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Abstract

We report the construction of a genome-wide fish metabolic network model, MetaFishNet, and its application to
analyzing high throughput gene expression data. This model is a stepping stone to broader applications of fish
systems biology, for example by guiding study design through comparison with human metabolism and the
integration of multiple data types. MetaFishNet resources, including a pathway enrichment analysis tool, are
accessible at http://metafishnet.appspot.com.

Rationale
Small fish species are widely used in ecological and phar-
maceutical toxicology, developmental biology and genet-
ics, evolutionary biology and as human disease models.
Among the species commonly found in scientific litera-
ture are zebrafish (Danio rerio), medaka (Oryzias latipes),
stickleback (Gasterosteus aculeatus), European flounder
(Platichthys flesus), channel catfish (Ictalurus punctatus),
sheepshead minnow (Cyprinodon variegatus), mummi-
chog (Fundulus heteroclitus), Atlantic salmon (Salmo
salar), common carp (Cyprinus carpio), rainbow trout
(Oncorhynchus mykiss) and swordtail (Xiphophorus hel-
lerii). Each of these fish species has its own niche as a
research tool. For example, Xiphophorus is a classic
genetic model of melanomas [1,2], whereas medaka is a
good model for reproductive and ecotoxicological studies
[3]. Zebrafish, in particular, has risen to stardom in
recent years, with a large collection of mutants and estab-
lished techniques for transgenesis, expression studies,
forward and reverse genetics and in vivo imaging [4-8].
The use of zebrafish as human disease models has also
spiked significant interests [9-11]. Since small fish are
currently the only vertebrate species that can be studied
in high throughput, their future in modern biomedical
sciences is brighter than ever [12,13].
Fish genomics is also taking off. Thus far, whole gen-

ome sequences are available for five fish species:
D. rerio, O. latipes, T. rubripes, T. nigroviridis and

G. aculeatus. DNA microarrays have been applied to

study gene expression in many more fish species
[14-18]. However, fish functional genomics is far behind
other model organisms. In the example of sheepshead
minnows, which are used in our lab for ecotoxicology,
gene annotation is poor and no pathway analysis tool is
readily available for interpreting DNA microarray data.
The situation is similar for other fish species, with zeb-
rafish perhaps an arguable exception. Bioinformatic
tools that fill in this gap in fish functional genomics are
highly desirable [17]. Oberhardt et al. [19] summarized
the five applications of genome-wide metabolic network
models: ‘(1) contextualization of high-throughput data,
(2) guidance of metabolic engineering, (3) directing
hypothesis-driven discovery, (4) interrogation of multi-
species relationships, and (5) network property discov-
ery.’ While significant interest exists for a fish metabolic
network model in all five categories, the immediate and
primary application of our model will be the interpreta-
tion of high throughput expression data, especially path-
way analysis, which can be done either by direct
mapping to metabolic genes [20,21] or via established
enrichment statistics [22,23]. This model will also pro-
vide a first glance of how fish metabolism resembles
human metabolism, which should be instructional for
the use of fish in many research areas [24]. This pro-
posed first generation model will serve as a reference
and stepping stone to further systems investigations,
helping study design and hypotheses generation. As
more data become available in the future, the model can
be further refined to support broader applications.
The recent completion of genome sequencing of five

fish species has paved the way for constructing a gen-
ome-wide fish metabolic network model. That is, all
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metabolic enzymes can be identified from complete gen-
omes by sequence analysis, compounds can then be
associated with enzymatic activities and a metabolic net-
work can be constructed by linking these compounds
and enzymes. This type of ab initio construction of
metabolic networks has been carried out for many uni-
cellular organisms [19,25-30].
However, ab initio construction alone is not yet feasi-

ble for vertebrate metabolic networks due to their com-
plexity. Two high-quality human metabolic network
models [20,31] have been published recently. Both stu-
dies included intensive human curation and comprehen-
sive supporting evidence, including data from model
species other than human. Thus, these two ‘human’
models can provide critical references for constructing a
genome-wide fish metabolic network model, to help
overcome the limitation of ab initio construction. Com-
bining the integration of existing models and ab initio
construction from whole genomes has been the strategy
for our project. A metabolic model for zebrafish exists
in the KEGG database [32].
However, our genome-wide model offers a significant

expansion of the KEGG zebrafish model.
We will first report the construction process of this

fish metabolic network model (MetaFishNet). We then
use MetaFishNet to methodically comparefish and
human metabolism to identify the most and least con-
served pathways. The last sections of this paper will
demonstrate the application of MetaFishNet in analyzing
two sets of DNA microarray data: one from zebrafish as
liver cancer model in public repository, the other from
sheepshead minnow exposed to cadmium in our lab.

