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Numerical stability for finite difference approximations of Einstein’s equations
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We extend the notion of numerical stability of finite difference approximations to include hyper-
bolic systems that are first order in time and second order in space, such as those that appear in
Numerical Relativity. By analyzing the symbol of the second order system, we obtain necessary and
sufficient conditions for stability in a discrete norm containing one-sided difference operators. We
prove stability for certain toy models and the linearized Nagy-Ortiz-Reula formulation of Einstein’s
equations.

We also find that, unlike in the fully first order case, standard discretizations of some well-posed
problems lead to unstable schemes and that the Courant limits are not always simply related to the
characteristic speeds of the continuum problem. Finally, we propose methods for testing stability
for second order in space hyperbolic systems.

I. INTRODUCTION

The Einstein equations consist of a set of ten cou-
pled non linear second order partial differential equa-
tions. In order to perform numerical time evolutions the
fully second order system is usually written as a first
order in time system, modeled on the Arnowitt-Deser-
Misner (ADM) decomposition [1, 2]. Such systems can be
evolved directly [3, 4], or a further reduction from second
to first spatial order can be performed (see, for example,
[5, 6, 7, 8]). Whereas the theory of Cauchy problems for
fully first order systems of partial differential equations
is understood, in terms of well-posedness at the contin-
uum and the stability of finite difference approximations,
the theory of second order in space hyperbolic systems
is less well developed. The recent improvement in the
understanding of second order in space formulations of
Einstein’s equations at the continuum [9, 10, 11, 12, 13],
has not been matched by developments concerning finite
difference approximations of such systems (see, however,
[14, 15]). Given that these systems have fewer variables,
fewer constraints, and typically smaller errors (see [14]
and Appendix B), it is desirable to better appreciate their
properties.

The standard notion of stability for fully first order
systems based on the discrete L2 norm is unsuitable
for analyzing second order in space hyperbolic systems.
This can be understood by analogy with the contin-
uum result for the one dimensional wave equation writ-
ten in first order in time and second order in space
form: ∂tφ(t, x) = Π(t, x), ∂tΠ(t, x) = ∂2

xφ(t, x). Con-
sider the family of solutions φ(x, t) = sin(ωx) cos(ωt),
π(x, t) = −ω sin(ωx) sin(ωt) generated by the initial data
φ0(x) = sin(ωx), π0(x) = 0. By varying ω in the ini-
tial data, the L2 norm of the solution at a fixed time t,
∫ 2π

0
(|φ|2 + |Π|2)dx, can be made arbitrarily large with

respect to the initial data (whose norm is independent
of ω), thus contradicting well-posedness of the Cauchy
problem in L2 [16, 17]. The introduction of the new vari-
able, X = ∂xφ, allows the construction of a first order
system, the Cauchy problem of which is well-posed in L2.

The original second order problem can then be shown to
be well-posed in a norm containing derivatives, namely
∫ 2π

0 (|φ|2 + |Π|2 + |∂xφ|2)dx, which corresponds to the L2

norm of the first order reduction.

In this work we consider linear constant coefficient
Cauchy problems. We use the method of lines to sepa-
rate the time integration from the spatial discretization.
We show that by reducing the discrete system to first
order in Fourier space, it is possible to determine sta-
bility in physical space with respect to a discrete norm
containing one-sided difference operators. This is done
by extending the notion of a symmetrizer to the discrete
case. We apply these techniques to problems, starting
with the wave equation written as a first order in time,
second order in space system. We consider both sec-
ond and fourth order accurate discretizations. A similar
but more complicated analysis is done for the Knapp-
Walker-Baumgarte (KWB) [18] and Z1 [19] formulations
of electromagnetism, and the Nagy-Ortiz-Reula (NOR)
[10] formulation of Einstein’s equations. We also point
out stability issues related to the ADM and Z4 formula-
tions.

In Sec. II, we summarize some relevant material from
the literature. In Sec. III we introduce the concept of
a discrete symmetrizer. We also illustrate the reduction
procedure to first order in Fourier space, which can be
used for obtaining energy estimate at the continuum. We
introduce the analogous idea for the discrete case, and
discuss convergence. In Sec. IV we apply these techniques
to the systems mentioned above. We propose methods in
Sec. V for testing stability experimentally both for linear
and non linear systems. We summarize the main results
of this paper in Sec. VI. In Appendix A, we describe the
different time integration methods that we consider, and
in Appendix B we compare numerical properties of the
wave equation written as a first order system with those
of the wave equation written as a first order in time, sec-
ond order in space system. In Appendix C we highlight
differences in the constraint propagation properties be-
tween first and second order systems.
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II. BACKGROUND

Well-posedness, the (local in time) existence of a
unique solution which depends continuously on the prob-
lem’s data, is a fundamental requirement for the suc-
cessful generation of numerical solutions approximating
the solution of a continuum problem. In this section we
review the notion of well-posedness for linear constant
coefficient Cauchy problems, as well as the concept of
stability for finite difference approximations. In the next
section we provide a simple sufficient condition for sta-
bility of first order fully discrete problems based on the
properties of the symbol of the semi-discrete system and
extend it to discretizations of second order in space prob-
lems.

A. Constant coefficient Cauchy problems

In this work we will be dealing with initial value (or
Cauchy) problems of the form

∂

∂t
u(t, x) = P

(

∂

∂x

)

u(t, x) , (1)

u(0, x) = f(x) , (2)

in d spatial dimensions, where x ∈ R
d, u =

(u(1), u(2), . . . u(m))T and P is a linear, constant coeffi-
cient, differential operator of order p. We consider only
the cases p = 1 and p = 2. Furthermore, we assume that
the eigenvalues of the symbol of the differential operator,
P̂ (iω), which is obtained by replacing ∂/∂xj in P (∂/∂x)
with iωj, for j = 1, 2, . . . , d, have real part uniformly
bounded from below and above. We are thus excluding
parabolic systems, but we are allowing for systems like
the wave equation written as a first order in time, sec-
ond order in space system. For simplicity we focus on
solutions that are 2π-periodic in all spatial coordinate
directions. Thus the initial data, f(x), is chosen so that
it satisfies this property.

We consider the p = 1 case, leaving the p = 2 case
for the next section. Following Definition 4.1.1 in [20]
we say that problem (1)–(2) is well-posed with respect
to a norm ‖ · ‖ if for every smooth periodic f there is a
unique smooth spatially periodic solution and there are
constants α and K, independent of f , such that

‖u(t, ·)‖ ≤ Keαt‖f‖ . (3)

Exponential growth must be allowed if one wants
to treat problems with lower order terms. For
first order hyperbolic systems the L2 norm ‖w‖2 =
∫ 2π

0
. . .
∫ 2π

0
|w(x)|2dx1 . . . dxd is usually used in (3). We

will see later that the second order systems we study in
this work require the use of a different norm.

Taking f(x) = (2π)−d/2
∑

ω ei〈ω,x〉f̂(ω)
the formal solution of (1)–(2) is u(t, x) =

(2π)−d/2
∑

ω ei〈ω,x〉eP̂ (iω)tf̂(ω). It can be shown

(Theorem 4.5.1 in [20]) that well-posedness in the L2

norm is equivalent to there being constants K, α such
that, for all ω,

|eP̂ (iω)t| ≤ Keαt, (4)

where |A| = sup|u|=1 |Au| is the matrix (operator) norm
of a matrix A.

Well-posedness of the Cauchy problem in the L2 norm
is also equivalent (Theorem 4.5.8 in [20]) to the existence

of constants α, K > 0 and of Hermitian matrices Ĥ(ω)
satisfying [31], for every ω,

K−1I ≤ Ĥ(ω) ≤ KI , (5)

Ĥ(ω)P̂ (iω) + P̂ ∗(iω)Ĥ(ω) ≤ 2αĤ(ω) ,

where P̂ ∗ represents the Hermitian conjugate of P̂ . The
last inequality gives an energy estimate for each Fourier
mode and the estimate in physical space, Eq. (3), follows
from Parseval’s relation, ‖u(t, ·)‖2 =

∑

ω |û(t, ω)|2. Since

the existence of Ĥ(ω) is not affected by the addition of

a constant matrix to P̂ (iω) (Lemma 2.3.5 in [21]), undif-
ferentiated terms on the right hand side of the equations
can be ignored in the analysis of well-posedness. If (5)

is satisfied with ĤP̂ + P̂ ∗Ĥ = 0 then Ĥ is called a sym-

metrizer.
For p = 1, system (1) is said to be strongly hyperbolic

if the corresponding Cauchy problem is well-posed in the
L2 norm (i.e. if Ĥ(ω) exists) [32]. If Ĥ(ω) = I, the sys-

tem is said to be symmetric hyperbolic. If Ĥ(ω) = H is
independent of ω, then we say that the system is sym-

metrizable hyperbolic [33]. In this case the change of vari-
ables ũ = H1/2u brings the system into symmetric hy-
perbolic form. Finally, well-posedness is not affected by
the presence of forcing (inhomogeneous) terms (Theorem
4.7.2 in [20]). For cases where such terms are present, the
estimate requires modification.

