Maham et al. (2008), which is 

already higher than the interspecific rate. The dependence of such estimates on the 

coalescence times considered is a well known pattern in various taxa (Ho et al. 2005), 

although the reasons for this a still disputed (Woodhams 2006, Galtier et al. 2009). The 

sequencing of the mitochondrial genomes of laboratory derived strains that were 

established about 100 years ago indeed suggests a 10-15 times higher mitochondrial 

mutation rate among such recently derived lineages, although no new mutations were 

found in the D-loop region (Goios et al. 2007). But even taking this rate into account, our 

estimate is still a factor of 10 times higher, suggesting that another process must play a 

role. This could be selective sweeps caused by advantageous mutations elsewhere in the 

mitochondrial genome and providing a new adaptation in the respective matriline. For 

humans it has been suggested that such mutations do indeed occur and have specifically 

been fixed in individuals of populations living at higher latitudes indicative of providing 

an adaptation to the colder climates (Ruiz- Pesini 2004). 

 

D°/ Adaptation and genetic isolation 

 

 The ecological situation of the mice on the Kerguelen Archipelago is very 

different from Western European conditions, both with respect to the cold climate, as 

well as food conditions and the virtual absence of human settlements. Still, mouse 

densities can become very high, at least in regions where they have no predators (Angel 
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et al. 2009). Also, it has been shown for mice on sub-Antarctic islands that they have 

changed their preferred diet from plant seeds to macroinvertebrates for most of the year 

(Le Roux et al. 2001, Smith et al. 2002). All of this indicates that mice are likely to be 

locally adapted to these conditions. This could explain why it is so difficult for newly 

arriving mice to invade the existing populations. They would not only have problems to 

become integrated into the existing social structure, but would also have to compete with 

better adapted competitors. Alternatively, this may be a simple statistical effect, given 

that newly arriving mice would usually be few in numbers and resident mice form a large 

population. Thus, even if newly arriving mice mate successfully with the resident mice, 

the new alleles and haplotypes that they carry might not rise to sufficient frequencies to 

make an impact on the overall pattern. On the other hand, given that the single 

colonization pattern appears to be consistently found on all small islands, it seems more 

likely that local adaptation plays a role as well. Interestingly, the colonization of the 

much larger and ecologically diverse New Zealand Island is characterized by multiple 

invasions, including different sub-species (Searle et al. 2009c). Thus, it seems possible 

that the mouse populations on small islands can become more quickly ecologically and 

genetically isolated than mouse populations on larger islands and thereby have a higher 

propensity to eventually form a new subspecies or species, possibly enhanced through the 

fast formation of new chromosomal races (Britton-Davidian 2000). 



 41

Chapter 2 

 

Microsatellite genome wide screen to find selective sweeps for 

adaptation to the Sub-Antarctic environment 
 

 

I- INTRODUCTION  

 

 One challenge of evolutionary biology is to understand the genetic mechanisms of 

phenotypic adaptation. The most common approaches are candidate gene studies, in 

which a list of putative genes potentially involved in adaptations are tested (for a review 

see Jorgensen et al. 2009) and genome wide scans, which do not use an a priori 

hypothesis and so are able to identify new genes that have recently been subject to 

positive selection (for a review see Oleksyk et al. 2010).  

 

 One of the most common approaches to identify loci under selection is 

“hitchhiking mapping” (Harr et al. 2002, Schlötterer 2003). Under positive selection, an 

allele will increase its frequency within population until it reaches fixation. During this 

process, the particular allele will drag neighboring genomic regions to fixation as well. 

This phenomenon is called hitchhiking and the resulting reduction of variability at loci 

linked to the positively selected one is known as selective sweep (Maynard Smith and 

Haigh 1974). Subsequently, recombination will break the haplotype blocks and by this, 

after a certain amount of time, the signatures of the selective sweep will be lost. 

Parameters like selection intensity, recombination rates, mutation rates, and population 

size are important for the strength of the hitchhiking effect (Maynard Smith and Haigh 

1974, Kaplan et al. 1989, Wiehe and Stephan 1993). The hitchhiking mapping approach 

can only identify regions which have experienced very recent and very strong positive 

selection on new mutations. The advantages and weaknesses of the hitching approach are 

well understood (Thornton et al. 2007). The main problem of such an analysis is that 

certain events in the history of demography such as a strong bottleneck for example can 

mimic the polymorphism produced by selection (Jensen et al. 2005, Hermisson 2009) 
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leading to the necessity of taking demographic history into account in the approach of 

hitchhiking mapping. 

 

 Single nucleotide polymorphisms (SNP) and microsatellites are two types of 

markers used in genome wide association studies. Markers must be chosen carefully. 

SNP screens have increased considerably during the past decade and numerous studies 

have been based on this marker (for example see Nielsen et al. 2005, Sabeti et al. 2007, 

Oleksyk et al. 2010 for a review). However, many of the SNPs were initially identified 

using a SNP discovery process which leads to loci with high frequency alleles being 

preferentially chosen. Typically, the SNPs are ascertained by direct sequencing in a 

relatively small population and then typed in much broader samples resulting in 

ascertainment bias which has to be taken into consideration during further analysis. 

Microsatellites have also been used as markers for selective sweep screens (Schlötterer 

2001, Harr et al. 2002, Payseur et al. 2002, Kauer et al. 2003, Thomas et al. 2007, 

Teschke et al. 2008). Microsatellites are typically composed of short tandem repeats (2-6 

bp - Tautz and Renz 1984) and are very polymorphic (Tautz 1989). Mutation rates among 

microsatellites are not uniform; indeed, their mutation rates increase with an increasing 

number of repeat units (Ellegreen 2004). Thanks to their high degrees of polymorphism, 

microsatellites are less subject to ascertainment bias and became one of the favorite 

markers for population genetic studies, identity testing, and genome mapping (Tautz 

1989, Schlötterer 2001, Harr et al. 2002, Payseur et al. 2002, Ellegreen 2004, Thomas et 

al. 2007, Teschke et al. 2008, Jones et al. 2010).   

