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Zusammenfassung 
Partnerwahl und Reproduktionsstrategien von differenzierten Populationen der 
Hausmaus (Mus musculus domesticus) 

Populationsdivergenz ist ein wichtiger evolutionärer Prozess und kann schnell durch das 

Zusammenwirken von genetischer Drift, natürlicher und sexueller Selektion eintreten. 

Natürliche Selektion wirkt über Fitnessunterschiede durch unterschiedliche Anpassung 

an lokale Umweltbedingungen; sexuelle Selektion wirkt über Partnerwahl auf den 

Fortpflanzungserfolg von Individuen.  

Für die vorliegende Studie habe ich die Partnerwahl in divergierenden Populationen der 

Westeuropäischen Hausmaus Mus musculus domesticus aus der Köln-Bonner Region 

(die „deutsche Population") und aus dem Zentralmassiv (die "französische Population") 

untersucht. Die Populationen sind seit höchstens 3.000 Jahren getrennt. Obwohl eine 

solche Zeitspanne evolutionär kurz ist, zeigt sich bereits genetische Differenzierung. 

Ob eine Differenzierung der Populationen auch bei der Partnerwahl zu beobachten ist, 

habe ich in Langzeitexperimenten untersucht. Dazu habe ich individuell markierte Mäuse 

beider Populationen für 6 Monate in einem weitestgehend natürlichen Gehege gehalten. 

Für Kontrollexperimente habe ich ein Käfigsystem genutzt, bei dem Weibchen Kontakt 

zu Männchen beider Populationen hatten. Die Weibchen konnten über sechs Tage 

zwischen Männchen beider Populationen wählen; die Männchen hatten keinen Kontakt 

untereinander. 

Die Vaterschaften aller Individuen in den Langzeitexperimenten wurden durch 

Mikrosatelliten-Typisierung als Maß für die Partnerwahl und den Fortpflanzungserfolg  

bestimmt. Die individuelle Überwachung der Tiere ermöglichte die Aufnahme ihres 

physischen Zustandes. Untersucht habe ich auch wie eine egoistische Genvariante, der t-

Haplotyp auf die Partnerwahl in beiden Populationen wirkt. Schließlich habe ich geprüft, ob 

sich die Populationsdivergenz auch in relativen Häufigkeiten weiblicher 

Reproduktionsstrategien wie Polyandrie und gemeinsamer Jungenaufzucht widerspiegelt. 

Die Gründerindividuen in den Langzeitexperimenten folgten keinem einheitlichen Muster 

bei der Partnerwahl. Mäuse die in den Gehegen geboren und aufgewachsen waren 

zeigten dagegen eine signifikante Präferenz für Partner, deren Väter aus derselben 

Population wie der eigene Vater stammte. Das Experiment im Käfigsystem lieferte keine 
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einheitlichen Präferenzen in Bezug auf Populationszugehörigkeit. Bemerkenswert jedoch 

ist, dass Schwestern, die gemeinsam in einem Käfig aufgewachsen waren Männchen 

aus derselben Population bevorzugten. Diese Ergebnisse werden im Kontext von 

ethologischer und genetischer Prägung diskutiert. 

Einzelne Parameter zum Fortpflanzungserfolg (z.B. Anzahl der Nachkommen, Anzahl 

der erfolgreichen Verpaarungen, Nachkommen pro Verpaarung) unterschieden sich 

nicht signifikant im Vergleich von Tieren mit Eltern aus den verschieden Populationen 

(„Hybride“) und Tieren mit Eltern aus der jeweils gleichen Population. Die Kombination 

der Parameter jedoch zeigte, dass in 5 von 6 Fällen die Nachkommen von Eltern aus der 

gleichen Population die Hybriden übertrafen. Dies weist auf eine leichte Abnahme der 

Hybrid-Fitness hin. 

Ein unterschiedlicher Einfluss des t-Haplotypen auf Partnerwahl oder 

Verpaarungsverhalten von Weibchen wurde zwischen deutschen und französischen 

Mäusen und Hybriden nicht gefunden. Der einzig beobachtbare und statistisch 

signifikante Einfluss dieser egoistischen Genvariante besteht in einem leichten 

Rückgang der Nachkommenanzahl in erfolgreichen Verpaarungen zwischen Tieren die 

heterozygot für den t-Haplotypen waren.  

Im Gegensatz zu theoretischen Annahmen und Experimenten anderer Wissenschaftler 

habe ich keine Hinweise auf erhöhte Polyandrie oder die Vermeidung von Partnern mit 

t/wt  gefunden. Polyandrie und gemeinsame Weibchenaufzucht scheinen allgemeine 

Strategien von Weibchen zu sein. Beides trat vermehrt mit zunehmender Bevölkerungs-

dichte auf. Beide Strategien erhöhten leicht den individuellen Fortpflanzungserfolg im 

Langzeitexperiment: Weibchen, die Würfe von gleichzeitig mehreren Männchen hatten, 

zeigten einen höheren Reproduktionserfolg als Weibchen die nur Würfe hatten, die von 

jeweils einem Männchen gezeugt wurden. Ein höherer Fortpflanzungserfolg wurde auch 

bei Weibchen gefunden, die aus gemeinschaftlich aufgezogegnen Würfen stammten. 

Zusammenfassend lässt sich feststellen, dass zwischen den untersuchten Popualtionen 

keine Unterschiede in Partnerwahl und Fortpflanzungsstrategien beobachtet wurden. 

Weibchen präferieren jedoch Männchen, deren Väter von der gleichen Population 

kommen wie ihr eigener Vater, ein Phänomen, das ich als „vaterbezogene assortative 

Präferenz“ bezeichne. Dies deutet auf die Existenz von Merkmalen hin, die ein 

Unterscheiden zwischen "eigener Population" und "anderer Population" möglich 

machen. Darüber hinaus gaben die Ergebnisse Einblicke in Vorteile durch kostspielige 

weibliche Reproduktionsstrategien. 
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Abstract 
Population divergence is an important process in the evolution of lineages and can 

occur rapidly through the interaction of random genetic drift with natural and sexual 

selection. While natural selection operates on differences in fitness with respect to 

the local environment, sexual selection acts on the reproductive success of 

individuals through pre- and postcopulatory mate choice. 

Recently separated populations of the Western European house mouse 

Mus musculus domesticus were investigated for mating preferences. The study 

system consisted of two populations, one sampled in the Cologne/Bonn region, 

referred to as the “German population” and one from the Massif Central, termed here 

the “French population”. These populations have been separated for at most 3,000 

years. Although this time span is short in evolutionary terms, they already show 

genetic differentiation.  

To test whether population divergence is reflected in mate choice, I carried out four 

replicates of a long-term experiment, in which individually tagged mice of both 

populations were held for 6 month in a semi-natural enclosure. As controls, I 

conducted cage experiments, where females could choose between males of both 

populations during a 6 day period.  

Paternities in the enclosure populations were determined by microsatellite typing of 

all individuals and they were used as measures for mate choice and reproductive 

success. The frequent monitoring of the populations during which animals were 

examined individually allowed the assessment of their physical condition. 

Furthermore, I examined the influence of a selfish genetic element, the t haplotype, 

on pre- or postcopulatory mate choice for the different population backgrounds. 

Finally, I analyzed whether the population divergence is also reflected in relative 

frequencies of female strategies such as polyandry and communal breeding.  

Founder animals of the long-term experiment did not follow a consistent mate choice 

pattern, while individuals born in the enclosures showed a significant preference for 

partners who had a father from the same population as themselves. In the controlled 

cage experiment, there was no consistent preference pattern regarding population 

background. However, female littermates that grew up in the same cage chose males 
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coming from one population, indicating an environmental influence. These findings 

are discussed in the context of behavioral and genomic imprinting. 

German and French founder animals differed slightly in reproductive success. Among 

the F1 individuals, the comparison of reproductive success between individuals with 

a mixed population background (i.e. with parents from different populations) versus 

animals with a pure background (i.e. with parents from the same population) revealed 

no significant differences. Nevertheless, when looking at the combination of 

measures for reproductive success, such as offspring number, number of mating 

events, and offspring per mating, in 5 out of 6 parameters “pure” individuals 

outperformed the “mixed” individuals, which might indicate a slight decrease in hybrid 

fitness. 

No different influences were detected between German, French and hybrid animals 

regarding the t haplotype or different frequencies of female multiple mating and 

communal breeding. Influences of the t haplotype were restricted to a slight decrease 

in offspring number in successful mating events between t/wt animals for all 

combinations of population backgrounds. Contrary to theoretical assumptions and 

other experiments, no evidence for an increased multiple mating frequency or 

avoidance of partners with t/wt was found. Polyandry and communal breeding 

seemed to be general strategies in females of pure as well as mixed population 

backgrounds, and both strategies increased in frequency with an increasing 

population density. Females displaying these strategies had a slightly higher 

reproductive success in semi-natural conditions: Mothers with litters sired by several 

males had a higher reproductive success than mothers with only single paternity 

litters. A higher reproductive success was also detected for females which grew up in 

communally reared litters. 

Summarizing the outcome of the study, the recently diverged populations do not vary 

in partner choice: no differences in mate choice or reproductive strategies were 

observed. However, females preferred mates that had fathers from the same 

population as themselves, a pattern which I will call the “father related assortative 

mating pattern”. This suggests the presence of cues which enable the differentiation 

between “one’s own population” and “the other population”. In addition, the results 

gave insights into the benefits of costly female reproductive strategies. 
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1 General Introduction 
1.1 Studying mate choice in the context of population divergence 

Populations are the important units of evolution and will differentiate if they are 

subjected to different selective forces or drift (Ehrlich & Raven 1992). Considering 

this, population divergence is a decisive evolutionary process, since it captures the 

historic ecological differences in lineages. Following a population genetics model by 

Lande (1981), evolution can occur rapidly through the interaction of random genetic 

drift with natural and sexual selection. Similarly, Slatkin (1987) states that besides 

mutations and genetic drift due to finite population size, natural selection favors 

adaptations to local environmental conditions which lead to the genetic differentiation 

of local populations. This process is also described by Kimura & Weiss (1964), who 

pointed out that the genetic differentiation of geographical races may reflect local 

differences of selective patterns. Considering the above mentioned statements, these 

imply that the process of population differentiation is accelerated by adaptations to 

the local environmental conditions (Hartl & Clark 2007). According to the nearly 

neutral theory, adaptation may be due not to strong selection of rare variants with 

large effects, but to weak selection of common variants (Hurst 2009) and can act 

constantly on populations.  

Important for the divergence of populations, however, is some sort of isolation which 

ensures the accumulation of genetic differences (Kimura & Weiss 1964). Mayr’s 

species concept claims the importance of reproductive isolation (Mayr 1942, cited in 

De Queiroz 2005). One mechanism for such isolation could be assortative mating, 

biasing mate choice towards a partner from the same local population. Additionally, 

Ehrlich & Raven (1969) state that incompatibility can arise when two populations are 

subjected to differing selective regimes and selection operating against hybrids 

reinforces the divergence.  

Genome wide studies have shown that genes involved in reproduction and immune 

defense are among the genes which evolve comparably fast (Waterston et al. 2002; 

Ellegren 2008; Swanson & Vacquier 2002). This might be reflected by a divergence 

in mate choice, since pre- and postcopulatory choice were shown to be influenced by 

for example, genes governing the immune defense (e.g., Milinski 2006) or genes 

coding for sperm and egg proteins involved in fertilization (Eady 2001). In addition to 

a consequence of genetic compatibility, divergence in partner preferences could 
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result from a situation where alleles, parameters or reproductive strategies favorable 

in one population context are different to alleles, parameters or strategies favorable 

in another context (Bussière et al. 2008),  

To what extent parameters influencing mate choice evolve and diverge over time can 

be tested empirically by analyzing mate choice patterns between individuals of 

closely related populations. Even if such populations occur in allopatry, if they exhibit 

divergence in the respective parameters – driven either by drift or selection – some 

sort of assortative mating or an influence on reproductive success is expected.  

Behavioral experiments and studies from the hybrid zone of two house mouse 

subspecies that have been separated for 800,000 years, showed assortative 

preferences as well as reduced fitness of hybrids (see below).  

The system I studied is a very recent population divergence within the subspecies 

M. m. domesticus. The populations of French and German mice that I worked with 

have been separated for approximately 3,000 years.  

1.2 The house mouse  

1.2.1 The European Western house mouse as a model organism 
for evolutionary studies 

The house mouse (Mus musculus) is an ideal model organism for studies on 

population divergence. Due to the fact that it is the ancestor of the lab mouse – an 

important model organism in medical research (Berry & Scriven 2005) – we know the 

complete genome sequence (Waterston et al. 2002). Moreover, specialized genetic 

tools such as genome wide screening platforms (microarrays or large scale SNP 

typing tools), that were originally developed for medical research can be applied to 

wild mice.  

The house mouse has a relative short generation time (up to four generations per 

year, Geraldes et al. 2008). The ecology of the small rodent is well studied; it lives in 

feral populations or commensally with humans in fairly high population densities 

(Bronson 1979). The commensal lifestyle of the house mouse facilitates the study of 

its colonization history, and thus the study of population divergence.  

Berry & Scriven (2005) pointed out that, although the house mouse has been used 

for many years as a model for evolutionary studies, most laboratory strains have 
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been inbred in captivity for many generations and have lost natural genetic variation, 

which is expected to bias results dramatically (e.g., McCarthy & Vom Saal 1986; 

Miller et al. 2000). Additionally, the complex social system of this rodent can’t be 

appropriately mimicked in cage systems of animal houses because the artificial 

conditions bias the behavior (Latham & Mason 2004; Wolff 2003).  

1.2.2 Mouse phylogeny  

It is assumed that the species Mus musculus originated in India, from where it spread 

over the whole world, radiating into different subspecies around 0.5 Mio years ago 

(Boursot et al. 1993). M. m. castaneus expanded its range towards the East, 

M. m. musculus spread over Central and Eastern Europe and M. m. domesticus 

colonized Western Europe and subsequently the rest of the world (Figure 1.1). 

 

Figure 1.1: Colonization history of Mus musculus domesticus (after Morse 2007). 

At the borders of their distribution, the subspecies form hybrid zones (zones of 

secondary contact), which are a major subject for speciation research. Especially the 

divergence between the two subspecies M. m. musculus and M. m. domesticus is 

intensively studied (Good et al. 2008) by crosses of both subspecies in the laboratory 

or the investigation of animals from the hybrid zone. These studies have found 

evidence for reduced fitness in hybrids in terms of higher parasite load (Sage et al. 

1986), male sterility and reduced testis size as well as reduced female fertility in 

some crosses (Britton-Davidian et al. 2005). Additionally, different mate choice 

experiments between individuals of the two subspecies have been conducted to 

investigate whether the divergence is reinforced through sexual selection 

mechanisms. Applying two-way choice tests, Smadja and colleagues showed 

subspecies recognition mediated by urinary signals (Smadja & Ganem 2002) and 
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partner preferences for M. m. musculus males and females for individuals of the 

opposite sex from their own subspecies (Smadja et al. 2004). 

I used two populations of mice that have only recently diverged; one population from 

the Massif Central region in France and the second from the Cologne Bonn region in 

Germany. From palaeontological studies it is known that the Western European 

house mouse reached Western Europe via the Mediterranean Sea at about 3,000 

years ago (Cucchi et al. 2005). By this, the maximum divergence time of the two 

populations is not more than 3,000 years, which makes it an interesting system to 

investigate whether a divergence is observed in mate choice. 

1.2.3 Life history of the house mouse 

Life history of mice was extensively investigated in field studies and in captivity under 

semi-natural conditions (e.g., Crowcroft & Rowe 1961; Reimer & Petras 1967; 

Lidicker 1976; Singleton & Hay 1983;  important reviews: Berry 1969; Bronson 1979; 

Berry & Bronson 1992; Berry & Scriven 2005). The following section summarizes 

facts that were important for the experimental design and the analysis of results in 

the present study. 

Mice live in socially substructured populations composed of dominant and 

subdominant individuals where dominant males form breeding subpopulations 

(demes) and defend their territory by fighting with intruders and frequent urinary 

marking. Geneflow between demes is very rare (Selander 1970; Singleton & Hay 

1983), but dispersal of young mice is frequent and an important mechanism for 

population expansion and colonization of new habitats (Bronson 1979; Berry & 

Bronson 1992). 

It is estimated that commensal populations have up to three generations per year 

(Karn et al. 2002). Ovulation of females is every 4 days, and gestation lasts between 

19-20 days. Normal litter size is between 5 – 8 pups and under normal conditions, 

equal numbers of males and females are born. Communal nests with several 

breeding females are common. Weaning takes place between 14 to 15 days. Many 

pups (up to 50%, Berry & Jakobson 1971) do not reach the adult age.  

Polyandry and polygyny (mating with several partners) is widespread in house 

mouse reproduction. It was shown that both sexes benefit from mating with a 
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preferred partner (Drickamer et al. 2003; Gowaty et al. 2003) and sperm competition 

(Dean et al. 2006) seems to be common. 

1.3 Aim of the study 

The present study investigates partner preferences of diverged populations of the 

house mouse. The main question is, whether the observed genetic divergence is 

already reflected in mate choice. This could be indicated through assortative mating 

between individuals of the two populations and, possibly connected with this, an 

impact on hybrid fitness. On the other hand, a population divergence could also imply 

variation in reproductive strategies or a different influence of mate choice 

parameters.  

The mate choice experiments were set up to observe any assortative mating and 

impacts on hybrid fitness (chapter 2). In chapter 3, I screen for a divergence in the 

role of mate choice parameters or reproductive strategies such as polyandry and 

communal breeding between the populations.  
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2 Mate choice between individuals of two separated 
house mouse populations (M. m. domesticus) 

2.1 Introduction 

For closely related sympatric or adjacent taxa it is known that assortative mating acts 

towards a stronger divergence by increasing reproductive isolation (Kirkpatrick 2000). 

