ON THE CONCEPT OF AN ASYMPTOTIC VELOCITY IN
T3-GOWDY SPACETIMES

HANS RINGSTROM

ABSTRACT. This is the first of two papers which together prove strong cosmic
censorship in T3-Gowdy spacetimes. In the end, we prove that there is a set of
initial data, open with respect to the C? x C'-topology and dense with respect
to the C*°-topology, such that the corresponding spacetimes have the following
properties. Given an inextendible causal geodesic, one direction is complete,
the other is incomplete and the Kretschmann scalar, i.e. the Riemann tensor
contracted with itself, blows up in the incomplete direction. In fact, it is
possible to give a very detailed description of the asymptotic behaviour in the
direction of the singularity for the generic solutions. In this paper, we shall
however focus on the concept of asymptotic velocity. Under the symmetry
assumptions made here, Einstein’s equations reduce to a wave map equation
with a constraint. The target of the wave map is the hyperbolic plane. There
is a natural concept of kinetic and potential energy density, and the perhaps
most important result of this paper is that the limit of the potential energy as
one lets time tend to the singularity for a fixed spatial point is zero and that
the limit exists for the kinetic energy. We define the asymptotic velocity, veo,
to be the non-negative square root of the limit of the kinetic energy density.
The asymptotic velocity has some very important properties. In particular,
curvature blow up and the existence of smooth expansions of the solutions close
to the singularity can be characterized by the behaviour of ve. It also has
properties such that if 0 < voo(fo) < 1, then voo is smooth in a neighbourhood
of fp. Furthermore, if voo(6p) > 1 and veo is continuous in 6, then ve, is
smooth in a neighbourhood of §y. Finally, we show that the map from initial
data to the asymptotic velocity is continuous under certain circumstances and
that what will in the end constitute the generic set of solutions is an open set
with respect to the C2? x C'-topology on initial data.

1. INTRODUCTION

1.1. Motivation and background. In [5], Yvonne Choquet-Bruhat showed that
it is possible to view the Einstein vacuum equations as an initial value problem.
Later, Choquet-Bruhat and Geroch [6] proved that, given vacuum initial data,
there is a maximal globally hyperbolic development of the data, and that this
development is unique up to isometry. There are however examples for which it
is possible to extend the maximal globally hyperbolic development in inequivalent
ways [7]. Consequently, it is not possible to predict what spacetime one is in simply
by looking at initial data. This naturally leads to the strong cosmic censorship
conjecture, stating that for generic initial data, the maximal globally hyperbolic
development is inextendible. The statement is rather vague, as it does not specify
exactly what is meant by generic, and since it does not give a precise definition
of inextendibility; a spacetime may be extendible in one differentiability class but
inextendible in another. In order to have a precise statement, one has to give a clear
1
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definition of these concepts. To prove the conjecture in general is not feasible at
this time. For this reason it is tempting to consider the following related problem.
Consider a class of initial data satisfying a given set of symmetry conditions. Is it
possible to show that the maximal globally hyperbolic development is inextendible
for initial data that are generic in this class? Note that, strictly speaking, this
problem is unrelated to the original one, since a class of initial data satisfying
symmetry conditions is a non-generic class in the full set of initial data. However,
this is the problem that will be addressed in this paper and the next.

One way of proving that a spacetime is inextendible is to prove that, given a causal
geodesic in the spacetime, there are two possible outcomes in a given time direction;
either the geodesic is complete, or it is incomplete but the curvature is unbounded
along it, cf. Lemma 30. Note that the natural associated inextendibility concept
is that of C2-inextendibility. Note also that it is of course conceivable that one
could get away with proving less and still getting inextendibility. In this paper, we
are concerned with the T3-Gowdy spacetimes, and for these spacetimes it is known
that in one time direction, the inextendible causal geodesics are always complete,
cf. [21], and in the other, they are always incomplete, cf. Proposition 14. One
is thus interested in proving that for generic initial data, the curvature becomes
unbounded in the incomplete direction of every causal geodesic. This ties together
the strong cosmic censorship conjecture and the problem of trying to understand the
structure of singularities in cosmological spacetimes. By the singularity theorems,
cosmological spacetimes typically have a singularity in the sense of causal geodesic
incompleteness. However, it is of interest to know that one generically also has a
singularity in the sense of curvature blow up.

To our knowledge, the only result concerning strong cosmic censorship in an inho-
mogeneous cosmological setting is contained in [9]. This paper is concerned with
polarized Gowdy spacetimes and contains a proof of the statement that there is an
open and dense set of initial data for which the maximal globally hyperbolic devel-
opment is inextendible. Note however that the authors do not restrict themselves
to T topology; all topologies compatible with Gowdy symmetry are allowed. In
our setting, polarized T%-Gowdy corresponds to setting @ = 0 in (2)-(3), i.e. one
gets a linear PDE for one unknown function. To analyze the asymptotic behaviour
of this linear equation is of course easier, but the freedom one has when perturbing
the initial data is more restricted. In other words, not all aspects of the problem
are simplified by considering the polarized sub case.

1.2. Objects of study. For the purposes of this paper, we shall take the Gowdy
spacetimes to be defined by (1). The question then arises why it should be natural
to consider such a class. Since this question has already been addressed elsewhere,
cf. [12] and [8] and, for a brief description, [19], we do not wish to do so here as
well. Suffice it to say that there are geometric conditions that lead to this form of
the metric. Let

(1) g =" N2(—e 27d7% + d6) + e "[ePdo? + 2T Qdods + (€7 Q? + e T)ds?]
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Here, 7 € R and (#,0,d) are coordinates on T3. The Einstein vacuum equations
become

(2) P —e Py — e’ (Q2—e7QF) = 0
(3) QTT - e_ZTQGG + 2(PTQT - 6_2TP9Q0) = 07
and

(4) A = PI4e PP +eT(Q7 +e77Q))
(5) Ao = 2(BPr +ePQuQ).

Obviously, (2)-(3) do not depend on A, so the idea is to solve these equations and
then find A by integration. There is however one obstruction to this; the integral
of the right hand side of (5) has to be zero. This is a restriction to be imposed on
the initial data for P and @), which is then preserved by the equations. In the end,
the equations of interest are however the two non-linear coupled wave equations
(2)-(3). In the above parameterization, the singularity corresponds to 7 — oo, and
essentially all the work in this paper concerns the asymptotic behaviour of solutions
to (2)-(3) in this time direction. Note that there is a special solution of (2)-(5) given
by P=7,Q =0 and A = 7. The corresponding metric has the property that the
curvature tensor is identically zero.

The equations (2)-(3) are wave map equations. In fact, let
go = —e~27dr? + d6% + e 2" dy?

be a Lorentz metric on R x T2 and let

(6) gr = dP? + e*YdQ?

be a Riemannian metric on R2. Then (2)-(3) are the wave map equations for a map
from (R x T2, go) to (R?, gr) which is independent of the x-coordinate. Note that
(R?, gR) is isometric to the upper half plane H = {(z,y) € R? : y > 0} with metric

dz? + dy?
(7) gg = ——5——
Y
under the map

(8) ¢RH(Q7P) = (Q;e_P)'

Thus the target space is hyperbolic space. In order to formulate the results, we
need to introduce some terminology. Note that isometries of hyperbolic space map
solutions to solutions. One particular isometry which will be of great use is the
inversion, defined by

Qo 2 —2P
(9) Inv(Qo, Py) = W,Po +1In(Qg +e7*?)
The reason for the name is that it corresponds to an inversion in the unit circle
with center at the origin in the upper half plane model. A third representation of
hyperbolic space which will be very useful is the disc model:

4(dz? + dy?)

(10) 9gp = W,
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where the underlying manifold is the open unit disc D. An isometry from the upper
half plane to the disc model is given by

Composing ¢gp and ¢rp, we get what we shall refer to as the canonical map from
the P(Q-plane to the disc model:

Q+ile P -1)
11 P)=——— -
( ) ¢RD(Q3 ) Q+Z(€_P+1)

1.3. Asymptotic expansions. In the analysis of Gowdy spacetimes, the existence
of expansions for the solutions close to the singularity in certain situations is the
key starting point. The idea of finding such expansions started with the paper [13]
by Grubisi¢ and Moncrief. In our setting, the natural expansions are

(12) P(1,0) = v,(0)7 + ¢(6) + u(r,0)
(13) Q(r,0) = q0) +e 2O [(6) + w(r,6)]

where w,u — 0 as 7 — oo and 0 < v,(d) < 1. Note that if we have a solution with
such expansions, then Q(7,0) converges and P(r,6) tends to infinity as 7 — 0.
Applying ¢rp, we see that for a fixed 6 the solution roughly speaking goes to the
boundary along a geodesic in the upper half plane model, see Figure 1. A heuristic
argument motivating the condition on the velocity can be found in [2]. In the
non-generic case ) = 0, one can prove that (12) holds without any condition on
vq- This special case is called polarized Gowdy and has been studied in [14], which
also considers the other topologies for Gowdy spacetimes. In [15] and [17], the
authors developed methods for proving that given v,, ¢, ¢, ¥ with a suitable degree
of regularity and 0 < v, < 1, there are unique solutions to (2)-(3) with asymptotics
of the form (12)-(13). In [15], the regularity requirement was that of real analyticity,
a condition which was relaxed to smoothness in [17]. It is of interest to note that
if ¢ is constant, the condition on v, can be relaxed to v, > 0. In [19], we proved
a result going in the other direction, i.e. we provided a condition on initial data
which lead to asymptotic expansions of the form (12)-(13). The condition is rather
technical, requiring bounds of up to three derivatives in L?. On the other hand,
the arguments are not peculiar to 1 + 1-systems of equations. In fact, the results
apply to a generalization of (2)-(3) where S! is replaced by T¢, the d-dimensional
torus, 0 is replaced by A and the product of spatial derivatives is replaced by
the scalar product of gradients. In [20], we proved another condition which only
requires bounds in the C'-norm on initial data. In this case the methods are based
on considering the behaviour along characteristics, and are thus not very easy to
generalize to higher spatial dimensions, though it is of course conceivable that some
aspects of the argument could be useful in higher dimensions. In this paper, we
shall prove yet another condition on initial data that lead to smooth expansions,
see Section 4.

1.4. Asymptotic velocity. According to our experience, the most important part
of the expansions (12)-(13) is the function v,. This object may seem to be arbitrary
and devoid of geometric content. That this is not the case can be seen in the
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FiGUrRe 1. The asymptotic behaviour of a solution satisfying
asymptotics of the form (12)-(13) as seen in the upper half plane
model.

following way. Define the potential and kinetic energy densities by

(14) P(r,0) = e (P} +e*rQ3)(r,0)

(15) K(r,0) = (P?+¢e*PQ?)(r,0).

Naively differentiating the expansions and computing K, one sees that this expres-

sion converges to v2. In this sense, v2 has a geometric significance. Due to Corollary

6, the point wise limit of the kinetic energy density always exists. This naturally
leads to the following definition.

Definition 1. Let 2 = (Q, P) be a solution to (2)-(3) and let 8, € S'. Then we
define the asymptotic velocity at 6y to be

0o) = | lim K(7,6 s
veo(00) = [ Y K(7,60)]
If we wish to make the dependence on the solution explicit, we shall write veo[z].

There is another perspective on this object that will be of interest. Let dr be the
topological metric induced by the Riemannian metric (6) and let (Qo, Po) € R? be
some reference point. Given a solution to (2)-(3), we can then define

p(T70) = dR{[Q(TJ 0),P(T,0)], [QO;PO]}'

This is the hyperbolic distance from a reference point to the solution at a space
time point. We shall be interested in the limit p(7,6)/7 as 7 — oo. Note that if this
limit exists, it is independent of the base point (Qq, Fo). Furthermore, it coincides
for solutions that are related by an isometry.

Theorem 1. Consider a solution to (2)-(3) and let 6y € S*. Then

lim p(7:60) = Voo (f0)-

T—0Q T

Furthermore, v is semi continuous in the sense that given 8y, there is for every
€>0 ad >0 such that for all 8 € (8p — 5,600 + )

Voo (0) < voo(bo) + €

Proof. This follows from Corollary 6 and 7. o
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The importance of the asymptotic velocity comes from the fact that if veo(6o) # 1,
then the curvature blows up along any causal curve ending at 6,. We refer the
reader to Section 11 for a precise statement. Note that the solution P =17, Q@ =0
has the property that vo, = 1. Furthermore, the corresponding metric, with A = 7,
has a curvature tensor which is identically zero. In other words, if v (o) = 1, the
curvature need not necessarily blow up along a causal curve ending at 6. As a
consequence of the above theorem, one can prove that for z = ¢gp o x, the limit
. zZp
Jim [m F] (7,6)

always exists, cf. Lemma 8. Note here that p/|z| is a real analytic function from
the open unit disc to the real numbers if p is the hyperbolic distance from the origin
of the unit disc to the solution, cf. (31). Let us call the limit v(f). Note that it
would be more natural to refer to this function as the asymptotic velocity, since it
gives not only the rate at which the solution tends to the boundary of hyperbolic
space, but also the point of the boundary to which it converges. In the special case
Voo () = 0, the solution does not tend to the boundary, in fact, z(7,6) remains in
compact subset of the open unit disc for 7 > 0, cf. [20].