 

 House mice are best known as commensal pest species all over the world (Global 

Invasive Species Database). Indeed they have the capability to survival in an enormous 

variety of environmental conditions, from frozen carcasses in cold storage (Laurie 1946) 

to wild living in Africa (Ihle et al. 2006). Here, I focused on a particular case, the 

adaptation to Sub-Antarctic and Oceanic Cold islands in the southern hemisphere. Five 

islands were used in the study, three Sub-Antarctic (Kerguelen Archipelago, Macquarie 

Island and Marion Island) and two Oceanic Cold islands (Antipodes Island and Auckland 

Island). As already discussed in the general introduction, mice were probably introduced 



 43

at the beginning of the 19th century from Europe (Chapuis et al. 1994, Hänel and Chown 

1999, Kidder 1876, Lésel and Derenne 1974, Searle et al. 2009c). The climate on these 

islands is described as oceanic cold. This type of climate is known to have no rigorous 

winter (2°C on average for the coldest month), cold summer (8°C on average for the 

warmest month), strong wind, and rainfall. There is no extended human settlement on any 

of these islands with the exception of research stations. These mice have been described 

to live close to their physiological limits and hence are likely to respond detectably to 

environmental stresses (Berry et al. 1978). This tremendous change in environmental 

conditions is predicted to induce behavioral changes but also to increase selective 

pressures on the genome, leading to allele fixation at adaptive trait loci.  

 

 A genome-wide screen using microsatellites (Thomas et al. 2007) to search for 

signatures of selective sweeps was performed on Kerguelen Archipelago mice and led to 

the identification of 38 pre-selected loci. Because the Kerguelen Archipelago mouse 

genomes have low levels of heterozygosity (Chapter I), a fixed region in the genome 

could be due to their demographic history (i.e. the strong bottleneck that mice 

experienced during their immigration to these islands) rather than to a selective sweep. 

The pre-selected loci were tested on 5 different islands representing 6 mouse populations 

in total. All the different island mouse populations used in this study were defined as 

different genetic populations with no gene flow between them (Chapter I). Looking at 

these different islands would therefore potentially allow the identification of genomic 

regions involved in parallel adaptations. Using this approach, 5 genes lying in regions 

which displayed extreme patterns of selective sweeps and which could putatively play a 

role in mouse adaptation to the Sub-Antarctic Area were identified. 
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II- MATERIAL AND METHODS  

 

A°/ Mouse samples  

 

 Mouse sampling sites are depicted in Figures 1 and 2. Samples from Cologne – 

Bonn (Germany, n=46) and Massif Central (France, n=46) were previously described by 

Ihle et al. (2006). The Kerguelen Archipelago samples were caught around the Morbihan 

Gulf (Figure 2A). Mice from Port-Jeanne-d’Arc (n=14), Port-aux-Français (n=41), La 

cabane dite “Jacky” (n=29), Guillou Island (n=30), Isthme Bas (n=6), Cimetière Island 

(n=28) and Cochons Island (n=30) were caught in 2008 and 2009. Mice from Australia 

Island (n= 4) and Mayes Island (n=57) were trapped in 1996. The sampling scheme for 

the Kerguelen Archipelago mouse collection is described in Chapuis et al. (2001). The 3 

mice from Amsterdam Island were trapped in 2007. Marion Island mice (n=18) were 

caught in the Meteorological station and at the Mixed Picked Cove in 1990 and 2004 

(Jansen Van Vuuren & Chown 2007). Macquarie Island (n=12), Antipodes Island (n=18), 

and Auckland Island (n=13) were trapped in 2005-2006 (Searle et al. 2009c). Other 

mouse samples from Macquarie Island caught in 2005 (n=28) were also used.   

 

 
 
Figure 1: A- Map of the European sites sampled. B- Localization of the southern 
hemisphere islands named in this chapter. 
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B°/ Genome scan  

 

 The genome scan was performed using 960 microsatellite loci (Thomas et al. 

2007). For the Kerguelen Archipelago, 30 individuals from Mayes Island, Guillou Island, 

and Cochons Island were pooled as well as 6 individuals from Isthme Bas, 4 from 

Australia Island, and 3 from Port-Jeanne d’Arc (Figure 2A and 2B). For Amsterdam 

Island (Figure 1B), DNA was pooled for 3 individuals. The DNA concentration for each 

individual was first adjusted to 100 ng/μL and subsequently pooled at a concentration of 

10 ng/μL. Single individuals from Kerguelen and from European populations were typed 

individually in order to obtain a reference for the typical allele pattern of the locus. All 

PCR reactions were carried out in a 10 μL final volume using 30 ng of pooled DNA 

applying the following cycling protocol: 95°C for 15 minutes followed by 28 cycles of 

95°C for 30s, 60°C for 1.30 min, 72°C for 1.30 min and 10 min at 70°C for elongation 

time. PCR products were diluted 1:20 in water. 1µL of this dilution was added to 10µL of 

HiDi formamide and 0.1µL of 500 ROX size standard (Applied Biosystems). The 

denaturation step was performed with the following incubation times: 90°C for 2min and 

20°C for 5min. GeneMapper v4.0 software (Applied Bioscience) was used to visualize 

the data. All generated pool patterns were analyzed by eye for differences in allelic peak 

patterns based on pairwise comparisons between the Kerguelen Archipelago and the 

European (Massif Central, France and Cologne-Bonn, Germany) populations. The 

complexity of peaks is assumed to represent the degree of polymorphism of the 

population (example of peak patterns can be found in Figure 4), i.e. a complex pattern is 

interpreted as a signature for high polymorphism. Thirty eight loci showing a high 

polymorphism in European populations and a reduced polymorphism in the Kerguelen 

Archipelago populations were pre-selected and investigated further. Data from the 

European populations were previously generated by Teschke et al. (2008).  
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Figure 2: A- Map of the Kerguelen Archipelago. B- Map of the Morbihan Gulf with 
localization of the sampling sites assessed in this study. Populations on the orange sites 
have previously been shown as belonging to the “Grande Terre” population and in blue as 
belonging to the “Cochons” population (Chapter 1).   
 