The underlying mechanisms leading towards reproductive isolation were studied 

extensively in the case of the two house mouse subspecies M. m. musculus and 

M. m. domesticus, which came in secondary contact after 800,000 years of 

divergence. However, it is not known after which divergence time such reinforcing 

mechanisms evolve.  

The here used M. m. domesticus populations from Germany and France are 

separated since approximately 3,000 years, which, considering generation times of 

house mice, means at most 18,000 generations. Figure 2.1 shows the migration 

route of the Western European house mouse: it made its way via the Mediterranean 

See and spread from there quickly over Western Europe (Cucchi et al. 2005).  

  

Figure 2.1: Left: Allele sharing tree based on 81 nuclear microsatellite loci, indicating recent 
genetic divergence between the populations. (Figure taken from Ihle et al. 2006). Right: Map 
showing the migration route from East to West of the house mouse Mus musculus domesticus. 
The spots mark the location of the sampling site of the Cologne Bonn (“Germany”) and Massif 
Central (“France”) population. Figure taken from (Thomas 2006). 

Previous studies have shown that the populations are closely related but genetically 

distinct: D-loop sequences of the populations cluster together, while nuclear 

microsatellite loci show a clear divergence and indicate that no significant geneflow 

takes place between the populations (Figure 2.1, Ihle et al. 2006). Additionally, 

expression data also indicate divergence between the populations (Bryk et al. in 

prep). Considering this recent divergence and the observed genetic differentiation it 
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is interesting to investigate whether a divergence in mate choice can also be 

observed.  

Long-term experiments in semi-natural enclosures are a useful setup to investigate 

behavior, population structure or mate choice in house mice. Several such 

experiments have been conducted previously (Crowcroft & Rowe 1963; Reimer & 

Petras 1967; Selander 1970; Lidicker 1976; Manning et al. 1995; Drickamer et al. 

2003; Carroll et al. 2004; Ilmonen et al. 2008), as observations in the field are not so 

efficient (especially when individual observations are desired) and time consuming. 

Additionally, for house mice it is relatively easy to reconstruct their natural 

environments: since they live commensally in barns or stables, they are used to live 

in an indoor environment with times of artificial light and only slight temperature 

variation. The aforementioned long-term experiments were all long enough to allow 

the emergence of at least one new generation, lasting from several months to years. 

Although long-term experiments are suitable setups for mate choice tests, many 

researchers opt for more controlled experiments in cages. The design of such 

experiments differs widely, lasting from few minutes to several days. Mice are 

exposed to different individuals (or olfactory stimuli) of the opposite sex, either 

allowing the free movements and enabling also mating (e.g., Rolland et al. 2003) or 

allowing only olfactory contact (Smadja & Ganem 2008; Drickamer et al. 2003; 

Lenington et al. 1994; Ramm et al. 2008). Such cage experiments have advantages, 

e.g. they are generally less cost intensive, they can be conducted under standardized 

conditions, individuals can be hindered to interact and compete with each other and 

outside influences can be controlled more easily. However, the mate choice behavior 

is not observed in a social context, which can be important depending on the 

research question.  

To investigate the mate choice between French and German mice, I have chosen 

both experimental setups, which I describe in the following. In this chapter I focus on 

the results of assortative mating and compare the reproductive success of progeny 

from mate partners of the same population (“pure offspring”) and progeny from mate 

partners of the German and the French populations (“mixed offspring”). Figure 2.2 

shows schematically the different possibilities of mate pairs and introduces the 

abbreviation system I used in the course of the thesis.  
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Mate pairs of 
founder 

animals (F0, 
grown up in 

cages) 

“pure” offspring “mixed” offspring F1 
generation: 
progeny of 

different mate 
partners.  

 

   

 
Figure 2.2: Schematic figure visualizing the animals in the F0 and F1 generations. Although 
not shown, also F2 and backcrosses were present in the long-term experiment. “G” stands for 
German population background, “F” for French background. In the F1, the population 
background of the mother stands on the left-hand side, of the father on the right-hand side. 
 

Assortative mating could be based on different parameters, e.g. Smith (1966) states 

that genes acting as “assortative mating genes” could be genes affecting signals or 

behavior used in courtship. However, to disentangle on which parameters assortative 

mating is based on, is a second step, considered in the next chapter of the thesis, 

where the influence of different mate choice parameters is analyzed. In the present 

chapter I concentrate on the observation of assortative mating. 

2.2 Methods 

Four replicates of a long-term mate choice experiment with individuals of both 

populations were conducted in a semi-natural enclosure. The experiments started 

with a mouse density of 1.5 mice/m2 with equal numbers of German and French mice 

in an equal sex ratio. Two experiments were carried out in parallel, and the two sets 

varied only in duration of the experiment and in the starting condition (Table 2.2). The 

present chapter focuses on paternity data which serve as measures for mate choice 

and are analyzed considering population background. Chapter 3 will describe results 

on the role of other parameters than population background for mate choice. In 

addition to the long-term experiment, a controlled cage experiment was carried out 

where females could chose between two partners without interference through male 

contest. 

2.2.1 Long-term Experiment 

Experimental mice 

All mice used for the long-term experiment originated from wild mice caught in 2004 

and 2005 (F2-F4) in the Cologne/Bonn area (German mice) or the Massif Central 

French
F
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F

German
G

German 
G
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G
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F
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G
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F

GG FF FG GF 
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(French mice). Populations were kept using an outbreeding scheme. From the age of 

weaning (21 to 28 days) mice were housed in unisexual groups in standard macrolon 

cages (Type III, Techniplast) at light-dark cycles of 12:12 hours. At the age of 40 

days they were housed solitarily in Type II L cages.  

Conditions during the long-term experiment 

Of the four replicates, experiments I & III were carried out in enclosures of 24 m2, 

while experiments II & IV were carried out in enclosures of 18 m2. At the age of 

20 - 52 weeks, 10 females and 10 males (experiments I & III) or 7 males and 7 

females (experiments II & IV) were tagged with passive glass transponders 

(Datamars and AEG) and then released in the enclosures. The initial mice density 

was approximately 1.5 mice/m2 in all four experiments. For experiments I & II, some 

of these “founder mice” were siblings, while in experiments III & IV all founder mice 

were non-siblings (Table 2.2).  

Mice were held in the enclosures (Figure 2.3) for 5 to 6.5 months. Water and food 

(Altromin 1324) were supplied ad libitum. The light : dark cycle was 12:12 hours, the 

ambient temperature 20 – 23 °C, and relative humidity 50 – 65 %. Enclosures were 

equipped with bedding, straw, and housings. Structural variation was provided by 

wooden walls (40 cm high) and plastic tubes. A “dispersal tube” with several 

entrances allowed mice to escape from the population enclosure in a connected cage 

system via an aquarium as designed by Gerlach (1996).  

At the end of the experiments, all animals were euthanized individually with a CO2/O2 

mixture, followed by cervical dislocation. Dead animals were weighed and tail and 

body length were measured. Liver, spleen, and testis were dissected; spleen and 

liver served as tissue samples and were stored in HOM Buffer (80mM EDTA, 100mM 

Tris, 0.5% SDS) at -20°C while the testes were weighed, shock frozen in liquid 

nitrogen and stored at -80°C to allow future gene expression/transcriptome analysis. 

In case of pregnant females, embryos were taken out of the uterus separately, shock 

frozen in liquid nitrogen, and stored in 70% ethanol for subsequent paternity analysis. 

Cadavers of all dissected mice were stored in 70% ethanol and kept at 4°C. 
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Figure 2.3: Enclosures used for experiment I and III (left) and II and IV (right). The biggest 
symbols show the localization of housings (bars demonstrate the two entrances). Lines 
represent wooden walls, lighter grey circles water bottles and darker grey circles feeding 
stations. The entrances to the dispersal tubes are shown as open circles.  

Spatial association data 

Animals born in the enclosures were tagged with an individual glass transponder at 

the age of 8 weeks (at a bodyweight of around 17 g). The identity of each mouse was 

assigned at the end of the experiment (see below). 

During the experiment, every second to third day around noon the positions of mice 

were recorded with a handheld transponder reader (Datamars). During this 

procedure, all houses and tubes were checked for the presence of a transponder-

tagged mouse.  

Monitoring of population development and individual condition 

Every three to four weeks during the experiment, all mice were caught with live traps 

or by closing the houses and were checked for individual condition (check for bite 

marks, pregnancy), weight, and the existence of pups. During this monitoring 

activities, tissue samples of pups were also taken. Severely injured mice were taken 

out of the experiment and euthanized using a CO2/O2 gas mixture. 
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Genotyping for identity and paternity assignment 

To obtain tissue samples of the founder mice, ears were clipped before the 

experiments, whereas offspring earclips were sampled at the age of 10-20 days 

during the experiment. Tissue samples from liver, spleen or tail were taken at the end 

of the experiment or at death in case animals died during the experiment. In this way, 

ideally two tissue samples from each animal were obtained which served for identity 

matching. DNA was extracted by salt extraction or with DNeasy 96 Blood & Tissue 

Kit (QIAGEN) following the “Purification of Total DNA from Animal Tissues” protocol 

with extended centrifugation times.  

For each DNA sample, up to 14 microsatellite loci (Table 2.1) were typed by using 

the standard protocols of the QIAGEN Multiplex PCR Kit. Alleles were analyzed 

using Genemapper 4.0 (Applied Biosystems). Null allele frequency was estimated for 

each locus using the program CERVUS 3.0. None of the loci showed a null allele 

frequency higher than 0.05 and could be therefore used for identity matching and 

parentage analysis using the program CERVUS 3.0 (Kalinowski et al. 2007). 

Table 2.1: Selected polymorphic microsatellites (described in Teschke et al. (2008)). 

Locus Number of 
alleles 

Number of 
individuals typed

Observed 
heterozygosity 

Expected 
heterozygosity 

Estimated null 
allele 

frequencies 
6G7 15 116 0.85 0.88 0.01 

9C8 13 133 0.83 0.86 0.01 

9F12 11 136 0.82 0.79 -0.02 

3J6 16 135 0.87 0.90 0.02 

8G7 17 130 0.85 0.90 0.02 

6A4 14 136 0.84 0.88 0.03 

7F9 10 134 0.87 0.84 -0.02 

5H11 11 68 0.87 0.88 0.0001 

9H5 14 133 0.93 0.87 -0.04 

4C11 10 133 0.92 0.87 -0.03 

7J6 11 133 0.85 0.85 -0.002 

6G3 13 135 0.90 0.90 -0.0007 

10C6 13 136 0.87 0.89 0.01 

8H7 10 136 0.89 0.83 -0.03 

Parentage analysis and identity matching 

CERVUS 3.0 works with codominant, autosomal, unlinked genetic markers and 

assigns the most likely parent pair from a set of possible parents to the offspring. 
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Allele frequencies of the 14 loci were determined for all four experiments separately 

(including all animals in these analyses) and simulations for parentage assignment 

were run for 10.000 offspring previously to all parentage analyses, assuming 90% of 

possible parents sampled and typed with a minimum of 7 loci. 

Prior to paternity assignment, birth dates of animals were determined by identity 

matching of individual genotypes with samples taken from 14 - 21 day old pups 

during the experiment (matching performed with CERVUS 3.0, min. number of typed 

loci: 7, max. number of allowed mismatches: 2). Following this analysis, animals 

could also be assigned to the litters from which they came and received, together 

with littermates, a special “Litter-ID”. 

According to birth and death dates, animals were assigned as possible parents or 

offspring of defined experimental phases. Offspring of the first phase were born 

during the first three month of the experiment, while their possible parents were the 

founder animals. Possible parents of the second phase included offspring born in the 

first phase and founder animals (if still alive) and the offspring under consideration 

were born during the fourth and fifth month. Finally, offspring born until the end of the 

experiment were tested against possible parents born until the fifth month. Animals 

with uncertain birth dates were tested against all possible parents.  

For paternity assignment, a maximum of 2 mismatches was accepted (following 

criteria from Araki & Blouin 2005, who allowed 2 mismatches for 8 microsatellite loci). 

The reliability of paternity assignment was verified manually for all individuals. 

Control factors taken into account were frequency of litters for individual females, age 

of assigned parents and paternity patterns in litters of females (e.g. a very high 

number of fathers in one litter is questionable).  

Data Management 

Data were managed using a self-constructed database in Microsoft Access 2002 

(see Supplement). This database includes all information about the individual mice: 

sex, birth and death dates, transponder numbers, physical conditions and weight 

taken during the monitoring procedure, the spatial data obtained during locality check 

with the transponder reader, all genotype and origin information, the outcome of the 

parentage analysis, their assignment to a certain litter, as well as information on 

sample storage after the end of the experiment. 
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Statistical analysis 

Statistical analysis was performed using SPSS (12.0) and Microsoft Excel (2002). 

For some analysis, p-values were calculated after obtaining chi-square values via 

Excel on the web site http://graphpad.com/quickcalcs. Two tailed t-tests for the 

paired comparisons and ANOVA for comparisons between more than two groups 

were used. The level of significance was set to 0.05.  

The graphical presentation of data is mainly done with histograms or boxplots. For 

the latter case each box shows the median, quartiles and extreme values (outliers: 

cases with values between 1.5 and 3 box lengths from the upper or lower edge of the 

box, depicted as an open circle; extreme cases: values more than 3 box lengths from 

the upper or lower edge of the box, depicted as a star). 

Measuring mate choice 

Successful mating events (detected through paternity analysis) were taken as 

measures for mate choice. The use of “matings” and “mating events” in the text refer 

to successful matings (since matings were not observed directly). 

2.2.2 Controlled female choice in a cage system 

Experimental mice 

Mice used in the cage experiments originated from the same wild mouse colonies as 

described above. Female and male siblings were separated after weaning and 

housed in different rooms to allow females to enter in anoestrus (Lee-Boot effect, Ma 

et al. 1998). Females were housed with two or three other females (sisters or non 

sisters), while the males were kept solitarily. Females were tagged with glass 

transponders. Both males and females were tested at an age of 30 – 60 weeks. At 

the beginning of the experiments mice were sexually inexperienced and female 

contact with male urine was avoided. The males were selected randomly (regarding 

size and weight). Females were used once (only two French females were tested 

repeatedly), while males were used in up to 4 experiments. 

Cage system to test for female preference 

The cage system consisted of three connected cages (Figure 2.4) which were all 

supplied with bedding, paper, wood wool, and egg carton for shelter. The female was 
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placed in the middle cage (macrolon, Type IV, Techniplast). To the left and right of 

this cage, two tubes connected the side cages (macrolon, Type III), which were 

subdivided into two parts by a perforated metal board. The cages were positioned 

allowing maximum distance between the males. The female could only enter one part 

of the side cages via the tube, while the male was placed in the other (closed) part. 

The location of the transponder-tagged female was registered by two antennas in 

each tube. The time at which a female passed the antennae and thus the time it 

spent close to each male was recorded. After each experiment, cages and tubes 

were thoroughly cleaned with water and ethanol. I used two such devices in parallel.  

 

 

Figure 2.4: Experimental 
setup of the controlled cage 
experiment. Above: Diagram 
of the experimental device: 
the female was placed in the 
middle cage. Males of both 
populations were put into the 
left and right cages. The 
arrows indicate the positions 
of the inner and outer 
antennae to record the time 
a female spent at which side 
of the apparatus. Below: 
Photograph of the device. 

Testing for side preference with test females 

Before testing female preference for males in the system, several females were used 

to check general side attractiveness of the cage systems (e.g. through lower 

interferences) by recording the time these females spent in the side cages without 

the male stimulus. No general side preferences were observed: 4 females were 

tested in both used systems; comparing the means of relative time in each side cage 

did not show differences (cage device 1: p-value 0.55, cage device 2: p-value 0.91 

paired t- test). 

Procedures before, during and after the experiment 

Right before an experiment started, females were weighed and placed in the middle 

cage of the choice apparatus. Males were also weighed and placed each one in the 

outer cages, selecting randomly the site for the different populations. Animals were 

left for 6 days in the apparatus, during which time movements of the female and the 

time it stayed in the outer cages was recorded. Well-being of mice was checked 

carefully without disturbing the animals. Food and water was supplied ad libitum.  
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2.3 Results from the Long-term Experiment 

2.3.1 Population development 

Mice of the two populations were left in the enclosures for 5 months (experiments I 

and II) and 6 ½ months (experiments III and IV). The experiment duration was 

extended in the second trials (experiments III and IV) in order to get more mice in 

advanced generations (after analysis of the first trials showed relatively few F2 

animals).  

During all four experiments, population densities increased considerably. Starting 

with 1.5 mice/m2 population densities increased to 2.5 – 12.9 adult animals /m2. The 

differences in population densities of experiments I and II in comparison with 

experiments III and IV were due to the longer experimental duration of the latter 

experiments. Surprisingly, despite a considerable increase in population densities, 

only 3 males escaped from the enclosures via the dispersal tube, all of which were 

juveniles at an age of approximately 30 days. 

Table 2.2: Summary of population parameters for the four enclosure experiments. 

