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Black hole formation through fragmentation of toroidal polytropes
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We investigate new paths to black hole formation by considethe general relativistic evolution of a dif-
ferentially rotating polytrope with toroidal shape. We fitight this polytrope is unstable to nonaxisymmetric
modes, which leads to a fragmentation into self-gravitattollapsing components. In the case of one such
fragment, we apply a simplified adaptive mesh refinementigcie to follow the evolution to the formation of
an apparent horizon centered on the fragment. This is thesfudy of the one-armed instability in full general
relativity.

The formation of black holes from neutron stars, iron coresonset of a quasi-radial instability, and numerical experits
or supermassive stars is expected to be associated with-a chaonfirm that the collapse remains axisymmetria [23]. If the
acteristic gravitational wave signal which may give infaem star is differentially rotating, the cooling sequence ssleon-
tion about the collapse dynamics and the physical environstrained and might end in a transition to nonaxisymmetric in
ment of such objects. Therefore, and given that gravitation stability [24,125] 26]. The canonical expectation that aesup
wave detectors are already taking data or are coming onlinenassive star produces one central black hole with a low-mass
it is of prime importance to understand the dynamical fezgur accretion disk might thus not be appropriate for differalhi
of the gravitational collapse of hydrodynamical systems. rotating configurations.
The prototypical model of stellar collapse is an equilibriu In this letter, we consider the production of a black hole
polytrope subject to a radial or quasi-radial perturbagjmow-  through the fragmentation of a general relativistic palpe.
ing on a dynamical timescale. In spherical symmetry, everyVe focus onV = 3 polytropes, which are associated with pre-
general relativistic polytrope with indeX = 3 is unstable to  collapse cores of massive stars or supermassive starsofthe s
radial oscillations|[1] — in turn, there exists a critidsl < 3 equation of state also enhances the instability of the fexgm
for which the star is marginally stable. Without spherigaths = compared to the common choidé = 1 for neutron stars. To
metry, rotation can increase this critical value again [fle  represent this process accurately on a grid, we make use of an
black hole formation from the collapse of uniformly and dif- adaptive mesh refinement technique, since a possibly highly
ferentially rotating polytropes induced by this instajilis a  deformed apparent horizon needs to be located in some region
well-investigated phenomenon, either with restrictiorate  of the domain which is unknown in advance.
isymmetry [8, 4150161718, 9] or without [1D.1211.112] 13]. In  The recent investigation of the collapse of differentiatly
the gauge choices usually employed, the dynamical behaviotiating supermassive stars by Saijol[27] was based on a se-
of the system shows a radial contraction of the star, accompajuence of relativistiédV = 3 polytropes with a parameterized
nied by the formation of an apparent horizon at late times.  rotation law of the commonly used foriQ2) = A%(Q. —Q),
Black hole formation from a dynamically unstalslenax-  wherefQ. is the angular velocity at the center, and the param-
isymmetrianode, however, has not been modelled so far. Sceeter A specifies the degree of differential rotatiad (- oo
narios range from the development of a bar mode, subsequeistuniform rotation). The sequence selected was consttaine
transport of angular momentum into the shell and collapséy a constant central densip. = 3.38 x 1076 in units
of the central object, to fragmentation and off-centerpmd K = G = ¢ = 1, and the choiced/r, = 1/3, wherer,
tion of one or several black holes. In Newtonian theory, in-denotes the equatorial coordinate radius.
stabilities and fragmentation have received considerable To examine the indirect collapse by fragmentation of a
tention, specifically in the context of binary formationrito  polytrope with toroidal shape, we choose a model with the
protostellar disks (e.glL[l4, 15,116,117, 18] and referencesame central density as in Saija’s|[27] models, but with i@ rat
therein) and compact object production in stellar coreapsé  of polar to equatorial coordinate radigs/r. = 0.24. The ra-
(e.g. [19)/20| 21] and references therein).Lln [11], the atsth  tio of rotational kinetic energy to gravitational bindinge¥gy
also report signatures of an = 4 fragmentation behaviour is 7'/|W| = 0.227. While the critical limit for the dynami-
in the collapse and centrifugal bounce offsin= 1 polytrope,  cal f-mode instability in uniform density, uniformly rotag
but could not determine the final state due to resolutioreissu  Maclaurin spheroids i§7'/|W|),,,, = 0.2738 (e.g. (28]), re-
The cooling evolution of supermassive stars can be approxcent investigations of the stability of softv( ~ 3) differen-
imately described by thé&v = 3 mass-shedding sequence tially rotating polytropes in Newtonian gravity [29,130),32]
when the angular momentum transport timescales are shdnmave shown that the Maclaurin approximation is inappraeria
compared to the cooling timescale[22], so that uniform ro-for such systems, and generally find the criti€a)|W{),,,,
tation is enforced. This sequence has a turning point for théo be below the Maclaurin value. Consequently, the toroid-