C°/ Candidate validation 

 

 All the sampling sites cited below are depicted in Figure 2B. The pre-selected 

candidates identified through the genome wide screen were typed individually in the 

Kerguelen populations as well as in the European populations. In order to look for 

parallel adaptation in the Southern Hemisphere, the pre-selected candidate loci were also 

typed from two other sub-Antarctic islands (Marion Island and Macquarie Island) and in 

two other Oceanic Cold islands (Auckland Island and Antipodes Island). Amplifications 

were carried out in 5µL final volumes using 10ng DNA template using a multiplex PCR 

kit (Quiagen). The PCR conditions were: 95°C for 15min followed by 28 cycles at 95°C 

for 30s, 60°C for 1.30min, 72°C for 1.30 min with a final extension at 72°C for 10 min. 

PCR products were diluted 1:20 in water. 1µL of this dilution was added to 10µL of HiDi 

formamide and 0.1µL of 500 ROX size standard (Applied Biosystems). The denaturation 

step was performed with the following incubation times: 90°C for 2min and 20°C for 

5min. Samples ran on a 3730 DNA Anayser sequencer from Applied Biosystem. The 

alleles were analyzed using GeneMapper v4.0 software (Applied Bioscience). The gene 

ontology analysis was done using WebGestalt2 (Zhang et al. 2005, Duncan et al. 2010).  
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D°/ Statistics 

 

 Estimation of genetic diversity was calculated fro each population using 

MSA3.15 (Dieringer 2003) and the lnRH values (Kauer et al. 2003) were calculated using 

the following formula:  

 

            H = heterozygosity 

 loc = locus 

            pop = population 

 

 

 

Figure 3: reference data set of 64 neutral loci 
genotyped between two M. m. domesticus 
populations namely France and Germany (taken 
from Thomas 2006) 
 

 

 

 

 The lnRH statistic allows the comparison of heterozygosity values between 2 

different populations. These values have been calculated between each island and Europe 

(France and Germany). Unfortunately, a reference distribution of lnRH values made with 

neutral loci between Europe and each of the islands was not available so the significance 

of the microsatellite loci typed could not be calculated with full confidence. However, I 

compared the values obtained with the lnRH statistics with a reference data set made up 

of 64 neutral markers typed in the French and the German populations (collected by Ihle 

et al. 2006). This reference data set does not significantly deviate from a normal 

distribution (p=0.724 in a Kolmogorov-Smirnov test). Estimation of the mean (0.0875) 

and standard deviation (0.8584) of these 64 neutral loci (Thomas 2006) were used in 

order to identify outliers. The final candidate loci for selective sweeps were in the 0.1% 

(3σ = 2.58) of the tail of the reference distribution for the 6 island populations studied.  
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E°/ Sequencing of Il13rα2  

 

 Given the allele frequency pattern of Il13rα2, a strategy of exon sequencing was 

followed in order to find putatively adaptive non-synonymous mutations. Pools of 10 

individuals for each of the eight populations (Massif Central, Cologne-Bonn, Grande 

Terre, Cochons Island, Auckland Island, Antipodes Island, Macquarie Island, and Marion 

Island) were made by adjusting each individual DNA sample to 50ng/µL in order to 

obtain a pool with a final concentration of 5ng/µL. The reactions were carried out in a 10 

µL final volume with the cycling parameters as following: 95°C for 15 min followed by 

35 cycles of 95°C for 30s, X°C (see Table 1 for the annealing temperature) for 1.30min, 

72°C for 1min and 15 min at 70°C for elongation time. Annealing temperature was 

adjusted for all primer pairs. Exo-Sap purification was performed with the incubation 

time of 37°C for 20 min and 80°C for 20min. The cycle sequencing parameters were: 

96°C for 1 min followed by 29 cycles of 96°C for 10s, 55°C for 15s and 60°C for 4min. 

Sequences were obtained using a 3730 DNA Analyser sequencer from Applied 

Biosystem The sequences generated were visualized using CodonCodeAligner Ver. 2.0.1 

(CoconCode Corp.) and BioEdit ver.7.0.9.0 (Hall 1999).  