 Exp I Exp II Exp III Exp IV 
Duration of experiment 147 days from 2nd of April to 

27th of August 2008 
196 days from 8th of October 
2008 to 22nd of April 2009 

Initial animal numbers 40 (10 G ♀, 
10 F ♀, 10 
F ♂, 10 G ♂) 

28 (7 G ♀, 7 
F ♀, 7 F ♂, 7 
G ♂) 

40 (10 G ♀, 10 
F ♀, 10 F ♂, 
10 G ♂) 

28 (7 G ♀, 7 
F ♀, 7 F ♂, 7 
G ♂) 

Initial population densities 1.5 mice/m2 1.5 mice/m2 1.5 mice/m2 1.5 mice/m2 

Initial spatial separation F and G animals were initially 
separated for 7 days by 
dividing the enclosure in two 
parts 

No separation of the two 
populations during the first week 
(both populations were 
immediately together)  

Population densities at the end 
of the experiment 

4.25 mice/m2 2.5 mice/m2 12.9 mice/m2 11.2 mice/m2 

First litter born 5/12/2008 5/12/2008 11/1/2008 11/7/2008 

Total number of animals 
recorded including embryos, 
dead pups, and newborns 

193 mice 133 mice 647 mice 386 mice 

In 3 out of 4 replicates, no significant deviations from equal sex ratios were detected 

when considering all animals (with the exception of embryos, animals which were 

newborn at the end of the experiment, and dead pups). Exp IV showed a significant 

male overrepresentation (chi-square test, p-value: 0.04, Figure 2.5, left side). The 

operational sex ratio (measured as the number of adult animals (>13 g) at the end of 

the experiment) gave no significant sex ratio distortion.  
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Figure 2.5: Sex ratio in the four replicates: Left side: sex ratio considering all animals 
monitored during the experiments. Right side: operational sex ratio (adults > 13 g) at the end 
of the experiments. Lighter grey: females, darker grey: males. Males were slightly 
overrepresented; however, in most cases the deviation from equal sex ratios was not 
significant. Only replicate IV showed for the overall sex ratio a significant male 
overrepresentation (chi-square test, p-value: 0.04). 

The sex ratio of pups (recorded during tissue sampling approximately at the age of 

14 days, data only available for Exp III and IV) showed a stronger sex ratio deviation 

(Figure 2.6). Binomial testing indicates that males in Exp III were significantly more 

times overrepresented when only pups are analyzed (binomial testing, p-value: 0.04). 

Exp IV didn’t show such a strong skew towards males, but at the two last sampling 

dates, males were significantly overrepresented. These results coincide with an 

elevated population density towards the end of the experiments.  
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Figure 2.6: Sex ratio of offspring sampled at different dates. Left side: Exp III, right side: 
Exp IV. Lighter grey: females, darker grey: males. The absolute numbers of animals are 
indicated in the bars. Binomial testing showed that males in Exp III were significantly more 
often overrepresented when only pups were analyzed (p-value: 0.04). Experiment IV didn’t 
show such a skew towards males, but at the last sampling date, males were significantly 
overrepresented. 
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2.3.2 Paternity assignment 

A total of 1,220 offspring were analyzed for paternity. Paternity assignment was 

reliable, as determined in case of the embryos, where the mother was known. 

Nevertheless, in 53 cases (4.3%), paternity had to be changed manually, and in 96 

cases (8%), paternity problems could not be solved and offspring remained 

“unassigned”. One reason for these problems was the high degree of inbreeding, 

especially at the end of the experiments. The unassigned offspring were excluded 

from the analysis. A total of 1,124 offspring (92%) were assigned successfully. 

After paternity analysis, the origin of 1,103 offspring was determined. In some cases, 

although the overall paternity analysis was successful, the origin of the pups could 

not be determined, resulting from unsolved paternity of one parent. Figure 2.7 gives 

an overview of the distribution of offspring within and between populations.  
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Figure 2.7: Relative proportion of “pure” German and French animals, as well as “mixed” 
animals. Absolute numbers of animals are indicated in the bars. Shown are all offspring of 
which population background could be assigned. 

Animals descendent from individuals of the Cologne/Bonn population will be referred 

to as “German” or “pure German” individuals, and in figures and tables, the letter G is 

used for these. Animals originating from individuals from the Massif Central region 

will be labeled “French” or “pure French” individuals (F), and in figures and tables the 

letter F stands for these. Offspring originating from individuals of both populations are 

termed “mixed animals” and they are abbreviated with the letters GF or FG. Later on, 

the distinction between the origins of the mother and the father will be important. 

Here, the abbreviation for population background starts with the origins of the 
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mothers on the left-hand side and the origin of the fathers on the right-hand side; 

thus, a progeny of a German mother and a French father will be abbreviated GF, 

while an individual with both parents from the French population is abbreviated FF, 

etc. (see also introduction, Figure 2.2). 

Assigning individuals to generations revealed the distribution of F1, F2 and 

“backcrosses” as shown in Table 2.3. As backcrosses, I refer to animals which result 

from mating events between animals of different generations.  

Table 2.3: Distribution of animals (assigned to parents) over the generations in all the 
different replicates and the entire experiment.  

Generation Exp 1 Exp 2 Exp 3 Exp 4 Overall 
F0 40 28 40 28 136 

F1 113 71 133 91 408 

F2 4 6 241 178 429 

F3 0 0 1 0 1 

Backcross F0/F1 15 23 108 58 204 

Backcross F1/F2 0 0 45 5 50 

Others or not clear 0 1 27 4 32 

 not assigned to parents 21 4 52 22 96 

Overall 193 130 647 358 1328 

2.3.3 Assortative mate choice 

Mate choice  

The fundamental data for the mate choice analysis are the successful mating events. 

These data were obtained through paternity analysis, i.e. only mating events which 

resulted in offspring could be considered. Mating events which did not result in 

fertilizations or where embryos died before birth could not be taken into account. 

378 mating events were recorded in the four experiments. Four events could not be 

analyzed for population assortative mating, because the origin of one or both 

partners could not be determined. A total of 374 mating events remained for analysis. 

Mating events between founder animals (125 events), between F1 animals (156 

events) and backcross events were analyzed separately because founder animals 

had a different life history than the animals born in the enclosures which is expected 

to effect their mating behavior. The remaining events present pairings between F0 

and F1 animals (“backcrosses”) (76) and very few mating events between individuals 

with backcrosses. Mating events between founder animals are shown in Figure 2.8. 
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Figure 2.8: Relative proportions of mating events between individuals of F0 of both 
populations for all 4 replicates separately and together. Mating events between partners from 
the German population are shown in white, mating events of partners from the French 
population in black. Lighter grey are mating events where the female was G, and the male F, 
darker grey vice versa. The numbers in the bars refer to the total number of mating events 
observed for the different combinations.  

The analysis for assortative mating showed no consistent pattern between the 

different experiments. Examining the different experiments showed similar results for 

experiments I and IV (Exp I: chi-square=0.8, df=1, p-value: 0.4; Exp IV: chi-

square=1.01, df=1, p-value: 0.3), indicating random mating in regards to population 

background. Experiment II showed a very strong indication for assortative mating 

(chi-square=18.06, df=1, p-value < 0.0001) whereas experiment III pointed towards 

disassortative mating (chi-square=5.55, df=1, p-value: 0.02). This heterogeneity in 

the chi-square values showed that for the analysis of mating preferences in the 

founder generation the four experimental replicates could not be pooled. Leaving 

animals heterozygous for the t haplotype (a selfish genetic element, see chapter 3) 

out of the analysis (Figure 2.9) also did not allow the analysis of pooled data (chi-

square values: Exp I: 1.1, Exp II: 17.06, Exp III: 0.28 and Exp IV: 1.8, chi-square for 

heterogeneity: 16.19, df=3, p-value: 0.01).  
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Figure 2.9: Matings between F0 animals, excluding t haplotype animals from the analyses. 
The heterogeneity test rejected homogeneity of the results from the four experiments (p-
value: 0.01). Chi-square values of the different experiments are documented in the text. 

Analyzing the mating events between animals of the F1 generation (156 successful 

mating events), no clear patterns for assortative or disassortative mating were 

observed (Figure 2.10). A contingency test showed a high chi-square value (89.5), 

which results in a p-value < 0.0001 (df=9), indicating unequal distribution of matings 

between individuals with different population background. 
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Figure 2.10: Number of successful mating events between F1 animals. X axis displays pairs. 
Upper part: female. Lower part: male  
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As depicted in Figure 2.11, a significant pattern indicating an assortative mating with 

regard to the father of the mate partner was observed. This means, if an individual 

descendent of, for example a French male, it mated preferentially with a partner also 

descendent of a French male. This pattern appears also in other parts of the thesis, 

and will be referred to as the father related assortative mating pattern. It is, taking all 

experiments together, highly significant (2X2 contingency table: chi-square = 77.22, 

p-value < 0.0001). For experiment I, only one F1-F1 mating was reported and for 

experiment II, only four F1-F1 matings were reported; these follow in all cases the 

above described pattern. F1-F1 matings in experiment III match significantly the 

pattern (chi-square: 76.67, p-value < 0.0001). For experiment IV, the analysis 

suggested no significance for the pattern (chi-square: 1.52, p-value: 0.2). However, 

when animals heterozygous for the t haplotype were taken out of the analysis, the 

father related assortative mating pattern was observed to be significant even for 

experiment 4 (Fishers Exact Test, p-values: all experiments: < 0.0001, experiment 3: 

< 0.0001, experiment 4: 0.001).  
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Figure 2.11: Mating events between F1. White and dark: father of mate partners from same 
population, grey: fathers from different populations. Left: Matings of all F1 animals included. 
Right: Only wildtype animals considered (t haplotype animals excluded). 

This procedure was justified by a heterogeneity test, which was conducted to assess 

whether replicates III and IV can be pooled. The results showed that, without 

excluding the t haplotype animals, the replicates can not be pooled (chi-square: 5.13, 

1 df, rejecting hypothesis of homogeneity of results with p < 0.02). When excluding 

the animals heterozygote for the t haplotype from the analysis, the homogeneity can 

not be rejected (chi-square: 0.55, df=1, p-value: 0.46). 

For the analysis of the backcrosses, I distinguished between  

a) matings where the female came from the F1 and the male from the F0 generation 

b) matings where the female came from the F0 and the male from the F1 generation. 
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For all analyses, I pooled the results from all experiments, since it was not possible to 

statistically analyze them separately for the different experiments as numbers were 

too small to perform tests. 

When considering all matings for the case a) (Figure 2.12), no deviation from random 

mating (in regards to population background) was found (chi-square: 2.59, df=3, p-

value: 0.46). Excluding animals heterozygous for the t haplotype did not change the 

picture (chi-square: 2.98, df=3, p-value: 0.4). 
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Figure 2.12: Number of successful mating events between a female from the F0 generation. 
Left: all animals, right: t haplotype animals were excluded. Matings were statistically equally 
distributed.  

Testing for the father related assortative mating pattern was not significant (chi-

spare: 0.73, df=1, p-value: 0.4.) 

When considering all matings for the case b) (Figure 2.13), testing with a contingency 

table chi-square showed a statistically significant deviation of the distribution of 

matings from equality (p-value: 0.0008). This was also observed when testing only 

wildtype animals. 
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Figure 2.13: Number of successful mating events between a female from the F1 generation 
and the male from the F0 generation. Left: all animals, right: t haplotype animals were 
excluded. A deviation from equal distribution was found to be statistically significant (chi-
square: 16.64, df=3, p-value: 0.0008). Without t haplotype animals, the deviation was still 
statistically significant (chi-square: 9.16, df=3, p-value: 0.03). 
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Testing for the father related assortative mating pattern was significant when 

considering all animals (chi-spare: 16.27, df=1, p-value < 0.0001). When considering 

only wildtype animals, the pattern was not quite statistically significant (p-value: 0.07) 

(Figure 2.14). 

15
14

3

3

1

1
11

2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

with t
haplotype

only wildtype
animals

re
la

tiv
e 

nu
m

be
r 

of
 m

at
in

gs

Fathers G and G Fathers G and F
Fathers F and G Fathers F and F

Figure 2.14: Mating events between F1 
females and F0 males analyzed for the 
father related assortative mating pattern. 
White and dark: father of mate partner 
came from the same population, grey: 
fathers from different populations. Left 
bar: all animals analysed, right bar: 
animals with t haplotype excluded  

 

A second way to test the validity of this father related assortative mating pattern was 

to analyze the observed pairs (in contrast to the successful mating events, repeated 

mating in different reproductive cycles between the same two animals was only 

counted once), which was done for the F1-F1 matings (Figure 2.15). By performing 

the heterogeneity test including all animals, homogeneity of the results from 

experiment III and IV had to be rejected (heterogeneity test, chi-square: 10.23, df=1, 

p-value: 0.001). When excluding the t haplotype animals, results could be pooled 

(heterogeneity test, chi-square: 1.97, df=1, p-value: 0.16).  

The data clearly indicated the father related assortative mating pattern for pairs 

excluding t haplotype animals (experiment III: chi-square: 42.11, df=1, p-value: < 

0.0001; experiment IV: chi-square: 6.3, df=1, p-value: 0.01). 
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Figure 2.15: Pairs with mates of 
father with same (black and 
white) versus different 
population background.  
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2.3.4 Reproductive success 

Successful individuals 

Animals were considered “adult” at a minimum weight of 13 gram. Within all 

experiments, 123 out of 305 (40.3%) adult females and 97 out of 278 (34.9%) males 

had offspring. The ratio of successful males and females was analyzed according to 

their population background.  

Considering the founder generation, there were no significant differences between 

the populations (Fisher’s Exact Test for F0 females: 26 G vs. 21 F, p-value: 0.29; F0 

males: 21 G vs. 19 F, p-value: 0.80). 

Among the F1, significantly more GG females were successful than FF females 

(Fisher’s Exact Test, p-value: 0.02; GG females: 25/42, FF: 7/24 successful). There 

were no significant differences between the “mixed” females (GF: 15/29 vs. FG: 

17/29, p-value: 0.79). The numbers of successful females between “pure animals” 

and “mixed animals” were not significantly different (pure: 33/78; mixed: 40/119, p-

value: 0.23). For males born in the enclosures, the results were similar: the analysis 

of “pure” vs. “mixed” animals (without F0) gave a p-value of 0.2 (Fisher’s Exact Test, 

“pure” males: 28/78, “mixed” males: 30/124 successful). F1 males were equally 

successful among the different population backgrounds.  

Individual reproductive success 

Individual reproductive success was analyzed as the number of offspring, the number 

of mating events and for females the number of offspring per litter and for males the 

number of offspring per mating event. 

Again, the analysis was separated between founder animals and animals born during 

the experiment. Additionally, absolute numbers of offspring (all offspring an individual 

had during the experiment) were contrasted with relative numbers of offspring. The 

latter value is the number of offspring divided by the days an individual had been in 

the enclosure (until its death or the end of the experiment); a value only available for 

animals from which the exact dates of birth and death were known (with an accuracy 

of around 7 days). The “relative offspring number” takes into account that individuals 

born towards the end of the experiment had less opportunity to mate. The same logic 

was applied when analyzing the number of mating events per individual.  
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Founder animals (F0) were analyzed for reproductive and mating success and 

parameters did not differ significantly between populations (Figure 2.16).   
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A: Absolute (left) and relative (right) offspring numbers for F0 males. Mean number of 
offspring: F: 10.47, G: 13.19, t-test, p-value: 0.38 (absolute values) and p-value: 0.526 
(relative values). 
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B: Numbers of mating events for F0 males. Left: Absolute numbers (mean number of 
matings: F: 3.42, G: 4.75. t-test, p-value: 0.17). Right: Relative mating numbers (p-value: 
0.28). 
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C: Average offspring number per mating 
analyzed for G and F males of founder 
generation (t-test, p-value: 0.62). 

Figure 2.16: Reproductive success of F0 males (NG: 21, NF: 19). No significant differences 
were detected between G and F males. 



Assortative Mating and Hybrid Fitness 

 37

For the F1 generation, nearly all parameters for reproductive success were similar for 

the different population backgrounds. The only significant difference was the number 

of offspring per mating between GG and FF males indicating a higher offspring per 

mating number for FF males (Figure 2.17).  
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A: Number of offspring (absolute and relative) for F1 males. ANOVA testing indicated no 
significant difference for the different population backgrounds (p-value: 0.54). 
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B: Number of mating events of F1 males. Animals of different population background did not 
differ significantly in the absolute or relative number of mating events (ANOVA absolute: p-
value: 0.841, relative: p-value: 0.846).  
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C: Average offspring number per mating. 
ANOVA p-value: 0.074. 

Significant higher value for FF males in 
comparison with GG males (t-test p-value: 
0.009). The average numbers of offspring per 
mating were: GG: 2.54, FF: 4.05. GF: 3.22, 
FG: 2.92. 

Figure 2.17: Reproductive success of F1 males of different population background (NGG: 17, 
NFF: 7, NGF: 14, NFG: 11). 
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The reproductive success for all “pure” vs. “mixed” males born in the enclosure 

(Figure 2.18) was analyzed. No significant differences were observed.  
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A: Offspring number (absolute and relative) for individuals born in the enclosure. p-values t-
test: absolute values: 0.761, relative values: 0.896. 
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B: Number of mating events (absolute and relative values) for males born in the enclosure. 
No significant differences were observed (p-value t-tests: absolute values: 0.39, p-value 
relative values: 0.46). 
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C: Average offspring number per mating. No 
significant difference was detected (p-value: 
0.97). 

Figure 2.18: Reproductive success of males born in the enclosure, comparing “pure” and 
“mixed” population background, Npure: 25, Nmixed: 29. No significant differences were observed. 
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As previously shown for males, females were analyzed for their reproductive 

success. Results are shown for F0 (Figure 2.19), F1 (Figure 2.20) and all animals 

born in the enclosure (Figure 2.21). 
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A: Number of offspring (absolute and relative values) for F0 females. No significant 
differences were detected (absolute values: t-test p-value: 0.62, mean for F: 10.95, mean for 
G: 12.23; relative values: p-value: 0.37). 
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B: Number of mating events (absolute and relative values). Absolute values: p-value: 0.64, 
mean for F: 3.95, mean for G: 3.58. Relative values: p-value: 0.59. 
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C: Average offspring number per mating for 
F1 females (t-test p-value: 0.18). 