like star considered in this study might be unstable to nenax o T T T T T T
isymmetric perturbations. Here we present the first ingesti I
tion of this instability in full general relativity, showinthat )
relativistic effects are significant for the final outcoms vee I
observe that black holes can be produced. I

All simulations have been performed in full general rela- —4
tivity. The only assumption on symmetry is a reflection in- I
variance with respect to the equatorial plane of the stae Th _£
gauge freedom is fixed by the generalized 1+log slicing con-— —6 I
dition for the lapse function[33] witlf (o)) = 2/«, and by the
hyperbolic-type condition suggestedlin [8] for the shifttce.

The computational framework is theCactus code
(ww. cact uscode. or g), which also provides a module g
to solve the geometric part of the field equations in the ~10 I
well-known BSSN form [[34,[ 35] 86]. In addition, the
Carpetdriver |37] is used for mesh refinement @actus I
The hydrodynamics part of the field equations is evolved L ——
using the high-resolution shock-capturing PPM-Marquina 0 2 4
implementation in th&Vhiskymodule [12]| 38], and a gamma t/t,
law equation of state = pe/N). We are thus using a
set of well-tested tools to evolve the general relativisticFIG. 1: Time evolution of the mode amplitudes in the standaid
hydrodynamics equations. setup N. The amplitudes are obtained from a Fourier decoitios

To numerically construct the axisymmetric initial model de of the density profile on the equatorial plane circlezat= 0.25r,
scribed in the introduction, we use tR&Sinitial data solver ~ the initial radius of highest density. Shown are the= 1 (thick solid
[39] with a radial resolution of 601 and an angular resolutio "€ ™ = 2 (thick dashed ling m = 3 (thin dash-dotted lingand

. . . m = 4 (thin dotted lin@ mode amplitudes. The time is normalized

of301 p(_)lnt_s. With the parf_;\meters described ab_ove, thg modg) e dynamical timescale — re+/r</M.
has toroid-like structure, with an off-center density nmaxm,
but a non-zero central density. After mapping the model¢o th
hierarchy of Cartesian grids provided Barpet a small per-
turbation of the form

N
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certain coordinate radil [40, 41]. Care must be taken in in-
terpreting the results as soon as the system starts to deviat
1 & significantly from axisymmetry, since the interpretatidnhe
p(z) — p(x) [1 +3 Z Am Br Sin(msﬁ)} projection curve as a circle assunigsto be a Killing vector.
e m=1 In addition to the Fourier extraction, we monitor the evimnot
of the rest mass and the ADM constraints.

is applied with\,, = 0,1 andX = . ;. In addition, the ) .
polytropic constank is reduced by.1% to induce collapse if !N Tablell, we have listed the parameters for the different
the model is radially unstable. After perturbing the mottes, simulation runs. qu model N, the evoluU_on _of the_mpduh of
constraint equations are not solved again, since the ardplit "€ €guatorial Fourier components at the initial radiusigiin

B is chosen such that the violation of the constraints by th&St density is shown in Fig 1. Itis evident that, initialljet
initial perturbation is about an order of magnitude smatian " = 4 componenthin dotted ling induced by our Carte-

that caused by the systematic error induced bysthe= 4 sian grid is dominant. However, the star is unstableste- 1
symmetry of the Cartesian grid. (thick solid ling andm = 2 (thick dashed ling and these

For most simulations, a fixeblox-in-boxmesh refinement Modes consequently grow into the nonlinear regime, their -
with 5 levels is used to accurately resolve the central highfo!ding times being rather close. . .
density ring. The three innermost grids cover the star,avhil  To test the dependence of the results on the grid resolution,
the two outermost ones push the outer boundarigs4a,.  We have evolved the same initial data with different grid pa-