Results and discussion
Construction of MetaFishNet
Our genome-wide fish metabolic network, MetaFishNet,
adopts a conventional bipartite network structure, where
enzymes and compounds are two types of nodes. The con-
struction strategy of MetaFishNet is shown in Figure 1.
Details are given in the ‘Method’ section and Additional
file 1, while a short description follows here.
We first analyzed all cDNA sequences from five fish

genomes (D. rerio, O. latipes, T. rubripes, T. nigroviridis
and G. aculeatus) to create a list of all fish metabolic
genes via gene ontology. From this metabolic gene list,
the corresponding enzymes were identified using either
orthologous relationships to human genes or similarity
to consensus enzyme sequences (Table 1). Two types of
metabolic reactions are included in MetaFishNet. The
majority consists of reactions in reference models that
can be associated with fish enzymes. The rest of the
reactions were created according to relationships
between inferred enzymatic activity and compounds.
The reference reactions in this project are data

integrated from Edinburgh Human Metabolic Network
(EHMN) [31], the human metabolic network from Pals-
son’s group at UCSD (BiGG) [20] and the zebrafish
metabolic network from KEGG. Finally, the whole net-
work is formed by linking all reactions.
To illustrate the construction process, let us consider

two pieces of sequences from the medaka genome.
Sequence ENSORLG00000001750 is mapped to a human

homolog PIK3CG, which is a phosphoinositide-3-kinase
(enzyme commission number 2.7.1.153). This enzyme is
associated to a reaction in the EHMN model that converts
1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate to
Phosphatidylinositol-3,4,5-trisphosphate. Thus, this same
reaction is carried over to the MetaFishNet model. Another
sequence ENSORLG00000018911 also has a human homo-
log, PIP4K2B, which is a phosphatidylinositol-5-phosphate
4-kinase with enzyme commission number 2.7.1.149.
Although no reaction for this enzyme is found for any of
the reference models, we learn from the KEGG LIGAND
database that this enzyme converts 1-Phosphatidyl-

Figure 1 Construction strategy of MetaFishNet. See text for
details.

Table 1 Metabolic Enzymes found in five fish genomes

Species Number of metabolic genes Number of ECs

Zebrafish 3,853 654

Medaka 3,998 765

Takifugu 4,103 771

Tetraodon 4,424 782

Stickleback 4,324 791
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1D-myo-inositol 5-phosphate to 1-Phosphatidyl-D-myo-
inositol 4,5-bisphosphate. This reaction is added to
MetaFishNet as an inferred reaction. Furthermore, because
the second reaction produces the substrate for the
first reaction, the two reactions are linked together in the
‘Phosphatidylinositol phosphate metabolism’ pathway.
We carefully reconciled the pathway organization dur-

ing integration of the three reference models by com-
paring the reactions in each pathway. Thus, the pathway
organization in MetaFishNet follows biochemical con-
ventions wherever possible. Yet, over 600 reactions still
do not map directly to these reference pathways. Since
pathways can be viewed as modules within a metabolic
network [33], we extracted network modules from these
reactions using a modularity algorithm [34]. The result-
ing modules were manually inspected to either become
a new pathway, to merge with an existing pathway, or
to be invalidated. Meanwhile, individual reactions were
attached to a pathway when they connect metabolites in
that pathway. This combined procedure of module find-
ing and manual curation was repeated iteratively until
no further change could be made.
Even though this model contains data specific to each

of the five fish species, we choose to present a combined
fish metabolic network model because a) a combined
model will be more useful for other under-represented
fish species; b) genome annotations are far from perfect -
combining five genome sequences will reduce the chance
of missing true metabolic genes. For example in the TCA
cycle, we did not find ATP citrate synthase in the zebra-
fish genome, nor succinate-CoA ligase in the Tetraodon
genome (Ensembl 51). Since these are critical enzymes in
a central pathway, these missing enzymes reflect annota-
tion errors. The combined model is thus more compre-
hensive than using any single species alone (Additional
file 2). In total, 911 enzymes, 3,342 reactions and 115
pathways are included in MetaFishNet version 1.9.6. Data
integration at the reaction level is shown in Figure 2.
All MetaFishNet pathways are given in Additional
file 3, reaction data in Additional file 4 and SBML
(Systems Biology Markup Language) distribution in
Additional file 5.
A MySQL database was set up to host MetaFishNet
data. As we elected to use Google App Engine to host
the project website [35], a port to Google BigTable data-
base is actually behind the website. The website sup-
ports browsing and queries of data at various levels,
with graphic display of all pathways. Utility programs in
MetaFishNet include ‘SeaSpider’ for sequence analysis,
‘FishEye’ for pathway visualization, and ‘FisherExpress’
for pathway enrichment analysis. SeaSpider is used for
both the initial construction and for mapping new
sequences to MetaFishNet. FishEye was developed
because 1) KEGG graphs can no longer support the

much expanded network, and 2) an automatic pathway
visualization tool is of great general interest by itself.
Our project website provides links to download these
programs and model data.