The type of arguments used to prove the above results can also be used to prove
statements concerning the asymptotic behaviour of e.g. P,. Let us use the notation
DGO,T = [00 —e 7,600+ e_"].

Proposition 1. Consider a solution to (2)-(3) and let 6, € S*. Then
Tim [P (7, )]~ oo B0)llco(pug o) = 0l [(€P Q0 ) ooy o) = 0

and
Tlinéo ||P(T7 ')||CO(D00,T7R) =0.

In particular, P, (1,00) converges to v (8p) or to —voo(0o). If Pr(7,600) = —voo (o),
then (Q1, P1) = Inv(Q, P) has the property that Pi.(7,00) = voo(6o). Furthermore,
if Voo (B0) > 0, then Q1(7,60) converges to 0.

Proof. This follows by combining Corollary 5, Proposition 8, 9 and Lemma 7. O

The fact that P,(7,60y) sometimes converges to a negative value is a nuisance, and
this is associated with the occurrence of so called false spikes, cf. Definition 2.
To get a geometric picture of the situation, let us assume that we have a solution
with v (6g) > 0. Recall the isometry from the PQ-plane to the upper half plane
defined in (8). Assuming P, (7,6) converges to v (6g), we conclude that P(r,6)
tends to infinity, and since e¥’Q, is bounded, cf. Lemma 3, Q(7,6y) converges
exponentially. The corresponding picture in the upper half plane is that the so-
lution at (7,6y) converges to a point of the boundary in the upper half plane. In
particular, it converges to the part of the boundary constituted by the real line.
If P.(1,6p) converges to —vs(6g), P(7,600) tends to —oo and the corresponding
behaviour in the upper half plane is that the solution at (7,60y) tends to infinity.
In other words, the solution again tends to the boundary. Note however that by
applying an inversion to the solution, we get convergence to the origin in the upper
half plane. In this sense, the fact that P,(7,6p) sometimes converges to v (6o)
and sometimes to —v, (6o) is associated with the fact that in the upper half plane
there is a distinguished boundary point, namely infinity. In the disc model, there
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is no distinguished boundary point, and therefore, there is no problem of this type.
However, we shall later use the Gowdy to Ernst transformation which takes a very
simple form in the P(Q)-variables. There are in other words different advantages of
the different points of view.

It is interesting to note that it is important to restrict one’s attention to regions of
the form Dy, r in order to get conclusions such as the ones given in Proposition 1.
One conclusion of this proposition is that P converges to zero point wise everywhere.
By Corollary 11, P does however not in general converge to zero uniformly. Only
considering Dg,,, thus simplifies the behaviour significantly. Note that this is the
smallest region one can consider if one wants to say something about what happens
at the singularity at 6.

1.5. Asymptotic expansions. Let us give examples of how the asymptotic ve-
locity can be used as a criterion for the existence of expansions.

Proposition 2. Let (Q,P) be a solution to (2)-(3) and assume veo = 0 in a
compact interval K with non-empty interior. Then there are q,¢ € C®(K,R),
polynomials = and o T such that for all T > T

(16) 1P-(7, Mleor (g ry + 1P(7, ) = Bllor(xr) < Ere 27,
(17) Q- (7, Mlorx,p) + 1Q(T,) — dllorxry < Exe.
Proof. See the latter parts of Section 9. O

Comparing with (13), one sees that if v, = 0, then ¢ and 1 cannot be distinguished
in any natural way. The following proposition was essentially already proved in
[20]. The proof is to be found at the end of Section 6.

Proposition 3. Let (Q, P) be a solution to (2)-(3) and assume 0 < vy (6o) < 1.
If P.(1,6p) converges to vs(0g), then there is an open interval I containing 6y,
Vo, @, q,7 € C°(I,R), 0 < v, <1, polynomials Zy, and a T such that for all 7 > T

(18) 1P-(7,") = valler(rry < Exe™ 7,

(19) IP(r,) = p(rs )lerary < Ewe 7,

2 H 2p(,") ) — H < = 70(7"

( 0) € QT(T ) r orIR) ke

(21) e I[Q(r,) — gl + < Epe”
2v, C*(IR)

where p(1,-) = vy - T+ ¢ and a > 0. If P(1,00) converges to —v(6p), then
Inv(Q, P) has expansions of the above form in a neighbourhood of 6.

Remark. One consequence of the above proposition is that if 0 < v (6p) < 1, then
Uso 18 smooth in a neighbourhood of 8y. This is a very important property of the
above result; we only make assumptions concerning the spatial point 6y, but we get
conclusions in a neighbourhood.

The relation between (19) and (12) is quite clear, but in order to see the relation
between (21) and (13), let us define the object inside the norm on the left hand
side of (21) to be w. Then

Q:q+e—2p[_QL+w]_

a
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From this one can see the relation between 9 and r and between w and @w. The
reason for including the estimates (18) and (20) is that, strictly speaking, one
cannot draw any conclusions concerning the first time derivatives of (Q, P) from
asymptotic statements of the form (12)-(13). The expansions (18)-(21) together
with the equations (2)-(3) are however sufficient for carrying out any computation
concerning higher order time derivatives.

Theorem 2. Let (Q, P) solve (2)-(3) and assume that k < v (0) < k + 2 for all
0 € K, where K is a compact interval with non-empty interior and k € N. Then
either (Q,P) has expansions in K of the form (18)-(21) or Inv(Q, P) has such
expansions. Furthermore, the q appearing in the erpansions is a constant and we
can take a = 2.

Remark. Note in particular that if v (6p) > 1 and v, is continuous in 6y, then v,
is smooth in a neighbourhood of 6.

Proof. See the latter part of Section 9. m|

Proposition 4. Let (Q, P) solve (2)-(3). Then there is a subset £ of S' which is
open and dense, and for each 0y € &, there is an open neighbourhood of 6y such
that either (Q, P) or Inv(Q, P) has expansions of the form (16)-(17) or (18)-(21).
If vo(80) > 1, then the q appearing in the expansions is a constant and a = 2.

Remark. This sort of result was already obtained in [4].

Proof. See the latter part of Section 9. O

1.6. Generic solutions. In order to be able to define the generic set of solutions,
we first need to define what we mean by non-degenerate true and false spikes. To
our knowledge, spikes were first discussed in [2], a paper concerned with numerical
studies of the Gowdy equations, see also [3]. The basic reference for the perspective
taken here is however [18], and we refer the reader to this paper for more details.
Note also the recent numerical work on higher velocity spikes in [11].

Definition 2. Consider a solution (@, P) to (2)-(3). Assume 0 < v, (6y) < 1 for
some 6y € S* and that

TILH;O PT(TJ 00) = VU0 (00)

Let (Q1,P1) = Inv(Q, P). By Proposition 3, we get the conclusion that (Q1,P;)
has smooth expansions in a neighbourhood I of 6. In particular, Q1 converges to
a smooth function ¢; in I, and the convergence is exponential in any C*-norm. By
Proposition 1, g1 (6p) = 0. We call 6 a non-degenerate false spike if 9gq1(6o) # 0.

The reason for the terminology false spike is that the property of being a false spike
is not invariant under isometries. Note that in the above setting, 0 < v, () < 1 in
a neighbourhood of §, and

lim P.(7,0) = v ()

T—0Q

in a punctured neighbourhood of 8y. This follows from the analysis presented in
Section 8. In Figure 2, ) is plotted for a solution that is about to develop a false
spike. This figure was obtained by putting v = w = 0 in (12)-(13), choosing v,, @, ¢
and ¢ with ¢(0) = 0, performing an inversion and then plotting the result. In order
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to see how P; looks for a false spike, one only has to take 1 minus the plot of P;
for a true spike, see Figure 3.

FIGURE 2. @ for a false spike.

In order to define the concept true spike, we need to define the Gowdy to Ernst
transformation. Consider a solution (@, P) to (2)-(3) with § € R instead of S'.
Then the conditions

(22) Pi=7-P, Qi =-¢*P7Qy, Qu=-¢Q;

define a new solution to the equations up to a constant translation in (). We shall
write (Q1,P1) = GEqqy,r,0,(Q, P), where the role of the constants go, 79,80 is to
specify that Q1(79,00) = go- In Section 8, we give a more precise definition of the
Gowdy to Ernst transformation, and we also describe the basic properties of it. It
is important to note that it does not necessarily preserve periodicity. Sometimes we
shall apply the Gowdy to Ernst transformation to solutions with § € S, meaning
that we apply the transformation to the naturally associated 27-periodic solution
with & € R. Let us make some observations in preparation for the definition of
non-degenerate true spikes. Assume that (Q, P) is a solution, 1 < v () < 2 and
that P;(7,600) = veo(f0). Let (Q1,P1) = GEqgq,7.6,(Q, P). By (22), we see that
Py (7,00) =& 1 — vo(g). Since the limit is negative, we can apply an inversion to
change the sign, cf. Proposition 1. In other words, (Q2, P2) = Inv(Q1, P1) has the
property that P, (7,600) = vso(6o) — 1 and Q2(7,60) — 0. By Proposition 3, we
get the conclusion that (Q2, P») have smooth expansions in a neighbourhood I of
0o. In particular, Q2 converges to a smooth function ¢o, and the convergence is
exponential in any C*¥-norm. By the above, g2(6o) = 0.

Definition 3. Consider a solution (@, P) to (2)-(3). Assume 1 < v (6g) < 2 for
some 0y € S' and that

lim P, (1,00) = Voo (6o)-

T—0Q0

Let (Q2,P,) = Inv o GEy 1,,6,(Q, P). By the observations made prior to the
definition, (Q2, P;) has smooth expansions in a neighbourhood I of 6. In particular
Q2 converges to a smooth function ¢ in I and the convergence is exponential in
any C*-norm. We call 6y a non-degenerate true spike if 9pq2(6o) # 0.

Remark. The choice of qg, 79,8y is unimportant, c¢f. Lemma 13.

Note that in the above setting, 0 < v (f) < 1 in a punctured neighbourhood of 6,
and
lim P, (7,6) = v (6)

T—0Q
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in a neighbourhood of 6y, cf. Lemma 14. Observe also that P does not converge to
zero uniformly in a neighbourhood of 6y, cf. Corollary 11, even though P converges
to zero point wise everywhere by Proposition 1. In Figure 3, we have plotted P, for
a solution which is about to develop a true spike. In this case, ) converges nicely,
so we have not bothered to plot it. The figures presented here should be compared
with the ones in [2].

FI1GURE 3. P; for a true spike.

Definition 4. Let G; ., be the set of smooth solutions (@, P) to (2)-(3) on R x
S! with [ non-degenerate true spikes 1, ...,8; and m non-degenerate false spikes
15,00, such that
lim P, (7,6) = v (8),

T—00
for all 6 ¢ {6},...,0,,} and 0 < v, (f) < 1 for all 6 ¢ {64,...,6;}. Let G; . be the
set of (Q, P) € Gi,m such that

(23) /S PPy +¢7Q.Qu)i8 = 0.

Finally

g = U U gl,m; gc = U U gl,m,c-

1=0 m=0 1=0 m=0

Note that, except for the true and false spikes, the solutions have the property
that there are smooth expansions of the form (18)-(21) in a neighbourhood of every
spatial point.

Proposition 5. G ,, is open in the C* x C"-topology on initial data and Gy 1, . is
open in the C? x C'-topology in the subset of initial data satisfying (23).

Proof. The proof is to be found at the end of Section 10. O

Proposition 6. Given z € G ., there is an open neighbourhood of the initial
data for z in the C* x C° topology such that for each corresponding solution 2,
0< [l —v[2](0))? <1 for all 6 € S*.

Remark. Note that the solutions in the open neighbourhood have the property that
the curvature blows up everywhere on the singularity.

Proof. The proof is to be found at the end of Section 10. o
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Finally, let us state the properties of spacetimes corresponding to generic initial
data.

Definition 5. Let (M, g) be a connected Lorentz manifold which is at least C2.
Assume there is a connected C2 Lorentz manifold (M, j) of the same dimension as
M and an isometric embedding i : M — M such that i(M) # M. Then we say that
M is C?-extendible. If (M, g) is not C%-extendible, we say that it is C2-inextendible.

Proposition 7. Consider the set of smooth initial data S; p.. to (2)-(3) satisfying
(23). There is a subset G; . of S; p,c with the following properties

e G, is open with respect to the C* x C°-topology on Si p.c,

o cvery spacetime corresponding to initial data in G; . has the property that in
one time direction, it is causally geodesically complete, and in the opposite
time direction, the Kretschmann scalar Ry p,6 R*7° is unbounded along any
inextendible causal curve,

o for every spacetime corresponding to initial data in G; ., the mazimal glob-
ally hyperbolic development is C?-inextendible.

Remark. Any T®-Gowdy spacetime has the property that it is causally geodesically
complete to the future and each causal geodesic is incomplete to the past, cf. [21]
and Proposition 14.