Figure 2.19: Reproductive success of F0 females (NF: 21, NG: 26). No significant differences 
were found. 



Assortative Mating and Hybrid Fitness 

 40

For F1 females, there were no significant differences, except for the absolute 

numbers of offspring in some pairwise comparisons (Figure 2.20). 
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A: Offspring numbers (absolute and relative values) for F1 females. No significant differences 
were found. Absolute values: ANOVA p-value: 0.11, means: GG: 8.36, FF: 7.86, GF: 9.24, 
FG: 5.93. Relative values: ANOVA p-value: 0.69. 
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B: Mating events (absolute and relative values) for F1 females. Mean values: GG:  3.16, GF: 
3.06, FF: 3.0, FG: 2.87. No significant differences were detected (ANOVA absolute values, p-
value: 0.96, relative values, p-value: 0.78). 
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C: Average offspring number per mating for 
different population backgrounds. No 
significant differences were found (ANOVA: 
p-value: 0.62). 

 

Figure 2.20: Reproductive success of F1 females (NFF: 7, NGG: 24, NGF: 17, NFG: 14). No 
significant differences were found, with the exception of the absolute numbers of offspring 
which differed significantly for two pairwise comparisons (GG-FG: p= 0.041, GF–FG: 
p=0.013). However, relative numbers did not differ significantly.  
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Females born in the enclosure with “pure” and “mixed” population background 

showed no significant differences (Figure 2.21). 
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A: Offspring number (absolute and relative values) for females born in the enclosure. No 
significant differences were found (absolute values: t-test p-value: 0.349, relative values: p-
value: 0.53). 
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B: Number of mating events (absolute and relative values). No significant differences were 
found (absolute values: t-test p-value: 0.30, mean values “pure” females: 3.06, “mixed” 
females: 2.68; p-value for relative values: 0.88).  
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C: Average offspring number per mating. P-
value (t test): 0.76. Mean “pure” females: 
3.07; mean “mixed” females: 3.2. 

Figure 2.21: Reproductive success for females born in the enclosure. Compared were “pure” 
vs. “mixed” females (Npure: 33, Nmixed: 40). No significant differences were found. 
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Combined analysis of reproductive success 

Although the measures for reproductive success did in most cases not differ 

significantly between F and G (founder animals) and “pure” and “mixed” (others than 

founders) animals, a Sign test was conducted to evaluate whether the overall 

reproductive success depended (even slightly) on population background. Results 

are summarized in Table 2.4. Although differences are visible, they are not 

statistically significant. 

Table 2.4: Table summarizing comparisons of measures for reproductive success between 
groups with different population background 

G versus F (founder animals) “pure” vs “mixed” (F1)  
Males females males females 

Proportion of successful 
individuals 

+ + + + 

absolute no of offspring + + + + 
relative number of 
offspring 

+ - + + 

Absolute no of matings + + + + 
Relative number of 
matings 

+ + + + 

Offspring per mating = + -  -  
Sum 5:1 5:1 5:1 5:1 
P-value Sign test (one 
sided) 

0.11 0.11 0.11 0.11 
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Relative fertilization success 

The average fertilization success of individuals was calculated for males which sired 

offspring in multiple paternity litters. Single father litters were excluded, as it was not 

possible to distinguish between one father litters where only one male inseminated 

the female and those where only one male fertilized all ova, despite of inseminations 

of several males. 

The number of offspring sired per litter was analyzed for each male; the average 

relative fertilization success was then calculated as the mean of the values of the 

different mating events. Figure 2.22 shows the data for F0 and F1 males. No 

significant effect of population background on the individual average fertilization 

success was found. 
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Figure 2.22: Individual average of fertilization success for F0 males and F1 males analyzed 
considering population background. Left: F0: p-value t-test: 0.35 (NF: 14, NG: 15). Right: F1: 
p-value ANOVA: 0.86 (NFF:8: NFG: 8, NGF:11, NGG:14). 

Furthermore, it was investigated whether the relative fertilization success of a male 

depended on the population background of the female (relative fertilization success 

in intra-population matings versus inter-population matings). Thus the fertilization 

success of males in the different matings was calculated. Figure 2.23 shows that the 

relative fertilization success was significantly higher in mating events with a partner 

from the other population than with a partner from the same population. 
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Figure 2.23: Relative fertilization success in intra- (“F” and “G”) versus inter-population 
matings (“FG”). Left: Separating between F (N=20) and G (N=43) as intra-population mating 
and FG as inter-population mating (N=82). P-value (ANOVA): 0.047. Right: Intra-population 
matings F and G taken together. P-value (t test): 0.025. 

Considering the father assortative mating pattern (see Figure 2.11 and Figure 2.14.), 

relative fertilization success in matings was analyzed for case A (mate partner with 

both fathers from the same population) versus case B (mate partner with fathers from 

different populations). No significant differences were found (Figure 2.24). 
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Figure 2.24: Relative fertilization success in matings between mates of same and different 
father. Left: FF: Mates with fathers from French population (N=42). GG: Mates with fathers 
from German population (N=61). FG: Mates where female’s father was from French and 
male’s father from German population (N=28). GF: Mates with female’s father from German 
population and male’s father from French population (N=14). No significant differences are 
found (ANOVA p-value: 0.59). Right: mates with fathers of the same population (N=103) and 
mates with fathers of a different population (N=43) were grouped. Differences were not 
statistically significant (t-test p-value: 0.19). 
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Individual attractiveness 

The number of mates of males and females was recorded and analyzed regarding 

population background. Similarly to the analyses of reproductive success, founder 

animals and F1 animals were treated separately. 

For the females, no significant difference was observed (Figure 2.25). 

G F

Origin F0 females

1

2

3

4

5

6

nu
m

be
r o

f m
at

es

 
FF FG GF GG

Origin F1 females

1

2

3

4

5

6

nu
m

be
r o

f m
at

es

 
A: Number mate partners. Left: F0 females (p-value: 0.68, NG26: NF: 21). Right: F1 females. 
NFF: 7, NFG: 15, NGF: 17, NGG: 25. No significant differences were found. 
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B: Number of mates of females from parents 
of the same population (“pure animals”) or 
different populations (“mixed animals”). P-
value (t test): 0.27. 

Figure 2.25: Female attractiveness, measured as number of mate partners per female. No 
significant differences were found. 
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The analysis for male attractiveness (measured in numbers of females an individual 

male fertilized successfully) also showed no significant differences regarding 

population background. This hold for F0 males, F1 males and also for the 

comparison of “pure” vs. “mixed” animals (Figure 2.26). The mean number of females 

per male was in all cases approximately 2.7.  
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A: Attractiveness of males. Left: Males from the founder generation. P-value: 0.31. NF: 19, NG: 
21. Right: Males from the F1 generation. None of the pairwise comparisons showed significant 
differences (NFF: 8, NFG: 12, NGF: 14, NGG: 16). 
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B: Comparison of number of females for “pure” 
and “mixed” males. No significant difference 
was detected (t test, p-value: 0.99. Npure: 65, 
Nmixed: 30.) 

 

Figure 2.26: Male attractiveness measured as the number of mates per male. No significant 
differences were found. 
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Relative testis weight 

Relative testis weight (testis weight / bodyweight) was calculated for all males >13 g 

from individuals of experiments III and IV. There was no significant difference 

between the populations, or comparing “pure” with “mixed” animals (t test p-values: G 

vs. F: 0.18, G vs. mixed: 0.06, F vs. mixed: 0.98 and “pure” vs. mixed: 0.12 (Figure 

2.27). 
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Figure 2.27: Relative Testis Weight compared between populations (left side) and between 
“pure” animals and “mixed” animals (right side) (NG:36, NF:14, Nmixed:134, Npure:50). No 
significant differences were found. 

2.3.5 Multiple mating frequencies 

To determine whether females of the two populations followed different mating 

strategies, I looked at the frequencies of multiple paternities separately from litters of 

“pure” G and F females and from females with a “mixed” population background 

(Table 2.5). 

Table 2.5: Number of multiple paternity litters vs. one father litters, considering population 
background. The frequencies were in all three cases around 30%. 

Population 
background 

female 
Number of 
all litters 

Number of 
one father 

litters 
Number of multiple 
paternity litters (MP) 

Ratio 
MP/OFL (%) 

G 121 88 33 27 

F 61 42 19 31 

mixed 70 47 23 33 

From these data, I analyzed the percentage of females from both populations who at 

least once mated multiply (Table 2.6). Of the three population backgrounds (G, F, 

mixed), around 50% of the successful females had at least one multiple paternity 

litter. No significant differences were found (p-value Fisher’s Exact Test: 0.60 
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comparing F and G, p-value 0.54 comparing G and F values vs. “mixed” population 

females).  

Table 2.6: Number of successful females with at least one multiple paternity litter. No 
significant differences were found. 

Population 
background 

female 

Total no of 
successful 

females 

Females with 
multiple paternity 

litters 

Females without 
multiple paternity 

litters 

% Females with 
multiple paternity 

litters 

G 52 25 27 48 

F 28 14 14 50 

mixed 40 18 22 45 

 

2.3.6 Social partner choice 

Communal Breeding 

Litters found together in the same nest with pups of nearly the same age, were 

considered as communal breeding litters. I obtained information about the rearing 

status (communal breeding/no communal breeding) from 166 litters. 85 (51%) were 

communally reared litters. 

I compared the number of communal breeding litters with the number of litters found 

alone in a nest for F and G females. G females showed a higher frequency of 

communal breeding than F females (G females: 48.7%, N=78; F females: 31.1%, 

N=45). The difference, however, was not statistically significant (Fisher’s Exact Test, 

p-value: 0.06). Comparing between F1 females of pure population background and 

“mixed” background, no difference was observed (Fisher’s Exact Test, p-value: 

0.160, pure: 39%, N= 41, mixed: 23.8%, N=42).  

Preference for breeding partner 

Out of 31 communal breeding events (in part with more than two breeding females, 

repeated pairs were counted as often as they bred together), only six were not sister-

sister or mother-daughter pairs. Three of these were G-G pairs; the other three were 

“mixed” pairs.  
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2.3.7 Social status 

Occupation of houses 

I analyzed how many times an individual was found in a house compared with 

encounters outside houses. For this, the relative numbers of encounters in houses of 

the individuals were compared.  

In the founder generation, German males significantly more often were encountered 

in houses than French males (t test, p-value: 0.007), while females did not differ 

significantly (p-value: 0.13). In the F1 generation, “pure” and “mixed” males did not 

differ significantly (p-value: 0.34), while “mixed” females were encountered 

significantly more often in houses than “pure” females (p-value: 0.04). 

In addition, I measured how many times an animal was found in the same house (in 

relation to the total encounters). As a measure for philopatry (or spatial dominance) 

an average was calculated from the frequency of occupying houses. For example, if 

an animal was found 20 times in total, and among these encounters 10 times in 

house A, 4 times in house B and the remaining 6 times somewhere free in the 

enclosure, the average frequency in houses was calculated from 0.5 (house A) and 

0.2 (house B) as to be 0.35. Animals met fewer than 5 times were excluded from the 

analysis and when animals were recorded only once in a certain house, these 

records were excluded from the analysis (but included in the total number of 

encounters). 

Males of different background (F (N=23) versus G (N=29) and “pure” (N=20) versus 

“mixed” (N=35) animals) were similar in occupying certain houses (t-test p-value: 

0.34 for F versus G and 0.54 for “mixed” versus pure). Likewise, for females no 

difference was detected (t-test females: p-value: 0.88 for F (N= 34) versus G (N= 34) 

and 0.81 for “mixed” (N=28) versus “pure” (N=15) animals). 

Monitoring records 

The information about the condition of animals obtained during monitoring was 

classified in five categories: good condition, modest (generally mice which had 

sparse fur or one bite mark), bites (mice with several bite marks), severely bitten 

(animals who had so many bite marks that they had to be considered as too weak to 

stay in the experiment) and bad condition (mice which had nearly no fur and showed 

no vital behavior, these were also taken out of the experiment). 
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I analyzed the overall number of monitoring records with regard to population 

background and sex, separating between records from founder animals and animals 

born in the enclosure (from the founder animals I had considerably more monitoring 

data, since F1 animals were transponder-tagged only at an age of 6 weeks or even 

later when they weighed 17 gram.  

The sex specific analysis showed that females, especially those born in the 

enclosure, are mostly in good condition (Figure 2.28). For males, the occurrence of 

bites was much more frequent.  
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Figure 2.28: Monitoring records for individuals separated for sexes. Left: Founder generation, 
right: animals born in enclosure. Males are depicted in black, females in grey. Females were 
almost always in good condition, while males were more frequently found in bad condition 
and with bite marks. 

The analysis of monitoring records with regard to population background is shown in 

Figure 2.29.  
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Figure 2.29: Monitoring records of F0 population analyzed according to population 
background. Left: females, right males. White: German individuals, black, French individuals. 

For animals born in the enclosures, females were almost always in good condition 

(92 out of 95 records). For males, the condition was analyzed with regard to 

population background, but no significant differences were detected (chi-square: 

4.47, df: 8, p-value: 0.81, Figure 2.30).  
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Figure 2.30: Monitoring records (relative) for 
males born in the enclosure, analyzed 
regarding population background. No 
significant differences were detected.  

 

Individual condition 

The analysis shown above was based on the overall number of records obtained 

during the monitoring. In the following, the results of individual conditions are 

described. All mice which were recorded at least 3 times during monitoring were 

analyzed. The ratio of good condition vs. other conditions was calculated and tested 

statistically for differences between animals of different population background.  

When analyzing F0 animals, no significant differences were detected (t test, p-value: 

0.7, Figure 2.31). Similarly, the condition of F1 individuals did not differ between 

“pure animals” and “mixed animals” (p-value: 0.2). This was also the case when 

testing only males (F0 generation, test between G and F, p-value: 0.8; F1 generation, 

test between “pure” and “mixed”, p-value: 0.8, data not shown) and females (F0 

generation, test between G and F, p-value: 0.4; F1 generation: all females recorded 

more than twice had 100% “good condition” records). 
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Figure 2.31: Individual condition recorded during monitoring. Plotted is the relative number of 
records individuals were found in “good condition”. Left: F0 animals, only animals found at 
least 3 times were considered. NG: 56, NF: 54. Right: Individuals born in the enclosure and 
found during monitoring at least 2 times. Npure: 16, Nmixed: 27. 

 
In addition, I compared the number of French versus German founder animals which 

were reported as “severely bitten” or found in “bad condition”. The numbers for F and 

G animals are 20 were 14, respectively (Fisher’s Exact Test, p- value: 0.264).  
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2.4 Results from the Controlled Cage Experiment 

In total 28 females (11 German and 17 French) were tested in the cage experiment 

for displaying a preference for German versus French males. The relative time a 

female spent close to one of the males and the numbers of visits were taken as 

measure for preference. 

When looking at the relative time a female spent close to the males, 24 (85.71%) of 

the 28 females showed a significant preference. The signal for preferences was 

much lower for the relative number of visits a female made to the males cages: Only 

13 (46.43%) of the females showed a significantly different number of visits to one of 

the two males. In both cases, no assortative preferences (regarding population 

background) were detected (Figure 2.32). Moreover, females of both populations 

displayed no significant difference in their preferences (relative time spent: p-value: 

1; relative number of visits: p-value: 0.878, Exact Fishers Test).  
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Figure 2.32: Female preferences. Left: Female preferences measured as the relative time a 
female spent close to the males. Right: Female preferences measured as the relative number 
of visits a female made to the males cage. Dark: preference for French males, white 
preference for German males, grey: no significant preference. 

All but one female showed a consistent preference pattern comparing relative times 

spent and relative number of visits. For two females (both from the French 

population), the cage test was repeated. One female showed preferences for the 

male of the same population in both trials, while the other female showed different 

preferences in the two trials. 

Among the females tested, 22 individuals were sister pairs which had been kept in 

the same cage before the experiment. Out of these 11 sister pairs, 10 pairs showed 

significant preferences for one of the males, and among these, only two sister pairs 
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differed in their preference, while 8 pairs preferred the male from the same 

population. This finding was statistically significant (chi-square: 7.2, p-value: 0.007). 

Additionally to the overall time a female spent close to the males I analyzed whether 

the preference patterns differed between active daytime (empirically shown to be 

from 6 p.m. to 6 a.m.) and the rest of the day. 13 females (46%) showed no 

significant differences between the active daytime and the rest of the day. Only three 

females (11%) showed a significantly different preference. However, four females 

(14%) showed a significantly stronger preference during the active time and 8 

females (29%) a significantly weaker preference. 

2.5 Discussion 

Results of the mate choice experiments indicated some kind of assortative mating 

between animals from the German and French populations as well as slightly 

reduced hybrid fitness: While social partner choice (choice of the nest mate in 

communal nests) was influenced mainly through kinship, a remarkable hint for sexual 

partner choice influenced through population background came from the analysis of 

mating events between F1 animals. Consistently, females born in the enclosures had 

offspring with a partner who had a father from the same population as themselves, a 

phenomenon called here the father related assortative mating pattern. The biological 

significance for this pattern is as yet unclear; several possible explanations are 

discussed below. Regarding fitness of hybrids, none of the parameters tested as 

measures for reproductive success showed significant reduction in the “mixed” 

versus “pure” animals. However, the measures for reproductive success are nearly 

always higher for “pure” animals compared to the “mixed” animals.  

In the following, different topics of the results are discussed in more detail.  

2.5.1 Paternity analysis 

After Araki & Blouin (2005), incorrect paternity assignments may result from 

genotyping errors, finite number of loci, mutations, and null alleles. An important 

factor for errors in paternity assignment is not to have sampled all potential parents. 