Note that, in the absence of lower order terms, whereas
symmetrizable hyperbolicity guarantees the existence of
a conserved energy in physical space, (u, Hu), a strongly
hyperbolic system satisfies the estimate ‖u(t, ·)‖ ≤
K‖u(0, ·)‖ with a constant K ≥ 1.

B. Numerical stability

1. Notation

Our notation and conventions follow closely those
of [20]. We introduce a spatial grid xj =

(x
(1)
j1

, x
(2)
j2

, . . . , x
(d)
jd

) = (j1h1, j2h2, . . . , jdhd), where hr =

2π/Nr and jr = 0, 1, . . . , Nr − 1, and the vector-valued
grid function vj(t) approximating u(t, xj). Periodicity
requires that vj = vmod(j,N). The partial derivatives in
(1) are approximated using either the standard second

order accurate discretization

∂i → D0i , ∂i∂j →
{

D0iD0j if i 6= j
D+iD−i if i = j

, (6)
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or the standard fourth order accurate discretization

∂i → D
(4)
i ≡ D0i

(

1 − h2

6
D+iD−i

)

, (7)

∂i∂j →
{

D
(4)
i D

(4)
j if i 6= j

D+iD−i

(

1 − h2

12D+iD−i

)

if i = j
,

where D+vj = (vj+1 − vj)/h, D−vj = (vj − vj−1)/h,
D0vj = (vj+1 − vj−1)/2h, and D+D−vj = (vj+1 − 2vj +
vj−1)/h2. The discretization of ∂2

i as in (6) or (7) gives
the desired order of local accuracy without requiring a
larger stencil. We then integrate the resulting system of

m
∏d

r=1 Nr ordinary differential equations

d

dt
vj(t) = Pvj(t) , (8)

vj(0) = fj , (9)

where fj = f(xj), with three different time integrators.
These are iterative Crank Nicholson (ICN) and third
and fourth order Runge-Kutta (3RK and 4RK) meth-
ods, which are widely used by numerical relativists (see
Appendix A for definitions). Using the fact that the op-
erator P is linear and time independent we can write the
fully discrete system in polynomial form (see for example
[20])

vn+1
j = Qvn

j = P(kP )vn
j , (10)

v0
j = fj , (11)

where k = λh is the time step, λ is called the Courant fac-

tor, and vn
j represents the grid-function at time tn = nk.

This is an explicit, one step, scheme. For ICN we have
P(x) = 1 + 2

∑3
r=1

xr

2r , whereas for p-th order Runge-

Kutta we have P(x) =
∑p

r=0
xr

r! .

2. Definition of stability

We recall the definition of numerical stability and dis-
cuss some necessary and sufficient conditions. The solu-
tion of the finite difference scheme (10)–(11) is vn = Qnf .
We introduce the scalar product (u, v)h =

∑

j〈uj, vj〉hd,

where hd =
∏d

i=1 hi, j = (j1, j2, . . . , jd) is a multi-index

and 〈uj , vj〉 =
∑m

r=1 ū
(r)
j v

(r)
j . This allows us to define a

norm ‖v‖h = (v, v)
1/2
h . The approximation (10)–(11) is

said to be stable with respect to this norm if there exist
constants α, K, such that for all h, 0 < h ≤ h0, the
estimate

‖vn‖h ≤ Keαtn‖f‖h (12)

holds for all initial grid-functions f . This concept of
stability is the discrete analogue of (3). It guarantees
that the solutions are bounded as h → 0. However, the
schemes we consider are at most conditionally stable. By
this we mean that there exists a λ0 such that the above

inequality holds if and only if the additional condition
λ = k/h ≤ λ0 is satisfied.

Theorem 5.1.2 in [20] guarantees that if the scheme
(10)–(11) is stable, then the modified scheme

vn+1
j = (Q + kR)vn

j , (13)

v0
j = fj (14)

is also stable provided that R is bounded. This will be
the case when R represents constant terms (lower order
terms) in the continuum problem. Hence for a first order
in space system lower order terms can be ignored without
affecting stability.

3. Convergence

Following Theorem 5.1.3 in [20], consistency and sta-
bility imply convergence. Assume that the continuum
solution u of (1)–(2) is smooth and that the scheme (10)–
(11) is stable. Further assume that the scheme and the
initial data are consistent. Then, on any finite interval
[0, T ], the error satisfies

‖vn − u(·, tn)‖h ≤ O(hp1 + kp2) (15)

i.e. the solutions of the finite difference scheme converge
as h → 0 to the solution of the differential equation.

4. Fourier analysis of stability

For approximations with constant coefficients, Fourier
analysis can be used to obtain necessary and sufficient
conditions for stability which can be more easily verified
than the above definition. We assume that N , the num-
ber of grid-points in each direction, is even (the odd case
is discussed in Sec. II B 5). If we represent vn

j by

vn
j =

1

(2π)
d
2

N/2
∑

ω=−N/2+1

ei〈ω,xj〉v̂n(ω), (16)

where ω = (ω1, ω2, . . . , ωd), and substitute it into the
difference scheme (10)–(11), we obtain

v̂n+1(ω) = Q̂(ξ)v̂n(ω), (17)

v̂0(ω) = f̂(ω), (18)

for ωr = −N/2 + 1, . . . , N/2, where ξr = ωrh = −π +
2π/N,−π + 4π/N, . . . , +π and r = 1, 2, . . . , d. The m ×
m matrix Q̂(ξ) is called the amplification matrix of the

scheme and is a real polynomial in P̂ , the symbol of the
Fourier transformed semi-discrete problem,

Q̂(ξ) = P(kP̂ (ξ)) . (19)
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The matrix P̂ (ξ) will play an important role in the next
section. It can be readily computed from P in Eq. (8)
with the replacements

D0i → i

h
sin ξi, (20)

D+iD−i → − 4

h2
sin2 ξi

2
. (21)

Using the discrete Parseval’s relation

‖v‖2
h =

N/2
∑

ω=−N/2+1

|v̂(ω)|2 (22)

and the fact that the solution of (17)–(18) is v̂n(ω) =

Q̂n(ξ)f̂(ω) one can show (Theorem 5.2.1 of [20]) that a
necessary and sufficient condition for stability with re-
spect to the ‖ · ‖h norm is given by

|Q̂n(ξ)| ≤ Keαtn (23)

for all h = 2π/N ≤ h0 and ωr = −N/2 + 1, . . . , N/2,
r = 1, 2, . . . , d.

A much easier condition to verify is the von Neumann
condition, which is only a necessary condition for stabil-
ity. It corresponds to the requirement that the eigenval-
ues zν(ξ) of Q̂(ξ) satisfy

|zν(ξ)| ≤ eαk (24)

for all h ≤ h0 and |ξr| ≤ π. However, when the am-
plification matrix can be uniformly diagonalized (i.e.
there exists a non-singular matrix T (ξ) that diagonalizes

Q̂(ξ) and satisfies |T (ξ)||T−1(ξ)| ≤ C with C indepen-
dent of ξ) then the von Neumann condition is also suf-

ficient for stability. In particular, if Q̂ is normal then it
can be unitarily (and therefore uniformly) diagonalized,
|T (ξ)| = |T−1(ξ)| = 1. Since for the time integrators that

we consider Q̂ is a polynomial in P̂ , Q̂ will be normal if
P̂ is normal (as would be the case if P̂ were Hermitian
or anti-Hermitian).

Note that if the von Neumann condition is violated
then the scheme is not stable in any sense.

It is possible for a discretization to be (conditionally)

stable without Q̂ being normal (and hence unitarily di-
agonalizable). This turns out to be the case for most
systems considered in this work. In such cases we find
it convenient to introduce the norm |û|Ĥ = 〈û, Ĥû〉1/2

and proceed as follows. Let us assume that Ĥ(ξ) are
Hermitian matrices such that

K−1I ≤ Ĥ(ξ) ≤ KI, (25)

|Q̂|Ĥ ≤ eαk,

where K is a positive constant. Notice that [34]

|û|Ĥ = |Ĥ1/2û| ≤ K1/2|û| and K−1|A| ≤ |A|Ĥ =

|Ĥ1/2AĤ−1/2| ≤ K|A|. As a consequence the von Neu-

mann condition is satisfied, σ(Q̂) = σ(Ĥ1/2Q̂Ĥ−1/2) ≤

|Ĥ1/2Q̂Ĥ−1/2| = |Q̂|Ĥ ≤ eαk, where σ(Q̂) denotes the

spectral radius of Q̂. Stability follows from

|Q̂n| ≤ K|Q̂n|Ĥ ≤ K|Q̂|n
Ĥ

≤ Keαtn . (26)

Using the Kreiss Matrix Theorem it is possible to show
that this condition is also necessary for stability (Sec. 4.9
of [16]).

5. Number of grid points

In this review we have assumed that the number of
grid points in each direction is even. This means that
no matter how small the number of grid points is, as
long as it is even, the highest frequency ξr = π is
present. To allow for an odd number of grid points
one must change the summation range in Eq. (16) to
ω = −(N − 1)/2, . . . (N − 1)/2, in which case, |ξr| never
equals π, although it does approach this value as h → 0.