Proof. Define G; . to be the union of the neighbourhoods constructed in Proposition
6 intersected with S; ;.. The first statement is immediate and the second statement
follows from Lemma 29 and [21]. Combining this with Lemma 30, we obtain the
third statement. O

1.7. Outline of the paper. In Section 2, we introduce the equations in the disc
model, the basic monotonic quantities and the terminology necessary in order to
obtain estimates for the derivatives. The reason for introducing the equations in
the disc model is to avoid the problems associated with false spikes. The impor-
tance of the different monotonic quantities cannot be over emphasized; they are the
heart of basically every argument. Furthermore, we generalize the solution concept.
To consider non-periodic solutions is natural in view of the fact that we wish to
apply the Gowdy to Ernst transformation, an operation which does not respect
periodicity. It is also natural to weaken the differentiability conditions if we wish
to prove that the generic set is open in C? x C'. In Section 3, we discuss suitable
topologies on the set of solutions and some properties of the generalized solutions
introduced in Section 2. The sort of properties we are interested in are continuity
properties with respect to the C* x C*~1-topology of the map taking initial data
at one hypersurface to initial data at another hypersurface. In Section 4, we give a
new condition on initial data yielding smooth expansions at the singularity.

After these preliminary observations, the heart of the paper consists of Sections
5 and 6. In these sections, we prove that the point wise limit of K exists. The
essence of the argument is to consider the solution in regions of the form Dy, , for
T > 19. There is a quantity, e”" Fp,, defined in Section 2, which dominates the
full energy density P + K, cf. (14) and (15), in Dy, , and which is monotonically
decaying. If the potential energy density is non-zero, this object decreases. On an
intuitive level, one then expects the potential energy density to converge to zero.
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In order to turn this intuition into a rigorous argument, it is however necessary to
have some bound on the variation of P in the regions of interest. The purpose of
Section 5 is to provide the necessary bounds. In the beginning of Section 6, we use
this to prove that P(r,6p e ") always converges to zero. One important property
of the equations is that if one wants to compute e~ " Fy, () using initial data in
Dey,r,, one only needs to have information concerning the initial data close to the
characteristics, i.e. close to (79,600 = e~ ™), as the difference 7 — 79 becomes large.
One thus expects the kinetic energy density along the characteristics to dominate
the limit of e™7 Fj,, since the potential energy density converges to zero along the
characteristics. In fact, it turns out to be possible to prove that the liminf of
the kinetic energy density along the characteristics dominates the limit of e™" Fy,.
These are then the necessary tools for proving the existence of the asymptotic
velocity, that the limit of P, exists etc.

The definition of the asymptotic velocity is by a point wise limit. However, it is
often of interest to have uniform control. How to go from point wise to uniform
limits under special circumstances is the subject of Section 7. This is not a com-
pletely trivial question, as can be seen by the fact that the potential energy density
converges to zero point wise everywhere, but in the presence of a true spike, it does
not converge to zero uniformly, cf. the discussion following Definition 3. Note that
if p/T converges uniformly, then vy, is continuous. In Section 7, we prove that if v
is continuous in some compact interval, then the convergence has to be uniform. In
Section 8, we introduce the Gowdy to Ernst transformation and combine it with
previously obtained results in order to conclude something about the existence of
asymptotic expansions when the velocity is not an integer. The reason one can do
this is that one can use the Gowdy to Ernst transformation together with an inver-
sion repeatedly in order to reduce this situation to the situation where the velocity
is strictly between 0 and 1, something we know how to deal with. If one is interested
in obtaining expansions in an interval where the velocity passes through an integer
value, one has to come up with a different argument. This is the subject of Section
9. In Section 10 we prove that the map from initial data to asymptotic velocity
under certain circumstances is continuous with respect to the C! x C°-topology of
initial data. We also prove that under certain circumstances, the map to the limit
of ) and the limit of Qg are continuous with respect to the C? x C'-topology of
initial data. Finally, in Section 11, we prove that if the asymptotic velocity at a
point 6y is not 1, then the curvature blows up along any causal curve ending at 6
on the singularity.

2. NOTATION AND MONOTONIC QUANTITIES

2.1. Notation. Since we shall be interested in the Gowdy to Ernst transformation,
which does not respect periodicity, and since we shall be interested in the continuity
of the map taking initial data at one point in time to another point in time with
respect to the C* x C*~1-topology, it is natural to extend the solution concept in
the following way.

Definition 6. Let Sj, where k € N U {oo} satisfies ¥ > 2, denote the set of
z = (Q,P) with z € C*(R?,R?) solving (2)-(3). Let S, be the subset of Sy
consisting of x that are periodic in € with period 27. If kK = 0o, we shall speak of
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S and S, and not of So and Sy o0. Given z = (Q, P) € Sp 2, let

(24) co[m] = /51 (P.,—Pg + eszng)de.

Note that this quantity is independent of 7 due to the equations. Finally, we shall
denote the set of z € S i, satisfying co[z] = 0 by Sp k- If k = 0o, we shall also use
the notation S, .

The main tool in the analysis consists of studying the behaviour of suitable objects
along characteristics. Let us specify the necessary terminology. For (@, P) € Sk,
define, for 0 < j <k —1,

Aji = %e’[(@TagP +e O P)? 4 2P (0,00Q £ eI Q)Y).

We also define Ay = Ap 1. Sometimes we shall need to refer to the particular
solution and for z = (@, P), we shall write Ay 4[z]. The important point is that

1 1
(25) (0 Fe TOy)AxL = ier(}C -P) = §(A+ +A_)—€"P,
where the potential and kinetic energy densities are defined by (14) and (15). In
order to obtain estimates for the higher derivatives, we shall need the following

computation

(26) (Or Fe 709)Ap,+ = Lipy+ + Lo p 4,
where
1
Lips = EeT{((‘)T@gP)Z — e T (OFTP)? + 2P((8,05 Q)% — e (85T Q)]}
(27) —e*PT (P, £ 7T Py)[(0,05Q)% — e (9,11 Q)]

+e*PT7(Q, £e77Qy)[(0,05P £ e "0 P)(0,05Q F e TOETQ)
—(0,0kPF e "0 P)(0,0Q £ e 75T Q)]

and
Lir = {0fl*7(QF e 7QP)] 27 (Q:0§0-Q — e T Qo0 Q)}
k—1
(28) (0-05P £ e P) + 0T Y ( ! ) [~205 9, P3}0.Q
=1

+2e 2T p T POLTLQ1(8,05Q £ e 7O Q).
If k£ < 1, the sum is taken to be zero. If I = [a, b] is a subinterval of R, let
Dr={(r,0) eR*:0€a—e ",b+e "]}

The definition if I is an open interval is similar. If T only consists of the point 6,
we shall also write Dg,, cf. Figure 4. Let

Dir=Ja—e ", b+e "]
We define Dy, similarly. Finally,

Fru(r) =3 sup Ais(,0).
+

€Dy~
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FIGURE 4. Depiction of Dy,. The horizontal lines yield Dy, .

If (Q,P) € S, and I = S' we shall use the notation Fj instead, and we define
F =Fy, Fr = Fro. If I = {6y}, we shall write Fp, instead of Fr. We shall say that
a function f : RZ2 = R converges to zero in Dy if

Tim || (7, )lco(,., 2) = 0.
2.2. Equations in the disc model. When considering the asymptotic behaviour
of solutions to (2)-(3), there are some technical complications that arise. These are
associated with the occurrence of false spikes and have already been addressed in

the introduction. One way around the problems is to consider the equations in the
disc model. The equation corresponding to (2)-(3) is

2T —27 29 _ 2z 2 _ —27|, |2
@ o () -0 () = ol <l

The easiest way to see this is to use the action

/ / [P? + 2P Q2 — =27 (P2 + 2P Q2)]dddr

in order to derive the Gowdy equations. It translates into

4|z [ — e=*"]z?)
// TSERE dodr

in the disc model. Note that the canonical map given by (11) defines an injective
and surjective map of solutions to (2)-(3) to solutions of (29), and we shall use this
map to identify solutions to the different equations. Thus, if we have a solution
z = (Q,P) to (2)-(3), and suddenly speak of z, we shall take it to be understood
that z = ¢rp o z, and vice versa. Furthermore, when we speak of solutions, we
shall take it to be understood that they are smooth unless otherwise specified.
One important isometry in the PQ-plane is the inversion defined in (9). One can
compute that this corresponds to the isometry —Z in the disc model, i.e.

(30) brp oTov o b (2) = —2.
We shall also use (p, ¢) as variables. They are defined by
(31) 2=z, p=In L+ 7|

1— |z
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Note that p is the hyperbolic distance from the origin of the disc to the solution.
In the end we are only interested in the absolute value of derivatives of ¢, and since

- (3)]
AN

it is clear that these make sense as long as |z| > 0. It is useful to keep in mind that
. 4)z-|?

32 2 +sinh® p¢? = ————

( ) pT +Sln p¢7’ (1_ |Z|2)2’

and similarly for the #-derivatives. It will be convenient to have the inverse of the

canonical map

2Imz
P)=[-——" —In(1—|z*) +2In|l —2|.
(3) (@.P) = [~ 15y gay ~ 10 = [#%) + 2In 1 2
Using the definition of p, this yields
(34) P=p—2In(1+|z]) +2In|l — z|.

Note that a problem arises if z roughly coincides with 1. This is associated with
false spikes.

2.3. Monotonic quantities. There are several monotonic quantities that are cru-
cial to the argument. Here we wish to define these quantities and specify under
what circumstances they are monotonic. Let us prove that the most fundamental
quantity, e~ 7 Fy, is monotonic. Due to (25), we have, for 7 > 79 and 6 € Dy ,,

AL(1,0) = Ai(10,0+e ™ Fe~ /[ w Fe Y0p) AL (u,0 e ™ Fe )du
< sup Ax(7,6 /Fz
€Dy )

Taking the supremum and adding the estimates, we get

(35) Fy(r) < Fi(m) + / Fy (u)du.
70

By Gronwall’s lemma, we get the conclusion that

(36) e "Fy(1) < e T F(10)-

Note that this inequality gives an apriori bound on P and K in Dy, for 7 > T,
where T' € R and I is a compact interval. In order to introduce another important
monotonic quantity, let us define

(37) Bs = %eT[(Pr C1xe P +P(Qr e Q).

Then

(38) (9 Fe "05)By = %f[(PT—l)Z—e?PQ’:‘ TR QY < (B4 ).
If we introduce

Z sup Bi(7,0),

0€Dy,-

and so on, we obtain, similarly to the above,

(39) Gr(t) < Gr(m) + /T Gr(u)du
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Consequently e~ "Gy is monotonically decaying. For z € S, we shall use the

notation Gp[z] if we wish to emphasize the particular solution. The analogue of F
in the disc model is given by

Filz](r) =2)_

C%(Dr,-,R?)

Note that the definition of Fr is geometric whereas the definition of G is not.
There are two more important quantities that are monotonic only under special
circumstances. For z € Ss, let

ACIOEESY

+

P 2
(PT - —+ e_TP9> +e2P(Qr e 7Qy)?
T

co (DI,T aR)

Then Hj[z] satisfies an estimate

(10) el < (1) mld)

for 7 > T, assuming 1 < P(s,0) < s—1for all s € [T,7] and § € Dr . This was
proved in Lemma 1 of [20]. For z € Ss, 2z = ¢rp oz, let

2z z 2e Tz
LI[Z ‘ T - =T
22 — 27 TIZI L= |2 llco(p, ., r?)
Then
T\ 2
(a1) Litn < (T) L)

assuming p(s,8) < s — 2 for all s € [T, 7] and § € Dy,;. A proof of this fact was
given in Lemma 5 of [20].

3. PROPERTIES OF GENERALIZED SOLUTIONS

In Section 2, we generalized the solution concept, and in this section, we wish
to write down the associated basic facts. The material is quite standard, but we
include it for the sake of completeness. As we shall not use it until Section 10, the
reader might want to skip this section on a first reading.

In order to be able to define a metric on C'"™-functions that are not necessarily
bounded, let

:iQ v W fllem (=172
] L+ ([ fllem (—1.0,82)

for f € C™(R,R?).
Definition 7. Consider z; € Sk, i = 1,2, where £ € N and ¥ > 2. Define, for
meN, m<Ek,and 7 € R,
dm, - (®1,22) = Dp[21(7,-) — 22(7, )] + D—1[21+(7, ) — 227 (7, -)]-
Ifz; €S,i=1,2, we define

oo

dr (21, 72) = doo,r (21, 82) = D 2 "y 7 (21, 22).

m=1
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Finally, we shall use the notation d,, = dy, 0 and d = dy.

Lemma 1. Let z, € S be a Cauchy sequence with respect to dpm -, for some
m <1 —1. Then z, is a Cauchy sequence with respect to dp, , for any 7 € R.

Remark. Note that m and [ are allowed to equal oco.