In the case of this study, missing parents can nearly be excluded, as the enclosures 

presented a closed system and the probability of missing dead animals was low. 

Nevertheless some potential parents were not found. As Marshall et al. (1998) 

pointed out one can work around this problem by estimating accurately the number of 
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missing parents, which was done in my paternity analysis by setting the frequency of 

sampled parents to 0.9. 

The quality of paternity assignment (92% of offspring assigned) is comparable to 

other studies. For example, Carroll et al. (2004) report 4% of unassigned offspring 

(out of 1,159). The aforesaid study constrained kinship among the founder animals, 

which lowered inbreeding rates and thus the problem of paternity assignment. 

2.5.2 Population Development 

The populations in the enclosures developed with rates that were similar to other 

studies (Lidicker 1976). The mouse densities (Table 2.2) were in the range of other 

reported densities (e.g. Bronson 1979: 10 mice/m2) which could explain that only very 

few animals emigrated from the enclosure via the dispersal tube. The striking 

differences in population density between experiment I and II vs. III and IV can be 

explained with the longer experiment duration (5 vs. 6.5 months). The lower offspring 

numbers in experiments I and II could also result from a higher pup or embryo 

mortality caused by unidentified unfavorable conditions.  

For the analysis of multiple mating frequencies, communal breeding, and 

reproductive success it is important to mention that litter size decreased towards the 

end of the experiment. Causes for this observation could not be identified, but 

probably one reason is the lower survival rate of newborn pups, as observed by 

Reimer & Petras (1967) and Lidicker (1976) in their enclosure experiments lasting for 

eight and twelve months, respectively. Lidicker (1976) reported that “nearly no young 

were surviving this critical period” and identified as one reason lactation failure. 

Additionally, he suggested cannibalism and abandonment as contributing causes, 

which could equally apply to my experiments. 

The sex ratios in three of the four experiments were not significantly skewed. 

However, generally more males were recorded (except for experiment II). This 

pattern is also evident when looking at the sex ratio of pups (recorded at tissue 

sampling at an age of around 14 days), and the effect increased towards the end of 

the experiments (Figure 2.5, Figure 2.6). This could be due to elevated population 

densities. Some studies report a deviation of sex ratio at overcrowding, while other 

mouse researchers consider other parameters responsible for a sex ratio deviation 

(food availability and competition: Wright et al. 1988; Meikle & Thornton 1995). 

However, the results are in contrast to Trivers & Willard (1973), who showed 
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theoretically and experimentally that as maternal condition declines, the adult female 

tends to produce a lower ratio of males to females. 

2.5.3 Assortative mating 

The different results regarding assortative mating for founder animals and F1 animals 

are not surprising, as both generations were exposed to very different conditions 

during their development. Diverse impacts of animal house conditions on mouse 

behavior were reviewed in Latham & Mason (2004). 

The founder animals showed no consistent pattern regarding assortative or 

disassortative mate choice (Figure 2.8). These animals were born and grew up in 

cages, and held solitarily for some weeks, which alters the life of the adult. 

For this reason, the F1 generation is much more appropriate for such an analysis. 

Here I observed a consistent pattern, where animals mate with partners which had a 

father from the same population as their own father. This pattern was highly 

significant for all experiments when taking out animals heterozygous for the t 

haplotype (Figure 2.10 and Figure 2.11). Especially for experiment IV this should 

make sense, as this population differed regarding t haplotype frequencies (see 

chapter 3). For backcrosses, the pattern was consistent (and highly significant for all 

experiments) when looking at mating events where the female came from the F1 

generation, and the male from the F0 (Figure 2.14). In addition, testing the parent 

pairs gave the same signal. 

One possible biological explanation for this observation could be paternal imprinting. 

Paternal imprinting on mate choice is known to occur in some animals (Tramm & 

Servedio 2008). However, it is probably not a sufficient explanation for the pattern 

observed here since it would raise the question of how the offspring would know its 

father, since male participation in parental care in house mice is described to be 

comparatively low (e.g., Patris & Baudoin 2000), which - considering the high 

frequency of multiple paternities observed - is not expected to differ in the  

populations of my study. Alternatively, nest mates or other environmental 

components could influence mating preferences. Some studies have shown familial 

imprinting on mate choice of house mice during early life. Through cross-fostering 

experiments, Penn & Potts (1998) showed that MHC disassortative mating was 

influenced by familial imprinting. One support for this is the observation from the 

controlled cage experiment, where sister pairs showed the same preference patterns. 
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Evidence for another form of imprinting – genomic imprinting – comes from recently 

published work. Gregg et al. (2010) showed a sex-specific parent-of-origin allelic 

expression in the mouse brain of offspring. Their data suggest a strong expression 

bias of paternal alleles in the hypothalamus of female offspring. Interestingly, the 

hypothalamus is known to influence mating behavior which could explain the father 

related assortative mating pattern.  

2.5.4 Reproductive success  

Differences between populations were for most of the tests statistically not 

significant. Nevertheless, some patterns were detected: Looking at the F0 

generation, the reproductive success of French animals was almost always below 

values of German animals (e.g., Figure 2.16, Figure 2.19, and Table 2.4). In the F1 

generation, animals with “pure” population background outperformed the animals 

with a “mixed” population background (Table 2.4, Figure 2.18, and Figure 2.21).  

Considering the number of mates as a measure for individual attractiveness, no 

significant differences between the population backgrounds were observed (Figure 

2.25 and Figure 2.26). 

2.5.5 Relative fertilization success  

The average relative fertilization success is interesting in the context of multiple 

mating and gives an idea about postcopulatory sexual selection, including sperm 

competition and cryptic female choice. Sperm competition is the competition between 

the sperm of different males to fertilize the ova of a female, while cryptic female 

choice is the ability of a female to bias the fertilization success of the males they 

mated with. It is assumed that both forms of sexual selection present important 

evolutionary forces (Birkhead & Pizzari 2002) and considering this, it is interesting to 

see whether mating events with animals of different population backgrounds show 

distinct effects. 

The analysis of the average fertilization success between individual males with 

different population backgrounds gave no significant differences (Figure 2.22). This 

suggests that the fertility of males did not depend on population background. 

Examining the fertilization success depending on the mate partner combination 

(Figure 2.23) showed significantly higher fertilization success for males which had a 

different population background than the female they inseminated. Confirming this 

result would propose that disassortative postcopulatory mate choice or population 
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specific sperm competition influences the fertilization of ova. The father assortative 

mating pattern suggested an analysis of fertilization success regarding mate partners 

with fathers from the same versus a different population background. This analysis 

showed no significant differences in fertilization success (Figure 2.24) and indicated 

that the father assortative mating pattern did not hold for postcopulatory 

mechanisms. 

2.5.6 Relative testis weight  

Through the comparison of RTW no significant differences dependent on population 

background of the males were found. Nevertheless, G males in comparison to other 

males and “pure” vs. “mixed” population background males showed a higher RTW. 

This is consistent with the observed differences in reproductive success (Table 2.4). 

However, RTW and number of offspring did not correlate significantly (see chapter 3: 

Results 3.3.3 and discussion).  

2.5.7 Multiple paternity 

Multiple mating frequencies did not differ between population backgrounds (Table 2.5 

and Table 2.6); the ratio of multiple paternity litters to all litters was in all cases 

around 30%. The important information here is that there was no increased 

frequency of multiple mating in mating events between individuals of different 

populations. An increased frequency can be interpreted as a strategy to counteract 

possible genetic incompatibilities between individuals of the separated populations. 

However, as already mentioned above, multiple paternity frequencies underestimate 

the frequency of multiple mating (see also chapter 3). 

2.5.8  Communal breeding as a measure for social partner choice 

Communal breeding was very common in the long-term experiment (50% of litters 

shared nests with other litters). There was no significant difference in the frequency 

of communal breeding between the different population backgrounds. A general 

preference for partners from the same population could not be shown, but 

remarkably nearly all communal breeding pairs were relatives: 25 out of 31 breeding 

pairs were sisters or daughter – mother pairings (for more detailed analysis see 

chapter 3). This finding is in line with a study of König (1994) who showed in a 

laboratory setting that females nursing communally with sisters had a higher 

reproductive success than females nursing with unrelated but familiar females. 
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2.5.9 Fitness  

The occupancy of houses showed a significant difference in the founder generation: 

German males were significantly more often found in houses than French males, and 

for females, the higher frequency in houses is found for F1 animals of mixed 

population background, compared to pure F1. The analysis of all monitoring records 

(of all transponder-tagged mice) did not show any differences of animal conditions 

according to population background (Figure 2.29 and Figure 2.31). The observed 

difference between males and females was also reported by Reimer & Petras (1967) 

and can be explained by the occasionally very aggressive behavior of males towards 

competitors. Similarly, the individual condition analysis showed no difference for 

individuals of different populations. 

2.6 Conclusion 

Similar to studies reported from mice of the hybrid zone between the subspecies 

M. m. musculus and M. m. domesticus, I observed some kind of assortative mating 

and slightly reduced hybrid fitness. The comprehensive experimental design of the 

present work allowed me to uncover mating patterns at a fine scale, showing that 

females have significantly more offspring with males whose fathers came from the 

same population as themselves. In addition, the decrease in hybrid fitness is another 

indication for reproductive divergence between the two recently separated 

populations. 
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3 The role of different molecular parameters for mate 
choice and individual reproductive strategies 

3.1 Introduction 

3.1.1 Background and focus of the investigation 

Molecular mate choice parameters and reproductive strategies related to sexual and 

social partner choice were investigated for the two recently separated house mouse 

populations from Germany and France. The study aims to examine their influence on 

mate choice and reproductive success, analyzing the results obtained from the long-

term experiment described in chapter 2. Simultaneously, a comparison between both 

populations was conducted to determine whether they differ in mate choice and 

reproductive strategies such as communal breeding and multiple mating. 

Several studies investigated the influence of molecular parameters on mate choice in 

house mice. These parameters include genes of the major histocompatibility complex 

(MHC) (e.g., Penn & Potts 1998), overall heterozygosity (Ilmonen et al. 2009), the 

current social status (Rolland et al. 2003) or health status (Ilmonen et al. 2008), 

mayor urinary proteins (Hurst 2009; Ramm et al. 2008; Sherborne et al. 2007) and 

the t haplotype (Lenington et al. 1994; Lenington et al. 1992). However, many of 

these studies were done with laboratory mice or under unnatural conditions, e.g. in 

cages or y-maze devices. Additionally, most studies focus only on one parameter 

rather than trying to consider the whole set of possibly interacting traits. 

Nevertheless, it is important to study mate choice on wild animals with natural 

genetic and phenotypic variation and within a social context. Moreover, the 

interaction of different parameters has to be considered, possibly disentangling their 

individual role for mate choice.  

In the following, genetic parameters considered important for mate choice in house 

mice as well as widespread reproductive strategies such as polyandry (multiple 

mating in females) and communal breeding are described.  

3.1.2 Mate choice and its benefits in house mice 

The existence of mate choice is reported for a wide range of animals (Andersson 

1994). Potential fitness gains are diverse and range from resource benefits to indirect 

benefits. Many studies address the identification and quantification of such benefits, 
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but empirical demonstration especially for indirect benefits remains challenging 

(Andersson & Simmons 2006; Kokko et al. 2003). 

In house mice, both sexes show partner preferences. This was demonstrated 

amongst others by Drickamer and colleagues who reported fitness benefits for 

females and males which were bred to a preferred partner: their offspring had a 

higher fitness compared to individuals bred to a mate they did not prefer (Drickamer 

et al. 2003; Gowaty et al. 2003, Drickamer et al. 2000). 

3.1.3 Strategies related to reproduction 

Communal breeding 

Besides mate choice, also social partner choice plays an important role in house 

mouse reproduction. An interesting behavior is communal breeding of females, which 

describes the peculiarity that females nest together and nurse pups of a similar age 

indiscriminately together. Manning et al. (1995) showed that females of such nursing 

pairs were not able to distinguish between their own pups and pups of the nest mate, 

and several studies tried to identify social mate preferences  (Weidt et al. 2008; 

König 1994a) and fitness benefits for females leading to such costly behavior (König 

1994b) (discussed benefits are e.g. enhanced immune system through antibodies of 

different females, which are transmitted during lactation). Following a theory of Roulin 

& Hager (2003), communal breeding could be influenced through male genomic 

imprinting.  

Recent studies found evidences for enhanced postpartum maternal care in females 

rearing pups in communal nests (Curley et al. 2009). The same authors showed 

transgenerational effects on emotional (through reduced anxiety-like behavior) and 

reproductive (through higher levels of maternal care and larger litter size) behavior of 

the offspring and grand-offspring of mice grown up in communally reared litters. 

Similarly, another recent study reports changes in brain function and behavior in 

communally reared mice (Branchi 2009). 

Multiple mating 

Polyandry – females mating with several males during one reproductive cycle - is 

known in many species (Cornell & Tregenza 2007), including house mice (Bronson 

1979). This female mating strategy has important implications for sexual selection 

and speciation; it induces sperm competition and cryptic female choice (Evans & 
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Simmons 2008), and varying levels of polyandry can lead to the evolution of complex 

male behaviors and alternative mating strategies (Bretman & Tregenza 2005).  

In many species, females receive enough male gametes through copulating with one 

male and mating causes costs including time and energy during courtship and 

copulation, increased risk of predation while mating and risk of disease from parasite 

transmission and injury (Daly 1978; Keller & Reeve 1995). This contradicts the 

widespread existence of polyandry, and the potential benefits leading to this costly 

behavior are highly discussed (Jennions & Petrie 2000) and are in many cases not 

obvious (Tregenza & Wedell 2000).  

The benefits of multiple mating can be direct, e.g. nuptial gifts, future parental care or 

reduced male harassment, and often the benefit for the female is evident and 

measurable. Contrary to this, indirect benefits are difficult to assess. These include 

potential benefits through genetic compatibility (by reducing the risk of fertilization by 

genetically incompatible males (Zeh & Zeh 1997; Zeh & Zeh 1996), genetic bet-

hedging against various future unforeseeable incidents and increased genetic 

diversity in the offspring (Yasui 1998) or inbreeding avoidance (by reducing the 

degree of inbreeding in a female’s grandchildren (Cornell & Tregenza 2007). 

Supporting theoretical assumptions about genetic benefits, there is evidence for 

female benefits through a higher offspring performance in different taxa (Gowaty et 

al. 2010, Klemme et al. 2008; Edvardsson et al. 2007; Fisher et al. 2006; Sakaluk et 

al. 2002).  

Another aspect of polyandry is a possible sibling conflict, as the maternal genome in 

the offspring of promiscuous females combines with the genomes of several males 

(Birkhead & Pizzari 2002). Offspring produced by polyandrous females may be full or 

half siblings, which may have important consequences for social interactions among 

offspring (Evans & Kelley 2008). 

Multiple mating in house mouse females is reported from several recent studies (e.g. 

Dean et al. 2006; Firman & Simmons 2008) and is assumed to be common. A 

behavioral experiment showed that nearly all tested females mated by choice with 

different males (Rolland et al. 2003). Nevertheless, the frequency of polyandry of wild 

house mice is difficult to assess in nature. To estimate the frequency of multiple 

mating in the wild, the occurrence of multiple paternity in litters is used as an 

indicator. This, however, underestimates the real numbers in cases where only 

sperm of one male win the competition to fertilize the ova of the female.  
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Recent studies showed that the frequency of multiple paternity varies between 

populations. In natural populations, Dean and colleagues detected an average of 

23% litters with multiple paternity, while Firman and Simmons detected 6-43% 

multiple paternity litters (Dean et al. 2006; Firman & Simmons 2008). Ehman and 

Scott showed in an enclosure experiment with CD1 outbred mice a multiple paternity 

rate of 64% (Ehman & Scott 2004), while Carroll and colleagues measured a 

frequency of 19.3% in a study with wild mice (Carroll et al. 2004). These differences 

could indicate individual or population specific mating patterns or differences in 

postcopulatory sexual selection mechanisms, and could be explained with variances 

in possible benefits or population histories. Identifying a pattern on which parameters 

the frequency of multiple mating depends could help to identify mechanisms driving 

evolution and maintenance of this behavior. 

3.1.4 Genetic parameters involved in mate choice 

Several parameters are considered to play a role in mate choice. Up to date, I 

completed the analysis of the influence of the t haplotype, while other analyses are 

still under way. However, in the following I will describe briefly the different genetic 

parameters which are considered to play important roles in mate choice.  

t Haplotype  

It has been shown that the presence of selfish genetic elements with deleterious 

effects can promote polyandry (Price et al. 2008; Martin 2009). For house mice, this 

could hold for populations with the t haplotype, a selfish allele of the t complex, a 

region of 20 cM on chromosome 17. t alleles are responsible for a high degree of 

transmission ratio distortion in males carrying one t and one wild type allele: sperm 

carrying the t haplotype achieve 80 – 100% of fertilizations (Lyon 2003). The 

homozygous state or two t alleles in an individual leads to prenatal lethality or male 

sterility, hence it is predicted that heterozygous females would have a fitness benefit 

when mating with several males (Haig & Bergstrom 1995) or avoiding heterozygous 

males (Lenington et al. 1992). Lenington et al. (1992) showed this by demonstrating 

disassortative mating preferences between mice with different t haplotypes. Carroll et 

al. (2004) showed a fitness decline for males heterozygous for the t haplotype, which 

could influence reproductive success.  
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Major Urinary Proteins 

Major Urinary Proteins (MUPs) are signaling molecules and serve additionally as 

transporters for olfactory information. Adult mice express a fixed individual pattern of 

different MUP isoforms in their urine determined by their Mup genotype. Hurst and 

colleagues found that MUPs mediate individual recognition (Hurst et al. 2001) and 

enable the direct assessment of a partners heterozygosity and competitive behavior, 

as well as the avoidance of inbreeding through kin recognition (Hurst 2009; Ramm et 

al. 2008; Thom et al. 2008; Sherborne et al. 2007; Cheetham et al. 2007). 