 

Table 1: List of primer sequences and annealing temperatures used for the sequencing of 
Il13rα2  

Forward 
primer name Forward primer 5'->3' Reverse 

primer name Reverse primer 5'->3' Annealing 
temperature 

PCR 
product 

(bp) 

II13ra2_1_F attactccccagaaaagccct II13ra2_1_R ctgaggaatgttgtggcactagag 66°C 615 
II13ra2_2_F actcacacaggaatgtgttcacag II13ra2_2_R acagtctagtaggacacaggt 66°C 318 
II13ra2_3_F ctggacatgaaacaagagtgtctg II13ra2_3_R gatttagcccattagcagtgactc 66°C 419 
II13ra2_4_F ataatcccacccaacaagccaa II13ra2_4_R tgagggactggacgacagcct 62°C 392 
II13ra2_5_F ttccctggtatgagcaaagctc II13ra2_5_R cctctggctatttcaggaacacc 62°C 389 
II13ra2_6_F gactccacatcttagcctagagag II13ra2_6_R catggctcaaggggcacagtt 66°C 746 
II13ra2_7_F tggatagtgaagtcagtggtcac II13ra2_7_R ggaatcaggtgatgggcatttgg 66°C 323 
II13ra2_8_F aactccttactgaggacactacc II13ra2_8_R agctcatgttcctatcacagagtc 66°C 635 
II13ra2_9_F gtgctctgtactaatcctgacag II13ra2_9_R ggtttgcctatactcctcacagtg 66°C 361 
II13ra2_10_F gcttctgggtttgcactaccatcg II13ra2_10_R tgcgtgtagcaaatagtaggtgca 66°C 717 
II13ra2_11_F gtccactagatttggccttctgga II13ra2_11_R agtccaccttgattggcaagca 66°C 470 
II13ra2_12_F tgctacccaatagccccagtt II13ra2_12_R cagtgtaaagtggtggacctt 66°C 328 
II13ra2_13_F actgccactccccaaaatgtgggt II13ra2_13_R ttgtggcatctgtgcattgac 66°C 439 
II13ra2_14_F gacttggctgtatctcggtagg II13ra2_14_R gtaggctctaagggaacactggtg 66°C 660 



 49

III- RESULTS 

 

A°/Genome scan  
 
Table 2:  Summary of the microsatellite loci screened and their localization in the mouse 
genome 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A genome-wide screen was obtained using a set of 960 microsatellite loci 

(Thomas et al. 2007). Kerguelen populations from six sites around the Morbihan gulf (see 

Figure 1), namely Guillou Island, Mayes Island, Cochons Island, Australia Island, Isthme 

bas, and Port-Jeanne d’Arc, as well as a population from Amsterdam Island were typed 

and compared to European populations (Teschke et al. 2008, Thomas et al. 2007). A total 

of 737 microsatellite loci were successfully amplified for the samples of the European 

populations, Guillou Island, Mayes Island, and Cochons Island (Table 2). The population 

pooling was of 30 individuals except in the populations where this number of mice was 

not available (Amsterdam Island, Port-Jeanne d’Arc, Isthme Bas, Australia Island). The 

comparison between Kerguelen Archipelago and the European populations was done by 

Chromosome No of loci 
screened 

No of loci successfully amplified 
for the populations Massif 

Central, Cologne-Bonn, Mayes 
Island, Guillou Island and 

Cochons Island 

No of pre-
selected loci 

in the 
Kerguelen 

Archipelago 
mice 

No of 
candidate 

loci  

1 31 19   
2 66 51 3  
3 100 76 4 1 
4 42 25 1  
5 49 36 4  
6 35 29 2  
7 83 69 6  
8 40 27 2  
9 31 23 1 1 

10 74 63 2  
11 83 66 3  
12 14 13   
13 46 35   
14 30 27   
15 37 21 1  
16 29 24 2 1 
17 35 30 1  
18 15 13 1 1 
19 24 15 1  
X 96 75 4 1 

Total 960 737 38 5 
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eye using a pairwise comparison method (Thomas et al. 2007). Loci presenting a 

reduction of variability in the Kerguelen Archipelago when compared to Massif Central 

and Cologne-Bonn were pre-selected. Examples of these patterns are shown in Figure 4. 

A total of 38 loci around the mouse genome were pre-selected and investigated further 

(Table 2). 

 
Figure 4: Example of the output from the microsatellite genome wide screen. A: locus 
X_80: From the diagram, this locus appears to be fixed for all the Kerguelen populations 
investigated whereas the polymorphism is higher in the European populations. B: locus 
Chr 15_13: The diagram is showing a lower polymorphism in the Kerguelen than in the 
European populations. Note that the Cochons Island allele is different from the rest of the 
Archipelago giving some hint for parallel adaptation. 
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B°/ Pre-selected loci 

 

 The 38 pre-selected loci were individually typed in different Kerguelen 

populations, namely: Port-aux-Français, Isthme Bas, la cabane dite “Jacky”, Mayes 

Island, Australia Island, Guillou Island, Port-Jeanne d’Arc, Cochons Island, and 

Cimetière Island. Chapter 1 demonstrated that 2 different populations in a population 

genetic sense were living on the Kerguelen Archipelago. Accordingly, the Kerguelen 

sites are separated into these 2 genetic populations for the rest of the chapter. “Grande 

Terre” represents the mice captured in Isthme Bas, Australia Island, Port-Jeanne-d’Arc, 

Port-aux-Français, Mayes Island, La cabane dite “Jacky”, and Guillou Island and 

“Cochons” the ones captured in Cochons Island and Cimetière Island. It also has been 

described that the archipelago has a rather low genetic variability (Chapter 1) and in order 

to distinguish between the effect of demography and selection, mice from other Southern 

Hemisphere islands (Marion Island, Macquarie Island, Auckland Islands, and Antipodes 

Island) were included in the study. All the island sites listed above were described as 

different populations in the population genetic sense (Chapter 1), allowing to look for 

parallel adaptation between all locations. If the same pattern is found on genetically 

different populations, this is more likely to be explained through selection rather than 

drift. The island mice were grouped into 6 populations, namely: Grande Terre, Cochons, 

Macquarie Island, Antipodes Island, Auckland Island, and Marion Island. The summary 

of the genetic data can be found in Table 3. The genetic diversity of the European mice 

(13.2 alleles per locus on average) is higher than that found on the islands (3.0 on 

average). This results is expected because the island mice have lower polymorphism 

(Chapter 1) and also because the pre-selected loci were chosen for their low degree of 

variability in the Kerguelen Archipelago when compared to Germany and France.  
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Table 3: Heterozygosity and average number of alleles per locus per island population 
calculated with the 38 pre-selected loci.  
 