Proof. There are two cases to consider. Either 7y > 79, or 73 < 79. The cases are
rather similar, but since we shall study the former case quite extensively in what
follows, let us only consider the latter. Let I = [0y, 65] be a compact subinterval of
R and assume for the moment that m is finite. Let

Dinr=[01+e " —e ™ b0—e " +e "]

for all 7 € [y, 7). Define

Frp k[2)(7) =Y Ak £[2](r, oo, o, o R)-
+

For k = 0, we shall speak of Fr ., and not of Fr 9. Due to (25), we have, for
T € [Tl,T(]] and @ € DI,T1,T:

As(r,0) = As(n,0+e ™ Fe )

7o
—/ (Or Fe °0p)Asr(s,0 £ e ° Fe T)ds

1 [
< ”A:I:(TO,-)HC’U(DL,.L.,.O,R)+5/ Fr ., (s)ds.

Taking the supremum over Dj ., , and adding, we get

T0
&Aﬂsmmmﬂj"mm@w
T

By a Gronwall’s lemma type argument, we get
eTFI,n [mn](T) < eTOFI,n [mn] (TO)

for all 7 € [m,79]. Since z, is a Cauchy sequence with respect to di r,, the right
hand side is uniformly bounded in n. Due to this we have uniform bounds on P,,
P9, e Q,, and e Q.4 in the set

DI,[Tl,To] = U {8} X D17y,

s€[T1,70]

cf. Figure 5. Since we have uniform control of P, in {70} X Dy 5, =, this control

can be used to first get control of P, and then (),, and its first derivatives uniformly
in Dy (7, 7,]- Let us make the inductive assumption that we have bounds on up to k&
derivatives in Dy [, ] uniformly in n. Due to (26) and the inductive assumption,
we can carry out an argument as above in order to get an estimate

70

Fiir alonl(r) < Fi aleal(m) + [ Ot alonl(s) + CeF}2 ilan(9)}ds,

T
for all s € [, 9], where C}, is independent of n, but is allowed to depend on 7, and
To- Using this estimate, a Gronwall’s lemma type argument and the fact that we
have bounds independent of n for 7 = 79, we get bounds on up to k + 1 derivatives
in Dy [7,,7,] uniformly in n. Since z, is a Cauchy sequence with respect to dpm, r,,
we thus get bounds on m derivatives of x, in Dy [, -, uniformly in n. Strictly
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FIGURE 5. Depiction of Dy [, ;- The horizontal lines yield Dy ., ;.

speaking, we have only obtained estimates for expressions hit by m derivatives
including at most one time derivative. This can however be remedied by using the
equations.

The equations (2)-(3) can be written z,, — e 2"zgg = J(1, 7,29, ,) for some J
which is smooth in all its variables. Let £ = z,, — x,, for some nq,n2 € N. Note
that

1
Trr — 6727—.’290 = / as{J(T, STy, + (1 - 3)$n1:$n29:w"27')}d8
0
1
+/ Os{J (T, Zpy, 5%ny0 + (1 — 8)Zny0, Tnyr) pds
0

1
+/ as{J(T; TnysTni6 STnor + (1 - S)mm‘r)}ds'
0

If we differentiate this equation k& — 1 times, where k < m, the right hand side
consists of terms that can be bounded by

k k—1
Cr Y _1032| + Cr Y _ 1050, 4|
7=0 7=0

in Dy [7,7,], where the C}, are allowed to depend on 79 and 7, but not on n. Letting

)

1o 1.
Bry = §|8§(x7ie .’12'9)|2+§|.’E|2,

k
Frok(r) = ZZHBl,ﬂ:(ﬂ')||00(D1,,1,,,R)-

=0 =+
we get for 7 € [m, 7], k> 1and 8 € Dy r, 7,

k k—1
(ar + 67T89)Bk71,:|:(7—: 0) < G Z |6§£'|2(7—7 0) + Ck Z |8ga'r:i'|2(7—a 9)
j=0 j=0
< CpFropa(7).

By an argument similar to the one proving the uniform bounds on the derivatives,
we get

A~ A TO A
Froo—1(17) < Frr k5—1(10) + Ck/ Frr k—1(s)ds.
T
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By this inequality and a Grénwall’s lemma type argument, we get the conclusion
that [z, (71,), Tnr (11, )] is a Cauchy sequence in the C™ x C™~!'-norm on I. Note
that we assumed m to be finite. However, due to the construction of d., it is
enough that we have convergence in any C™-norm with m finite on any I in order
to get the desired conclusion for m = co. The lemma follows. |

Corollary 1. Let (f,g) € C*(R,R?) x C*1(R,R?) for some k > 2. For any
10 € R, there is a unique solution (Q,P) = z € C*(R?,R2) to (2)-(3) such that
z(70,-) = f and z.(70,") = g.

Proof. Let us first prove that we have global existence for smooth initial data. Let I
be some compact subinterval of R and let ¢ € C§°(R, R) equal 1 on I. Consider the
initial value problem with (f, g) replaced by (¢f, ¢g). In this case one can bound
any C* norm of the solution on any compact time interval using estimates similar to
the ones in the proof of the previous lemma. Thus one gets global existence for the
modified data. Letting the interval tend to R, we get global existence for smooth
data due to how the domain of dependence looks. For initial data in C* x C*~!,
we get the desired conclusion by approximating with smooth data and using the
proof of the previous lemma; by the proof, we get convergence in the C*-norm with
respect to space and time in regions of the form Dy [, ;. and similarly to the future
of 79. Uniqueness follows by an argument similar to the end of the proof of the
previous lemma. O

Note that if we give the subsets Spx C Sk and S, C S the induced topology, we
get the same topology as if though we had used the C* x C*~! topology on initial
data on the circle in the former case, and the C'"*° topology on initial data on the
circle in the latter case.

4. EXISTENCE OF EXPANSIONS

As was mentioned in the introduction, there are several conditions on initial data
that lead to the existence of asymptotic expansions of the form (18)-(21). The first
condition appeared in [19] and the second in [20]. The first required 3 derivatives
in L2, but the second only involved up to 1 derivative in C°. However, the second
condition involved P/7. It would be more natural to have a condition that only
involves P,,e""Py,ef’Q, and e©~7(Qy. In this section we provide such a condition.
Beyond being the most natural of the conditions on initial data, another advantage
of it is that the proof is the easiest. The existence of the monotonic quantity e~" F
has been known for a long time, but the existence of the monotonic quantity e "Gy
is, as far as we are aware, a contribution of the present paper. When one has this
additional monotonic quantity, the task of providing a condition on initial data that
leads to the existence of asymptotic expansions becomes much easier. Recall the
notation introduced in Section 2.

Lemma 2. Let (Q,P) € S and I be a compact interval with non-empty interior.
Assume that for some 79 and 0 < a < 1,

(42) max{e”™Gr(10),e " Fr(19)} < (1 — @)
Then
(43) a< P (r,0) <1—q
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for all T > 19 and 6 € Dy ;. Furthermore, if

(44) ’YSPT(T(LQ)SI_’%
for some 0 <y <1/2 and all 6 € Dy ;,, and
(@5) e B + 267 (@Q2 + Q] (70, oy .y S

then there is an 0 < a < 1 satisfying (42). Finally, if (43) is satisfied, there are
Va, §,q,7 € C°(I,R), with 0 < a < v, <1—a <1 such that (18)-(21) hold.

Proof. Once one has (43), the conclusions (18)-(21) follow by Proposition 3. What
we need to prove is thus that (42) implies (43) and that (44) and (45) imply (42).
Let us start with the first implication. By the arguments presented in Section 2,
e "Fr(r) and e""Gy(7) are monotonically decaying with time. For all 7 > 79, (42)
will thus be satisfied with 7y replaced by 7. Thus
|P-(1,0)| < e ™?F*(r)<1—a and |1-P(r,0)| <e2GY*(r)<1-a,
for all 7 > 79 and all 8 € Dy ., so that (43) holds. In order to prove that (44) and
(45) imply (42), let us first note that
e~ | Py(70,9)|, | P-(10,0)|,|1 — Pr(70,0)] <1

for all 6 € Dy, due to (44) and (45). Estimates of the form ab < (a? + b?)/2 and
a? < |a| for |a| < 1 then yield the conclusion that

2e7™ sup Bi(1o,6)

€Dy, 7

< sup (Pr—1)%(r0,0) + sup [3e7|Py| + 2e>7(Q2 + e7*™Q7)] (10,0)
0€Dy,x 0€Dy, 7

< 1=+

Adding the two inequalities, we get
e Gr(r) < 1—v++2

The argument for e~ Fy(7y) is identical if one replaces P —1 with P,. The lemma
follows. =

5. HIGHER ORDER DERIVATIVE ESTIMATES

The main result of this paper is Theorem 1. It may seem a bit technical, but once
one has the ideas needed to prove it, the rest more or less follows automatically.
The main point of the argument is to study the behaviour of the solution in regions
of the form Dy,. One observes that e~" Fp, decays and that, on an intuitive level,
if the potential energy density (14) does not converge to zero, it should in fact tend
to —oo. One problem with turning this intuition into a rigorous argument is due
to our lack of knowledge concerning the variation of the potential energy density in
regions of the form Dy, .. Without some apriori control of this variation, it would
be impossible to do anything. Fortunately, one can obtain such control by what is
reasonably standard arguments, and this is the subject of the present section.

Consider (26). Note that whenever squares of the highest order derivatives appear,
the form of the corresponding expression is such that we can integrate partially when
integrating along the characteristic (7,60 = e~ ") and in doing so obtain terms in
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which the highest order derivatives only occur with the power one. This observation
is essentially all that is needed in order to prove the following lemma.

Lemma 3. Let (Q,P) € St and let I be a compact interval. Then for 7 > 0
and k<m—1,

1(0-05 P)* + e 2" (85 P)? + €*F[(8,05Q)* + e’2r(8§+1Q)2]||Co(DImR) < Cre®k.
Furthermore, if P converges to zero in Dy, then

e 27 {(8,0E P)? + &7 (95T P)? + €2P[(8,05Q)? + e~ (951 Q)2]}
converges to zero in Dy for 1 <k <m —1.
Remark. Note that as a consequence, if for some integer k > 1, P(1,60p) — kT — o0
as T — 0o, then (9¥Q)(7,6o) tends to zero as 7 tends to infinity.

Proof. By (36), the lemma holds for £ = 0. The argument proceeds by induction. In
order to deal with the two situations simultaneously, let us introduce the notation

k-1
hi(r) = P ) looy . + Y e 2 T(0-04P) + 7?7 (95 P)?
=1

+e27(0:05Q)% + ¢ (95 Q) llco (.. )

When k < 1, we set the sum to be zero. The inductive assumptions are either that
hy is bounded or that it converges to zero, for some k > 1. We have, for 8 € Dy .,

(46)  Apa(r8) = Apslye(ro)] + / (B F 90 A ]re (w)]du,

where
v+(u) = (u,0 e ™ Fe ).
Let us use the notation fi = f o4, and note that

(47) Oufr = [(Ou F e “0p) f]+-

Consider I; i+ o y+. All the terms that appear can be written in the form

hi[(Oy £€7"0p) f1]+0u fox

for some functions h, fi, fo. Compute

[ {010+ 700 1200 o5} i

(48) < {h+[(Ou £e "0p)fi]lxfox}r, — /T{auhi[(au + e ") f1]+ fox H(u)du

70

_ / (hi[(Bu F € "5) (B £ € 8p) filw fou }(u)du.
T0
The possibilities for f; are OF P and 9¥Q. Note that
[e%/2(Dy £ € “0p) O Ple] + [P/, + e “8p) QL] < FyY (u),
and that

I[e*/20f P+ | + |[eP /205 Q1| < Chy/* (u) exp Kk + %) u] :



22 HANS RINGSTROM

The possibilities for h, up to a numerical factor, are
eu7 €2P+u, e2P+u(Pu + e—upe)7 62P+u(Qu + e—UQ0)7
and the corresponding bounds for |9, h| are

Ceu7 C€2Pi+u, 062Pi+u, CePi+u7

respectively, where we have used (47), (2)-(3) and the fact that P and K are bounded
due to the zeroth step of the induction argument. The first two terms on the right
hand side of (48) can thus be estimated by

6 + Guew|(k+3) 7 WPWRLO

+ Ck/ exp [(k + %) u] h;ﬂ(u)FIl’/,f(u)du.

70

Consider the third term on the right hand side of (48). Note that
(49) (OuFe “09)(0ute “Op)fr =02f1 —e 2“3 fr Fe “Opfr.

The term arising from e “0Oyf; can be estimated similarly to the above. What
remains of (49) amounts to applying 05 to (2)-(3). If all the k derivatives hit one
P.,Q., Py or Qg-factor, we get the same estimate as above. All other terms are
bounded by

Ch / " expl(2k + 1)l (w)du,

0
if we assume that hy is bounded. Thus

/ Iikx (4,0 £ e *)du < Ci + C exp [(k + %) T] /2 () FE ()

0

+Ch / ’ [exp[(Qk + 1)u]hi(u) + exp [(k + %) u] hy? () Fy} (u)] du.