III. STABILITY OF FIRST ORDER IN TIME,

SECOND ORDER IN SPACE SYSTEMS

We can now give a simpler sufficient condition for nu-
merical stability. This condition applies to systems which
admit a conserved energy in Fourier space and will enable
us in Sec. III B to obtain another condition suitable for
the applications. For the time integrators that we con-
sider, using the fact that Q̂ = P(kP̂ ), one can show that,

provided that the eigenvalues of P̂ (ξ) are imaginary, the
inequality

σ(kP̂ ) ≤ α0 (27)

is equivalent to σ(Q̂) ≤ 1, where α0 = 2 for ICN,
√

8 for

4RK,
√

3 for 3RK. Condition (27) is called local stability

on the imaginary axis in [22]. Suppose that the time

step is such that σ(kP̂ ) ≤ α0. If we can find Hermitian

matrices Ĥ(ξ) such that

K−1I ≤ Ĥ(ξ) ≤ KI , (28)

Ĥ(ξ)P̂ (ξ) + P̂ (ξ)∗Ĥ(ξ) = 0 , (29)

we say that Ĥ(ξ) is a discrete symmetrizer of P̂ (ξ). The

matrices Ĥ1/2P̂ Ĥ−1/2 are anti-Hermitian, hence they
can be diagonalized by unitary matrices S(ξ). This im-

plies that the matrices Ĥ−1/2(ξ)S(ξ) diagonalize Q̂(ξ).
The inequality

|Q̂|H = |Ĥ1/2Q̂Ĥ−1/2| = |S−1Ĥ1/2Q̂Ĥ−1/2S| (30)

= σ(Q̂) ≤ 1

guarantees stability. In fact, the amplification matrix can
be uniformly diagonalized by T (ξ) = Ĥ−1/2(ξ)S(ξ).
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In applications one would construct a norm (i.e., ma-

trices Ĥ(ξ) satisfying (28)) which is conserved by the
Fourier transformed semi-discrete evolution equations,

d

dt
|v̂|2

Ĥ
= 〈v̂, (ĤP̂ + P̂ ∗Ĥ)v̂〉 = 0 . (31)

This implies that condition (29) holds and Ĥ(ξ) is a dis-
crete symmetrizer.

To construct Ĥ one can proceed as follows. Assume
the existence of a matrix T such that T−1P̂ T = Λ is
diagonal with imaginary elements. Then the quantity
v̂∗Ĥv̂, where Ĥ = T−1∗DT−1 and D is a positive defi-
nite matrix which commutes with Λ, is conserved by the
system ∂tv̂ = P̂ v̂. Defining the characteristic variables

of P̂ to be ŵ ≡ T−1v̂ (these are individually conserved:
∂t|ŵi|2 = 0), we see that to construct a conserved quan-
tity one can take ŵ∗Dŵ. (For D = I this corresponds to
adding the squared absolute values of the characteristic
variables.) For Ĥ to be a symmetrizer it remains to be

established that K−1|v̂|2 ≤ v̂∗Ĥv̂ ≤ K|v̂|2.
What we have done so far applies to fully first order

systems. We have shown that if inequalities (27) and
(28) and Eq. (31) hold, then the fully discrete scheme is
stable and satisfies the estimate (12) with α = 0. In the
next section we show how this can be extended to second
order in space systems. We first look at the continuum
problem and then investigate its standard discretization.

A. Well-posedness of first order in time and second

order in space hyperbolic systems

It is possible for the Cauchy problem of a first order
in time and second order in space system of equations
to be ill-posed in the L2 norm, but well-posed in a norm
which contains additional derivatives (see the introduc-
tion). The system is still useful; for example, a suit-
able finite difference approximation of the equations can
be convergent in the discrete L2 norm. We analyze the
well-posedness of the Cauchy problem for such systems
by using the analytical tool of a reduction to first order.
This will be done in Fourier space, so that the number of
additional variables being introduced is minimized [23].

Consider system (1) with p = 2 and suppose that it
can be written in the form

∂tu = Pu , u =

(

u
v

)

, (32)

P =

(

Ai∂i + B C
Dij∂i∂j + Ei∂i + F Gi∂i + J

)

,

where the evolved variables have been split into two
types. The column vector u represents those that are dif-
ferentiated twice (in space) and v represents those that
are not. In P a sum over repeated indices is assumed.
Not all second order in space systems can be written in
this form (for example, ut = uxx). This form is general

enough to include all the first order in time, second or-
der in space systems that we have considered that can be
reduced to first order in space. Fourier transforming this
system, we obtain

∂tû = P̂ û , û =

(

û
v̂

)

, (33)

P̂ =

(

iωAn + B C
−ω2Dnn + iωEn + F iωGn + J

)

,

where Mn ≡ M ini and ωi ≡ |ω|ni and ω ≡ |ω|. We
define the second order principal symbol to be

P̂ ′ =

(

iωAn C
−ω2Dnn iωGn

)

. (34)

We now state the main result of this subsection. If
there exists Ĥ(ω) = Ĥ∗(ω) such that the energy û

∗Ĥû
is conserved by the principal system ∂tû = P̂ ′û and Ĥ
satisfies

K−1Iω ≤ Ĥ ≤ KIω, Iω ≡
(

ω2 0
0 1

)

, (35)

where K is a positive scalar constant, then the solution
of (32) satisfies the estimate

‖u(t, ·)‖ ≤ Keαt‖u(0, ·)‖, (36)

‖u‖2 ≡
∫

|u|2 +

d
∑

i=1

|∂iu|2 + |v|2ddx ,

and the problem is well-posed in this norm.
The proof proceeds via a pseudo-differential reduction

to first order [10]. This involves the introduction of a
new variable ŵ = iωû. By taking a time derivative of
this definition, we obtain the enlarged system in which
the second derivative of û has been replaced with a first
derivative of ŵ. We reduce the order of the system as
much as possible so that any occurrence of iωû is replaced
with ŵ. This particular first order reduction is

∂tûR = P̂RûR , ûR =





û
ŵ
v̂



 , (37)

P̂R =





B An C
0 iωAn + B iωC
F iωDnn + En iωGn + J



 .

This system is equivalent to the second order system
(33) only when the auxiliary constraints

Ĉ(t, ω) ≡ ŵ(t, ω) − iωû(t, ω) = 0 (38)

are satisfied. It can be shown that ∂tĈ = BĈ so if these
constraints are satisfied initially, then they are satisfied
for all time. They are said to be propagated by the first
order evolution equations.
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If this system admits a matrix ĤR satisfying (5) then
the solutions satisfy the estimates

|ûR(t, ω)| ≤ Keαt|ûR(0, ω)| , (39)

where |ûR|2 ≡ |û|2 + |ŵ|2 + |v̂|2, for arbitrary initial data
and ω. Specifically, the estimate holds for solutions which
satisfy the auxiliary constraints and therefore correspond
to solutions of the second order system. The uniform
estimate in ω of

|û|2 + ω2|û|2 + |v̂|2 = |û|2 +

d
∑

i=1

|iωiû|2 + |v̂|2 (40)

implies, by Parseval’s relation, the estimate in real space

‖u(t, ·)‖ ≤ Keαt‖u(0, ·)‖ , (41)

‖u‖2 ≡
∫

|u|2 +

d
∑

i=1

|∂iu|2 + |v|2ddx .

So the existence of ĤR for a first order pseudo-differential
reduction implies the well-posedness of the second order
system with respect to a norm containing derivatives.

We have still to show that we can find an ĤR for (37).
Whether or not this is the case is independent of the
lower order terms P̂R contains. A calculation similar to
Lemma 2.3.5 in [21] shows that if P̂ (ω) admits an ĤR,

then so will P̂ (ω)+B(ω), where B(ω) is any matrix which
satisfies |B|+ |B∗| ≤ C for C independent of ω. In other
words, the terms that are not multiplied by iω can be
dropped from (37), giving the principal symbol of the
first order reduction

P̂ ′
R =





0 0 0
0 iωAn iωC
0 iωDnn iωGn



 (42)

without affecting the well-posedness. The principal sym-
bols of the second order system, Eq. (34), and the first
order pseudo-differential reduction, Eq. (42), are related
by

P̂ ′
R =

(

0 0

0 T P̂ ′T−1

)

, T ≡
(

0 1
iω 0

)

. (43)

(Note that T−1 does not exist for ω = 0. However, in this

case, P̂ ′
R = 0, and admits the identity as a symmetrizer.)

By assumption, there exists Ĥ(ω) = Ĥ∗(ω) such that

û
∗Ĥû is conserved by the principal system ∂tû = P̂ ′û

and satisfies (35). This Ĥ satisfies ĤP̂ ′ + P̂ ′∗Ĥ = 0, and
it is straightforward to show that

ĤR ≡
(

1 0

0 T−1∗ĤT−1

)

(44)

satisfies ĤR = Ĥ∗
R and ĤRP̂ ′

R + P̂ ′∗
R ĤR = 0. Further,

by noting that T ∗T = Iω , using (35) one can show that

ĤR satisfies K−1I ≤ ĤR ≤ KI. Hence we have found a
symmetrizer of P̂ ′

R and the result has been proved [35].

To construct Ĥ one can use the characteristic variables
of P̂ ′, as described at the end of Sec. III. We would like
to point out that this analysis did not require that the
auxiliary constraint propagation problem be well-posed.
These constraints are merely a tool for the analysis of the
system. When evolving the second order system they are
identically zero. An alternative to the pseudo-differential
reduction method is to perform a fully differential reduc-
tion by introducing a new variable in physical space for
each derivative (see, for example, [9, 13]).