  N Hexp. 
Standard 

deviations 
Hexp. 

Hobs. 
Standard 

deviations 
Hobs. 

Average number 
of allele per 

locus 
Europe 92 0.82 0.08 0.52 0.16 13.24 

Cochons Island 58 0.24 0.23 0.23 0.23 2.11 
Grande Terre 205 0.28 0.21 0.20 0.16 3.97 

Macquarie Island 40 0.42 0.21 0.38 0.22 3.03 
Auckland Island 13 0.38 0.26 0.37 0.28 2.58 
Antipodes Island 18 0.39 0.24 0.38 0.29 2.95 

Marion Island 18 0.52 0.20 0.42 0.21 3.50 
 
 
 All microsatellites screened are located not more than 5,000 bp away from the start 

codon of neighboring genes and in 90% of the loci the distance is less than 2,000 bp, 

allowing a direct association to a gene (Thomas et al. 2007). In order to investigate the 

relationship between the candidates and whether one pathway in the pre-selected 

candidates is over-represented, a gene ontology (GO) analysis was performed (Figure 5). 

Of the 38 pre-selected loci, one was found not to be associated with a gene and 3 genes 

did not have an annotation. The reference used for the analysis was made with the gene 

associated with the microsatellite genome wide screen. The Gene Set of Analysis Toolkit 

was set to show the 10 most significant categories. From the 737 genes, 637 were 

annotated and used as reference. No categories were found enriched in molecular 

function and cellular component (Figure 5). However three categories in biological 

process (localization p-value=0.0293; establishment of localization p-value=0.022; 

transport p-value=0.0293) were enriched in the pre-candidate genes when compared to 

the reference data set of genes (Figure 5). No chromosome position enrichment was 

found. 
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Figure 5: Enriched DAG (Directed Acylic Graph) under biological process, molecular 
function and cellular component. Categories in red are enriched, in brown are the 
categories from the top 10 with a p-values lower than 0.05 and in black are the parent 
categories of the top 10 categories.  
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Table 4: lnRH values calculated for all comparisons between islands and Europe. The 
highlighted numbers are values which fall within the 0.1% of the tails of the reference 
distribution. In case of all 6 populations showing an extreme lnRH value (in the 0.1% cut-
off), the locus was selected as a candidate for a selective sweep. 
  

  lnRH (Cochons/ 
Europe) 

lnRH (GrandeTerre/ 
Europe) 

lnRH 
(Macquarie/Europe) 

lnRH (Auckland/ 
Europe) 

lnRH 
(Antipodes/

Europe) 

lnRH (Marion/ 
Europe) 