Major Histocompatibility Complex  

The major histocompatibility complex (MHC), a genomic region coding for proteins 

with key roles in the immune system of all jawed vertebrates, is known for the 

extraordinary polymorphism (Klein 1986) and heterozygosity (Duncan et al. 1979) of 

some of the genes. In the 1970th, when the importance of MHC genes and their 

medical implications became evident, the system was intensively studied on house 

mice (Mus musculus domesticus), where the complex is termed “H2” (Klein 1979).  

Since Yamazaki and colleagues detected MHC related mating preferences in 

laboratory mice in 1976, more and more studies reported evidence for an influence of 

MHC loci on mate choice in nearly all classes of vertebrates (Ziegler et al. 2005; 

Milinski 2006). The findings mostly indicated MHC disassortative mating, which could 

be explained by enhanced immune competence for offspring or a means of 

inbreeding avoidance. However, recent studies on wild populations also found mate 

choice patterns suggesting avoidance of extremely MHC-dissimilar mates (Woelfing 

et al. 2009) and even MHC assortative mating (Bos et al. 2009).   

Several studies have addressed the question of MHC influence on partner choice for 

house mice (reviewed in Penn & Potts 1999). Nevertheless, a clear picture of MHC 

influence on mate choice in natural populations can not be drawn (Penn 2002). This 

is in part due to the fact that the majority of the studies was carried out on laboratory 

mice missing a natural genetic background and under laboratory conditions which is 

expected to bias results by influencing behavior (Latham & Mason 2004; Wolff 2003). 

In addition, very few studies investigated the interaction of other mate choice 

parameters with MHC alleles.  
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Multiple parameters used in mate choice 

The above mentioned parameters are considered to influence mate choice, beside 

other parameters, here not described. It is challenging to disentangle the different 

importance of these parameters, which is only addressed in very few studies. An 

exception is a study of Roberts & Gosling (2003) who showed in laboratory mice 

strains that MHC dissimilarity and a “good genes” indicator (investment in scent-

marking) both had a role in determining female preference. 

3.2 Methods 

Data were obtained from the long-term experiments (chapter 2). The following 

measures were taken to determine the frequencies of communal breeding and 

multiple mating: 

Identification of communally reared litters 

Litters of pups with approximately the same age and which were shown to have 

different mothers (as a result from paternity testing) were defined as “communally 

reared”.  

Determining the frequency of multiple mating 

As a measure for multiple mating, I considered the presence of more than one sire in 

a litter, assessed through paternity testing. However, it has to be pointed out that this 

value underestimates the real frequency of multiple mating, as I did not observe 

mating directly. Mating events which did not result in offspring could thus not be 

considered. 

Identification of t heterozygote animals 

All experimental mice were genotyped at the t complex based on fragment length 

variation at the Hba-4ps and Tcp-1 loci (Schimenti & Hammer 1990; Morita el al. 

1993). The following primers were used for amplifications via PCR: Hba4ps_F: 5'–

gagtgacctgcatgcccacaagctgtg-3' and Hba4ps_R: 5'-gagctgtggagacaggaagggtcagtg-3' 

(sequences following Schimenti & Hammer 1990). Primer sequences for the 

amplification of the Tcp-1 locus were taken from Planchart et al. (2000): Tcp1_F: 5' -

gacaatcatagccttgtctcag-3' and Tcp1_R: 5'-gcagtgttatctttcactgg-3'. Forward primers for 

both loci were HPLC purified and labeled with the fluorescent marker FAM at the 5' -
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ends. Fragments were amplified in separated 5 μL reactions using 2-5 ng DNA 

template with a multiplex PCR kit (Quiagen) and a primer concentration of 100pg. A 

standard PCR reaction was carried out using ABI Fastcyclers applying the following 

cycling protocol: 95°C for 15 min, 28 cycles at 95°C for 30 s, annealing temperature 

(66°C for Hba-4ps and 58°C for Tcp-1) for 1.30 min and 72°C for 1.30 min, and a 

final extension step at 72°C for 10 min. PCR products were subsequently diluted with 

100 μL HPLC water. 1 μL of this dilution was added to 10 μL HiDi formamide + 0.01 

μL 500 ROX size standard (ABI) per single well. After a denaturation step, incubating 

the reaction for 2 min at 90°C and 5 min at 20°C, the fragments were run on an ABI 

Sequencer and subsequently analyzed with Genemapper 4.0 (Applied Biosystems).  

Samples of mice heterozygous at the t complex (t/wt) show fragment sizes for Hba-

4ps with 214bp/198bp and for TCP1 600bp/425bp, whereby the longer fragments in 

both cases originate from the t haplotype (Figure 3.1, Figure 3.2). Animals 

heterozygous for both loci have a complete t haplotype, while animals heterozygous 

at Tcp-1 but homozygous for the shorter fragment at Hba-4ps have a partial t 

haplotype. 

 

Figure 3.1: Genetic map of chromosome 17 of wild-type and t haplotype mice is shown. The 
four chromosomal inversions [In(17)1-4] are shown by the shaded or solid boxes. Tcp-1 and 
Hba represent t-complex polypeptide-1 and hemoglobin a pseudogene 4, respectively 
(modified after Morita et al. 1992) 

 

 

 

Figure 3.2: Partial structure of the wild-type and t haplotype Tcp-1 genes of mouse, showing 
the region used for PCR and fragment length analyses. Two exons (exon 7 and 8) are shown 
as open boxes. The t haplotype specific insertion is indicated by the grey box. The PCR 
primers, Tcp1_F and Tcp1_R are indicated by arrows (modified after (Morita et al. 1992). 
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Data Management and statistical analysis 

Data obtained from the above described genotype analyses were imported to the 

same Access data base used for paternity analysis and monitoring records (see 

chapter 2). Statistical analysis was performed using SPSS 12.0 and Microsoft Excel 

2002. To analyze reproductive success depending on different parameters as the t 

haplotype, multiple mating and communal breeding, I used two tailed t-statistics. 

Results were considered significant at a p-value < 0.05.  

The graphical presentation of data was mainly done with histograms or boxplots. For 

the latter case each box shows the median, quartiles and extreme values (outliers: 

cases with values between 1.5 and 3 box lengths from the upper or lower edge of the 

box, depicted with an open circle; extreme cases: values more than 3 box lengths 

from the upper or lower edge of the box, depicted with a star). 
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3.3 Results 

3.3.1 Communal breeding 

Littersize in communal breeding litters 

No statistically significant differences in litter size (per female) in communal nests 

and solitary nests were found (Figure 3.3). 
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Figure 3.3: Litter size in communal nests vs. 
solitary nests (bred by one female). 1: 
communal breeding, 0: one female litter. 
N1=84. N0=81. Mean 1: 3.65, mean 0: 4.12, 
p-value (t test): 0.15. 

Reproductive success of animals grown up in communal breeding 
litters 

It was determined, whether animals grown up in communal litters had the same 

probability to reproduce as animals grown up in solitary nests. For this analysis, 

animals at a minimum weight of 13 gram were considered “adult”. Results showed 

that the proportion of successful females (>13 g) grown up in communally reared 

litters was significantly lower than the proportion of successful females grown up in 

solitary litters (11% versus 40%, p-value Fishers Exact Test < 0.0001). Contrary to 

this finding, successful females grown up in communally reared litters had 

significantly higher relative offspring numbers than females grown up in solitary nests 

(p-value: 0.006). Numbers of mating events and offspring per mating showed no 

significant differences, but were in all tests slightly higher for females born in 

communal breeding litters (Figure 3.4). 

Males born in communal breeding litters did not show a higher reproductive success 

(analyzing only those who had reproductive success). The different measures for 

reproductive success did not differ significantly. Nevertheless, values for males born 

in solitary litters showed for all parameters higher values (Figure 3.5). As for females, 

I observed a significantly higher reproduction failure in communally reared males 

than in other males (13 % versus 37.8 %, p-value < 0.0001). 
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A: Absolute and relative offspring numbers for females born in communal breeding litters with 
0: females from solitary litters, 1: females from communal breeding litters, 0: females from 
solitary litters. Left: Absolute offspring numbers: t-test result: p-value:  0.13. N1: 6, mean 
10.17, N0: 60, mean 7.65. Right: relative offspring numbers. t-test, p-value: 0.006. 
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B: Absolute and relative mating numbers for females born in communal breeding litters, with 
1: females from communal breeding litters, 0: females from solitary litters. Left: Absolute 
mating numbers: t-test result: p value = 0.59 (mean 1: 3.33; mean 0: 2.97). Right: relative 
mating numbers. t-test: p-value: 0.17. 
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C: Offspring number per mating for females 
born in communal breeding litters, with 1: 
females from communal breeding litters, 0: 
females from solitary litters. t-test result: p-
value: 0.43. Mean value 1: 3.52, mean value 
0: 2.95. 

Figure 3.4: Reproductive success for females born in communal breeding litters vs. born in 
solitary litters. N of communally reared females: 6, N of females reared in solitary nests: 
60.The relative offspring number was higher in females grown up in communal nests. 
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A: Absolute and relative offspring numbers for males born in communal breeding litters with 1: 
males from communal breeding litters, 0: males from solitary litters. Left: Absolute offspring 
numbers: t-test, p-value: 0.18. N1: 12, mean 8.5, N0: 40, mean 13.15. Right: relative offspring 
numbers. t-test result: p value =0.5. 
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B: Absolute and relative mating numbers for males born in communal breeding litters, with 1: 
males from communal breeding litters, 0: males from solitary litters. Left: Absolute mating 
numbers: t-test result: p-value: 0.16. Right: relative mating numbers. t-test: p-value: 0.61.  
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C: Offspring number per mating for males born in 
communal breeding litters, with 1: males from 
communal breeding litters, 0: males from solitary 
litters. t-test, p-value: 0.51. Mean value 1: 2.71, 
mean value 0: 3.01 
 

Figure 3.5: Reproductive success for males which were born in communal breeding litters vs. 
males from solitary litters. 
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3.3.2 Multiple mating 

Frequency of multiple paternity 

252 litters, with a total of 1,072 offspring were analyzed for multiple (MP) or single 

paternity (SP). 44 animals without data about their birth date had to be excluded from 

the analysis, as it was not clear to which litter they belong. 179 litters (71%, with 715 

offspring) showed single paternity, whereas 73 litters (29%, 357 offspring) had 2 to 4 

sires. The majority of multiple paternity litters were from two sires (84.9%), 13.7% (10 

litters) had three sires, and just 1 litter (1.4%) had four sires. Frequencies of multiple 

paternities were additionally analyzed separately for all 4 experiments. There was no 

significant difference (contingency table: chi-square: 7.33, df=3, p-value: 0.06 (Table 

3.1). 

Table 3.1: Frequencies of multiple paternities, calculated for all 4 experiments separately. 
The last row gives the result for all experiments together. SP: single paternity litters, MP: 
multiple paternity litters. 

 All (litters) SP (litters) MP (litters) frequency of MP 

Exp I 29 23 6 0.21 

Exp II 23 12 11 0.48 

Exp III 124 94 30 0.24 

Exp IV 76 50 26 0.34 

all 252 179 73 0.29 

Multiple mating and kinship 

Compared to the frequency of multiple paternity in overall litters (179 SP vs. 73 MP) 

the frequency of multiple paternity in litters where mating events between relatives 

(siblings or parent – offspring matings) were involved is significantly higher (MP: 62 

litters, SP: 58 litters). As expected frequencies, the frequencies in overall litters were 

used (chi-square, df=1, p-value < 0.0001).  

Additionally, different pairings of relatives (daughter – father mating, half-sib mating, 

full-sib mating and son – mother mating) were tested, to estimate whether 

significantly more litters were multiply sired than sired by one male. For this purpose, 

the frequency of MP versus SP was compared and a deviation from equality was 

tested with a chi-square test. Only in the case of mother – son pairings, the 

frequency of multiple paternity litters was significantly higher than the frequency of 

single paternity litters (p-value: 0.013). Compared to this, the frequency of multiple 
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versus single paternity litters was significantly lower in no kinship matings (p-value: 

0.016) (Figure 3.6).  

Figure 3.6: Relative occurrence of multiple paternity litters for related pairs. The last bar 
shows the frequency of multiple paternities in unrelated pairs (p-value: 0.02, indicating 
significantly more single paternities). The mother-son matings showed a significant higher 
frequency of multiple paternity litters than single paternities (p-value: 0.01). Numbers in the 
bars refer to observed numbers of mating events.  

The frequencies of MP versus SP litters in the context of kinship mating where also 

analyzed considering different population backgrounds. No significant differences 

between “pure” or “mixed” couples were found (Table 3.2). 

Table 3.2: Multiple paternity versus single paternity litters in mating events between relatives, 
considering population background. The lighter grey rows show the frequencies of MP versus 
SP in “mixed” and “pure” couples. The darker grey rows show the results between “pure 
French” and “pure” German pairings. Differences were not significant. 

mating daughter father mating mother son mating half sib mating full sib mating no kinship mating 

 MP SP p -value MP SP p -value MP SP p -value MP SP p -value MP SP p -value

mixed 4 2  6 2  15 15  3 8  62 90  

pure 6 5 1 5 0 0.487 1 0 NA 18 14 0.162 32 40 0.664 

G 4 5  3 0  1 0  17 12  17 27  

F 2 0 0.454 2 0 NA 0 0 NA 1 2 0.568 15 13 0.234 

Effects on reproductive success of multiple mating 

Litter size and paternity 

Litter size was significantly elevated in multiple paternity litters (t-test p-value: 0.02) 

(Figure 3.7).  
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Figure 3.7: Litter size in litters with multiple 
paternity (MP) and single paternity (SP). Litters 
are significantly larger in litters sired by several 
males (p-value: 0.02). 

Mean litter size for MP: 4.89 offspring, mean for 
SP: 3.95 offspring. NMP: 73, NSP: 181  

Reproductive success and multiple mating 

The reproductive success of females who had (at least one) multiple paternity litter 

was analyzed (Figure 3.8): Females with MP litters had a higher overall reproductive 

success (in terms of absolute and relative offspring number).  
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Figure 3.8: Reproductive success of females with and without MP litters (0: females without 
any MP litters, 1: females with at least once an MP litter). Left: Absolute number of offspring, 
p-value: 0.01. Means: females with MP litter: 11.18 offspring, females without MP litter: 7.38 
offspring. N1: 66, N0: 57. Right: Relative number of offspring, related to the number of days in 
the enclosure. This value is also higher for females which had at least one multiple paternity 
litter. P-value: 0.06. 

This analysis was also conducted separately for females with different population 

backgrounds (Table 3.3). The pattern was the same for the different population 

backgrounds: females which had at least one multiple paternity litter had a higher 

offspring number, but differences are not statistically significant.  
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Table 3.3: Reproductive success of females with and without any MP litters, analyzed for 
different population backgrounds (G: German, F: French).  

Female’s population 
background (in 
brackets number of 
females analyzed) 

Mean number 
of offspring for 
females with 
MP litters 

Mean number 
of offspring for 
females with 
SP litters 

P-value (MP 
versus SP, 
Fisher’s 
Exact Test) 

P-value 
comparing 
relative offspring 
numbers, data not 
shown) 

G (F0) 
(NMP:12, NSP:14) 16 9 0.046 0.075 

F (F0) 
(NMP:10, NSP:11) 13.4 8.73 0.222 0.333 

GG (F1) 
(NMP:13, NSP:12) 9.69 6.92 0.066 0.286 

FF (F1) 
(NMP:4, NSP:3) 8.25 7.33 0.846 0.701 

GF and FG (F1) 
(NMP:14, NSP:18) 9.07 6.61 0.073 0.045 

F1 and Backcrosses 
“pure” background 

(NMP:17, NSP:16) 
9.35 6.87 0.08 0.281 

F1 and Backcrosses 
“mixed” background 

(NMP:16, NSP:20) 
8.44 6.36 0.072 0.072 

Multiple paternity and population densities 

I tested whether the frequency of multiple paternity increased with population 

densities. Therefore, a comparison of frequencies of multiple paternity litters born in 

the first three months and the second three months of the experiment was 

conducted. In all experiments, the frequencies were higher in the second phase, but 

differences are only significant in the case of experiment III. However, when data of 

all experiments were taken together, the increase of multiple paternities in the 

second phases of the experiments became evident (p-value: 0.0005).  

Table 3.4: Number of multiple paternity litters in the first and second phase of the 
experiments. The p-values indicate if there was a statistical significance for a deviation of 
multiple paternity frequencies in the first phase versus frequencies in the second phase. In all 
experiments, the frequencies were higher in the second phase, but differences were only 
significant in the case of experiment III. 

First phase Second phase Exp 
MP SP MP SP 

Comparison of frequencies 

MP 1st phase / MP 2nd phase [%] 

p-value 
Fisher’s 

Exact Test 

1 1  11  5 14 8.3 / 26.3 0.36 

2 3 8 8 4 27.3  / 66.7 0.1 

3 0 19 30 75 0 / 28.6 0.006 

4 1 8 25 42 11  / 37.3 0.15 

all 5 46 68 135 9.8 / 33.5  0.0005 

The same analysis was conducted considering population background and it was 

shown that for both populations the observation was consistent with the overall 
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experiment (Table 3.5): When the frequency of multiple mating was analyzed for the 

experiments separately, no significant increase was detected, but in all but one case, 

frequencies for all tested sets increased. Looking at the data for all experiments 

together, the German population showed a significant increase in multiple paternity in 

the second phase of the experiment (p-value: 0.004), while this increase was just 

about not significant for the French population (p-value: 0.07).  