B. Stability of discretizations of first order in time

and second order in space systems

We now show how the continuum analysis of the previ-
ous subsection can be extended to the fully discrete case.
The semi-discrete finite difference approximation of (32)
can be written as

d

dt
v = Pv, v =

(

u
v

)

, (45)

P =

(

AiD
(1)
i + B C

DijD
(2)
ij + EiD

(1)
i + F GiD

(1)
i + J

)

,

where D
(1)
i is a discretization of the first derivative in

the i direction and D
(2)
ij is a discretization of the second

derivative in the i and j directions. For example, the
standard second order accurate discretization would have

D
(1)
i = D0i, D

(2)
ij =

{

D0iD0j i 6= j
D+iD−i i = j

. (46)

The principal symbol of the semi-discrete system is

P̂ ′ =

(

AiD̂
(1)
i C

DijD̂
(2)
ij GiD̂

(1)
i

)

, (47)

where

D̂
(1)
i =

i

h
sin ξi, D̂

(2)
ij =











− 1

h2
sin ξi sin ξj i 6= j

− 4

h2
sin2 ξi

2
i = j

,

(48)
for the standard second order discretization. The pseudo-

discrete first order reduction is obtained by defining

ŵ ≡ iΩû , Ω2 =

d
∑

i=1

|D̂+i|2. (49)

The reduced system is

d

dt
v̂R = P̂Rv̂R, v̂R =





û
ŵ
v̂



 , (50)

PR =







B (iΩ)−1AiD̂
(1)
i C

0 AiD̂
(1)
i + B iΩC

F (iΩ)−1(DijD̂
(2)
ij + EiD̂

(1)
i ) GiD̂

(1)
i + J






.
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The discrete auxiliary constraint is preserved by the time
integrator, and there is a one-to-one mapping between
solutions of the second order fully discrete system and
those of the constraint-satisfying reduced system.

Making use of Theorem 5.1.2 of [20] the terms which
correspond to the continuum lower order terms can be
dropped from P̂R without affecting the stability of the

fully discrete system, provided that (iΩ)−1D̂
(1)
i , kD̂

(1)
i

and kΩ−1D̂
(2)
ij are bounded. This guarantees that the

assumptions of the theorem are satisfied. This is true for
the second and fourth order accurate standard discretiza-
tions.

The result for stability of the fully discrete problem is
analogous to that for well-posedness at the continuum.
If there exists Ĥ(ξ) = Ĥ∗(ξ) such that the energy v̂∗Ĥv̂
is conserved by the semi-discrete principal system ∂tv̂ =
P̂ ′v̂ and Ĥ satisfies

K−1IΩ ≤ Ĥ ≤ KIΩ, IΩ ≡
(

Ω2 0
0 1

)

, (51)

where K is a positive scalar constant, then it is possible
to construct a discrete symmetrizer for the first order
reduction with no lower order terms. So if, in addition,
the principal symbol P̂ ′ satisfies σ(kP̂ ′) ≤ α0, the fully
discrete system (including lower order terms) is stable
with respect to the norm

‖v‖2
h,D+

≡ ‖u‖2
h + ‖v‖2

h +

d
∑

i=1

‖D+iu‖2
h, (52)

i.e. the solution satisfies the estimate

‖vn‖h,D+
≤ Keαtn‖v0‖h,D+

. (53)

Again, Ĥ can be constructed from the characteristic
variables of P̂ ′, as described at the end of Sec. III.

C. Convergence

We briefly discuss convergence of the solution of the
discrete problem to that of the continuum problem. We
assume that (53) holds. Inserting the exact smooth so-
lution u(t, x) into the scheme vn+1 = Qvn generates
truncation errors as inhomogeneous terms in the differ-
ence approximation and in the initial data. The error
grid-function wn

j ≡ vn
j − u(tn, xj) satisfies

wn+1
j = Qwn

j + F̃
n

j , (54)

w0
j = f̃ j , (55)

where F̃
n

j = φ(tn, xj)O(kp1 + hp2), and f̃ j =
ψ(xj)O(hp3 ) with φ smooth. The temporal accuracy of
the scheme is p1 and the spatial accuracy is p2. The dis-
crete version of Duhamel’s principle (see Theorem 5.1.1

in [20]) gives the estimate

‖wn‖h,D+
≤ Keαtn

(

‖w0‖h,D+
+ k

n−1
∑

r=0

‖F̃ r‖h,D+

)

≤ O(kp1 + hp2) , (56)

provided that the initial data satisfies ‖w0‖h,D+
≤

O(hp2). If ψ is smooth this condition is satisfied and,
in particular, it is satisfied for exact initial data.

Inequality (56) implies convergence with respect to the
discrete L2-norm, ‖w‖h ≤ ‖w‖h,D+

, despite the scheme
being unstable with respect to this norm. Note that p-
th order convergence is obtained, with p = min(p1, p2)
assuming k = λh, even though the norm contains first
order accurate one-sided difference operators.

IV. APPLICATIONS

In the following subsections we apply the theoretical
tools discussed in Sec. III to different systems. We start
with a first order strongly hyperbolic system with no
lower order terms. We then investigate three second or-
der in space systems: the wave equation, a generaliza-
tion of the KWB formulation of Maxwell equations and
the NOR formulation of Einstein’s equations. We show
that the clear correspondence between strong hyperbolic-
ity and existence of a discrete symmetrizer which occurs
in first order systems with no lower order terms, is lost
when the standard discretization is used for second order
in space systems. Similarly, the simple correspondence
between characteristic speeds and the von Neumann con-
dition, Eq. (61), does not hold for second order in space
systems. It is convenient to define the following quanti-
ties,

χ2
q =

d
∑

i=1

sinq ξi

2
, χ2 =

d
∑

i=1

sin2 ξi , Ω =
2χ2

h
,

(57)

Note that the maximum of χq and χ is
√

d. We also recall

that when the eigenvalues of P̂ are imaginary,

σ(kP̂ ) ≤ α0 ⇐⇒ σ(Q̂) ≤ 1 , (58)

where α0 = 2 for ICN,
√

8 for 4RK and
√

3 for 3RK.

A. Stability of first order strongly hyperbolic

systems

Our first application is a constant coefficient first order
system in d spatial dimensions

∂u

∂t
=

d
∑

i=1

Ai ∂u

∂xi
, (59)
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where u is a vector valued function of the space-time co-
ordinates. We assume that the system is strongly hyper-
bolic and that it admits a symmetrizer, i.e., there exists
a matrix Ĥ(ω) in Fourier space, such that Ĥ(ω)P̂ (iω) +

P̂ ∗(iω)Ĥ(ω) = 0, where P̂ (iω) = i
∑d

i=1 ωiA
i. The dis-

crete symbol associated with the standard second order
accurate discretization of this system is

P̂h(ξ) =
i

h

d
∑

i=1

Ai sin ξi = P̂ (ih−1 sin ξ) ,

where we attached the subscript h to the discrete symbol
to distinguish it from that of the continuum. We now
construct the discrete symmetrizer

Ĥh(ξ) ≡ Ĥ(h−1 sin ξ) . (60)

Conditions (28)–(29) are satisfied and condition (27)

is sufficient for stability. The latter becomes σ(kP̂ ) =

λχσ(A(n)) ≤ α0, where A(n) =
∑d

i=1 niA
i, ni =

χ−1 sin ξi, so that
∑d

i=1 n2
i = 1. Since this inequality

must hold for all ξi, and the quantity χ reaches its max-
imum value

√
d at ξi = ±π/2, we obtain the stability

condition

λ ≤ α0

σ(A(n))
√

d
. (61)

In the symmetrizable hyperbolic case one can take the
discrete symmetrizer to be the same as that of the con-
tinuum (which, by definition, is independent of ω)

Ĥh(ξ) = H. (62)

This analysis of first order strongly hyperbolic systems
shows that if the characteristic speeds depend neither on
the direction nor on the dimensionality of the problem,
i.e., if σ(A(n)) depends neither on n nor on d, then the

Courant limit has a 1/
√

d dependence. In addition, when
the second order accurate centered difference operator D0

is used to approximate the spatial derivatives, a Courant
limit violation would manifest itself as a rapid growth
of the mid high frequency mode |ξi| = π

2 ≈ 1.571. This
mode is present if N is a multiple of 4. A similar analysis
shows that in the fourth order accurate case the situation
differs. The Courant limit is 1.372 times smaller than
(61) and above this limit the most rapid growth occurs
at a slightly higher frequency, |ξi| = 2 arctan(61/2/(4 −
61/2))1/2 ≈ 1.797. See also Appendix B.