Chr02_48 -4.56 -7.08 -4.14 -2.74 -1.82 -3.65 

Chr02_56 -2.71 -2.83 -5.94 -3.06 -3.99 -1.35 

Chr02_58 -7.60 -3.12 -1.63 -2.88 -1.93 -2.49 

D3Mit42 -0.69 -0.26 -2.13 -0.17 -0.77 -3.51 

D3Mit155 -7.55 -3.67 -2.05 -2.63 -3.22 -4.16 

Chr03_41 -7.66 -3.82 -4.09 -6.00 -2.64 -3.92 

Chr03_49 -4.01 -1.64 -1.93 -4.31 -1.91 -1.18 

Chr04_21 -5.69 -7.66 -5.93 -1.75 -4.26 -1.20 

Chr05_14 -2.36 -3.11 -0.30 -4.97 -1.96 -2.40 

Chr05_28 -7.01 -2.76 -1.74 -1.49 -2.35 -2.01 

Chr05_31 -6.52 -3.52 -2.88 -1.60 -1.46 -0.41 

Chr05_32 -0.49 -3.85 -1.48 -3.93   

D6Mit139 -4.97 -6.72 -3.23 -5.30 -4.09 -2.28 

D6Mit333 -0.06 -1.53 -1.32 -3.71 -3.87 -0.01 

D7Mit347 -6.43 -3.28 -1.27 -1.38 -2.42 -1.79 

Chr07_18 -3.53 -1.95 -0.86 -2.71 -1.74 -1.44 

Chr07_27 -1.99 -4.55 -1.26 -0.86 -1.74 -2.38 

Chr07_02 -3.82 -4.45 -3.46 -2.01 -3.47 -3.87 

Chr07_38 -2.91 -2.06 -3.65 -2.38 -4.15 -3.01 

Chr07_58 -5.39 -1.74 -0.97 -3.80 -4.16 0.01 

Chr08_02 -3.56 -2.37 -3.43 -2.95 -3.73 -1.82 

Chr08_09 -6.72 -5.76 -2.57 -0.81 -4.04 -3.13 

Chr09_09 -3.91 -4.69 -4.14 -6.26 -3.73 -3.17 

Chr10_59 -3.33 -3.91 -3.73 -2.96 -2.09 -1.79 

Chr10_73 -2.50 -2.32 -5.43 -4.76 -3.37 -1.21 

Chr11_35 -5.45 -6.71 -1.06 -1.70 -2.15 -0.30 

Chr11_57 -5.27 -2.50 -0.38 -0.27 -1.74 -1.62 

Chr11_66 -7.87 -5.58 -3.49 -3.68 -4.67 -2.11 

Chr15_13 -4.61 -6.10 -4.10 -4.37 -1.51 -3.38 

Chr16_03 -7.04 -2.69 -2.63 -5.45 -3.08 -2.84 

Chr16_16 -6.40 -3.71 -3.03 -1.99 -2.90 -3.37 

Chr17_32 -3.18 -7.72 -5.66 -0.12 -4.03 -2.19 

Chr18_08 -4.83 -5.71 -3.86 -2.99 -6.94 -2.91 

Chr19_17 -2.88 -4.88 -3.44 -3.00 -2.22 -1.92 

X_06 -6.64 -5.26 -5.07 -2.79 -1.15 -0.92 

X_80 -7.15 -6.33 -6.78 -5.60 -4.40 -5.96 

X_92 -7.85 -5.32 -2.97 -5.42 -6.66 -1.90 

ChrX_127 -2.04 -5.69 -3.29 -3.10 -5.20 -0.94 
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 The lnRH values for the pre-selected loci were calculated between the island 

populations and Europe (Table 4). The lnRH values of Grande Terre and Cochons are 

smaller than the other 4 populations. Because the genome scan was performed on 

Kerguelen Archipelago mice, more loci are expected to have extreme values for these 2 

populations. Note that only negative lnRH values were obtained, because the genome 

scan was performed in order to find a decrease in variability in the Kerguelen 

Archipelago mice, i.e. no loci presenting a higher degree of variability in the Kerguelen 

Archipelago populations when compared to Europe were chosen. It is also interesting to 

note that for all the loci typed, 82.7% of the lnRH values, between the island and Europe 

populations, are in the 5% tail of the reference distribution validating the pre-selection 

procedure. Five loci were in the 0.1% cut-off for all the 6 island populations and were 

chosen as candidates loci and assessed in more detail (see Table 4 for a data summary of 

these loci).  

 

 The allele frequency spectrum of the five candidate loci is presented in Figure 6. 

At each of these loci, the European populations show a high degree of polymorphism 

while the island populations have a reduced one or are even fixed (Table 5 and Figure 6). 

It is interesting to note that the island populations could share the same allele at high 

frequencies. For example, all the island populations studied here are fixed or almost fixed 

for the same allele 244 at the ChrX_80 locus (Table 5 and Figure 6). Given the diverse 

population genetic origin of all these six island populations (Chapter 1), this makes this 

locus a particularly interesting candidate for parallel adaptation to the southern 

hemisphere area. Some of the loci presented have a more diverse pattern i.e. each of the 

island populations have different alleles in high frequencies, for example Chr03_41. The 

fact that a locus repeatedly presents signs for hitchhiking (positive selection), even if the 

allele in high frequency is different between islands, makes it also a strong candidate for 

parallel adaptation. It has to be pointed out, that the microsatellites themselves are not 

expected to be under selection but serve only as markers for selective sweeps in the 

respective genomic region. Genome localizations of these loci on the mouse 

chromosomes are represented in Figure 7. 
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Table 5: Locus information, heterozygosity and lnRH values of the candidates loci found 
in the genome wide screen and their associated genes.  

  Candidate loci 
  Marker name Chr03_41 Chr09_09 Chr16_03 Chr18_08 X_80 

chromosome 3 9 16 18 X 
Physical position (bp) 18320630 88222471 92346246 20668805 6251145 

Gene associated Dnajc19 Nt5e Kcne1 Dsg3 Il13ra2 Lo
ci

 
in

fo
rm

at
io

ns
 

number of exons 6 9 2 19 14 
Europe 0.89 0.90 0.84 0.92 0.86 

Cochons Island 0.00 0.40 0.00 0.33 0.00 

Grande Terre 0.39 0.26 0.48 0.19 0.04 

Macquarie Island 0.34 0.36 0.49 0.51 0.03 
Marion Island 0.37 0.54 0.45 0.67 0.00 

Auckland Island 0.00 0.00 0.00 0.66 0.08 H
et

er
oz

yg
os

ity
 

Antipodes Island 0.61 0.44 0.41 0.07 0.20 
Cochons Island - Europe -7.66 -3.91 -7.04 -4.83 -7.15 
Grande Terre - Europe -3.82 -4.69 -2.69 -5.71 -6.33 

Macquarie Island - Europe -4.09 -4.14 -2.63 -3.86 -6.78 
Marion Island - Europe -3.92 -3.17 -2.84 -2.91 -5.96 

Auckland Island - Europe -6.00 -6.26 -5.45 -2.99 -5.60 ln
RH

  v
al

ue
s 

Antipodes Island - Europe -2.64 -3.73 -3.08 -6.94 -4.40 
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                   Figure 6: Allele frequency spectrum for the 5 candidate loci.  
                  The European populations display always higher   
                  degrees of polymorphism while the Southern Hemisphere  
                  mice show a reduction of variability at these loci.  
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Figure 7: Distribution of the candidate loci throughout the mouse genome. All of the 
candidate loci are displaying extreme lnRH values (in the 0.1% of the tail distribution of 
the reference dataset) 
 

 
 
Figure 8: Sequence alignment of the Il13rα2 gene associated with the locus 
microsatellite X_80. Only mutations are shown.  
 
 



 59

C°/ X_80 and Il13rα2 

 

 Since the locus X_80 showed extreme patterns in term of allele frequencies and 

lnRH values (Table 5 and Figure 6), sequencing was performed for the 14 exons of the 

gene associated to this locus (Figure 8). Interestingly, only the French mice were 

polymorphic, but all of the mutations are localized in the non-transcript part of the exons. 

The microsatellite X_80 allele frequencies were investigated in more detail for the 

European populations (Figure 9) and surprisingly, heterozygosity for German mice (0.88) 

was higher than for the French mice (0.71).   