The typical resolution used wé$ x 65 x 33 per grid patch, rameters as listed in Tadlk I. Runs H1, H2 and H3 are high
leading to a central resolution @f ~ 10~2r.. However, resolution versions of N. The setups 11 and |12 test the depen-

runs with89 x 89 x 45, 97 x 97 x 52 and131 x 131 x 65 dence on the amplitud® of the initial data perturbation, with
points per grid patch were also performed to test the resolut 11 using an amplitude0 times smaller than in setup N, and
dependence of the solution; for the last setup, a simulatioh? usingB = 0. M1 and M2 are variants of N, where only a
with a uniform grid setup would need to cover the equatoriaSPecific unstable mode is imposed.
plane of the star alone with 320 grid points to achieve theesam The rest mass is conserved numerically withi8% for
central resolution. setup N and to withir.2% for setup H3. An approximate

To determine the amplitude of a specific mode in the equameasurement of the e-folding times and mode frequencies can
torial plane, we perform a projection onto Fourier modes abe obtained within an error & — 10% related to ambiguities
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TABLE |: Parameters for the simulation runs. Different getuvere
chosen to confirm the results, including resolution testanges in
the initial perturbation, and two setups with adaptive mexfine-
ment (AMR) to investigate black hole formation.

Patch Refinement Perturbation
Setup  resolution levels Modes |Amplitude|AMR
N | 65 x 65 x 33 5 m=1—4|B=10"3| no

m=1—4|B=10"3| no
m=1—4|B=10"%| no
m=1-—4|B=10"3| no
I1 | 65 % 65 x 33 m=1—4|B=10"*| no
12 65 x 65 x 33 none B=0 no
M1l | 65x65%x33 | 5—12 m=1 |B=10"%| yes
M2 | 65x65x33 | 5—12 m=2 |B=10"3| yes

H1 | 89 x 89 x 45
H2 | 97 x 97 x 52
H3 [131 x 131 x 65
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in defining the interval of extraction. All setups show c@nsi

tent results within this uncertainty. In units of the dynaati

timescale, which is defined here s = r.\/r./M, the e-  FiG. 2: Time evolution of the equatorial plane density foupeM1.
folding times arex~ 0.93tp for m = 1, and~ 0.84tp for Shown are isocontours of the logarithm of the rest-massityeiiie

m = 2, respectively. Mode frequencies are 3.05/tp for four snapshots extend t37r. and are taken at/tp = 0, 6.43,
m = 1 and~ 3.31/tp for m = 2, respectively. 7.14, and7.45, respectively. They show the formation and collapse

. . f the fragment produced by the = 1 instability. The last slice
To establish whether a black hole is formed by a fragmengontains an apparent horizon demarked by the thick whiee Note

it is necessary to cover the fragment with significantly morey,,t the shades of grey used for illustration are adaptetstourrent
resolution than affordable by fixed mesh refinement. Hencehaximal density at each time, and that darker shades deigjterh

we have implemented a simplified adaptive mesh refinemerdensities.
scheme to follow the system to black hole formation: In this
scheme, a tracking function, here provided by the location o
a density maximum, is used to construct a locally fixed hierar
chy of grids moving with the fragment. Additional refinement
levels are switched on during contraction, until an apparen
horizon is found.

Since the e-folding times fa = 1 andm = 2 turn out
to be close, the number and interaction behaviour of the frag ‘
ments in the non-linear regime depend sensitively on the ini
tial perturbation. Thus setups M1 and M2 are used the follow
the formation and evolution of a specific number of fragments

The time evolution of the equatorial plane density for setup
M1 is shown in FigR. While the initial model is axisymmetric,
it has already developed a strong= 1 type deviation from
axisymmetry at = 6.43tp, which consequently evolves into
a collapsing off-center fragment. At= 7.45tp, we find an
apparent horizon, using the numerical code described i [42
The horizon is centered on the collapsing fragment at a coor-
dinate radius of'ay =~ 0.167., and has an irreducible mass
of May = 0.24 Mg, Its coordinate representation is signifi-
cantly deformed: its shape is close to ellipsoidal, with xe&sa
ratio of ~ 2 : 1.1 : 1. The apparent horizon is covered by

thr_ee refinement levels and 50 to 100 grid points along e""CEIG. 3: Time evolution of the equatorial plane density faupeM2.

axis. The snapshot times are the same as irlFig 2. In this case, ago fr
The evolution of the setup M2 is shown in Fiy 3. Two or- ments are forming. Constraint violations have forced usetmi-

biting and collapsing fragments are forming. However, everiate the simulation before apparent horizons could beddcats ex-

with the adaptive mesh refinement method we use, constraiRfained in the text.

violations prevent us from continuing the simulation to the
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