B. First order in time and second order in space

wave equation

In this section we discuss stability properties of an ap-
proximation of the d dimensional wave equation written
as a first order in time and second order in space system

∂tφ(t, x) = Π(t, x) , (63)

∂tΠ(t, x) =

d
∑

i=1

∂2
i φ(t, x) . (64)

In the introduction we pointed out that the Cauchy prob-
lem for this system is not well-posed in L2. One can ex-
pect that a direct application of definition (12), which
is based on the discrete L2 norm, to a scheme approxi-
mating (63)–(64) would lead to the conclusion that the
scheme is unstable. The first order reduction, however, is
well-posed in L2 (it is symmetric hyperbolic), hence the
second order system satisfies an energy estimate with re-
spect to

‖u(·, t)‖2 =

∫

|φ(x, t)|2 + |Π(x, t)|2 +

d
∑

i=1

|∂iφ(x, t)|2 ddx .

(65)
In this section we show stability for the standard dis-
cretization of this system, both by the pseudo-discrete
reduction method given in Sec. III B, and by a direct dis-
crete reduction in physical space. The two methods give
equivalent results.

Following the method of lines, we first discretize space
and leave time continuous,

d

dt
φj(t) = Πj(t) , (66)

d

dt
Πj(t) =

d
∑

i=1

D+iD−iφj(t) . (67)

Using the technique described in Sec. III B, we see that
the (principal) symbol of the second order semi-discrete
problem

P̂ =

(

0 1
−Ω2 0

)

, T−1 =

(

iΩ 1
−iΩ 1

)

, (68)

has purely imaginary eigenvalues ±iΩ. The matrix T
diagonalizes P̂ . The sum of the squared moduli of the
characteristic variables gives the conserved energy (here
D = 1/2I)

v̂
∗(T−1)∗DT−1v̂ ≡ |iΩφ̂|2 + |Π̂|2 = Ω2|φ̂|2 + |Π̂|2. (69)

By taking K = 1 in (51) we see that we have numerical
stability with respect to the discrete norm

‖v‖2
h,D+

=
∑

j

(φ2
j + Π2

j +

d
∑

i=1

(D+iφj)
2)hd, (70)

provided that the von Neumann condition

λ ≤ α0/(2
√

d) , (71)

which follows from σ(kP̂ ) = kΩ = 2λχ2 ≤ α0, is satis-
fied.

We now illustrate a different method for proving sta-
bility of this system. A discrete reduction to first order

can be performed before going to Fourier space. We in-
troduce the quantities

X
(i)
j = D+iφj (72)
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and obtain the reduced system

d

dt
φj(t) = Πj(t) , (73)

d

dt
Πj(t) =

d
∑

i=1

D−iX
(i)
j (t) , (74)

d

dt
X

(i)
j (t) = D+iΠj(t) . (75)

Notice that only if Eq. (72) is identically satisfied is
the reduced system equivalent to the original one. It
is important to check whether the evolution equations
(73)–(75) are compatible with this requirement. Let

C
(i)
j (t) ≡ X

(i)
j − D+iφj . If we prescribe initial data such

that C
(i)
j (0) = 0, then at later times C

(i)
j (t) = 0. This is

a consequence of the fact that

d

dt
C

(i)
j (t) =

d

dt
(X

(i)
j (t) − D+iφj(t)) = 0 . (76)

There is a one-to-one correspondence between solutions
of (66)–(67) and those of (72)–(75). Furthermore, one
can check that the time integrator does not spoil the
propagation of the constraints.

Ignoring lower order terms, the symbol associated with
the reduced system (73)–(75) is anti-Hermitian, therefore

Eq. (29) is satisfied with Ĥ = 1. The non-trivial eigen-

values of P̂ are ±iΩ, the same as those of the original
system (66)–(67). This proves that (71) is a necessary
and sufficient condition for stability with respect to the
discrete norm (70).

This specific discrete reduction to first order, and
the pseudo-discrete reduction to first order described in
Sec. III B give equivalent results.

1. Fourth order accuracy

In hyperbolic problems a fourth order accurate spa-
tial discretization requires significantly fewer grid-points
per wavelength for a given tolerance error (see [20] and
appendix B). The stability proof for the fourth order ac-
curate discretization of the d-dimensional wave equation

d

dt
φj(t) = Πj(t) , (77)

d

dt
Πj(t) =

d
∑

i=1

D+iD−i

(

1 − h2

12
D+iD−i

)

φj(t)(78)

is similar to the second order accurate case. The discrete
symbol and diagonalizing matrix are

P̂ =

(

0 1
−∆2 0

)

, T−1 =

(

i∆ 1
−i∆ 1

)

, (79)

where ∆2 = 4
h2

∑d
i=1 sin2 ξi

2

(

1 + 1
3 sin2 ξi

2

)

, has purely

imaginary eigenvalues ±i∆. Taking D = 1/2I we get the

conserved quantity

(T−1v̂)∗DT̂−1v̂ = ∆2|φ̂|2 + |Π̂|2. (80)

Since Ω2 ≤ ∆2 ≤ 4
3Ω2, by taking K = 4/3 in (51)

we see that we have numerical stability with respect
to the norm (70) provided that the principal symbol

P̂ satisfies σ(kP̂ ) ≤ α0. This gives a stability limit of

λ ≤
√

3α0/(4
√

d).

2. A note about the D0 norm and the D
2

0 discretization

Replacing the one sided difference operators D+i with
centered difference operators D0i in the norm (70) leads
to difficulties, as the D0 norm does not capture the high-
est frequency mode. In fact, it is possible to construct
a family of solutions of (66)–(67) proportional to (−1)j

for which the D0 energy estimate fails. For this pur-
pose it is sufficient to consider φj(t) = (−1)j cos(2t/h),
Πj(t) = −2/h(−1)j sin(2t/h), which gives

‖v(t)‖h,D0

‖v(0)‖h,D0

=

(

cos2
2t

h
+

4

h2
sin2 2t

h

)1/2

, (81)

where ‖v(t)‖2
h,D0

=
∑

j(φ
2
j + Π2

j + (D0φj)
2)h. It it not

possible to find constants K and α such that the ratio is
bounded by Keαt, independently of the space step h.

It has been suggested that the use of D2
0 rather than

D+D− for the second spatial derivatives may improve
the stability properties of a second order in space scheme
[24, 25]. To investigate this we study the wave equation
in one space dimension discretized as

d

dt
φj(t) = Πj(t) , (82)

d

dt
Πj(t) = D2

0φj(t) . (83)

The eigenvalues of kP̂ are ±iλ sin ξ, which shows that
the von Neumann condition is satisfied as long as λ ≤ α0.
Both the stencil and the maximum time step compatible
with the von Neumann condition are twice what they
are for the D+D− discretization. However, for a given
spatial resolution the numerical speed of propagation has
an error which is four times that of the D+D− case (see
Appendix B).

So far, we have only shown that the scheme is unstable
if λ > α0. By looking at the discrete symbol

P̂ (ξ) =

(

0 1
− 1

h2 sin2 ξ 0

)

(84)

we see that there might be a problem for |ξ| = π. In this
case the symbol is not diagonalizable. To explicitly show
that the system (82)–(83) is unstable with respect to the
norm

‖v‖2
h,D+

=
∑

j

(

φ2
j + Π2

j + (D+φj)
2
)

h (85)
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it is sufficient to consider the family of initial data
φj(0) = 0, Πj(0) = (−1)j , generating the solution
φj(t) = (−1)jt, Πj(t) = (−1)j. As h → 0 the ratio

‖v(t)‖h,D+

‖v(0)‖h,D+

=

(

1 + t2 +
4t2

h2

)1/2

(86)

grows without bound.

Had we chosen the D0-norm, however, we would have
concluded that the scheme satisfies the required estimate.
This is because this norm does not capture the highest
frequency mode φj = (−1)j . A desirable requirement
of a norm is that if a scheme is stable with respect to
that norm, then it will remain stable with respect to the
same norm when perturbed with lower order terms (in-
dependently of how these are discretized). The modified
problem

d

dt
φj(t) = Πj(t) , (87)

d

dt
Πj(t) = D2

0φj(t) − D+φj(t) (88)

admits the family of exponentially growing so-
lutions φj(t) = (−1)j exp(

√

2/ht), Πj(t) =

(−1)j
√

2/h exp(
√

2/ht) which leads to unbounded
growth in the ratio

‖v(t)‖h,D0

‖v(0)‖h,D0

= exp

(

√

2

h
t

)

. (89)

If we want to be able to decide whether a scheme is stable
or not just by looking at the principal part of the discrete
system, then we must conclude that the energy (??) is
not a suitable energy.

We note that the requirement that stability should not
depend on how lower order terms are discretized was cru-
cial. If we restrict ourselves to the perturbation D0φj ,
then the scheme is still stable with respect to the D0-
energy. If one wants to be able to discretize lower order
terms freely, as we do, then one is forced to reject the D2

0

discretization.

Clearly it is the presence of high frequency modes that
makes the D2

0 discretization unstable with respect to the
D+ norm. The introduction of a mechanism that damps
high frequency modes, such as artificial dissipation, may
restore stability. In the system

d

dt
φj = Πj − σh3(D+D−)2φj ,

d

dt
Πj = D2

0φj − σh3(D+D−)2Πj

the same family of initial data used to prove instability
of (82)–(83) gives ‖v(t)‖h,D+

/‖v(0)‖h,D+
= (1 + t2 +

4t2/h2)1/2e−16σt/h, which does not grow without bound.