 

 

 

Figure 9: Allele 
frequency spectrum of the 
French and German mice 
at locus X_80. 
 

 

 

 

IV- DISCUSSION 

 

 The Kerguelen Archipelago mice are an attractive model for studying recent 

adaptation. Indeed, on all these islands, the mice have been challenged by an extreme 

environment: feral life style, change in food availability, and an all year long colder 

climate. Because mice are living near their physiological limits, they are likely to have 

responded detectably to the environmental changes they were subjected to (Berry et al. 

1978). By screening for selective sweeps, I pre-selected loci which diverge between 

populations more than expected by chance. However, because of the low polymorphism 

of the Kerguelen Archipelago mice, it is difficult to differentiate demographic history 

(i.e. bottlenecks) from signatures of selection. Parallel evolution has been described as 

common across replicate populations adapting to new environments and is predicted to 

have a probability under natural selection nearly twice as large as under neutrality (Orr 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

238 240 242 244 246 248 250 259 261 263 265 267 269 271 273

Alleles

Fr
eq

ue
nc

ie
s

Germany
France



 60

2005). Because life condition are similar on islands from the Sub-Antarctic area, 4 others 

islands (Marion Island, Auckland Island, Macquarie Island, and Antipodes Island) were 

also investigated allowing the discovery of candidate loci where parallel selection could 

have occurred.  

 

 Using the approach of pooling DNA to conduct a microsatellite genome scan 

(Thomas et al. 2007), I was able to genotype the Kerguelen Archipelago mouse 

populations for 737 microsatellites. This screening method reduced the amount of 

sequencing effort involved in identifying signatures of selective sweeps at the genomic 

scale by pre-selecting loci which presented a reduction of variability of the Kerguelen 

Archipelago mice when compared to European mice. As pooled DNA was used, I was 

not able to calculate allele frequencies. Only the degree of polymorphism of the 

investigated loci was assessable but due to the microsatellite slippage the polymorphism 

was not quantifiable. One single individual from the Kerguelen Archipelago and from the 

European populations each were genotyped for every microsatellite allowing us to assess 

the microsatellite slippage on a genotype plot, but even with this control it is not possible 

to determine the exact number of alleles at each locus. This and the non uniform mutation 

rate of microsatellites lead to the impossibility of pre-selecting loci using a statistical 

method, but inspection by eye allows a good pre-selection.  

 

 All the pre-selected loci were individually typed for the Grande Terre, Cochons 

Island, Cologne-Bonn, and Massif Central populations as well as for the other southern 

hemisphere islands (Macquarie Island, Auckland Island, Antipodes Island and Marion 

Island) in order to look for parallel adaptation. It was not possible to calculate an 

unequivocal significance of the lnRH values for the pre-selected loci because a reference 

distribution made with neutral loci between every island and the continent was not 

available. Unfortunately, generating the data was not advisable because of sequencing 

cost and limited samples from some islands. Instead, the distribution of the lnRH values 

of 64 neutral loci calculated between the France and Germany populations (collected by 

Ihle et al. 2006) was used as a reference. Since, these 2 populations, as well as the Sub-

Antarctic island populations, belong to the sub-species M. m. domesticus, the reference 
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distribution gives an idea about the lnRH value distribution allowing the identification of 

loci in the distribution’s tail. Thus, we could identify five candidate loci which presented 

extreme patterns in the six Sub-Antarctic island populations. Because all these island 

mice differ genetically and each of them has its own source population (Chapter 1), the 

presence of a single allele at high frequencies for the selected loci is unlikely to be due to 

genetic drift.  

  

 The candidate locus X_80 provided the best pattern of a selective sweep with 

almost all the island populations being fixed for the same allele (Table 5 and Figure 5). 

Therefore, the exons of the Il13rα2 gene associated with the candidate locus X_80 were 

sequenced. Unfortunately this strategy failed to discover putatively adaptive non-

synonymous mutations in island mice. Nevertheless, the sequences of all populations 

except France are conserved and, in its sequence France only has mutations in the non-

coding part of the exon. 

  

 The interleukin 13 receptor alpha 2 (Il13rα2) is know to limit IL-13 (Interleukin 

13) effector function in vivo (for a review see Wynn 2003). IL-13 was described to have 

many functions such as regulation of gastrointestine parasite expulsion, airway 

hyperresponsiveness, allergic inflammation, tissue eosinophilia, mastocytosis, IgE Ab 

production, goblet cell hyperplasia, tumor cell growth, intracellular parasitism, tissue 

remodeling, or fibrosis (Wynn 2003). Studies in animal models demonstrated that T 

lymphocytes and cytokines have a key function in determining the outcome of parasitic 

infection and that IL-13 is playing a crucial role in these processes (for a review see Sher 

and Coffman 1992). This gene could be putatively adaptive in the fight against parasites 

that the mice encountered on the islands. The most commonly recorded parasites of wild 

house mice are 3 helminthes:  Syphacia obvelata (21 records in 14 countries) Taenia 

teaniformis (17 records in 11 countries) and Aspiculuris tetraptera (15 records in 12 

countries – Tattersall et al. 1994). S. obvelata and A. tetraptera are routinely found in 

laboratory mice (Pritchett 2007). It is interesting to note that on the Kerguelen 

Archipelago, only one gastrointestinal helminth was found: the nematode S. obvelata in 

the intestine (Pisanu et al. 2001). This nematode is expanding in the mouse population. 
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Indeed, in former studies Cochons Island mice were free of parasites (Pisanu et al. 2001) 

but in 2009, an S. obvelata was found on Cochons Island and Cimetière Island (Pisanu, 

Kalbe, and Hardouin, personal observation). In Macquarie Island, S. obvelata was found 

as well as the cestode Rodentolepis fraternal (Moro et al. 2003). The low diversity in the 

helminth community of these island animals, when compared to the continent, is 

probably due to the lower number of host founders and to their isolation or distance from 

the neighboring and infected populations (Dobson, 1988).  