Metabolic genes show less evolutionary diversity
It is now widely accepted that teleost fish underwent an
extra round of genome duplication after their evolution-
ary separation from the mammalian line [36,37]. Gen-
ome duplication is an important mechanism for
generating gene diversity, as the extra copy can evolve
more freely than the single copy before duplication.
Only a small portion of these duplicated genes would
gain new functionality and remain, while most dupli-
cated genes got lost over time.
When comparing the fish metabolic genes in Meta-

FishNet to their human orthologs, we have noticed that
the level of ortholog mapping differs between metabolic
genes and other genes. As seen in Table 2, for the iden-
tifiable orthologs, most of the fish species have over 10%
more genes than humans, yet the percentages of extra
duplicated metabolic genes are significantly less. The
final numbers may vary when the genomes are more
accurately annotated. Still, these data suggest that meta-
bolic genes are better conserved between human and
fish than other genes. This suggests that a core meta-
bolic network was established early in evolution: by the
time of the genome duplication in fish, the central meta-
bolic machinery was already well tuned and left little
room for changes. By implication, research on some fish
metabolic pathways may be easily extrapolated to
human.

Comparison between human and fish metabolic
pathways
Multiple genes may have the same catalytic activity (iso-
zymes), differing only in their sequences or regulatory
contexts. We do not distinguish isozymes in this study,
but leave them for future refinement. At the enzyme
level, we have identified 911 enzymes from fish gen-
omes. They overlap with the human data by 772
enzymes (Figure 3; Additional file 6 gives a complete list
of these enzymes). The true overlap may be greater
because the EC numbers in fish were computationally
inferred, and are not as well curated as human ECs. We
can nonetheless start making some comparisons
between human and fish at the pathway level.
Over 50% of the enzymes are in common between

human and fish for the majority of the pathways. Table 3
shows the most and least conserved pathways between
humans and fish, in terms of the numbers of overlapping
enzymes. Since most biomedical research in fish aims to
extend the results to human, this pathway comparison
reveals important information on how well fish may
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model human on a specific subject. For instance, fish may
be a good model for studying vitamin B9, but probably a
poor model for studying vitamin C.
In the sizable pathway, ‘proteoglycan biosynthesis’, all 16

enzymes are common between human and fish. This sug-
gests that the whole pathway may be identical between
human and fish. Impairment of the proteoglycan

biosynthesis pathway is responsible for a major class of
enzyme deficiency diseases, mucopolysaccharidosis. Seven
clinical types, including Hurler syndrome and Hunter syn-
drome, have been identified in this class, depending on
defects of different enzymes in the pathway (Online Men-
delian Inheritance in Man [38]). Given the great similarity
between human and fish in this pathway, small fish, with

Figure 2 Data integration at reaction level for MetaFishNet. The UCSD and EHMN models were merged into a human reference network,
which was then merged with the KEGG zebrafish model and newly inferred reactions based on genome sequences. The total reference model
has 4,301 reactions, while 3,342 reactions are included in the fish metabolic network.
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their high throughput capacity, may be a good model for
studying mucopolysaccharidosis.
Omega-3 fatty acids are deemed essential nutrients,

boosting a popular dietary preference for fish and fish
oil consumption. But fish, just like humans, do not pro-
duce omega-3 fatty acids per se - they accumulate them
from their diet, algae [39]. However, the molecular
mechanism of this omega-3 fatty acid accumulation is
still unidentified. A theoretical explanation is now pro-
vided by our MetaFishNet model. As shown in Figure 4,
compared to the human omega-3 fatty acid metabolism,
fish lack enzymes such as linoleoyl-CoA desaturase in
the pathway. As a result, fish can easily process the
metabolites in the top and bottom parts of the pathway,
but not the intermediate metabolites, which will then
accumulate to a high level. In fact, these intermediate
compounds include variants of most of the common
omega-3 fatty acids, such as alpha-Linolenic acid, Steari-
donic acid, Eicosatetraenoic acid, Eicosapentaenoic acid,
Docosapentaenoic acid and Tetracosapentaenoic acid.

It will be interesting to see if this computationally gen-
erated hypothesis will be supported by experimental
data.

Several metabolic pathways are misregulated in zebrafish
liver cancer
We next demonstrate the application of MetaFishNet
model to the analysis of gene expression data in a case
of zebrafish as a cancer model. Gong and coworkers
conducted microarray experiments to examine the simi-
larity between zebrafish and human liver tumors at the

Table 2 Comparisons between fish and human orthologs

Species Extra duplicated
genes (%)

Extra duplicated metabolic
genes (%)

Zebrafish 15.4 0.6

Medaka 8.9 1.5

Takifugu 12.2 3.8

Tetraodon 14.4 5.8

Stickleback 11.9 4.5

An extra round of genome duplication produced more genes in fish than
human. The number of total human orthologs found in a fish species is
typically around 12,000, as analyzed from Ensembl data.

Figure 3 Metabolic enzymes in common between human and
fish. Among the 1,430 human enzymes compfiled from ExPASy and
BRENDA [91] databases, 1,131 are included in the human metabolic
models (shaded in light blue). Among the 911 enzymes found in
fish genomes, 705 are included in MetaFishNet reactions (shaded in
salmon). In the models, 632 enzymes are shared between human
and fish. The disparity of numbers reflects that human enzymes are
better annotated than fish. Please note that isozymes are not
distinguished here.