C. The generalized Knapp-Walker-Baumgarte

system

We now investigate more complex systems. We adopt
the Einstein summation convention. We consider the
KWB formulation of Maxwell’s equations [18]

∂tAi = −Ei , (90)

∂tEi = −∂k∂kAi + ∂iΓ , (91)

∂tΓ = 0 , (92)

and generalize it by introducing G = Γ − r∂kAk, giving

∂tAi = −Ei , (93)

∂tEi = −∂k∂kAi + r∂i∂
kAk + ∂iG , (94)

∂tG = r∂kEk . (95)

For r = 0 we recover (90)–(92) and for r = 1 we obtain
the Z1 system [19], which was recently introduced as a toy
model for the Z4 formulation of General Relativity (see
Sec. IVF). We will show that although the parameter
r plays no role at the continuum, at the discrete level it
can have a severe impact on the stability properties.

1. Continuum analysis

If we Fourier transform (93)–(95) and introduce Γ̂ =

Ĝ + riωkÂk in place of Ĝ the system simplifies to

∂tÂi = −Êi ,

∂tÊi = ω2Âi + iωiΓ̂ ,

∂tΓ̂ = 0 .

The eigenvalues and characteristic variables of the sym-
bol are

0, ŵ(0) = Γ̂ ,

±iω, ŵ
(±)
i = Êi ∓ iωÂi ± ω̂i , Γ̂

where ω̂i = ωi/ω and ω2 =
∑3

k=1 ω2
k. Note that the

eigenvalues of the symbol are independent of the param-
eter r. To construct a conserved energy we take the com-
bination

EC =
1

2
|ŵ(+)

i |2 +
1

2
|ŵ(−)

i |2 + a|ŵ(0)|2.

To keep the notation compact we omit the sums. We
need to check that this conserved quantity is equivalent
to

|û|2 = |Êi|2 + ω2|Âi|2 + |Ĝ|2.

Since

EC = |Êi|2 + (1 + a)|Γ̂|2 + ω2|Âi|2 − 2Re
(

iωiÂiΓ̂
)

,
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we get

|Êi|2 + (1 + a − ε1)|Γ̂|2 +

(

1 − 1

ε1

)

ω2|Âi|2 ≤ EC

≤ |Êi|2 + (1 + a + ε2)|Γ̂|2 +

(

1 +
1

ε2

)

ω2|Âi|2,

where we used the inequality ±2Re(z1z̄2) ≤ ε|z1|2 +
ε−1|z2|2 for ε > 0. Choosing a = 3/2, ε1 = ε−1

2 = 2
gives

K−1
1 |û|2Γ ≤ EC ≤ K1|û|2Γ,

with K1 = 3, where |û|2Γ = |Êi|2 + ω2|Âi|2 + |Γ̂|2. Using
the inequality

(1 − ε)|z1|2 + (1 − ε−1)|z2|2 ≤ |z1 + z2|2 (96)

≤ (1 + ε)|z1|2 + (1 + ε−1)|z2|2,

with ε > 0, we have that for any r, |û|2Γ is equivalent

to |û|2, i.e. K−1
2 |û|2Γ ≤ |û|2 ≤ K2|û|2Γ. We have the

uniform estimate in Fourier space

|û(t)|2 ≤ K2|û(t)|2Γ ≤ K1K2EC(t) = K1K2EC(0)

≤ K2
1K2|û(0)|2Γ ≤ K2

1K2
2 |û(0)|2, (97)

which implies the estimate in physical space with respect
to the norm

‖u‖2 = ‖Ai‖2 + ‖Ei‖2 + ‖∂kAi‖2 + ‖G‖2, (98)

with no restrictions on the parameter r.

2. Discrete analysis

Consider now the semi-discrete system

∂tAi = −Ei , (99)

∂tEi = −D+kD−kAi + rD
(2)
ik Ak + D0iG , (100)

∂tG = rD0kEk , (101)

where D
(2)
ik is the standard second order accurate approx-

imation of the second partial derivative. The procedure
is similar to that at the continuum. We Fourier trans-
form and replace the variable Ĝ with Γ̂ = Ĝ+r i

h sin ξkÂk

and obtain

∂tÂi = −Êi ,

∂tÊi =
4

h2
Θ2

i (ξ)Âi +
i

h
sin ξiΓ̂ ,

∂tΓ̂ = 0 ,

where Θ2
i (ξ) =

∑3
k=1 sin2 ξk

2 − r sin4 ξi

2 .

The eigenvalues of the matrix kP̂ (ξ) and the corre-
sponding characteristic variables are

0, ŵ(0) = Γ̂ ,

±2iΘi(ξ)λ, ŵ
(±)
i = Êi ∓

2i

h
Θi(ξ)Âi ± si(ξ)Γ̂ ,

where 2siΘi = sin ξi. The requirement that σ(kP̂ ) ≤ α0

imposes the restriction r ≤ 1 on the parameter. If this
condition is violated, then the semi-discrete scheme is
unstable (and the fully discrete scheme would be uncon-
ditionally unstable). Furthermore, for r = 1, which cor-

responds to the Z1 system, the matrix P̂ (±π, 0, 0) (cor-
responding to the highest frequency in the x direction)
is not diagonalizable and one can show that the system
admits frequency dependent linearly growing solutions
which violate the discrete energy estimate.

Assume r < 1. The expression

EC =
1

2
|ŵ(+)

i |2 +
1

2
|ŵ(−)

i |2 + a|Γ̂|2

= |Êi|2 + (a + s2
i )|Γ̂|2 +

4

h2
Θ2

i |Âi|2

−2Re

(

i

h
sin ξiÂiΓ̂

)

is conserved. We want to show that it is equivalent to
|û|2 = |Êi|2 + Ω2|Âi|2 + |Ĝ|2.

We first show that EC is equivalent to |û|2Γ = |Êi|2 +

Ω2|Âi|2 + |Γ̂|2. We distinguish now between two possi-
bilities: r ≤ 0 and 0 < r < 1. In either case we have
that |si| ≤ 1. In the first case, using the inequality
χ2

2 ≤ Θ2
i ≤ (1 − r)χ2

2 we get

|Êi|2 + (a − ε1)|Γ̂|2 +

(

1 − 1

ε1

)

χ2
2|Âi|2 ≤ EC ≤

≤ |Êi|2 + (a + 1 + ε2)|Γ̂|2 +
4

h2

(

1 − r +
1

ε2

)

χ2
2|Âi|2.

If we take, for example, a ≥ 3, ε1 = 2, ε2 = 1/2, then
there exist constants K1 and K2 such that K1|û|2Γ ≤
EC ≤ K2|û|2Γ.

For the case 0 < r < 1, using the inequality (1−r)χ2
2 ≤

Θ2
i ≤ χ2

2 we get

|Êi|2 + (a − ε1)|Γ̂|2 +

(

1 − r − 1

ε1

)

χ2
2|Âi|2 ≤ EC ≤

|Êi|2 + (a + 1 + ε2)|Γ̂|2 +
4

h2

(

1 +
1

ε2

)

χ2
2|Âi|2.

If we choose a > ε1 > 1/(1 − r) we have the equivalence
to |û|2Γ. On the other hand, using

1

h
| sin ξk| ≤ |Ω| , (102)

one can show that the norms |û|2Γ and |û|2 are equivalent.
This proves stability with respect to the norm

(

‖Ai‖2
h + ‖Ei‖2

h + ‖D+kAi‖2
h + ‖G‖2

h

)1/2
. (103)

Note that the Cauchy problem for the continuum
system is well-posed for all values of r, but the dis-
crete system is stable only for r < 1. For r ≤ 1/2
the von Neumann condition gives a Courant limit of
λ ≤ α0/(2

√
3 − r). Moreover, the numerical speeds of

propagation depend on r.
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D. The Nagy-Ortiz-Reula system

The NOR formulation of Einstein’s equations lin-
earized about Minkowski space with zero shift and den-
sitized lapse (α = det(γij)

1/2) has the form

∂tγij = −2Kij , (104)

∂tKij = −1

2
∂k∂kγij +

r

2
∂i∂jt + ∂(ifj) , (105)

∂tfi = r∂iK , (106)

where t = δklγkl. This system corresponds to the one in
[12] with the choice of parameters a = b = σ = 1, c = 0
and ρ = r + 2. It is obtained from the ADM system
with densitized lapse by introducing the variables fi =
∂jγij − ∂it, which are used in the evolution equations for
the Kij variables, and adding the momentum constraint
to the time derivative of the new variables.

1. Continuum analysis

We Fourier transform the system and introduce Γ̂i =

f̂i + r
2 iωit̂, obtaining

∂tγ̂ij = −2K̂ij ,

∂tK̂ij =
1

2
ω2γ̂ij + iω(iΓ̂j) ,

∂tΓ̂i = 0 .

The eigenvalues and characteristic variables associated
with the symbol are

0, ŵ
(0)
i = Γ̂i ,

±iω , ŵ
(±)
ij = K̂ij ∓

1

2
iωγ̂ij ± ω̂(iΓ̂j) .

Proceeding in the usual manner we construct a con-
served quantity and show that it is equivalent to

|û|2 = |K̂ij |2 + ω2|γ̂ij |2 + |f̂i|2.