Table 3.5: Frequency of multiple paternity litters in first and second phase of the experiment, 
considering population background. Analysis for all experiments separately, the last two rows 
of the table show the analysis when data of experiments were pooled  

(*): test conducted to examine whether frequencies differed between populations. 

litter First 
phase 

Second 
phase 

  MP SP 

p-value 
Fisher’s 

Exact  

(*) 

MP SP 

p-value 
Fisher’s 

Exact  

(*) 

Comparison of 
frequencies 

MP 1st phase / MP 
2nd phase [%] 

p-value 
frequency 
increase  

Exp I G 0 6 4 7 0 / 36.4 0.237 
 F 1 5 

1 
1 7 

0.34 
16.6 / 12.5 1 

Exp II G 1 5 1 3 16.6 / 25 1 
 F 1 3 

1 
4 0 

0.14 
25 / 100 0.14 

Exp III G 0 10 15 45 0 / 25 0.104 
 F 0 5 

1 
3 12 

1 
0 / 20 0.539 

Exp IV G 0 4 11 13 0 / 45.8  0.1323 
 F 0 3 

1 
9 14 

0.77 
0 / 39.1 0.529 

G 1 25 31 68 3.8 / 31.3 0.004 All exp 
F 2 16 

0.558 
17 33 0.852 11.1 / 34 0.074 

Multiple paternity and costs  

To estimate a possible cost of multiple mating for females, the survivorship of MP 

(females with at least one multiple paternity litter) versus SP females (females with 

only single paternity litters) was compared. Days in the enclosure were taken as a 

measure for survivorship. No significant difference was found between the founder 

females (p-value: 0.11; Mann-Whitney-U-Test, NMP: 22, NSP: 22). Also, no significant 

differences were found for females which died before the end of the experiment (p-

value: 0.79, N=11) or all females (p-value: 0.17, NMP: 60, NSP: 58). 

Individual condition records were analyzed from information obtained during the 

monitoring (described in chapter 2). Numbers of bad condition versus good condition 

records did not differ significantly between females with multiple paternity litters and 

females without multiple paternity litters (Fisher’s Exact Test, p-value: 0.80).  
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Heritability of multiple mating 

Daughters of females which had multiple paternity litters showed no significantly 

higher probability to have multiple paternity litters than females whose mothers did 

not have multiple paternity litters (Fisher’s Exact test: p-value: 0.06) (Table 3.6).  

Table 3.6: Number of daughters with MP or SP litters, depending on the paternity in the litters 
of their mothers. 

Mother Daughter 

 Multiple paternity litter No multiple paternity litter 

Multiple paternity 24 18 

No multiple paternity 11 22 

Multiple mating and success of sons 

The reproductive success of males was tested comparing sons of MP mothers and 

SP mothers. The number of mate partners and mating events (as a measure for 

attractiveness), the number of offspring and offspring per mating did not differ (Figure 

3.9 and Figure 3.10). 
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Figure 3.9: Males born from mothers with multiple paternity litters (1) had more mating events 
(left) and fertilized more females (right) than males born from mothers with exclusively single 
paternity litters (0). However, differences are not significant. Mating events: p-value (t test): 
0.33, means: 0:3.37, 1: 4.35. Number females: p-value: 0.27. Means: 0: 2.58, 1: 3.16. N1: 37, 
N0:19.  
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Figure 3.10: Reproductive success of males born from mothers with (1) and without (0) 
multiple paternity litters. Left: Number of offspring, p-value: 0.49. Means: 0: 10.21, 1: 12.22. 
Right: Offspring per mating. P-value: 0.79. Means: 0: 2.8, 1: 2.9. 
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It was not possible to test for individual success of males born in multiple paternity 

litters, as too few males born in multiple paternity litters had offspring (N=5). This is 

due to the fact that most multiple paternity litters were born towards the end of the 

experiment, and males were still too young to sire litters. 

3.3.3 Effects of the t haplotype  

t haplotype frequencies in the enclosures 

Out of 1,230 animals, 18.6% (229 animals) were heterozygous for the complete t 

haplotype and 2.8 % (34 animals) for the partial t haplotype (21.4 % of t haplotype 

occurrence in total). No individual was found to be homozygous for the t haplotype. In 

the following analyses, partial and complete t haplotypes were treated together. The 

initial and final frequencies for the 4 experimental replicates are shown in Figure 

3.11.  
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Figure 3.11: Frequencies of t/wt heterozygous animals. The numbers in the bars indicate the 
number of individuals. Dark bars: t/wt, light bars: wt/wt animals. Left: Initial frequencies (at the 
beginning of the experiments). Right: Frequencies of adult animals at the end of the 
experiments. 

Comparing initial t frequencies with t frequencies over the whole experimental 

duration showed a significant decrease in t frequency for 2 of the 4 replicates (Exp II: 

p-value: 0.04, Exp III: p-value: 0.014). In Exp I a statistically not significant decrease 

was observed (p-value: 0.0636), while in Exp IV, a statistically significant increase in 

the t frequency was found (p value: 0.033) (Figure 3.12). For the statistical testing, 

chi-square was applied, using initial frequencies as expected frequencies. 
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Figure 3.12: Initial (light grey) and overall t haplotype frequencies (darker grey) for the 
different replicates.  

Transmission ratio distortion 

The observed transmission ratio distortion (TRD) in litters of t/wt males with wt/wt 

females was 0.69 (excluding litters where a single t male only sired one progeny: 

TRD 0.67, mating events: 26). This value was calculated from the ratio of t/wt to 

wt/wt offspring resulting from matings between a wt/wt female and a t/wt male (total 

number of these mating events was 31). It has to be pointed out that some of these 

litters are multiple paternity litters; to calculate the TRD, only offspring of the t male 

were considered. The transmission ratio for t of females, calculated from litters of t/wt 

females which mated with wt/wt males, was 0.45 (45 litters) (TRD 0.46 when 

excluding 3 litters with one offspring). Binomial testing (number litters with TRD > 0.5 

against number of litter with TRD < 0.5, litters with TRD = 0.5 excluded) showed for 

males a significant TRD (p-value: 0.016; 22 litters TRD > 0.5, 8 litters < 0.5, 2 

excluded) and for females no TRD (p-value: 0.64; 18 litters TRD > 0.5, 22 litters < 

0.5, 7 excluded).  

t Haplotype and multiple paternity 

The influence of the t haplotype on multiple paternity frequencies of females was 

analyzed, comparing the ratio of females who had at least one multiple paternity litter 

with females who never had multiple paternity litters. This analysis showed that 

frequencies for wt/wt females (48.4%, 46 out of 95 females) were slightly higher than 

for t/wt females (39.3%, 11 out of 28 females).  
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t haplotype and mate choice 

Through analysis of 252 pairs (from which I had full individual information about the t 

haplotype) no significant preferences were found (Figure 3.13, Fisher’s Exact test for 

all experiments: p-value: 0.34, exp. I: p-value: 0.63, exp. II:  not applicable (because 

of “null” values), exp. III and IV: p-values: 1). 
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Figure 3.13: Frequency of different pairs for all experiments separately and for all 
experiments together. Numbers in the bars represent numbers of pairs observed. 

Considering not only pairs, but also the frequency of mating events between the 

different pairings gave the same pattern (Figure 3.14, Fishers Exact Test: all 

experiments: 0.202, exp. I: p-value: 1, exp. II: not applicable, exp. III: p-value: 1, exp. 

IV: p-value: 0.29): no significant preferences were observed. 
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Figure 3.14: Frequency of mating events between wt/wt and t/wt individuals. Numbers in the 
bars represent numbers of mating events. 
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t haplotype and reproductive success 

Ratio of successful males and females 

The proportion of adult males and females which reproduced was, over all replicates, 

not significantly different between t/wt and wt/wt males (Figure 3.15). Nevertheless, 

experiment IV was outstanding: significantly more males and females heterozygous 

for the t haplotype were successful than wt/wt individuals (p=0.023 comparing males, 

p=0.01 comparing females). 
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Figure 3.15: Ratio between successful and unsuccessful males (left) and females (right) in 
comparison between t/wt and wt/wt individuals. 

Individual attractiveness 

The number of mates an individual had was analyzed separately for sexes regarding 

t haplotype. For both sexes, no significant differences were shown (Figure 3.16). 
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Figure 3.16: Number of mates for t vs. wt animals. No significant difference was shown. Left: 
females, Nt: 29, Nwt: 92. P-value t-test: 0.55. Right: males, Nt: 18, Nwt: 72. P-value (t test): 
0.81. 
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Offspring number per mating 

A significant reduction in offspring number for mating events between t/wt females 

and t/wt males (unpaired t-test: p-value: 0.038, average offspring number t/t: 2.1 vs. 

t/wt: 3.18) was found. In general however, t/wt females did not show a significantly 

reduced offspring number per mating (p-value: 0.96, average offspring number 2.95 

for t females vs. 2.96 for wt females). Also for males, no effect of the t haplotype on 

offspring number per mating (p-value: 0.69, average offspring number 2.86 for t 

males vs. 2.97 for wt males) was detected. For t males, there was no significant 

difference when mating with t or wt females (p-value: 0.063, average offspring 

number: 3.2 with wt females vs. 2.1 when mating with t females).  

Litter size  

The analysis of litter size of t females which mated with at least one t male against 

the litter size of t females which did not mate with a t male showed no significant 

difference (unpaired t-test: p=0.42, average litter size of t females mated with a t 

male: 3.57, vs. t females mated with wt males: 4.13). 

Number of offspring 

The absolute number of offspring in males did not differ between wt and t males. The 

mean for t type males (N=18) was 10.17, while the mean for wt males (N=75) was 

12.32 (two tailed t-test: p=0.42). This was also observed when controlling for the 

number of days an individual spent in the enclosure, and the same was found for 

females.  

Fertilization bias 

The individual average of relative fertilization success of males was calculated, to 

examine whether it correlated with presence or absence of the t haplotype. For this 

analysis, only multiple paternity litters were considered, and the relative number of 

offspring sired by t males versus wt males was determined. Subsequently, the 

average was calculated for the individual males. The results showed that there was 

no difference (Figure 3.17) (t test: p-value: 0.39, average relative fertilization 

success: t males: 0.595, wt males: 0.644).  
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Figure 3.17: Average fertilization success of t/wt 
males in comparison with wt/wt males. 

 

Individual fitness 

The number of animals in bad condition or severely bitten (see definitions chapter 2) 

did not differ significantly between wildtype animals (N=29) and t type animals 

(N=11), considering the frequency of heterozygous animals (Fisher’s Exact Test, p-

value: 0.34). When analyzing the percentage of good condition in relation to the 

number of individual records (only animals with a minimum of three monitoring 

records were considered), wild type animals and t type animals did not differ 

significantly (p- value=0.62) (Figure 3.18). 
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Figure 3.18: Individual condition, measured 
as the relation of good condition records to 
total number of records. Nwt: 75, Nt:21. 

 



 Mate Choice Parameters and Reproductive Strategies  

 82

t haplotype influence on different population background 

With respect to population background, no effects of the t haplotype on the number of 

successful females or males were detected. Table 3.7 summarizes the outcome. 

Only F0 and F1 animals were tested, as the numbers of the other animals were too 

low for statistical analysis. 

Table 3.7: Number of successful versus unsuccessful t/wt individuals. Light grey: F0 
generation. Darker grey: F1 generation. 

 Population 
background 

successful unsuccessful Fishers Exact Test 

G 2 1 

F 11 4 

p-value: 1 

GG 1 0 

FF 10 4 

GF 9 6 

Females 

FG 10 4 

p value: 0.45, “pure” 
vs. mixed: p-value: 

0.47 

G 1 2 

F 5 8 

p-value: 1 
 

GG 0 0 

FF 10 3 

GF 5 4 

Males 

FG 5 3 

p-value: 0.67, “pure” 
vs. mixed: 

p-value: 0.44 

Likewise, the reproductive success of t/wt animals showed no difference for the 

different population backgrounds (Table 3.8).  

Table 3.8: Summary of reproductive success of animals heterozygous for the t haplotype in 
consideration of population background. The only significant difference was the number of 
offspring per mating in F1 males. Light grey: F0 generation. Darker grey: F1 generation. 

 Population 
background 

N No of 
offspring 
(mean) 

Statistical 
analysis 

Mating 
events 
(mean) 

Statistical 
analysis 

Offspring/
mating 
(mean) 

Statistical 
analysis 

G 1 6.00 6.00 1.00 
F 5 8.40 

t-test: p-
value: 
0.66 2.80 

t-test: p-
value: 0.2 3.10 

t-test: p-
value: 
0.13 

GG 0 0 0 0 

FF 3 15.00 3.67 4.722 
GF 4 16.50 5.75 2.958 

M
A
L
E
S 

FG 3 6.67 

ANOVA: 
p-value: 

0.61 

3.33 

ANOVA: 
p-value: 

0.77 

1.595 

ANOVA: 
p-value: 

0.03 

G 2 17.50 3.50 4.550 
F 1

1 
11.27 

t-test: p-
value: 
0.40 3.82 

t-test: p-
value:  
0.88 3.130 

t-test: p-
value: 
0.11 

GG 0 0 0 0 

FF 4 7.25 3.50 1.82 
GF 6 6.50 2.17 3.44 

F
E
M
A
L
E
S 

FG 4 7.25 

ANOVA: 
p-value: 

0.92 

3.00 

ANOVA: 
p-value = 

0.29 

2.50 

ANOVA: 
p-value:  

0. 13 
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3.3.4 Parameters correlating with male reproductive success 

Age and mating events 

The number of offspring correlated with the number of mating events (regression 

analysis: R2= 0.83, p-value < 0.0001, Figure 3.19). 
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Figure 3.19: Reproductive success dependent on age (left) or number of mating events 
(right). The correlation between age and number of offspring was not very strong (R2 = 
0.2405), whereas a correlation between number of mating events and offspring number was 
clearly shown (R2= 0.83). 

Relative testis weight 

RTW had no influence on the reproductive success: the analysis of mating numbers 

with RTW showed no correlation (R2 = 0.02, data not shown). Likewise, no correlation 

was observed between RTW and absolute and relative offspring number (absolute: 

R2 = 0.04, relative: R2= 0.04). This was also observed when considering all males 

(including those which had no offspring) (Figure 3.20 ).  

Nevertheless, a comparison of RTW of unsuccessful versus successful males 

showed a significantly higher RTW for successful males (p-value: 0.02, N 

unsuccessful =108, N successful= 45).  

The result of the analysis whether RTW depended on the age of the animals is 

shown in Figure 3.21: there is no correlation detected (R2 = 0.02). In addition, the 

number of successfully fertilized females (as a measure for male attractiveness) did 

not correlate with RTW (R2= 0.08).  
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Figure 3.20 : Relative Testis Weight (RTW) and reproductive success: no correlations were 
observed when testing all males including those which had no offspring (plots above) or when 
including only successful males. Left plots: absolute offspring number. Right plots: relative 
offspring number. 
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Figure 3.21: RTW and age of the males: No 
correlation was observed (R2 = 0.02). 
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3.4 Discussion 

This part of the study aims to determine whether partner preferences differ between 

individuals of two recently separated house mouse populations and whether this is 

reflected in their reproductive strategies. A possible explanation would be that 

individuals base their partner preferences on traits which are favorable for one 

situation, but not necessarily for the other, as a consequence of differences in the 

environment in which their offspring develop (Bussière et al. 2008). Also historically 

differences could differently shape mate choice behavior and reproductive strategies 

in diverged populations. 

Reproductive success is determined by an integrated set of traits whose relationships 

need to be quantified and interpreted within a life history context (Cornwallis & Uller 

2010). The long-term mate choice experiment analyzed here presented an ideal 

situation to study the role of different parameters for mate choice and mating 

strategies, as important behavioral traits influencing reproductive success.  

Overall, it can be stated that no differences regarding effects of the t haplotype and 

the analyzed strategies between the populations were detected.  

Through the careful analysis of multiple mating frequencies and benefits as well as 

the implications of communal breeding, it became evident that communal breeding 

and multiple mating slightly increased reproductive success under semi-natural 

conditions. The balance between benefits and costs seems to vary, as otherwise 

these strategies would become fixed in populations.  

Observed effects of the t haplotype were restricted to a slight decrease in offspring 

number in mating events between t/wt animals. I found no evidences for an 

increased multiple mating frequency or the avoidance of partners with t/wt. 

In the following, the results are discussed in detail. 

3.4.1 Communal breeding 

Overall it can be stated that communal breeding was frequently observed in the 

experiment and found for both populations (shown in chapter 2), and that, rather than 

population background, kinship was important for social partner choice.  
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As described by Manning et al. (1995), female house mice often nest communally, 

and within these communal nests appear to indiscriminately nurse all pups. This 

costly behavior of house mouse females is expected to have benefits.  

Direct benefits for females in form of higher reproductive success could not be 

observed: the results presented here showed that females nursing in communal 

breeding litters had a smaller litter size than females nursing alone (Figure 3.3). 

However, the difference was not statistically significant, and it is important to mention 

that towards the end of the experiment the communal breeding frequency increased, 

probably as a consequence of limited nest sites. At the same time, littersize per 

female decreased, most likely due to resource competition and stress. Another 

possible benefit for females could be indirectly through enhanced fitness for their 

offspring. Therefore, the reproductive success of animals grown up in communal 

breeding litters was compared with the success of animals born in “normal” litters. 