 

 Chr09_09 is associated with the ecto-5’-nucleotidase gene (Nt5e) also called 

CD73. The expression of CD73 is conserved across various species. While CD73 is 

expressed on almost every cell type, higher amounts of expression are found in colon, 

kidney, and brain (Thompson et al. 2004). CD73 contributed to the protective effect of 

hypoxia in the inflamed intestinal mucosa and this effect is mediated by the regulation of 

the adenosine signaling through its tissue specific receptor (for a review see Sotnikov and 

Louis, 2010). CD73-/- mice cannot produce interferon α A even in response to 

inflammation (Sotnikov and Louis, 2010).  

 

 Chr 18_08 is associated with the desmoglein 3 gene (Dsg3). Dsg3 is part of the 

desmosome, an intracellular adhesive junction of epithelia cells (Buxton and Magee 

1992). Desmosomes are adhesive junction containing clusters of specialized cadherines: 

4 isoforms of Dsg and 3 desmocollins, all of them being part of the cadherin superfamily 

of cell-cell adhesions molecules (Amagai 2010). Dsg1 and Dsg3 are the major isoforms 

of the skin and mucous membrane. They are targeted by IgG in the autoimmune disease 

called pempigus (Amagai 2010).  

 

 The microsatellite Chr16_03 is predicted to be associated with the potassium 

voltage-gated channel subfamily E member 1 (Kcne1) gene. Kcne1 together with Kcnq1 

forms a K+ channel (see Wangemann 2002 for a review). Mutations in Kcne1 or lack of 

Kcne1 or Kcnq1 in engineered mice have been associated with deafness (Vetter et al. 

1996, Casimiro et al. 2001, Lee et al. 2000, Letts et al. 2000, for a review see 

Wangemann 2002). The Kcne1/Kcnq1 channel was also described as a K+ transporter in 
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cardiac myocytes and it plays a key role in the repolarization phase of the cardiac action 

potential (Barhanin et al. 1996, Sanguinetti et al. 1996, Varnum et al. 1993). Mutation in 

Kcne1/Kcnq1 could cause diverse forms of long QT-syndrome which is a prolongation of 

the action potential (Roden 2001, Wangemann 2002). Interestingly, Kcnq1 is associated 

with the locus Chr07_58 which was one of the pre-selected candidates and which is in the 

0.1% tail distribution for Cochons, Auckland Island, and Antipodes Island. Grande Terre 

is in the 5% of the tail distribution for this locus. The fact that these 2 genes that are 

physically localized on 2 different chromosomes but together form a potassium channel 

were picked up by the microsatellite screen is rather a good indication of their putative 

function in a specific adaptation of the south hemisphere mice.  

 

 The last candidate was Chr03_41 associated with the DnaJ (Hsp40) homolog, 

subfamily C, member 19 (Dnajc19) gene, also called Tim14. The mitochondria contain 

around 1000 proteins in which only one eighth is encoded by the mitochondrial genome, 

the rest have to be imported from the cytosol to the mitochondrial matrix (Sickmann et al 

2003, Reinders et al. 2006). Protein import to the mitochondria is particularly 

complicated because this organelle has 2 membranes. Preproteins pass the outer 

mitonchondrial membrane using the Tom complex and the inner membrane using the 

Tim complex (van der Laan et al. 2010 for a review). Tim14 associated with Tim16 is 

required to be at the inner membrane of the mitochondria, probably in close contact to the 

Tim23 complex to mediate the transport of preproteins (Mokranjac et al 2007). The 

presence of Tim14 is essential for the viability of yeast cells (van der Laan et al. 2010).  

 

 The microsatellite genome scan allowed the pre-selection of 38 candidate loci 

which could putatively be adaptive for life in South Hemisphere islands. Five 

microsatellite loci were found in the 0.1% of the tail distribution of the reference data for 

the 6 mouse populations studied, making their associated gene a good candidate for 

selective sweep. From the 5 five final candidate, the X_80 locus associated with the 

Il13rα2 gene was showing an extreme pattern of selective sweep. If no mutation in the 

coding regions of the gene were found, a putatively adaptive mutation in a regulatory 

region localized in the intron of the gene or elsewhere in the genome can not be excluded. 
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Because of its extreme pattern and its described function in the fight against parasite 

infections, this gene is one of the more promising candidates. Interestingly, the 2 sub-

units of a K+ channel were found to have extreme pattern of selective sweep, Kcne1 even 

being associated with one of the 5 candidates loci. It is difficult to understand why this 

potassium channel could be selected for, but the fact that the 2 sub-units were found in 

this genome wide-screen makes it a strong candidate. Of course, the 5 candidate genes 

have to be studied in more detail in order to confirm if positive selection is acting on 

them. The main problem is the relative low polymorphism of the island mouse genomes 

(Chapter 1) leading to the constitution of big haplotype blocks and so the microsatellite 

locus could be associated to more than one genes. The follow-up experiment to this 

project would be to type other microsatellites near the candidate loci or to look into the 

region using SNP data, allowing the identification of the haplotype block in which our 

candidates are located. If the candidate status of these genes could be confirmed, 

functional experiments could follow to assess the effectiveness of the alleles that were 

under selection. If ideally, the detection of selected gene by statistical methods should be 

verified by functional approaches, such experiments are usually challenging and 

unfortunately, the candidate genes found have several functions and it will be difficult to 

understand why they have been selected for and which environmental feature(s) was 

involved.  
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