We have

EC =
1

2
|ŵ(+)

ij |2 +
1

2
|ŵ(−)

ij |2 + a|ŵ(0)
i |2

= |K̂ij |2 + |ω̂(iΓ̂j)|2 +
1

4
ω2|γ̂ij |2

−Re
(

iωiγ̂ij Γ̂j

)

+ a|Γ̂j |2.

Since

0 ≤ |ω̂(iΓ̂j)|2 ≤ |ω̂iΓ̂j |2 ≤ |Γ̂i|2

−ω2

ε1
|γ̂ij |2 − ε1|Γ̂i|2 ≤ −2Re

(

iωiγ̂ijΓ̂j

)

≤ ω2

ε2
|γ̂ij |2 + ε2|Γ̂i|2,

we obtain the equivalence with |û|2Γ,

|K̂ij |2 +
1

4

(

1 − 1

ε1

)

ω2|γ̂ij |2 + (a − ε1)|Γ̂i|2 ≤ EC

≤ |K̂ij |2 +
1

4

(

1 +
1

ε2

)

ω2|γ̂ij |2 + (1 + a + ε2)|Γ̂i|2,

by choosing a = 3, ε1 = 2, ε2 = 1. Finally, noting
that |t̂|2 ≤ 3|γ̂ij |2 one can show that |û|2Γ and |û|2 are
equivalent.

2. Discrete analysis

We consider the standard second order accurate dis-
cretization of system (104)–(106). The semi-discrete sys-
tem is

∂tγij = −2Kij , (107)

∂tKij = −1

2
D+kD−kγij +

r

2
D

(2)
ij t + D0(ifj) ,(108)

∂tfi = rD0iK . (109)

Taking the Fourier transform and introducing Γ̂i =

f̂i + r
2

i
h sin ξi t̂ gives

∂tγ̂ij = −2K̂ij ,

∂tK̂ij =
1

2
Ω2γ̂ij +

r

2
∆̂ij t̂ +

i

h
sin ξ(iΓ̂j) ,

∂tΓ̂i = 0 ,

where

∆̂ij =

{

0 i 6= j

− 4

h2
sin4 ξi

2
i = j

.

The eigenvalues of kP̂ and the corresponding charac-
teristic variables are

0, ŵ
(0)
i = Γ̂i ,

±2iΘλ, ŵ(±) = K̂ ∓ i

h
Θt̂ ± sin ξi

2Θ
Γ̂i ,

±2iχ2λ, ŵ
(±)
ij = K̂ij ∓

1

2
iΩγ̂ij ±

sin ξ(iΓ̂j)

2χ2
, i 6= j ,

ŵ
(±)
i =

(

K̃ii ∓
1

2
iΩγ̃ii ±

sin ξiΓ̃i

2χ2

)TF

,

where Θ2 = χ2
2 − r

∑3
k=1 σ4

i , σ4
i = sin4 ξi

2 , σ4
i K̃ii = K̂ii,

σ4
i γ̃ii = γ̂ii, σ4

i Γ̃i = Γ̂i, and ATF
ij = (Aij − δijA/3).

Note that stability demands that r < 1 (ρ < 3). Fur-
thermore, the von Neumann condition depends on the
value of this parameter. Explicitly, this is

λ ≤ α0

2 max|ξi|≤π{Θ, χ2}
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FIG. 1: The von Neumann condition for the second order
accurate discretization of the NOR system in 3D using 4RK
as a function of the parameter r. For r > 1 the scheme is
unconditionally unstable.

and its dependence on r is illustrated in Figure 1.
This is in contrast to the fact that at the continuum

r has no influence on the characteristic speeds or the
hyperbolicity of the system.

We now restrict ourselves to the case r = 0 and prove
numerical stability. In this case the characteristic vari-
ables associated with the non trivial eigenvalues are

ŵ
(±)
ij = K̂ij ∓

1

2
iΩγ̂ij ±

sin ξ(iΓ̂j)

2χ2
. (110)

A conserved quantity is

EC =
1

2
|ŵ(+)

ij |2 +
1

2
|ŵ(−)

ij |2 + a|ŵ(0)
i |2

= |K̂ij |2 + |s(iΓ̂j)|2 +
Ω2

4
|γ̂ij |2

−Re

(

i

h
sin ξiγ̂ij Γ̂j

)

+ a|Γ̂i|2,

where 2χ2si = sin ξi.
Since

|si| ≤ 1

0 ≤ |s(iΓ̂j)|2 ≤ |siΓ̂j |2 ≤ |Γ̂i|2

− 4

ε1h2
χ2

2|γ̂ij |2 − ε1|Γ̂i|2 ≤ −2Re

(

i

h
sin ξiγ̂ijΓ̂j

)

≤ 4

ε2h2
χ2

2|γ̂ij |2 + ε2|Γ̂i|2,

we have the equivalence with |û|2Γ. Inequality (102) guar-
antees the equivalence of the latter with |û|2. This com-
pletes the proof of stability with respect to the norm

(

‖γij‖2
h + ‖Kij‖2

h + ‖D+kγij‖2
h + ‖fi‖2

h

)1/2
. (111)

E. The ADM system

With a densitized lapse function, α = det(γij)
1/2, the

ADM equations linearized about the Minkowski solution

in Cartesian coordinates take the form

∂tγij = −2Kij , (112)

∂tKij = ∂k∂(iγj)k − 1

2
∂k∂kγij − ∂i∂jt . (113)

The symbol P̂ (iω) of (112)–(113) is not diagonalizable
and neither is that of its differential nor its pseudo-
differential reduction. The family of solutions in which
the only non vanishing components are γ1A = sin(ωx)t,
K1A = − sin(ωx)/2, where A = 2, 3, can be used to ex-
plicitly show instability. It gives

‖u(t, ·)‖
‖u(0, ·)‖ =

(

1 + 4t2 + 4ω2t2
)1/2

, (114)

where ‖u(t, ·)‖2 = ‖γij(t, ·)‖2+‖Kij(t, ·)‖+‖∂kγij(t, ·)‖2.
The ratio cannot be bounded by Keαt with K and α
independent of ω.

To see that the second order accurate standard dis-
cretization is unstable we take γ1A = (−1)jt and K1A =
(−1)j+1/2. As in the continuum, the ratio

‖v(t)‖h,D+

‖v(0)‖h,D+

=

(

1 + 4t2 + 16
t2

h2

)1/2

(115)

cannot be bounded. We can nevertheless compute the
von Neumann condition, which is given by

λ ≤
√

3α0

2
√

7d
. (116)

In [26] stability tests were done with the non linear
version of this formulation. The domain used consisted
of a thin channel, with an even number N of grid points
in one spatial direction and 3 grid points in the other
two directions. By taking this into account we see that
modes corresponding to the frequencies ξ1 = π, and ξ2 =
ξ3 = 2π/3 grow exponentially if λ > 0.4163. Figure 2 in
[26] confirms that with a Courant factor of λ = 0.5 there
is a von Neumann instability. [36]

Although the symbol associated with the continuum
system (112) and (113) has four Jordan blocks of size two
for any ω, interestingly, the symbol associated with the
semi-discrete problem obtained with the standard sec-
ond order accurate discretization can have rather differ-
ent properties. For Fourier modes traveling in directions
parallel to the axis the continuum result still holds. How-
ever, for Fourier modes not parallel to any of the axis, we
found that the symbol may have fewer Jordan blocks. In
some cases we even noticed that the symbol is diagonal-
izable. Whether this implies that the discrete problem
is in some sense better behaved than the continuum one,
which would explain why the ADM system was not im-
mediately dismissed by numerical relativists, needs to be
investigated further.

F. The Z4 system

The same family of solutions that was used to show
instability of the discretized ADM equations can be used
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for the standard discretization of the linearized Z4 sys-
tem [27]

∂tα = −f(K − mΘ) ,

∂tγij = −2Kij ,

∂tKij = −∂i∂jα − 1

2
∂k∂kγij + ∂k∂(iγj)k

−1

2
∂i∂jt + 2∂(iZj) ,

∂tΘ =
1

2
(∂k∂lγkl − ∂k∂kt) + ∂kZk ,

∂tZi = ∂kKik − ∂iK + ∂iΘ ,

for any values of the parameters f and m. This insta-
bility, however, is not present if the D2

0 discretization is
used as in [24], in conjunction with the D0-norm. Fur-
thermore, it is possible that artificial dissipation may cure
this instability of the standard discretization, at least for
0 < f 6= 1 or 1 = f = m/2, since in this case the contin-
uum Cauchy problem is well-posed.

The ADM and Z4 examples suggest a simple criterion
that can be used to rule out certain schemes. Any first or-
der in time, second order in space system of PDEs which
gives rise to an ill-posed problem when the first order and
mixed second order spatial derivatives are dropped will
result in an unstable scheme if the standard discretiza-
tion is used.

V. TESTING STABILITY

When dealing with variable coefficient or non linear
problems it can be difficult, if not impossible, to prove
stability with respect to a certain norm. Numerical ex-
periments are often the only option. Given a discretiza-
tion of the linear initial value problem (1) and (2), a sta-
bility test should be aimed at establishing the existence
of the constants α and K, independent of the initial data
and for all h ≤ h0 (and possibly k ≤ λ0h), by computing
the ratio between a suitable discrete norm at time-step
tn = nk and its initial value,

‖vn‖
‖v0‖ ≤ Keαtn . (117)

Although it is not possible to infer stability by examin-
ing a finite number of numerical experiments (one would
have to explore the entire set h ≤ h0 that appears in the
definition of stability), it is usually not difficult to spot a
trend of behavior as the resolution is increased. To ensure
that a wide range of frequencies is excited, random initial
data can be used [28], as no smoothness assumptions are
used in the definition of stability.