0

The argument concerning I j, + is more straightforward. Assuming hy, is bounded,
we get

1
Fiar) < Ot Guemp | (k4 3) 7| 7 OREE)

(50) + Ci / [exp[(Zk + 1)u)he(u) + exp [(k + %) u] hy/? () Fy e (u)] du.
Note that
Ciexp [(k + %) T] WA ) < SFra(r) + 5 CF expl(2h + 1l (r),
so that (50) implies
Frp(r) < Ck+ Crexp[(2k + 1)7]hy(7)
(51) + C /T [exp[(Zk + 1)u]hi(u) + exp [(k + %) u] hy? () Fy? (u)] du.

Using this and the assumption that hj is bounded, one can conclude that hgy; is
bounded using a Grénwall’s lemma type argument. Let us assume that hj converges
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to zero as T — 00. Let € > 0 and assume that 7y is big enough that Cjhy, Ckh,lv/2 <
€/2 for all 7 > 79. By the above, we then get

Fr (1) < Ck + €exp[(2k + 1)7] +/ €exp [(k + %) u] F}7/192(u)du.

To

Denote the right hand side by g. Note that eexp[(2k + 1)7] < g and estimate
1
(2k + 1)eexp[(2k + 1)7] + eexp [(k‘ + 5) T:| g'/?

{(2k+ 1)e'/2 exp Kk+ %) r] + eexp [(k-i— %) r] }g1/2.

We conclude that

2 1
291/2(7-) < 2g1/2(7'0) + [251/2 + Y 1e:| exp [<k+ 5) T] .

!

9

IA

IA

Thus
1 €
limsupexp |— k—|——)7’] 2(7) < /2 4 .
m Sup exp [ ( 5)T|9 () < 1
The lemma follows. O

Corollary 2. Let (Q,P) € S and I be a compact interval. Then, for 7 > 0,

”PTT”CO(DI,T,R) + ”ePQTT”CO(DI,T,R) <C

and
18- £ € 709)(e " Pa)llco(p, . ») + 18- £ € 70p)(e” " Qp)llcopy,, m) < C-

Proof. The statements follow from Lemma 3 and (2)-(3). O

6. EXISTENCE OF AN ASYMPTOTIC VELOCITY

As has already been observed, e~ " Fy, is decaying, and the essence of the proof of
Theorem 1 is to analyze the corresponding estimates in detail. There are two things
that cause decay. The first comes from a non-zero P, as has already been observed.
The second comes from the fact that if one wants to compute A in a region Dy,
by integrating along characteristics from Dy, ,,, one only has to integrate along a
neighbourhood of the characteristics (7,00 £ e~ "), and this neighbourhood shrinks
to the characteristics as the difference 7, — 79 tends to infinity. This can be used to
translate bounds on the energy density along the characteristics to bounds inside
the entire region. Note that the concentration of information to the characteristics
is extremely important. The estimates proved in Lemma 3 yield the conclusion
that e 70yP, e "9yK are bounded. Thus the variation of P and K is bounded in
regions of the form Dy, .. Since we already know that P and K are bounded, this
information is not very useful. However, the point is that we only need to analyze
the variation in regions which are arbitrarily small multiples of e~", and in such a
situation the bounds obtained by Lemma 3 are exactly what we need. Let us be
more precise.

Lemma 4. Let (Q,P) € S, 6y € R and 7 > 79. Then
(52) eiTFgo (7') < 67T0F90 (7'0) - Dp - DL,
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where

Dp = Z inf /e“_TP(u,Qj:e_“:Fe_T)du,

+ 0€Da - 70

D, = e7

Fyy(r0) = > sup As(r,0+e ™ Fe ")
~ 0Dy,

Remark. The term Dp represents the decay we get if P does not go to zero along the
characteristics. The term D, represents the decay resulting if the energy density
away from the characteristics is bigger than the energy density along the charac-
teristics. The £ stands for localization.

Proof. Let 8 € Dy, . By (35),

Fyo (1) < Fyo(10) + /T Fp, (u)du.

Denoting the right hand side by h(7), we get the conclusion that A’ < h. As a
consequence

h(r) < e""™h(1g) = e" "0 Fy, (10)-
Thus

(53) Fy (o) + / Fi (3)ds < Fy, (r0)e™™
70

for all 7 > 19. However, if 8 € Dy, ., then by (25),

T

1
Ai(r,0) = As(n,0te ™ Fe ")+ / §(A+ + A ) (u,0 e " Fe T)du

70

- / e*P(u,d e ™ Fe ")du

0

1 T T
< sup  Ai(70,0") + = / Fy, (u)du — / e“Pu, e Fe )du
0"€Dg,rq 2 7o 7o
—[ sup  Ai(70,8") — Ax(r0,0 £e ™ Fe 7).
9’€D00,‘r0

Taking the supremum over 6 € Dy, ., adding and using (53), we get the conclusion
of the lemma. O

Let us demonstrate how this estimate can be used to prove that the potential
energy density has to decay to zero along characteristics. In the end we want a
lemma, which can also be applied to prove uniform convergence. For this reason,
the statement is more technical than needed for the immediate applications.

Lemma 5. Let (Q,P) € S. Assume there is an € > 0 and sequences 0,,u, € R
with {0,,} bounded and u, — oo such that

(54) P(un,bn +e7 ) >e€ or Pup, b, —e ") >e
Then there is an 1 > 0 and a sequence 1,, > u, such that

(55) e ™ Fy, (tn) < e " Fy_ (uy)—n.
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Proof. Let I be a compact interval containing the sequence {6,,} and let T' € R be
such that u, > T for all n. By Lemma 3 and Corollary 2, there is a constant C' > 1
such that

(56) 1(6- + €77 05)P(7, ooy . &) + le77 0P (T, )llcopy, . 1) < C

for all 7 > T'. There are two cases to consider, but they are rather similar, so let
us assume that the first of the two inequalities in (54) is the one that occurs. Let
us use the notation P, () = P(r,6, + e~ 7). Note that for 6§ € Dy, .,

0+e ™ —e 7 —(Op+e )| <277
By (56), there are constants C; > 1 such that
[P(u, 0 +e % —e ) —Pp(u)] < Cre* ™1, |Pu(s2) — Pnls1)| < Calsa — s1],

for § € Dy, 7, 7> uw and u, 51,50 > T. Let 0 < 6 <1 and 7, > u, + 1 be defined
by
_ € tnetn _ €
025 = 4, Cle 4,
where we have assumed € < 1 for simplicity. Then P, (u) > 3¢/4 for u € [up, u, + 4]
and .
Plu,0+e ™ —e ™) > 2
for all (u,8) € [up,un + 8] X Dy, 7. Combining this with (52), we get
32C,Cy°
We get the conclusion of the lemma with n = €2/(32C1C5). O
Corollary 3. Let (Q,P) € S and 6y € R. Then

lim P(r,6p +e™7) =0.
T—00

¢ T Fy, (ra) S € "y, (un) — o6 = e " Fy, (un)

Proof. Let us assume that P(7,6¢ + e ™) does not converge to zero. Then there is
an € > 0 and a sequence u,, — oo such that the conditions of Lemma 5 are fulfilled
with 8, = 6. Since e~ Fy, () is monotonically decaying and bounded from below,
it converges to some v > 0. By letting n tend to infinity in (55), we thus get
v <« —n for some n > 0. O

Next, we prove that the kinetic energy density along the characteristics controls
the limit of the energy density. Again, we make a technical statement suited for
later applications to uniform convergence.

Lemma 6. Let (Q,P) € S. Assume there is an € > 0 and sequences 0,,u, € R
with {0,} bounded and u, — oo such that

(57) e " Fy, (un)—K(un,0n+e ") > € or e “"Fy (up)—K(un,bp—e ") > e

Furthermore, let us assume that P converges to zero uniformly along characteristics
ending at 0, by which we mean that for every & > 0 there is a T such that

P(r,0, £e™ 7)< ¢

for all T > T and all n. Then there is ann > 0, a subsequence u,, and a sequence
Tg > Up, Such that

e ™ Fy, (te) <e " Fy, (un,) — 0
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Proof. There are two cases to consider, but since they are rather similar, let us
assume that we have the first of the two inequalities in (57). Let I be a compact
interval containing {#,} and let T' be such that w,, > T for all n. By Lemma 3
applied to I, there is a constant C; such that

(58) e AL (up,0 e " Fe ™) —e " AL (uy, b, £ e )| < Cre* 7,

assuming § € Dy, and 7 > u,. Since P converges to zero uniformly along char-
acteristics ending at 6,,, there is, for every £ > 0, a T" such that

(59) le”"TAp (T, 0, e ") —e T TA_(1,0, L) <&

for all 7 > T and all n. By choosing a subsequence if necessary, we can assume
that either

1
(60) e "r A (una 0n — e—un) > Ee_u" Fy, (un)

for all n, or that the opposite inequality holds for all n. The idea behind making
this division is the following. If the opposite inequality to (60) holds, we should
be in good shape, since e “» A (uy, 8, + e “~) satisfies this sort of bound with a
margin, due to the assumptions; note that

e Ay (tn, B + €)= %K(un, 6, + e ")

can be assumed to be arbitrarily small by assuming n to be large enough. If (60)
holds, then due to (59), the difference between the supremum of Ay (uy,-) over
Dy, u, and A4 (up, 0, + e ™) is some positive number depending on e. This also
yields decay.

1. Assume that (60) holds for all n. By (59), we then conclude that for n big
enough,

1 €
e n A+(un70n - e—un) > Ee_u" F, (un) - E;
so that )
— _ €
e”" sup Ai(up,0) > 56 “r Fy, (un) — 16°

0€Do,, un
Let 7, > uy, be such that Cie¥»~™ = ¢/8, and assume n to be large enough that

1
e " Ay (up, b +e ") < 56_“" Fy, (upn) — 2

This is possible by the assumptions and the fact that P converges to zero uniformly
on characteristics ending at 6,,. Then, due to (58),

1
sup €U Ay (un, 0+ ¢ — 7)< ceU Fy (un) — <.
0€Dg,,,rp 2 8
We get
e " Fy (up) — Z e " sup As(up,0te " Fe ™)
¥ 0€Deo,,

€
> e " sup Ai(up,0)—e ™ sup Ai(up,0+e " —e ") > —.
0€Doy,un 9€Ds,,rm 16

Combining this with (52), we get

e ™ Fy (1) <e “Fy (up)—e" T < i
n Tn n n) — n no___ — .
fn\in) = . 128C;

6= e Fy, (un)
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The lemma, follows under the present assumptions.

2. Assume that the inequality (60) does not hold for any n. Let 7, > u, be such
that Cie"» ™ = ¢/16 and assume n to be big enough that

1
e " Ay (up,80, +e ") < 56_“" Ey, (upn) — i

Then, using this, (58) and the negation of (60), we get, for n large enough,

e Fy, (un) =Y € sup Ax(un,fFe " Fe ™) > <
+

0€Ds,, vn -8
Thus
€ €
e ™ Fy (1) < e " Fy_ (un) —e*7" 3= e " Fy, (un) — 128G,
The lemma, follows under the present assumptions. O

Corollary 4. Let (Q,P) € S and 6y € R. Then

lim e~ " Fy, (1) = min{liminf X(7,6¢ + e~ "), liminf KX(7,80 —e™7)}.

T—00 T—00 T—0Q
Proof. Let us denote the left hand side by 7y and the right hand side by 6. We know
that v > §. Assume that § < . There are again two similar cases to consider. Let

us assume § = liminf, ,, K(7,00 + e 7). Then there is an € > 0 and a sequence
u, — 0o such that

e " Fy, (up) > Tli_)rrgo e "Fy, (1) > K(upn,00 + e %) +e.
By Corollary 3, Lemma 6 is applicable with 8,, = 6. We obtain an n > 0, a
subsequence u,, and a sequence 7 > Uy, such that
e T Fpy(1i) < € "k Fyg (tn,) — 1.
Letting k tend to infinity in this inequality, we obtain v < v — 5 for some > 0. O
Proposition 8. Let (Q,P) € S. Then

Jim [IP(7, ) lloo(py, vy = 0

Proof. Assume the contrary. Then there exists an € > 0 and (7,,,6,), n > 1, with
6., € Dg,.r, and 7, — oo such that P(7,,0,) > e. By choosing a subsequence, we
can assume that 8, > 8y or the opposite holds for all n. Assume the former. Let

1
Sp=—1n i(e*“‘ + 6, —6p)

We are interested in
Upr=1[0p—€e " +e ™,00+e "]

for 7 € [Ty, spn], cf. Figure 6. Note that U, 5, consists of a point and that we can
assume

0n — 00 < (1—20)e" ™,
where § > 0 depends on €. The reason for the latter is that P(7,6¢+e~ ") converges
to zero and that e~ 795 P is bounded. We conclude that

(61) —In(1-46) <sp—7, <In2.
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FIGURE 6. Depiction of the union of the U , with §; =8y = 0
and " = 1.

Let
H,(r) = Z sup A+ (7,6).

T 0€Un, -

By an argument similar to the derivation of (52), we have

(K +P)(sn,60 +€ ) <e ™Hp(r,) — / ’ e* " P(u,l, —e ™ + e ™)du.