Table 3 Comparisons between fish and human metabolic
pathways

Most conserved pathways

Pathway Human
ECs

Fish
ECs

Overlap Ratio

1- and 2-Methylnaphthalene
degradation

2 3 2 1

Hyaluronan metabolism 3 3 3 1

Sialic acid metabolism 18 18 18 1

Hexose phosphorylation 5 5 5 1

Electron transport chain 4 5 4 1

Limonene and pinene degradation 3 4 3 1

Proteoglycan biosynthesis 16 16 16 1

Glycosphingolipid biosynthesis -
ganglioseries

18 17 17 0.94

N-Glycan degradation 8 7 7 0.87

Di-unsaturated fatty acid beta-
oxidation

7 6 6 0.85

Vitamin B1 (thiamin) metabolism 7 6 6 0.85

Glycosphingolipid metabolism 28 24 24 0.85

Glutamate metabolism 14 12 12 0.85

TCA cycle 18 15 15 0.83

Vitamin B9 (folate) metabolism 17 14 14 0.82

Linoleate metabolism 11 9 9 0.81

Least conserved pathways

Pathway Human
ECs

Fish
ECs

Overlap Ratio

Phytanic acid peroxisomal oxidation 13 5 5 0.38

Glycosylphosphatidylinositol(GPI)-
anchor biosynthesis

3 1 1 0.33

Vitamin H (biotin) metabolism 6 2 2 0.33

Vitamin B12 (cyanocobalamin)
metabolism

3 2 1 0.33

Glyoxylate and Dicarboxylate
metabolism

7 2 2 0.28

Pentose and Glucuronate
interconversions

9 2 2 0.22

Ascorbate (vitamin C) and aldarate
metabolism

8 1 1 0.12

The ratio is the number of shared ECs over the number of human ECs. Only
pathways with three or more enzymes were considered. The complete
comparison is given in Additional file 9. Please see Discussion section on the
bias towards human data. The sizes of fish pathways may grow with
improved annotation, but this is unlikely to change the ratios because all
overlapping enzymes are already included here.
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level of gene expression [40]. Although they found the
overlapping of gene expression was statistically signifi-
cant, in-depth data analysis was limited to Gene Set
Enrichment Analysis (GSEA) and to two signaling path-
ways (Wnt-beta-catenin and Ras-MAPK). We shall
demonstrate here that MetaFishNet is a valuable addi-
tion to the arsenal of microarray data analysis.

The microarray data from [40] were retrieved from
Gene Expression Omnibus (GEO [41]) via accession
number [GEO:GSE3519]. The arrays contained 16,512
features, with 10 tumor samples and 10 control samples.
Significance Analysis of Microarrays (SAM [42]) was
used to select 1,888 differentially expressed clones
between tumor samples and controls with a False

Figure 4 Omega-3 fatty acid pathway. The human omega-3 fatty acid metabolism pathway is composed of 12 enzymes. The enzymes
colored in red are not found in fish. The three enzymes in yellow are in the gene families found in fish, but the presence of these specific
enzymes is not clear. This shows that fish lack enzymes to convert the intermediate metabolites, which are the source of omega-3 fatty acids
important to human health. The common omega-3 fatty acid variants are in red font.

Li et al. Genome Biology 2010, 11:R115
http://genomebiology.com/2010/11/11/R115

Page 6 of 15



Discovery Rate under 0.01. (These selected clones are
comparable to the 2,315 clones selected by a less main-
stream method in the original paper.) The pathway ana-
lysis component in MetaFishNet is FisherExpress, which
maps the selected genes to enzymes and then to corre-
sponding pathways via queries to the MetaFishNet data-
base. Fisher’s Exact Test is used to compute the
significance of enrichment of metabolic pathways.
The result, shown in Table 4, suggests that several

metabolic pathways are misregulated in zebrafish liver
cancer. The identification of the glycolysis and gluco-
neogenesis pathway reflects the adaptation of tumor
cells to aerobic glycolysis, known as the hallmark ‘War-
burg effect’, which also alters pathways closely related to
gluconeogenesis, such as butanoate metabolism [43,44].
The reprogramming of metabolism in tumor cells is also
believed to generate toxic byproducts [43], in particular
elevated levels of reactive oxygen species [45]. The
downregulation of xenobiotics metabolism and ROS
detoxification reflects these impaired cellular functions
in tumor tissues. The involvement of tyrosine metabo-
lism in tumor cells is not clear, but may possibly be
related to their excessive tyrosine kinase activities
[46,47]. Tryptophan metabolism is known to be part of
the immune suppression mechanism by tumor cells
[48]. The significance of leukotriene metabolism could
come either from tumor cells that use leukotrienes in
their strategies for survival, proliferation and migration,
or from the inflammation of surrounding tissues [49].
Fatty acid metabolism is also well known to be

involved in cancer biology [43,50]. However, the selec-
tion of the fatty acid metabolism pathway in our analysis
came from three enzymes it shares with the leukotriene

metabolism pathway. Pathway overlap is an inherent
limit of this type of analysis, that can only be clarified
by further investigation. Several Glycosylphosphatidyli-
nositol(GPI)-anchor proteins are already used as mar-
kers for liver cancer [51-53], making (GPI)-anchor
biosynthesis an interesting pathway to investigate. The
MetaFishNet model thus has been shown to be a valu-
able tool to identify significantly regulated pathways in
expression data. In addition, the regulations can be
visualized in the context of each pathway, as exemplified
in Figure 5, to facilitate mechanistic studies.