In the examples of first order in time, second order in
space hyperbolic systems for which we are able to deter-
mine stability, we use a norm which is the discrete version
of the continuum one. The derivatives are approximated
using the one-sided operators D+ (or, equivalently, D−)

rather than D0. For the NOR system, for example, we
use the square root of the expression

3
∑

i,j=1

‖γij‖2
h +

3
∑

i,j=1

‖Kij‖2
h +

3
∑

k,i,j=1

‖D+kγij‖2
h +

3
∑

i=1

‖fi‖2
h.

If, as we vary the initial data and the resolution, the
experiments indicate that the constants α and K in (117)
exist, then one would conclude that the scheme appears
to be stable. If not, the scheme appears to be unstable.

In the non linear case, if the problem has a sufficiently
smooth solution u0, then to first approximation the error
equation can be linearized about u0, and convergence
follows if the linearized error equation is stable (Sec. 5.5
in [20]). To test stability around u0, one should monitor
the perturbation δu ≡ u−u0, where u is sufficiently close
to u0 at t = 0, and establish the existence of K and α
satisfying

‖δu(t)‖
‖δu(0)‖ ≤ Keαt . (118)

Finally, we note that the notion of robust stability intro-
duced in [28] does not imply nor follows from the concept
of numerical stability investigated in this paper.

VI. DISCUSSION

In this work we extended the notion of numerical sta-
bility of finite difference approximations to include hy-
perbolic systems that are first order in time and second
order in space. We considered the standard discretization
of the wave equation, a generalization of the KWB for-
mulation of electromagnetism and the NOR formulation
of Einstein’s equations linearized about the Minkowski
solution. By analyzing the symbol of the second order
system, and constructing a discrete symmetrizer, we were
able to prove stability in a discrete norm containing one-
sided difference operators, provided that the von Neu-
mann condition is satisfied. Consistency and stability
with respect to the D+-norm imply convergence with re-
spect to the discrete L2 norm. We also found that in
some cases (r ≥ 1 in the NOR and generalized KWB
systems, and Z4) standard discretizations of well-posed
continuum problems can lead to unconditionally unsta-
ble schemes. This is closely related to the instability of
the fully second order shifted wave equation investigated
in [29], but our examples contain no shift terms.

Our analysis of discretizations of first order in time
hyperbolic systems shows that in the first order in space
case there is a clear correspondence between strong hy-
perbolicity and numerical stability, and between charac-
teristic speeds and Courant limits. See inequality (61)
and Eq. (62). In the second order in space case, on the
other hand, the mixing of D± and D0 operators breaks
this correspondence. To restore the correspondence one
could use the D2

0 discretization, however, as discussed in
Sec. IV B2, this can lead to difficulties.
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We also propose methods for testing stability for sec-
ond order in space systems. Numerical stability tests
should be aimed at establishing the existence, for suffi-
ciently small h, of the constants K and α that appear in
the definition of stability (see Sec. V).

Although our analysis was restricted to the constant
coefficient case, we expect that for the variable coefficient
case generalizations of results similar to those presented
in Sec. 6.6 of [20] for first order hyperbolic systems, where
artificial dissipation plays an important role, might apply.
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APPENDIX A: TIME INTEGRATORS

In this work we restrict our attention to the following
three time integrators: 3rd and 4th order Runge-Kutta,
and iterative Crank-Nicholson [30]. Given a system of
ordinary differential equations, dy/dt = f(t, y(t)), these
integrators are defined as

3RK

k1 = kf(tn, yn)

k2 = kf(tn + k/2, yn + k1/2)

k3 = kf(tn + 3k/4, yn + 3k2/4)

yn+1 = yn + (2k1 + 3k2 + 4k3)/9

4RK

k1 = kf(tn, yn)

k2 = kf(tn + k/2, yn + k1/2)

k3 = kf(tn + k/2, yn + k2/2)

k4 = kf(tn + k, yn + k3)

yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6

ICN

k1 = kf(tn, yn)

k2 = kf(tn + k/2, yn + k1/2)

k3 = kf(tn + k/2, yn + k2/2)

yn+1 = yn + k3

APPENDIX B: SOME NUMERICAL

PROPERTIES OF FIRST AND SECOND ORDER

SYSTEMS

In this section we assume that the time integrator is
one of those discussed in Appendix A. We consider stan-

dard second and fourth order accurate discretizations of
the following two toy model problems

ut = ux , (B1)

and

φt = Π , Πt = φxx . (B2)

Eq. (B1) arises in the full reduction to first order of
φtt = φxx, while (B2) represents its reduction in time. If
we denote by λ(ξ) an eigenvalue of the discrete symbol,
the corresponding phase and group velocities are given
by

vp = i
λ(ξ)

ω
,

vg = i
d

dω
λ(ξ) ,

where ξ = ωh. In the following table we compute the
numerical phase velocities, vp, group velocities, vg, the
Courant limits (C.l.), the frequencies of undamped modes
(u.m.) and of the first unstable mode (f.u.m.) for the two
systems. The numerical phase and group velocities are
plotted in Figure 2 as a function of ξ.

In the table we used ∆2 = 1+ 1
3 sin2 ξ

2 . The exact con-
tinuum phase and group velocity is 1. The Taylor expan-
sion of the numerical velocities gives an idea of the mag-
nitude of the error, provided that enough grid-points per
wave length are used. The table shows that in the second
order accurate case the phase error for the wave equation
is 4 times smaller than for the advective equation, and
that this improvement in accuracy is even stronger for
the fourth order accurate discretization.

Furthermore, the standard discretizations of fully first
order hyperbolic systems have numerical phase veloci-
ties that vanish at the highest frequencies and numerical
group velocities with the opposite sign to the continuum
one. In numerical relativity simulations involving black
holes which make use of the excision technique to handle
the singularity one can expect to see numerical high fre-
quency solutions escaping from the black hole, if a first
order formulation combined with the standard discretiza-
tion is used, unless artificial dissipation is added to the
scheme.

Finally, whereas for (B1) the transition from second or-
der accuracy to fourth order implies the reduction of the
Courant limit by a factor of 1.372, for the second order
in space system (B2), this transition requires a Courant

limit 2/
√

3 ≈ 1.155 times smaller. This indicates that
there is an even higher gain in going to fourth order ac-
curacy for second order in space formulations.
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2nd order accurate 4th order accurate

advective wave advective wave

vp

sin ξ
ξ ≈

1 − ξ2

6 + O(ξ4)

2
ξ sin ξ

2 ≈
1 − ξ2

24 + O(ξ4)

sin ξ
ξ

(

1 + 2
3 sin2 ξ

2

)

≈ 1 − ξ4

30 + O(ξ6)

2
ξ sin ξ

2∆ ≈
1 − ξ4

180 + O(ξ6)

vg
cos ξ ≈

1 − ξ2

2 + O(ξ4)

cos ξ
2 ≈

1 − ξ2

8 + O(ξ4)

1 − 8
3 sin4 ξ

2 ≈
1 − ξ4

6 + O(ξ6)

cos ξ
2

(

1 + 2
3 sin2 ξ

2

)

/∆

≈ 1 − ξ4

36 + O(ξ6)

C.l. α0 α0/2 α0/1.372
√

3
4 α0 ≈ α0/2.309

u.m. 0, π 0 0, π 0

f.u.m. ±π
2 ≈ ±1.571 π

±2 arctan

(

61/4√
4−

√
6

)

≈ ±1.797

π

APPENDIX C: DISCRETE CONSTRAINT

PROPAGATION

When simulating systems such as Maxwell’s or Ein-
stein’s equations, one has to take into account that the
data has to satisfy initial data constraints. The evolution
equations guarantee that if these constraints are satisfied
initially, then they will be satisfied at later times. In
this appendix we show that even in the constant coeffi-
cient case, when using standard discretizations of second
order in space systems, the discrete constraints do not
propagate exactly. Initial data which satisfy the discrete
constraints do not lead to constraint satisfying solutions.

As an example, we consider the ADM equations (112)–
(113) with constraints

C ≡ 1

2
(∂i∂jγij − ∂i∂it) = 0 , Ci ≡ ∂jKij − ∂iK = 0 .

For simplicity we confine ourselves to solutions which de-

pend only on one space coordinate. The discretized con-
straints are

C ≡ −1

2
D+D−γAA = 0 , C1 ≡ −D0KAA = 0 ,

CA ≡ D0K1A = 0 ,

where A = 2, 3.

The time derivative of the first constraint cannot be
expressed in terms of finite difference combinations of
the constraints

d

dt
C = D+D−KAA 6= −D0C1 .

This is to be contrasted with the fact that in the con-
stant coefficient case, the discrete constraints of a first
order reduction would propagate as in the continuum,
with partial derivatives replaced by D0 operators.
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Phys. Rev. D 67, 104005 (2003).
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