Tn

Due to (61), the fact that P(7,,60,) > € and the fact that (9, +e~70)P is bounded,
we conclude the existence of an n > 0 depending on € but not on n, such that

(P+K)(sn,00 +e ") <e ™Hp(m) — 0.
Note that e~ " Fy, (1) converges and denote the limit by . Then

limsupe ™ Hp(m,) <7 and limsup K(sp,00 +e°") <v—n.

n—oo n—o0

Combining this with Corollary 4, we get a contradiction. The case 6,, < 6y for all
n is similar. O

Corollary 5. Consider (Q,P) € S and let g € R. Then

Jim e T||PZ + e ¥ Py + P (Q2) + e 27 Q4p)lco(ps, . &) = 0-

Proof. This is a direct consequence of Lemma 3 and Proposition 8. O
Corollary 6. Let (Q,P) € S and 6y € R. Then
(62) Tli}nolo K(1,60)

exists, and we denote the non-negative square root of the limit by vo(6). Further-
more

(63)  lim e TFy,(r) = v%(6) and [IC(r, ) = v (80) ooy, =) = 0.

Finally, the function vy s semi continuous in the sense that given 6y, there is for
every € > 0 a 6 > 0 such that for all 6 € (6 — 6,00 + 6),

(64) Voo (0) < vou(Bo) + €.
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Remark. If we wish to make the dependence on the solution explicit, we shall use
the notation veo[2] or v [z] for z € S.

Proof. First of all, the limit of e”"Fy,(7) exists, since this quantity is monotonic
and bounded from below. We define v (o) to be the non-negative square root
of the limit. The first of (63) follows. Due to Proposition 8 and Corollary 5, the
variation of e~". A4 inside Dy, , converges to zero. Consequently

e "Fp (1) —e T (A + A ) (1,00 +€77)

converges to zero. Since e”" (A4 +A_) = P + K and we have Proposition 8,
K (7,00 + e~T) converges to v2 (f). Since the spatial variation of K inside Dy, .
converges to zero due to Proposition 8 and Corollary 5, we conclude that the limit
(62) exists and that the second of (63) holds. In order to prove the semi continuity,
let € > 0. By (63), there is a T such that

_ €12
e TFgo(T) < [Uoo(eo) + 5] .
By continuity, there is a 6 > 0 such that
e TFr,(T) < [voo (60) + €],

where I5 = [0y — 6,00 + 6]. Since e "Fp,(7) is monotonic, we get the desired

conclusion. m|
Proposition 9. Consider (Q,P) € S and let 8y € R. Then
(65) lim P, (7,6o)
exists and equals v (00). Furthermore
(66) lim (¢7Q,)(r, 00) = 0.
T—00

Remark. Due to Corollary 5 and Proposition 8, the variation of P, and ef'Q, in
sets of the form Dy, . tends to zero.

Proof. Consider
f(r) = (Pr+e "Rp) (1,60 + 7).
Let
a =liminf |f(r)|, § = limsup|f(r).

T—00
Assume a < 3. Then there must be a sequence 7, — oo such that |f ()| = o and
f'(m) < 0. Since
fl — PTT _ e*‘rpo _ 672TP99 — €2P(Qz _ 6727'@5) _ eiTPg,

we conclude that K(7x, 00+ e ) converges to a? due to Corollary 3. By Corollary
4 we get a contradiction to a < 8. We conclude that the limit (65) exists, due to the
fact that the variation of P, inside Dy, , tends to zero. If eP’Q, does not converge
to zero, we conclude that f' does not converge to zero since P(7,0p +e~7) — 0.

Since f" is bounded we conclude that f cannot converge. Thus (66) holds and the
limit (65) has to be +v(6p) due to Corollary 6. O

Lemma 7. Let (Q,P) € S and 6y € R. Assume that P.(7,60) — —vs(80) and
that v (6g) > 0. Then, if (Q1, P1) = Inv(Q, P),

-rli{r;o Plr(Ta 00) = 'Uoo(HO)a Tlgrgo Ql(T; 60) =0.
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Proof. By Proposition 9, we know that Py, (7,60p) converges to £v.(6g). Let us
call the limit . Note that P;(7,8p)/7 also has to converge to a. Since P(7,6p)
tends to —oo and
-P

P _ € <

- Q2 + e 2P —
we conclude that the right hand side converges to zero in 6y. Consequently, a must
be positive, and the first conclusion of the lemma, follows. Since

e e

Q
= ozg e
the second statement follows from the fact that P(7,6p) tends to —oo. O

Corollary 7. Consider a solution z to (29) and let 6y € R. Then

(67) lim 200%) _ voo[#](6o),

T—00 T

where p is defined in (31) and (Q,P) = z = ¢g}, 0 2.

Proof. By (32) and Corollary 6, we conclude that if veo[z](6g) = 0, then p.(7,80)
converges to zero. Consequently (67) holds in that case. Assume that ve(fg) > 0.
By applying an inversion, if necessary, we can assume that P,(7,6p) converges to
Voo (bp). Note that applying an inversion does not affect p, cf. (31) and (30). We
know that P(r,6,) converges to infinity linearly and since e”’Q, is bounded due to
Lemma 3, we conclude that () converges to some go. Thus ¢rp(Q, P) converges to
some zp, with |z9| = 1 but 29 # 1. Consider (34). We know that if we divide the
left hand side by 7 and compute the limit, we get vo(fg), and on the right hand
side, all the terms except p/7 converge to zero; for the second term on the right
hand side of (34), this is clear since it can be bounded by 21n 2/7, and for the third
term, this follows from the fact that |z| converges to 1, but —2Rez converges to
—2Rezg > —2. The corollary follows. O

Corollary 8. Consider a solution z to (29) and let 6y € R. If voo(69) > 0, then
Poo(bo) = lim 2(7,60)

exists and |poo (6o)| = 1.

Proof. We know apriori that

2
sinh? p

()

is bounded. By the assumptions, sinh p tends to infinity exponentially. Conse-
quently z/|z| converges exponentially. On the other hand, |z| converges exponen-
tially to 1. O

Definition 8. Consider a solution to (29) with # € R. Then the function v from
R to R? is defined to be

v(0) = Poo(B)veo (),
for veo () # 0 and to be 0 if vo(6) = 0. If we wish to make the dependence on the
solution z explicit, we shall use the notation v[z] or v[z] for z € S.
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Lemma 8. Consider a solution z to (29) with @ € R. Then, for all § € R,

lim [iﬁ] (1,0) = v(6).

|2| T
Remark. There is no problem in defining zp/|z|, since
1. 14|z
— In
lz] 11—
can be considered to be a real analytic function from the open unit disc to the real
numbers by defining its value at the origin to be 2.

Proof. If v, (6) = 0, then the statement is obvious. If vy () > 0, then p(7,8)/7
converges t0 v (0) and z(7,6) converges to v, (8). Since |z(7,8)| converges to 1,
the lemma follows in this case as well. O

Proof of Proposition 3. By Theorem 3 of [20], we get the conclusion of the proposi-
tion. In fact, the statement of Theorem 3 does not completely suffice; it only gives
the existence of an isometry such that one obtains expansions in a neighbourhood.
Here we claim that it suffices to use an inversion. However, going through the proof
of Lemma 6 of [20], keeping (30) in mind, one sees that the isometry can be chosen
to be an inversion. O

7. UNIFORM CONVERGENCE

Let us consider a situation in which vy, is continuous in a compact set. We here
wish to prove that under this assumption, it is possible to go from point wise to
uniform convergence.

Lemma 9. Consider (Q,P) € S and assume that v is continuous in a compact
set K. For every n > 0, there exists a T and open intervals I, ..., I, such that K
is contained in the union of the I; and if ; € ;N K and T > T, then

e TFr, (1) < 03 (0:) + 1.

Proof. Let n > 0. For every 8 € K we can choose a Ty and an interval Iy containing
0 in its interior such that

e TFy, (1) < 0% (6) + /2

for all 7 > Ty. For Iy = {6}, this follows from (63), with an even better constant.
At Ty, one can then increase Iy to some interval containing 6 in its interior by
continuity. The rest then follows from the monotonicity of the left hand side.
Decreasing the interval, if necessary, we get

e T Fy, (1) <3 (0') +n

for any 6’ € Iy N K, due to the continuity of vs. The interiors of the I form
an open covering of K and this covering has a finite sub covering, say Iy, , ..., Iy, .
The desired T is then given by T = max{Ty,, ..., Ty, } and the I; are given by the
interiors of the Iy,. O

Proposition 10. Consider (Q,P) € S and assume that ve s continuous in a
compact interval K = [0_,0,]. Then

Jim [|P(7,)llcopi - &) = O-
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Proof. The argument is by contradiction. Assume there is an > 0 and a sequence
(Tn,0n) with 7, = o0, 6, € Dk, and P(7y,60,) > n and let 8, = 6, —e ™.
By choosing a subsequence, if necessary, we can assume that 6, — 6,. Since
P converges to zero in Dy, , only a finite number of (7,,6,) can belong to Dy, .
Consequently, 8, € [_ + e~ ™, 0, — e ™] for n large enough, so that 8/, € K and
Voo (0!,) = voo(84) by the assumptions of the proposition. Given £ > 0, there is a
T and open intervals Iy, ..., I, as in Lemma 9. There is an ¢ such that 8, € I; and
for n great enough, we must have 6/, € I;. By Lemma 9, we thus have

e Fyr (1n) <02 (0s) + €
for n large enough. Since £ can be chosen to be arbitrarily small, we get

(68) limsup e~ ™ Fyr (15,) < v (6%)-

n—oo

Since P(1,,0!, +€~™) > 1, we can apply Lemma 5 in order to obtain an € > 0 and
a sequence u, > T, such that

e_“"ngn (un) < t’:‘_T"F.%L (Tn) — €.

By (68), the right hand side is bounded by v2 (6.) — € in the limit. The left hand
side, on the other hand, bounds v2 (6!,), which converges to vZ (6.). We have a
contradiction. O

Proposition 11. Consider (Q,P) € S and assume that vy is continuous in a
compact interval K = [0_,0,]. Then

Tlggo IK(r,-) — vgo”CO(KR) =0.

Proof. Due to Lemma 9, the only thing that can go wrong is if there is an > 0
and a sequence (7,,60,) with 7, = o0, 8,, € K and

K(Tn,0n) < 'Ugo (0n) — -
By choosing a subsequence, if necessary, we can assume that 6, — 6,. Since
K(r,-) converges to v2 (f+) in Dy, , and since vy, is continuous in K, we have
0, € [0 +e ™,0, —e "] for n large enough. Consequently 6! = 6,, — e ™
belongs to K for n large enough. Similarly to the previous proposition, we have
(68). Note that

e Fyy, (Tn) = K (T, 0], + €7™) 2 03,(0) = K(7ai, 0n) > v3,(07) = 02 (0n) + -

Since K is compact, v is uniformly continuous on K, so that the right hand side
converges to 71 as n tends to infinity. By Proposition 10, we know that P converges
to zero along characteristics ending on §],. By Lemma 6, we conclude that there is
an € > 0, a subsequence 7,, and a sequence u > 7, such that

67”’“1‘—’9;)c (ug) < 67T"’“F9'nk (Tny) — €.
We get a contradiction in the same way as in the previous proposition. O

It is of interest to note the following behaviour of the second derivatives.

Corollary 9. Consider (Q,P) € S and assume that v s continuous in a compact
interval K. Then

(69)  lim e TP +e Py + e (QFy + ¢ P Qp)llconr. ) = 0.
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Proof. The corollary follows from Lemma 3 and Proposition 10. O

Proposition 12. Consider (Q),P) € S and assume that vy s continuous in a

compact interval K = [0_,0,]. Then

lim H—”(T’ ) =0.
CO(KR)

— Voo
T—00 T

Proof. Again, we argue by contradiction. Due to Proposition 11, the only problem
that can arise is the existence of an n > 0 and a sequence (7,,6,) with 7, = oo,
0, € K and

P(Tn, On)
Tn
We can assume, by choosing a subsequence if necessary, that 8, — 6, € K. After
performing an inversion if necessary, cf. Lemma 7, we can assume that P.(7,6.)
converges to v (64). For any & > 0, there is, by previous results and a continuity

argument, a 7' and an I containing 6. in its interior such that

(70) < Voo (bn) — .

2
1) 1P =002+ |2 = 0m(@)] 4@+ (R Q) < €

for 7 =T and 8 € Dy,r. Since P < p, cf. (34), we have (70) with p replaced by P.
Let us go back from (7,,6,) along the characteristic

Yn(T) = (1,00 + €77 —e™ ™).
Note that for any 7 < 7, Y(7) € {7} X Dk, . For n large enough, v,(T) €
{T} X DI,T- Thus
(P-,— + eiTPG)['Yn(T)] > '1)00(0*) —2¢.
Assuming 3¢ < n, we get the existence of a T' < T' < 7, such that

(72) (Pr+e™ " Py)[1n(T")] = voo(6x) —n+&, [(0-—€7709) (Pr+e™ Pp)][yn(T")] < 0.