Comparison to KegArray and KEGG pathways
KEGG also offers an expression analysis tool, KegArray
[21], which may be used to map differentially expressed
genes to zebrafish pathways. For example, the 1,888
selected clones in zebrafish liver cancer in Section 2.4
can be converted to UniGene identifiers and input to
KegArray (version 1.2.3). The result is a list of 49 meta-
bolic pathways that match from one to five differentially
expressed enzymes (Additional file 7). This is a rather
long list, containing about half of all pathways, which
raises the question of false positive rate. The problem is
caused by the fact that KegArray does not include any
pathway statistical analysis, which is important for rank-
ing the significances and reducing false positives at the
individual gene level. Pathway enrichment analysis
usually takes one of two forms: 1) feature selection fol-
lowed by set enrichment statistics, such as presented in
this paper and 2) competitive statistics without prior
feature selection. The best known example of the latter
is GSEA [22], which uses Kolmogorov-Smirnov statistics
to rank pathways according the positional distribution
of member genes. As the MetaFishNet model itself is
not tied to any statistical method, we also offer a gene
matrix file to be used with GSEA, downloadable at our
project website.
Ultimately, the quality of pathway data determines the

quality of analysis. MetaFishNet, with 3,342 reactions
over the 1,031 reactions in KEGG zebrafish model, not
only allows applications to other fish species, but also
improve the data for zebrafish. A better comparison
between the KEGG zebrafish model and MetaFishNet is
to use the same enrichment statistics. That is, we use
the KEGG pathways in our software instead of Meta-
FishNet pathways to reanalyze the zebrafish liver cancer
data in Section 2.4. The result is shown in Additional
file 8. In comparison to Table 4, leukotriene metabolism
and ROS detoxification pathways are missing in the
KEGG result as they are absent in the KEGG model.
Xenobiotics metabolism is a pathway that is improved

from five enzymes in KEGG to eight enzymes in Meta-
FishNet. Accordingly, the MetaFishNet pathway has three
hits while the KEGG pathway has two hits. The Methane

Table 4 Metabolic pathways that are affected in
zebrafish liver cancer with P-value < 0.05

MetaFishNet pathway Selected
enzymes

Enzymes in
pathway

P-value

ROS detoxification 2 2 0.002

3-Chloroacrylic acid
degradation

2 2 0.002

Tyrosine metabolism 8 55 0.002

Xenobiotics metabolism 3 8 0.004

Glycolysis and
Gluconeogenesis

6 44 0.013

Fatty acid metabolism 3 13 0.019

Butanoate metabolism 3 14 0.023

Leukotriene metabolism 3 17 0.040

Tryptophan metabolism 4 29 0.040

Ascorbate (vitamin C) and
aldarate
metabolism

1 1 0.046

Glycosylphosphatidylinositol
(GPI)-anchor
biosynthesis

1 1 0.046
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metabolism pathway, nonexistent in MetaFishNet, was
also identified in KEGG. The KEGG Methane metabolism
pathway is rather a bacterial pathway that is mapped to
zebrafish with only three reactions. Reaction R06983 is
catalyzed by an enzyme (1.1.1.284) that is yet to be con-
firmed in any fish genome. Reaction R00945 converts
5,10-Methylenetetrahydrofolate to Tetrahydrofolate, thus
is assigned to vitamin B9 (folate) metabolism pathway in
MetaFishNet. This leaves only one reaction, which does
not justify a pathway in MetaFishNet. We think the
improved data and pathways in MetaFishNet will benefit
downstream studies.

MetaFishNet analysis of cadmium exposure in
sheepshead minnows
Finally, we apply MetaFishNet to a fish species with lit-
tle functional data. Sheepshead minnow (C. variegatus)
is a common, small estuarine fish that is found along
the Atlantic and Gulf coasts of the United States. The
US Environmental Protection Agency has adopted
C. variegatus as a model organism for studying pollution
levels in estuarine waters [54]. We have designed a cus-
tom DNA microarray with 4,101 clones for sheepshead
minnows. Sheepshead minnow larvae were exposed to
cadmium, a heavy metal pollutant, for seven days in a

Figure 5 The xenobiotic metabolism pathway in zebrafish liver cancer. The three downregulated enzymes, colored in green, are 1.2.1.5,
aldehyde dehydrogenase (AF254954); 1.1.1.1, alcohol dehydrogenase (AF295407); 1.14.14.1, cytochrome P450 (AF057713, AF248042). Fully
annotated graphs for all pathways can be found on project website [35].
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controlled laboratory experiment. DNA microarrays
were used to measure their RNA expression. Even
though each biological replicate was a pool of 80 indivi-
duals, only three biological replicates per group were
included in this microarray experiment. The analytical
power at the gene level was also weakened because the
samples were extracted from whole bodies instead of
specific tissues. Indeed, with FDR < 0.05 in SAM, only
four clones were selected as significant, including metal-
lothionein, which has been extensively reported to be
upregulated by cadmium exposure [55,56].
Another problem is the poor annotation of these

microarrays. Less than 40% of our sheepshead minnow
clones carry sequence homology to known genes, a
situation typical for many fish species that limits the
functional information from gene expression.
To analyze the data in MetaFishNet, we first selected