The analysis showed that females grown up in communal breeding litters showed a 

significantly higher offspring number than other females (Figure 3.4), which can not 

be explained through an increased mating success. This effect was not seen for 

males (Figure 3.5). These findings are interesting in the light of two recently 

published studies: Curley et al. (2009) showed in an experiment with Balb-C mice, 

that communal breeding had transgenerational positive effects on the offspring which 

were grown up in communally reared litters: female offspring showed higher levels of 

maternal care and reduced anxiety-like behavior. Another study with laboratory mice 

(CD1 mice) showed that offspring from communal nests displayed relevant changes 

in brain function and behavior (Branchi 2009).  

Contrary to the above mentioned higher reproductive success for females grown up 

in communal litters, I observed a significantly higher proportion of communally reared 

individuals with complete breeding failure. Due to the fact that communal litters were 

increasing in frequency towards the end of the experiment, I consider this result 

might be a bias, since animals born towards the end of the experiment had only a 

small possibility to raise offspring.  

Out of 10 sister – sister breeding pairs, only one was of half sibs, the others were full 

sibs. Something similar was reported by Evans & Kelley (2008), who found in 

guppies that pairs of full siblings spent significantly more time shoaling than pairs of 

half siblings. The authors suggested that this finding presents a potential cost of 

polyandry: a reduction in within-brood relatedness with potentially important 
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implications for offspring social behavior. The preference to relatives as partners was 

already reported in other studies: König (1994) showed in a laboratory setting that 

females nursing communally with sisters had a higher reproductive success than 

females nursing with unrelated but familiar females, and Manning et al. (1992) 

showed that females preferred communal nursing partners with a similar MHC. Weidt 

et al. (2008) reported that females in pairs with a preferred social partner had a 

higher reproductive success than females in non-preferred pairs.  

3.4.2 Multiple paternity  

The here reported frequencies of multiple paternity support the assumption of 

multiple mating as a common strategy. The frequencies did not differ between 

different population backgrounds or experiments (see also chapter 2) and showed for 

all cases higher values correlating with higher population densities. Litters in which 

mating events between relatives were involved showed a significantly higher 

frequency of multiple paternity. Reproductive success was slightly elevated for 

females which had at least once a multiple paternity litter. Enhanced reproductive 

success for sons, supporting the sexy sperm hypothesis and heritability testing of 

multiple mating were not statistically significant. All results were consistent for the 

different population backgrounds. Costs for females in form of a reduced survivorship 

or inferior individual condition were not detected.  

It has to be mentioned that in all the above documented results, the analysis of 

multiple paternities underestimated frequencies of multiple mating. Effects of sperm 

competition and cryptic female choice can bias the results.  

Frequency of multiple paternity 

Analyzing all experiments together, 29% of litters were sired by multiple males. No 

statistically significant differences in multiple paternity frequencies were detected 

between the different populations (Table 3.1). By this, a similar multiple mating 

frequency for both populations can be assumed, and also postcopulatory 

mechanisms like sperm competition and cryptic female choice might be similar. 

Considering the strongly varying frequencies of multiple paternity found in other 

enclosure studies (e.g., 19.4% in Carroll et al. (2004) and 64% in Ehman & Scott 

(2004)) and wild populations (e.g., 6-43% found for 7 island populations by Firman & 

Simmons (2008)), the results found here indicate a similar multiple mating frequency 

for females depending on current environmental conditions. This assumption is 
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supported by the elevation of multiple paternity frequencies towards the end of the 

experiment, when population densities increased considerably in all replicates and 

population backgrounds (Table 3.4 and Table 3.5). The increase of multiple paternity 

in high density areas was also reported by Dean et al. (2006). These authors 

explained this finding with the higher probability of a female to encounter more than 

one male in higher density populations. In the enclosure setting, however, this 

explanation is not very likely, since densities were high enough from the beginning of 

the experiment that individuals could encounter each other. Another explanation 

would be a targeted strategy of females depending on population density (e.g. to 

reduce male harassment).  

Benefits of multiple mating 

Analyzing the reproductive success showed that females which had at least one 

multiple paternity litter had a higher overall reproductive success than females which 

only had litters sired by a single male (Figure 3.8) and litters were bigger when sired 

by multiple males (Figure 3.7). This result was observed for all experiments, as well 

as for females of different population background (Table 3.3), although differences 

were often not statistically significant. This is in line with results of Firman & Simmons 

(2008a) who showed that females mated to 3 different males during one reproductive 

cycle had greater post birth pup survival than females mated 3 times to the same 

male. 

An indirect possible benefit of multiple mating for females is the reduction of 

inbreeding risk. Whether mating with relatives favors multiple mating can be tested 

indirectly via comparing multiple paternity frequencies in litters of unrelated couples 

with litters where mating events between relatives were involved. Analyzing all 

mating events together showed that the frequency of multiple paternity was 

significantly higher for litters in which mating events between relatives were involved. 

When testing pairs of different relatives (mother-son, daughter-father, half-sibs and 

full-sibs), it was shown that the litters where mother – son matings were involved 

showed the highest frequency of multiple paternity (Figure 3.6) compared to litters 

from non related couples, and in this cases significantly more litters are sired by 

several males than by one male. The results were consistent when analyzing all 

litters together as well as for the separate analysis of litters with different population 

background (Table 3.2). This finding is an additional hint for a general mating 

strategy of house mouse females to reduce the risk of inbreeding. It supports the 

result of Firman & Simmons (2008) who showed that polyandry may provide an 
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opportunity for females to avoid the cost of inbreeding by exploiting postcopulatory 

mechanisms that bias paternity towards unrelated male gametes. 

Another assumed benefit of multiple mating is related to the “sexy sperm” hypothesis, 

where females give birth to highly competitive sons through enabling sperm 

competition (Harvey & May 1989; Keller & Reeve 1995). Following this theory, 

females have an indirect benefit for their offspring if the most competitive sperm gain 

fertilization of their ova. Related to this hypothesis is the assumption that female 

benefits result from “good genes” which enhance fitness of offspring. Evidence for 

female benefits of multiple mating through a higher reproductive success of sons had 

been demonstrated by Klemme et al. (2008) who showed a higher reproductive 

success for bank vole males born in multiple paternity litters. Unfortunately, in my 

experiment only few males (N=5) from multiple paternity litters achieved offspring. 

This is due to the fact that most multiple paternity litters were born towards the end of 

the experiment, and offspring from these litters were too young to fertilize a 

considerable number of females. However, the reproductive success of males from 

mothers which had at least one multiple paternity litter was slightly higher than for 

sons of females which only had litters sired by one male (Figure 3.9 and Figure 3.10). 

Considering the elevated frequency of multiple paternity towards the end of the 

experiment, it is more likely that the sexy sperm hypothesis does not play a major 

role to counterbalance costs through multiple mating, as it would be expected that 

benefits through this mechanism would be effective also in low density populations. 

Support for heritability of multiple mating was tested. Indeed, daughters of females 

which had multiple paternity litters showed a higher probability to have multiple 

paternity litters than females whose mothers did not have multiple paternity litters 

(Table 3.6), but this result was not statistically significant.  

Costs for females in form of a reduced survivorship or inferior individual condition 

could not be detected comparing females which had multiple paternity litters versus 

females which had only litters sired by a single male. 

3.4.3 Effects of the t Haplotype 

t haplotype frequencies in the enclosures were around 20-30% and mostly 

decreased towards the end of the experiment. Male transmission ratio distortion was, 

compared to other studies, rather low.  
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The effect of the t haplotype on reproductive success was restricted to the number of 

offspring in mating events between two individuals heterozygous for the t haplotype. 

Although this finding should present a selection pressure towards a strategy for t/wt 

females to avoid mating with t/wt males or an increased frequency of multiple mating, 

no significant evidence was found for this. The consequences for t/wt females to 

mate with t/wt males seemed to be low, as no other effects on reproductive success 

or individual fitness were found. These findings were the same for the different 

population backgrounds (Table 3.7 and Table 3.8).  

t haplotype frequencies and TRD 

21.4 % of animals from the long-term experiment were heterozygous for the t 

haplotype. The frequencies differed considerably in the four experimental replicates, 

which is partially explained by different initial frequencies. In three experiments 

frequencies declined towards the end of the experiment, while experiment 4 showed 

a relative increase in t frequency (Figure 3.11 and Figure 3.12) and is outstanding 

also in other aspects related to the t haplotype. 

The observed male transmission ratio distortion (TRD) was 69.3 %, which is low, 

compared to other studies (Carroll et al. 2004). This low value is possibly biased, as 

in many litters, especially towards the end of the experiment, only few offspring were 

found, possibly due to infanticide. However, female transmission distortion follows 

with 45.3% the expectations (43% reported by Carroll et al. 2004).  

Mate choice 

The predicted preference of females heterozygous for the t haplotype for mate 

partners without a t haplotype to encounter homozygous lethal or sterile effects in the 

offspring was not supported by the results of the experiment. Through analysis of 252 

pairs no significant preferences for or against the t haplotype were found (Figure 3.13 

and Figure 3.14).  

The frequency of multiple paternity was lower in t/wt females (39.3%) than in wt/wt 

females (48.4%). This is not expected as it is assumed that multiple mating could be 

a female strategy to encounter deleterious effects of t haplotype (Haig & Bergstrom 

1995). However, it has to be recalled that frequencies of multiple paternity are only 

an indicator for multiple mating and underestimate the real degree of polyandry, i.e., 

a female which biases fertilization 100% towards wt/wt male sperm, would not be 
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detected as a multiple mating female. The effect of cryptic choice could present a 

potent force. 

Individual reproductive success 

In an extensive enclosure study on the ecological effects of the t haplotype, Carroll et 

al. (2004) found a decrease in reproductive success for heterozygous individuals. My 

experiment did not support their findings: While the aforementioned authors reported 

a higher breeding failure for t heterozygous females, in three of the four experiments 

no significant differences in the proportion of successful animals were found, and in 

experiment 4, significantly more males and females heterozygous for t were 

reproductively successful than wt/wt animals (Figure 3.16). 

The examination of consequences for t/wt females which mated with t/wt males is 

confounding: although offspring number was reduced in mating events where both 

partners are heterozygous for the t haplotype, t/wt females did not show a lower 

overall offspring number. This result suggests the presence of a mating strategy of 

heterozygous females biasing their mate choice towards males without the t 

haplotype or to increase multiple mating frequencies; nevertheless, analysis of the 

mentioned parameter did not reflect this. 

Since litter size in t/wt females is not reduced significantly, the possibility of a 

fertilization bias of t/wt females in favor of wt/wt males is assumed. Nevertheless, the 

analysis of the relative fertilization success for t/wt vs. wt/wt males in multiple 

paternity litters showed no fertilization bias dependent on the t haplotype. 

Individual fitness 

No difference of individual fitness was found between t/wt and wt/wt animals. This is 

contrary to the observation reported by Carroll et al. (2004), who showed that t/wt 

males have significantly higher difficulties to maintain territories. 

3.4.4 Parameters correlating with reproductive success 

There is some correlation of RTW with reproductive success: males which had no 

offspring had significantly lower testis size. However, relative and absolute numbers 

of offspring do not correlate with RTW (Figure 3.20). It is important to consider that 

the RTW value for each individual male is only a snap-shot from the day the males 

were dissected, which could change with the condition of the male: Schulte-Hostedde 

et al. (2005) showed in a study with three small mammal species that testis size was 
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positively related to body condition which suggests that males in good condition are 

capable of investing more in ejaculates than males in poor condition.  

3.5 Conclusion 

The above discussed results indicate that the French and German populations do not 

differ in effects of the t haplotype on mate choice. In addition, frequencies of 

communal breeding and multiple mating in females are similar in both populations 

and respond equally to environmental changes (in terms of population density) and 

inbreeding risk.  

Considering these findings, there is no hint towards a different population history 

which would shape mate choice and reproductive behavior differently in the German 

and French population. However, the highly significant father related assortative 

mating pattern indicates that some traits are recognized by the individuals as “own” 

and “foreign”. Genomic imprinting is only one possible explanation, and the screening 

of the influence of other parameters, e.g. major urinary proteins or MHC alleles may 

identify the divergence between the populations. 
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Supplement 
Supplement 1: Description Access Database  

Overview tables  
Name Description 
tblCheckdate Information on which days the spatial data were taken. 
tblChecklist Spatial data taken on different “checkdates” 
tblLocality Information about different localities and primary key for locality (psLoc). 

Localities with “I” or “II” in the name refer to Room 1 or 2 respectively 
tblMice Individual mice with constant characters (e.g. sex, birth, death).  

Includes also results of paternity testing and t haplotype determination 
(Items are also explained in the design view in Access). 

tblMonitoring Information gathered during monitoring events (each 3 – 4 weeks): 
weight, pregnancy, lactation, general condition, mites, ..) 

tblPups Information about samples taken from newborn mice (still in litters). 
These help to find birth dates of mice by identity-matching between 
“mice” and “pups” - genotypes 

Detailed description tblMice 
Items Information  
psMouse Primary key: unique number for all mice, serves to connect table with 

other data (e.g. data from localization check, offspring, partner, 
monitoring etc.) 

Experiment Number of experiment where mouse was involved 
TubeNo Sample number / number of tube where mouse is stored after death 

(or end of the experiment): all samples (extracted DNA, backup DNA, 
stored carcass, shock frozen tissue, etc…) are labeled with this 
number. 

RunningID Name of mouse during the experiment, useful especially at the 
beginning of the experiments to distinguish between mice of the 
populations, no need for consequent use 

Animal General information about the mouse, e.g.:  
- Parent (F0 generation) 
- Offspring (later generations) 
- Dead Pup (animal which was sampled dead during the 

experiment) 
- “E” with number (Embryo of certain female with embryo 

number, e.g. E_IV_141-2: Second Embryo from mother with 
TubeNo IV_141) 

- Newborn (mice born few days before end of experiment) 
- Temporary mice (mainly from F0 who lost their transponders) 
- pups from tblpups: without identity match in tblmice (were 

sampled but not found dead or at the end of the experiment) 
Transponder Number of the transponder, is not unique, as in some cases mice lost 

their transponders and had to be re-transpondered during the 
experiment. Some transponder numbers were used more than once 
(in different experiments) 

TPDate Day when mouse was transpondered 
MouseHouse ID ID from the stock collection (only existent for parent generation) 
fsMother psMouse of Mother 
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fsFather psMouse of Father 
InfoPat Information about paternity assignment, e.g. in case of problems 
Population 
Background 
(“Herkunft”) 

left side: abbrev.origin mother “.” , right side abbrev.origin father. In 
higher generations separation with “_”, then “-“. 
“unklar” in case of paternity problems 

Mismatches Information about number of mismatches (when critical) 
ProbPat “yes” in case of problem with paternity assignment (generally parents 

too young or assignment with more than 2 mismatches 
PatSolved Paternity assignment reliable 
InfoPat Information about paternity assignment (which phase, observation 

why paternity problem, etc.) 
Mismatches Number of mismatches in paternity assignment 
MP/CB checked Individual checked in litter context (same mother/how many different 

fathers – reliable number of fathers, reliable birth date) Only for 
internal use during the analysis 

PatProb "yes" when paternity could not be assigned 
PatSolved "yes"  when paternity was successfully assigned. Field was useful 

during analysis 
Nicht auswertbar In case of missing data (generally mice who lost transponder during 

experiment – just “check” data, no typing)  
Info Partnerchoice In case of females: obtained from information about fathers of litter. 

E.g.: one (or/and) multiple father litters (number of litter: number of 
pups per litter, separated by comma). Was useful during analysis 

OldLitterID First assigned litter ID. Was kept to clarify eventual doubts 
LitterID ID of litter mouse is assigned to – useful for multiple paternity and 

communal breeding analysis. In case of communal breeding: LitterID 
ends with a letter (a, b, c, etc.) 

Communal_breeding animals grown up in communal breeding litters 
Sex m: male, f: female. “0”: not determined 
Birth Date of Birth 
Dead Date when found dead or last day of experiment 
days_in_exp Number of days an animal had been in the experiment. Useful to 

calculate relative reproductive success 
t Haplotype TCP1 “no” when homozygous for wildtype, “yes” when heterozygous t/wt 
t Haplotype Hba4ps “no” when homozygous for wildtype, “yes” when heterozygous t/wt 
Tcp1 Allele 1 at TCP1 locus. “W” when wildtype, “T” when t haplotype 
Tcp2 Allele 2 at TCP1 locus. “W” when wildtype, “T” when t haplotype 
Hba-ps4_1 Allele 1 at Hba-ps4 locus. “W” when wildtype, “T” when t haplotype 
Hba-ps4_2 Allele 2 at Hba-ps4 locus. “W” when wildtype, “T” when t haplotype 
Hba data missing “yes” when typing for t haplotype at locus Hba-ps4was not successful  
tcp1 data missing “yes” when typing for t haplotype at locus TCP1 was not successful 
Bellycolor Dark or bright. Information not consequently added, but data available 

(not systematized) 
Disperser “yes” when animal used dispersal tube to “migrate” from enclosure 
DisperalDate Date of dispersal 
OfRunningID Running Id of offspring. Not consequently used, since utility was not 

confirmed 
nicht auswertbar “yes” when not analyzable, e.g. due to missing microsatellite data, or 

no tissue samples. Generally mice which lost their transponders 
during the experiment. Localization data of these mice can not be 
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assigned to an individual. 
Alleles of 
microsatellite loci: 
per locus two 
columns, one for 
each allele. Name of 
loci at first positions, 
last position (“1” or 
“2”) refers to the first 
or second allele 

Information on allele 

spleen spleen tissue available 
extracted DNA extraction done (information not constantly updated) 
20ng/ul Presence of DNA template with concentration of 20 ng/ul (information 

not constantly updated) 
backup presence of backup material 
carcass storage of carcass 
carcass Alc carcass in good alcohol 
Info Additional information (not systematic) 
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Digital Supplement  
 

Access Database with all data gathered during the longterm-experiment (description 

of database see above). 
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