The reason for this is the following. By choosing 7" to be great enough, we can
assume P to be arbitrarily small in Dk , for 7 > T. Consequently, P can be
assumed to be arbitrarily small at v,(s) for T < s < 7,. If there is no point
satisfying (72), we can thus assume that

(Pr — €7 " Py)[yn(7)] 2 voo (64) =1+ £/2

for all 7 € [T, 7). As a consequence, 8, (P o+, /7) is positive if P o+, /7 is strictly
less than v (0+) —n + £/2. In other words, P o v, /7 cannot reach the value it has
to reach at 7 = 7,. Note that in the construction of 7', we can choose £ to be
arbitrarily small, T" to be arbitrarily large and by Proposition 10, P converges to
zero uniformly. This can be used to prove that there must be a sequence (7,,,6),)
with 7), = 00, 0], € Dk, and 6, — 6, such that

(73) nh_)n;olc('rrlw eln) = [’1)00(0*) - 77]2-

By Corollary 9 and Proposition 10, we conclude that there is a sequence 6! € K
at a distance less than e~ from 6!, such that (73) holds with 6/, replaced by 6.
Since v, (6]1) converges to v (0x), we get
2
K, 0) < oo 6) = 7]
for n large enough. This contradicts Proposition 11. O
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Lemma 10. Let (Q,P) € S. Assume that v is continuous in a compact interval
K and that

(74) lim 219

T—00 T

= U0 (6)
for all 0 € K. Then

(75) lim

T—r00

=0.

p 2
(Py — o) + (; — voo> + eQPQf.
CO(K,R)

Proof. By (74), P,(1,0) converges to v (#) for all § € I, cf. Proposition 9. Let us
prove that P, converges uniformly to v,. Due to Proposition 11, the only thing
that can go wrong is the existence of an > 0 and a sequence (7,,6,) with 7, — oo
and 0, € K such that

We can assume that 6,, — 6,. The remainder of the proof is identical to the proof
of Proposition 12, starting from (71); instead of (70), we have (76). We conclude
that P/T converges to v uniformly. Combining the fact that P, converges to v
uniformly and Proposition 11, we conclude that e2F Q2 converges to zero uniformly.
O

Corollary 10. Let (Q, P) € S. Assume that vy, is continuous in a compact interval
K and that v (80) > 0 for some 8y € K. Then there is an € > 0 such that, after
applying an inversion if necessary,

=0.
CO(KnNI.,R)

lim
T—00

P 2
(Pr _'Uoo)2+ (_ _voo) +62PQ72—
T

where I. = [0y — €,60 + €].

Proof. Let z be the associated solution in the disc model. Due to Proposition 12, we
know that there is an € > 0 and a T such that p(7,8) /7 > v (6y)/2 for § € KNI,
and 7 > T. Since sinh® p¢? is bounded, cf. (32), this implies that ¢ converges
exponentially to a continuous function on K N I.. By performing an inversion in
the disc model, if necessary, and making e smaller, one can ensure that Rez <1—4
for 8 € I., some § > 0 and 7 > T for some T. This implies that we have (74) in
KNI, cf. (34). We are thus in a position to apply Lemma 10. O

8. THE GOWDY TO ERNST TRANSFORMATION

The Gowdy to Ernst transformation has been put to good use by several authors, see
e.g. [18] and [4]. Combining this transformation with the results already obtained
in this paper, in particular Proposition 9, we are in a good position to analyze the
behaviour of solutions around spatial points 6y such that vy, (6g) is not an integer.
As we shall see below, it is in this case possible to use combinations of the Gowdy
to Ernst transformation and inversions in order to reduce the velocity at 6y to a
value belonging to (0,1). One then obtains expansions of the form (18)-(21) in a
neighbourhood of 8. In the end one then only has to transform back in order to find
out how the original solution behaves asymptotically around 6. Since transforming
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back can sometimes be quite complicated, we shall however not try to do this in all

generality.

In order to define the Gowdy to Ernst transformation, let (Q1,P1) € Sk for some
k > 2 and define (Q2, P») by

(77 Py(1,0) = —Pi(r,0)+T

[4 T
(78) Q2(T70) q2 — P [ezpler](T01¢)d¢_/ [62(P175)Q16](870)d8’

where gz, 79,00 are given constants. We shall use the notation
(Q27 P2) = Gqu,Toﬂo(Qla Pl)'

Lemma 11. GE, ¢ is a continuous map from (S,dp,) to itself for any m € NU
{o0}. Let (Q2,P2) = GEqgy,r0.0,(Q1, P1) for some (Q1,P1) € S. Then

Q2r = =P 1Qup, Q20 = —e*1Qus.
Finally, if (Q1,P1) € Sp, then Py, Q2 and Qap are 2w-periodic and
Q2(7,0 + 27) — Q2(7,0) = —B;
for all (1,0) € R2, where the constant By is given by

B, = /S [P Qi)(r0,6)d6 = /S [P Q1) 6)de.

Remark. Note that for a large class of solutions to the Gowdy equations, it is
possible to apply an isometry to the solution in order to achieve B; = 0, cf. Lemma
8.2 of [21]. However, there is also a large class of solutions for which this is not
possible.

Proof. The lemma follows by straightforward computations using the fact that
(Q1, P1) solves the Gowdy equations. In particular, if (Q1,P1) € Sp,k, then

or / e?P1Qq,df =" / Dp[e*P1 Q14]d6 = 0,
St St

so that B; is independent of 7. O

Up to a constant, composing a Gowdy to Ernst transformation with itself is the
identity. In fact,

(79) GEqg,,75,0, © GEgy 7,6, (Q1, P1) = [Q1 + @2 — Q1(72,62), P1].

We shall also be interested in performing inversions on S, defined by (9).

Lemma 12. The transformation Inv is a continuous map from S to itself with
respect to dy , for any k € NU{oo} and 7 € R. Furthermore Inv o Inv = Id, where
Id is the identity map.

Proof. The fact that Inv takes solutions of (2)-(3) to solutions is a consequence of
the geometric setting and the fact that Inv defines an isometry of the hyperbolic
plane. Another way of proving this fact is by direct computation. The continuity
is rather obvious, as well as the last statement of the lemma. O

Let us prove that the concept of non-degenerate true spike does not depend on the
constants chosen when applying the Gowdy to Ernst transformation.
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Lemma 13. Consider a solution (Q,P) to (2)-(3). Assume that 1 < v (o) < 2
for some 6y € S and that
lim P (7,6p) = veo(6o)-

T—>00

Let (Qi2, Pi2) = InvoGEy, +, 4,(Q, P) for two choices of constants ¢;,7;,0;, i = 1,2.
Then (Q;,2, Pi2) has smooth expansions in a neighbourhood of 6y. In particular Q; 2
converges to a smooth function g; 2. Furthermore, ¢;2(00) = 0 and if 8pq; 2(60) # 0
for i =1, the same is true for i = 2.

Proof. Everything stated in the lemma was proved in connection with Definition
3, except for the statement that if 9pg;2(6p) # 0 for ¢ = 1, the same is true for
i = 2. Let (Q,’,l,P,',l) = InV(Q,’,Q,Pig). Note that P11 = P»; and that Ql,l and
Q2,1 differ by a constant. Due to this fact and the fact that Inv is an isometry,

(09 Pij)” + €79 (89Qi5)” = (B9 Pit)” + €274 (0pQu1)”
for any i,j,k,l € {1,2}. The desired statement follows from the observation that
lim_exp{—[ve(60) — 1IT}[(Bp Pi2)* + €72 (99 Qi2)*)(7, 00) = cilBygi,2(60)]*
for some constants ¢; > 0. O

The point of the Gowdy to Ernst transformation is that it allows us to reduce the
velocity. We already know how to obtain asymptotic expansions if 0 < vy, < 1.
The idea is to reduce more general situations to that case. Let us describe a method
for transforming solutions to solutions which we shall later on refer to as reduction
of velocity. Consider (Q,P) € S and assume that vo(6y) > 1 for some 6y € R.
We can assume P, (7,8p) converges to v (o) by applying an inversion if necessary,
cf. Lemma 7. Let (Q1,P1) = GEyy r0,0,(@,P). The choice of constants is not
importa.nt. Then PlT(T, 00) — 1 - ’Uoo(eo). Define (QQ,PQ) = IHV(Ql,Pl). By
Lemma 7 and Proposition 9,
lim PQT(T, 00) = '1)00(00) —1 and Tli)ﬂgo QQ(T, (90) =0if '1)00(00) > 1.

T—>00

Assuming 1 < k < voo(fy) < k + 1, we can now iterate this procedure in order to
produce solutions (Q2;, Py;) @ = 1,..., k to the equations with the property that

(80) ILHI PQ,'-,—(T, 00) = 1)00((90) —1¢ and ILHI QQi(T, 90) =0if Uoo(oo) > 4.

Let us consider the case k < voo(fg) < k+1. Due to (80) and Proposition 3, we get

the conclusion that there are smooth expansions of (Qax, Pax) in a neighbourhood
of 00.

Let us derive some basic consequences of this procedure.
Lemma 14. Let z = (Q,P) € S, 6y € R and assume that
1< TILII;O P.(1,6) < 2.
Then 2 = (Q2,P2) = Inv o GEg, 1,,0,(Q, P) has smooth expansions of the form

(18)-(21) in a neighbourhood I of 6y. Let us call the corresponding functions veo[2],
@2, 1o and qo. Furthermore, for § € I,

o _ [ 1—v[z2](0) if g2(6) #0
Voola](6) = lim P T(T’H)—{ Lo [ord®) i aa(6) = 0.



ON THE CONCEPT OF AN ASYMPTOTIC VELOCITY IN T3-GOWDY SPACETIMES 37

Finally, there is a v > 0 and polynomials =y, such that for all T > 0,
(81) 1Qo(7, ") = dira + 2¢2vec[@a]llor(rry < Ewe 7,
(P = 1) + X727 Q3)(r, ) — vX[zallloramy < Exe™ 7,
Ile™"PF + 2" Q(m, Mloramr) < Exe™"

Remark. One can of course start with a solution (@2, P») with expansions of the
form (18)-(21) and then go in the other direction. This was done systematically in
[18], cf. also (82). By the results of [15] and [17], we are free to specify veo[T2], @2,
ro and go, as long as 0 < v [z2] < 1 and the functions are smooth. In particular,
we can let 8y be an accumulation point of non-degenerate zeros of ¢o. We then get
a solution with an infinite number of non-degenerate true spikes.

Proof. By the arguments preceding the lemma, we conclude that (Q2, P2) has
expansions as stated. Note that by (79),

(82) (Q, P) = GEQ(rq,00),70,00 © InV(Q2, P»).

Let (Q1,P1) = Inv(Q2, P2). If ¢2(8) # 0, then Py, (7,6) converges to v [z2](#) so
that P, (7,6) converges to 1 —veo[z2](6). Let us consider 8 € I such that g2(6) = 0.
By the existence of the expansions, ef2(Q,, converges to zero uniformly, and e™2(Q,
converges to zero at 8. We have

2Py, €222 + 2e212(02Q2,
1+ e2P2(Q2 ’

which converges to —vo[z2](f) at . The statement concerning ve,[z] follows. By
Lemma 11 and the above, we get

Qo = —*1Q1, = Q3e*2Qar — Qor — 2Q2 P,

By the existence of the expansions for (Q2,P,), we get the second conclusion of
the lemma. In order to get the third conclusion, note that P = —P; + 7 and
Qo = —€>P1Qy,. Let us compute

(P =17+ EP77Q) = P+ PQE, = P + Q3

where the third equality is due to the fact that Inv is an isometry. Due to the
expansions we have for (Q2, P»), we get the third conclusion. The fourth conclusion
follows by a similar argument. |

PlT:_P2T+

Corollary 11. Let (Q,P) € Gi.m, with non-degenerate true spikes at 61,...,6;.
Then

(83)  limsup [P(7,")llcocst vy = max{[l — veo (1)), ., [1 = veo ()]},

T—00

where the right hand side is taken to be zero if | = 0.

Remark. It is quite conceivably possible to replace lim sup by lim.
Proof. Let € > 0. By Lemma 14, there is a § > 0 and a T such that
(84) [(Pr —1)* + &> 27Q3)(7,60) — [1 — veo (6:)]*] <€

for all § € [0; — 6,0; +J] and 7 > T (note that (1 — v )? is smooth in a neighbour-
hood of §; by Lemma 14). Observe that e 2" P converges to zero uniformly in a
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neighbourhood of 6; and P converges to zero uniformly outside of [6; — 4, 6; + §],
¢t =1,...,1. Thus there is a T" such that

1P (7, )lcogst gy < max{[1 = voo(61)], ..., [1 — voo (B0)]*} + 2

for all 7 > T". Thus the left hand side of (83) is less than or equal to the right hand
side. Let i be such that [1 — v (6;)]? equals the right hand side of (83). Let € > 0.
Let 6 and T be such that (84) is satisfied in a ¢ neighbourhood of 8; for 7 > T.
Assume furthermore that there are no other true or false spikes in [6; — 4,6; + §].
Consider f(7) = P(7,0; + e 7). Note that f converges to v (6;). Let Ty > T
be large enough that f(77) > 1 and e~T* < §. Let g(7) = P-(,0; + e~ T*). Then
9(T1) > 1 and the limit of of g(7) as 7 — oo is strictly smaller than 1. By continuity,
there is a To > T3 such that g(T») = 1. Inserting this information in (84), we get
the conclusion that

(€272 QF)(T2, 05 + €™ ™) > [1 — voo (6:)) — €.