325 differentially expressed clones between the treated
group and control group by Wilcoxon’s rank sum test
(P < 0.05). This is a less stringent selection, but addi-
tional statistical strength is gained at the pathway level
by incorporating collective pathway information. Sheeps-
head minnow clones were then mapped to MetaFishNet
by sequence comparison via SeaSpider. MetaFishNet
pathway enrichment was computed again by Fisher’s
Exact Test and the result is shown in Table 5. The path-
ways in Table 5 again have overlaps, among which are
CYP1A and glutathione S-transferase (GST). The induc-
tion of CYP1A and GST by cadmium is in concordance
with previous reports [57-61]. Both CYP1A and GST
are pivotal detoxification enzymes, and central players in
xenobiotics metabolism. The fact that these genes are
picked up by pathway analysis and not by SAM demon-
strates the improved strength of pathway analysis. The
upregulation of four enzymes, CYP1A, GST, acyltrans-
ferase and long-chain-fatty-acid-CoA ligase, is indicative
of the activation of leukotriene metabolism pathway by
the commonly observed inflammation induced by cad-
mium exposure (Figure 6).

In conclusion, MetaFishNet adds extra functional
insight into the otherwise very limited data analysis
available for non-model species.

Discussion
We have presented the first genome-wide fish metabolic
network model. The first and primary role of our Meta-
FishNet model is a bioinformatic tool for analyzing high
throughput expression data. Two case applications of
pathway enrichment analysis are included in this report.
Pathway analysis offers two advantages: it is less suscep-
tible to noise than analysis at the level of individual
genes, and gives contextual insights to biological
mechanisms [62,63]. MetaFishNet has demonstrated
good promise to bring these advantages into fish studies.
By combining data from five fish genomes, our model
overcomes some of the coverage problems in individual
genome annotations. However, this also masks the dif-
ference between these fish species. While this combined
model is recommended for gene expression analysis,
species specific data should be consulted for more speci-
fic genetic and biochemical studies (available at the pro-
ject website).
A new visualization tool (FishEye) was developed in

this project to draw pathway maps automatically.
Even though visualization tools are abundant, there is

a particular challenge to balance automation with the
kind of clarity desired in a metabolic map. KEGG, and
many other pathway databases, creates graphs manually.
Hence, all downstream automatic programs in fact
depends on the original manual versions.
CellDesigner [64] is an excellent tool, but essentially is

for manual editing. On the other hand, CytoScape [65]
and VisANT [66] can do automatic drawing, but their
results tend to be cluttered and difficult for detailed stu-
dies of metabolic pathways. FishEye is a light-weight
and flexible Python program based on the widely used
Graphviz package from AT&T Research Labs [67].
Rgraphviz [68] is a similar package that offers R binding
of Graphviz. The unique strength of FishEye is its opti-
mization for rendering biological pathways via analyzing
network structure and labels. FishEye has worked suc-
cessfully for this project. Its limit seems to be only chal-
lenged by two pathways that exceed 400 edges. For
these cases, a ‘zoom’ feature was introduced to reduce
the cluttering of edges. We hope that FishEye will find
uses in other similar contexts.
We should emphasize that the knowledge of vertebrate

metabolism is still very incomplete. This is already evident
when considering the obvious differences between the two
human models [20,31]. With the assistance of modularity
analysis, we constructed several new pathways that were
not present in the reference models. For instance, our ana-
lysis showed that all 18 enzymes in a newly identified

Table 5 Metabolic pathways that are affected by cadmium
exposure in sheepshead minnows with P-value < 0.05

MetaFishNet pathway Selected
enzymes

Enzymes in
pathway

P-value

Leukotriene metabolism 4 17 0.001

Fatty acid metabolism 3 13 0.005

Omega-3 fatty acid
metabolism

2 7 0.016

Squalene and cholesterol
biosynthesis

3 20 0.018

Xenobiotics metabolism 2 8 0.021

Omega-6 fatty acid
metabolism

2 10 0.032

Tryptophan metabolism 3 29 0.049
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‘sialic acid metabolism’ pathway are in fact present in both
fish and humans. This shows both the strength of our con-
struction approach and the incompleteness of current
models. In general, when one compares the fish pathways
versus human pathways (Table 3), the latter seem to con-
tain more enzymes. Because the UCSD and EHMN pro-
jects were intensively curated and contained many more
data than previous models, a combined human dataset in
this project is unlikely to be surpassed by any computa-
tional model. Due to the bias in annotations, fish enzymes
that have human homologs are also more likely to be
incorporated into MetaFishNet. On the other hand, as dis-
cussed above, we actually further augmented the human
data through constructing MetaFishNet (demonstrated in
Additional file 9).
As a first generation model, MetaFishNet will need

much refinement to fully realize the power of a gen-
ome-wide metabolic model. Traditionally, metabolism
was studied piecemeal by dissecting enzyme activities
and tracking metabolites. Powerful new tools have now
been introduced to genome-wide models [69,70]. For
example, mass balance of metabolites can be achieved
by a combination of the stoichiometrics of reactions and
physiologically plausible kinetics and thermodynamics of
pertinent enzymatic reactions. Even with incomplete

information, system constraints such as metabolite flux
can be deduced. Missing reactions in the model can be
inferred in a similar fashion. While improvements can
be expected from accumulating data and annotations,
with this MetaFishNet framework now in place, it is
possible to design systematic experiments to define and
refine fish metabolome. That is, metabolic constraints
can be inferred from MetaFishNet model; experimental
data can then be gathered, utilizing mutants or knock-
outs, to verify and update the model iteratively [71-73].
Such works will lead the way for species specific models.
Recent studies have shown that gene expression data,

combined with metabolic network models, can success-
fully predict metabolic flux regulation in specific biological
contexts [74-76]. This opens up an exciting opportunity to
advance fish metabolic modeling. Finally, metabolic net-
works are a natural platform to integrate multiple high
throughput data types. For example, Yizhak et al. used a
E. coli metabolic network [30] to combine proteomic data
with metabolomics to predict knockout phenotypes [77].
Connor et al. combined transcriptomics and metabolo-

mics on Ingenuity’s human metabolic pathways http://
www.ingenuity.com to identify type two diabetes markers
[78]. With the advancing of fish omics, in particular
metabolomics [79-81], MetaFishNet is in a good position

Figure 6 The leukotriene metabolism pathway as modulated by cadmium exposure in sheepshead minnow. Four upregulated enzymes
are colored in red. Only a partial pathway is shown. Some metabolites are connected by reaction IDs when the enzymes are not known.
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to fulfill a similar important role for fish studies. The rate
of discovery can be greatly accelerated when MetaFish-
Net is combined with these high throughput
technologies.

Methods
Identification of fish metabolic enzymes and sequence
analysis
All cDNA sequences of the five fish species were
retrieved from the Ensembl database [82]. Identification
of metabolic genes was accomplished by Gene Ontology
(GO) computation [83]. Among the five fish species,
only zebrafish had good GO annotations. Sequences
from the other four species were analyzed by SeaSpider,
our sequence analysis tool. The queries to SeaSpider are
first directed against zebrafish sequences, then against
reference sequences in the GO database. When homol-
ogy is found (BLAST E-value under 1E-5 and a mini-
mum 33 of identical bases in local alignment), GO
terms are assigned to the sequence in query. All genes
with a GO term under the tree of metabolism are con-
sidered to be metabolic genes. Even though this initial
selection is overly inclusive - for example, transport pro-
teins can also get a GO term under metabolism - only
genes that can match to EC numbers are used in Meta-
FishNet construction. We inferred EC numbers in two
ways. The first approach was to carry over EC numbers
from human orthologs. The orthologous relationships
between fish and human genes were adopted from
Ensembl, which has thoroughly computed ortholog/
paralog relationships based on the phylogenetic tree of
the gene family. Human EC to gene associations were
parsed from the ExPASy database [84] and the EHMN
data [31]. The second approach of EC inference was
through annotations in the GO database by similarity to
the enzyme consensus sequences, which have been con-
structed across species. It should be pointed out that
the EC numbers in MetaFishNet are tentative - the
Nomenclature Committee of IUBMB actually requires
strict experimental evidence for assigning an official EC
number.

Integration of reference reaction data
We first integrated the two high-quality human meta-
bolic models [20,31]. The zebrafish metabolic model
was then extracted from KEGG, and combined into the
reference data. The UCSD model contained 1,496 genes
and 3,311 reactions, counting transport reactions and
compartmentalization. A highlight of this work was the
manual curation of literature supports, which was labor
intensive but improved the data quality.
The EHMN model has 2,322 genes and 2,824 reactions

(excluding transport reactions). The EHMN model
included previous metabolic data from all major databases,

and streamlined the identities of compounds. Automatic
extraction of metabolic models from KEGG has been a
challenge. Even though KEGG offers an XML (Extensible
Markup Language) distribution (called KGML) of its path-
ways, molecular interactions were mixed with visual ele-
ments in these KGML les. KEGG API (Application
Programming Interface) was also limited by not distin-
guishing reactants from products. We developed a practi-
cal solution by combining KGML files and KEGG API,
where KGML defines the scope of reactions and API con-
firms relationships. Our Python script, leveraging on
SBML libraries, successfully parsed out the 101 zebrafish
metabolic pathways from KEGG (retrieved March 24,
2008), with 517 ECs and 1,031 reactions.
The integration of three models was at both the

reaction and pathway levels. Two reactions were con-
sidered identical when they have the same enzymes
and major compounds. To gain the most compatibility,
EC numbers and KEGG compound IDs were used
wherever possible. The conventional pathways in
MetaFishNet primarily followed the pathway organiza-
tion in EHMN. Pathways were merged if they shared a
significant number of common reactions. Different
naming styles were reconciled. For example, the ‘Cho-
lesterol Metabolism’ pathway in the UCSD model over-
laps with the ‘Squalene and cholesterol biosynthesis’
pathway in the EHMN model by 14 enzymes and 16
reactions. The two pathways were merged during the
integration of the two human models. All three reac-
tions in the KEGG zebrafish pathway ‘Terpenoid bio-
synthesis’ are included in the human ‘Squalene and
cholesterol biosynthesis’ pathway and were therefore
merged with the latter. Nine out of 11 enzymes in the
zebrafish ‘Biosynthesis of steroids’ pathway are
included in the human Squalene and cholesterol bio-
synthesis pathway, and were therefore merged as well.
Complete lists of pathway reorganization are given in
the Additional file 1. The current model does not take
into account cellular compartmentalization.

Ab initio construction, modularity analysis and manual
curation
Among the 911fish enzymes identified in this project, 561
could be matched to the reference data. For the remain-
ing 350 enzymes, their associated compounds were
retrieved from the KEGG LIGAND database wherever
available. These enzyme-compounds interactions formed
260 newly inferred reactions. Since there was no way to
distinguish reactants from products in these inferred
metabolic data, the directions of these reactions were
treated as unknown. These newly inferred reactions, plus
the isolated reactions from the reference data, were sub-
jected to a combined approach of module-finding and
manual curation. We adopted an algorithm by Mark

Li et al. Genome Biology 2010, 11:R115
http://genomebiology.com/2010/11/11/R115

Page 11 of 15



Newman, which partitions network modules according to
the eigenvectors of a characteristic matrix for the net-
work [34]. The modularity program produced a number
of candidate modules, which were then manually
inspected for pathway organization. This process iterated
until no further change could be made. Isolated reactions
were also inspected to determine if they could be
attached to existing pathways. At this stage, a number of
redundant reactions from UCSD were removed from the
model, and pathways with too few reactions were dis-
mantled to isolated reactions. Through this approach, the
‘sialic acid metabolism’, ‘dynorphin metabolism’, ‘electron
transport chain’, ‘parathion degradation’ and ‘hexose
phosphorylation’ pathways were created from ab initio
construction, while a number of modules were organized
into existing pathways (Additional file 1).

Pathway visualization
FishEye, our pathway visualization tool, is built on Net-
workx and PyGraphviz [85]. It extended a development
version of Networkx to support bipartite networks.
Many details of styling are manipulated through mid-
level markups. In order to keep pathway graphs less
cluttered, we did a number of optimizations. Two ver-
sions of pathway graphs are offered, one with EC num-
bers and compound IDs (for example Figure 5) and one
with enzyme names and compound names (for example
Figure 4 and 6). Both versions for all pathways are avail-
able at the project website. Similar edges in a pathway
can be merged in the visualized graph, and long names
are wrapped. A common practice in the field is to omit
all currency metabolites, as they bring on an excessive
number of edges. We adopted the list of currency meta-
bolites in [86], as it conforms identically to the most
connected nodes in MetaFishNet. However, we leave the
inclusion of currency metabolites optional, depending
on their degrees in specific pathways.

Expression profiling of sheepshead minnows exposed to
cadmium
We have previously generated Suppressive Subtractive
Hybridization libraries for sheepshead minnows, and
sequenced over 10,000 clones [87]. Based on these
sequences, we designed a DNA microarray of 14,494
probes for 4,101 clones. All probes were synthesized
on microarray chips by Nimblegen Inc. with four
replicates.
Exposures and animal sampling were performed as

previously described [88,89]. Cadmium (0.3 mg/L) was
administered to sheepshead minnow larvae at 24 hours
post hatch via precision syringe pumps in an intermit-
tent flow-through system [90]. The study included three
biological replicates, each containing 80 larvae in four
cups. After seven days of exposures, whole larvae were

sacrificed and stored in RNAlater (Ambion Inc., Austin,
TX). Total RNAs were then extracted using the phenol/
chloroform method, and treated with DNase. The puri-
fied RNAs were checked by NanoDrop and BioAnalyzer
for quality assurance. The labeling of RNAs was carried
out according to recommendation by Nimblegen Inc. In
short, mRNAs were converted to double-strand cDNA.
Cy3-labeled random nonamers were used as primers for
DNA polymerase reaction, which produced labeled
DNA targets off the double-strand cDNA. These labeled
targets were purified and hybridized to microarrays. The
resulted fluorescent intensities were corrected by quan-
tile normalization. Data at the probe level were averaged
over on-slide replicates, with outliers removed. The
expression values at the gene level were summarized as
the geometric mean of its probe intensities.

Additional material

Additional file 1: Supplemental method [92-101].

Additional file 2: Species specific statistics of pathways.

Additional file 3: List of MetaFishNet pathways.

Additional file 4: MetaFishNet reaction data.

Additional file 5: SBML distribution of MetaFishNet pathways.

Additional file 6: Fish and human enzymes.

Additional file 7: Analysis of zebrafish liver cancer data by
KegArray.

Additional file 8: Analysis of zebrafish liver cancer data by KEGG
pathways and Fisher’s exact test.

Additional file 9: Complete comparison between fish and human
metabolic pathways.
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