This proves that the left hand side in (83) is greater than or equal to the right hand
side. O

Corollary 12. Consider (Q,P) € S and let 6y € R. Then the following holds:

o if v () < 1, then veo is continuous in a neighbourhood of 6y,

e if 0 < vo(fo) < 1, then vs is smooth in a neighbourhood of 6y, and if
P, (1,6p) converges to v (6o), then (Q,P) has smooth expansions of the
form (18)-(21) in a neighbourhood of 8y, and if not, Inv(Q, P) has such
expansions,

e if vo(b) = 1, then v is continuous at Go,

o if 1 <weo(bo) <2, then (1 —vs)? is smooth in a neighbourhood of 6.

Remark. In particular, if v (6) < 2, then (1 — v )? is continuous in a neighbour-
hood of 6.

Proof. The first statement was proved in [20] and the second statement is contained
in Proposition 3. In order to prove the third statement, let € > 0. By Lemma 7,
we can assume that Py (7,600) converges to v (). There is furthermore a T' and a
é > 0 such that

e_TG15 (T) < 62;

where I5 = (6o — 9,600 + 9). If we were to replace I5 by 6, this would be clear, even
with €? replaced by €2/2 on the right hand side. The statement as it stands then
follows by continuity. By the monotonicity of e~"G,, we conclude that

|P-(7,0) —1| < e

for all 8 € Iy and 7 > T. The continuity of v at 6y follows. The last statement
follows from Lemma 14. O

Corollary 13. Let (Q,P) € S and assume
0< lim P (7,0) <2, lim Q(7,0) = qo
T—00 T—00

for all 0 € I, where I is an interval and qqg is a constant. Then v, is continuous
i I.
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Proof. If vy (8) <1, then vy, is continuous at 8 due to Corollary 12. Let us assume
1 < voo(fo) < 2 for some 8y € I and that v, is discontinuous at 6y, considered as
a function from I to R. Due to Lemma 14, and using the notation of that lemma,
we have that ¢2(6p) = 0, but that g2 is not identically zero in any neighbourhood
of 6y with respect to the topology induced on I. By Lemma 14, we know that
Q(7,-) converges to some smooth function ¢ in any C* norm in a neighbourhood
of 6. Let I 3 0, — 6y be a sequence with the property that g2(6;) # 0. Note that
Voo [Z2](6)) converges to a non-zero number, that g»(fy) converges to zero and that
r2(0r) converges to some number. Inserting this information in (81), we get the
conclusion that gp(0) # 0 for k large enough. Consequently, the limit of ) cannot
be constant in 1. We have a contradiction to the assumptions of the corollary. 0O

Lemma 15. Let (Q,P) € S and 0y € R. Assume that k < vo < k+2 in a
neighbourhood of 6y. If P.(1,0) — v (8) for 8 = 0y, then the same is true for all
0 in a neighbourhood of 6.

Remark. If we have the assumptions in a half neighbourhood, i.e. for 6 € [0y, 6 +¢€)
or (6y — €,6y], we get the same conclusions, but in a half neighbourhood.

Proof. By the assumptions there is an interval I containing 6, in its interior, an
€ > 0 and a T such that e""Gr(1) < (k+ 1 —¢€)? for all 7 > T. Assuming
P, (1,6) & —vs(0) for some 6 in T leads to the conclusion that v (0)+1 < k+1—c¢,
a contradiction to the assumptions. |

Corollary 14. Consider (Q,P) € S and assume that k < veo(6) < k+ 2 for some
k€N, all § € K and some compact interval K. Then vy is continuous in K.

Proof. Let 6§y € K. By carrying out an inversion, if necessary, we can assume that
P;(7,6) converges to v () for 8 = §y. By Lemma 15, the same is true of all § in
a neighbourhood of 6y with respect to K. Reducing the velocity as above, we get

Tli_)Héo QQ,’(T, 0) = 0, Tli_)rréo ch— (T, 0) = Vo (0) -1

for 6 in a neighbourhood of §y and i = 1,...,k. Thus we can apply Corollary 13
to (Qak, Pax) in order to achieve the conclusion that vy, — ¢ is continuous in a
neighbourhood of §y. We conclude that v, is continuous in K. O

Corollary 15. Consider (Q,P) € S and assume that k < veo(8) < k + 2 for some
k€N, all 8 € K and some compact interval K. Then vy is continuous in K.
Furthermore, either
(85) lim P, (7,0) =vx(f), lim Q(7,6) =qo

T—00 T—00

for all & € K and some constant qo, or the same holds with (Q,P) replaced by
Inv(Q, P).

Proof. The continuity follows from the previous corollary. Let z be the solution to
(29) associated to (@, P). Due to Proposition 12, we conclude that p/7 converges to
Voo uniformly in K. Since sinh? p|d,(z/|z|)|? is bounded, we conclude that z/|z| con-
verges exponentially and uniformly to some ¢, in K. Since =27 sinh? p|dg(2/|2|)|?
is bounded and v, > k > 1, we conclude that ¢, is constant in K. The corollary
follows. =
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Corollary 16. Let (Q,P) € S. If 1 < v(8) < 2 for all 8 € I, where I is some
interval, then vy, s continuous in I.

Proof. By Lemma 14, (1 — vy,)? is continuous in I. The conclusion follows. O

In Section 4, we obtained expansions for 0 < vy, < 1. Later on, we would like to
derive the existence of expansions for v, > 1, given that we have some additional
information. In that context, the following result will be useful.

Lemma 16. Consider (Q,P) € S. Assume that there exists a compact subinterval
I of R with non-empty interior and a v > 0 such that

(86) |1Pr(7,-) —valler(rry < Cre™ 7,
(87) 12> Qollcr gy < Cre 7,
(88) lim Q(r,0) = @

for all 6 € I, where v, > 0 is in C*(I,R) and qo is a constant. Then there exists
¢, r € C®(I,R) and polynomials I}, for k > 0 such that

(89) 105 (Pr —va)(1,0)] < TL(r)[e" + 7>,
(90) |08 (P — var — ¢)(1,0)] < Ti(r)[e 2" + e 20=(0)7),
(1 9517 Qr —r)(r )] < (e +e2=07],
(92) H [8219(@ —q) + ] (r,0) < I(r)[e™? + e 2007,

forallT >0, all@ € I and all k > 0, where Iy is a polynomial in 7 and p = vo,7+ .

Proof. Due to (86), we get the conclusion that there is a ¢ € C*°(I,R) such that
(93) (|1P(7,") —vaT — ¢llcrrry < Cre™ "
for all 7 > 0. Due to (3) and (87), we get the conclusion that
10-1€*" Q- 1(, )lcr(r,r) < Cre 7.
We conclude that there is an r € C* (I, R) such that
I[e*7Q-1(r,-) = rllowr.ry < Cre ™"
Let p = v,7 + ¢. Since

(94) [|e2P(m)=2P() — 1| gu g r) < Cre™ T,
we get

(95) 1e??Q-1(7,-) = rllor 1) < Cre™ .
Since

Q) —al = - [ expl2p(r ) = 2005, I Q) = 7 — o

we get, by differentiating under the integral sign and using Hdélder’s inequality,

ePTIQ(7,) — qo] +

a

(96)

< Cre 7.
C*(I,R)

2va
Note that (95) and (96) imply the estimate
05 Q- (7,0)| + 105 Qo (7,0)| < Ti(7) exp[—2va(6)7]
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for all § € I and all 7 > 0, where I is a polynomial in 7. Inserting this into (2),
using (93), we get the conclusion that
0502 P(r,6)| < T (1) (€727 + e72v=(07).
The inequalities (89) and (90) follow. Due to (93) and (96), we draw the conclusion
that
[e*" Qal(7, )lcr(1,r) < Chr

for all 7 > 1. Going through the same steps with the above improved estimates,
we conclude that (91) and (92) hold. O

Lemma 17. Consider a solution (Qo, Py) € S satisfying the conditions of Lemma
16 where I is a compact interval with non-empty interior and qo = 0. Define

(Q1, P1) = Inv(Qo, ), (Q2,P2) = GEy, 7,0,(Q1, 1),

for some qa, 79,60 with 6 € I. Then (Q2, P») satisfies the conditions of Lemma 16
with v, replaced by v, + 1.

Proof. We have
Py = Py + 7 —1In[1 + 2P Q2),
so that, using the conclusions of Lemma, 16,
|0k [Psy — (vg + 1)](7,6)] < Iy(e™% + e 20a(0)7),
In particular (86) is fulfilled. Consider
P27, — 2P 2Pi=2r
Let us compute

(e2PO QOT - T) + 2(P0T - va)e2P0 QO + 2'1)0,(62P0 QO + i) - 64P0 Q%QOT
(1+ e2PoQ2)? ’

By arguments similar to ones already presented and the fact that Q¢ converges to
zero uniformly, we get the conclusion that @)1, converges to zero uniformly and
exponentially in any C* norm. Consequently, the same holds for 22727y, so
that we have reproduced (87) for Q2. As a consequence, ()29 converges to zero
uniformly and exponentially, since P>, converges to v, + 1, where v, > 0. Since
e2P2(),, converges (using (3) and (87)), we also get the conclusion that ()» converges

uniformly. Combining these two facts, we conclude that () converges to a constant.
O

QIT =

Lemma 18. Let (Q, P) € S and assume that P, (7,0) converges to v (6) for8 € I,
where I is a compact interval with non-empty interior, and that k < v (0) < k+1
for all 8 € I, where k € N. Then there are expansions of the form given as a result
in Lemma 16.

Proof. Carrying out the above sort of reduction of velocity, we obtain
(97) lim Q2i(7_7 9) = 0, lim le‘T(T, 0) = UOO(H) —1
T—00 T—00

forf € Tandi =1,...,k. As a consequence, we get smooth expansions for (Qay,, Pay)
due to Proposition 3, and by (97), Q2 converges to 0. Consequently, the conditions
of Lemma, 16 are fulfilled and we are allowed to use Lemma, 17. Note that when we
go backward to (Q2x—2;, Pak—2;) we reproduce not only the conditions of Lemma 16,
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but also the statement that QQox—2; converges to 0 for ¢ < k, due to (97). Applying
Lemma, 17 k times, we obtain the conclusions of the lemma. O

9. ASYMPTOTIC EXPANSIONS

In the previous section, we obtained some information concerning the existence of
expansions under the assumption that the velocity stays inside an interval of the
form (k,k + 1), see e.g. Lemma 18. We would however like to know something
about what happens in a neighbourhood of a point where the velocity is integer
valued. Note that by Corollary 12, if ve(60) = 1, then vy is continuous at 6p. It
is however to be expected that v, is typically discontinuous in any neighbourhood
of 8y, though we are not in a position to prove that here. The Corollaries 13 and
16 give conditions under which v, is continuous in a neighbourhood of 6y even
though v, (fg) may equal 1. In this section, we are concerned with the question if
it is possible to obtain expansions in a neighbourhood of a 6y with v, (6p) = 1 if
we make the additional assumptions that are obtained as conclusions in Corollaries
13 and 16.

Lemma 19. Let (Q, P) € S. Assume that v is continuous in a compact interval
K with non-empty interior and let z be the associated solution in the disc model.
We shall assume that one of the following holds for all 8 € K,

(98) 1<u(f) <2

(99) 0< 'Uoo(e) <2 ‘;000(0) = o,

where pg # 1 is a constant and po, was defined in Corollary 8. Then, after applying

an inversion in the first case if necessary, there exists a 8 > 0 and a function
¢ € C°(K,R) such that

(100) I1P(7,) = vooT — @llcox,r) + IPr(T,) = voollco(xmy < Ce 7,
lle *"P7 +*"(Q7 + e QoD m) < Ce™,
le™*7 Py + e~ Py + €77 (Q7y + e Qjg)lco i, my < O

Furthermore, () converges uniformly to a constant.

Proof. In the first case, we can, after applying an inversion if necessary, for each
0 € K find a compact subset K’ containing € in its interior (with respect to the
topology induced from K) such that (75) holds. This is a consequence of Corollary
10. In the second case, we can assume that (75) holds for K' = K, c¢f. Lemma 10
and (34). Note that we also have Proposition 10 and Corollary 9. Consequently
e?PQ? converges to zero in Dk, and since the variation of P, in intervals of length
less than e~ 7 inside Dk, converges to zero, bounds for P, in K’ are for all practical
purposes as good as bounds for P; in Dk ;. Fix some n > 0 and define

1
Al L= A+ + §n4eTP92.
Consider (26). Due to (75) and Proposition 10, we have

1
a1, So()(AT 4 + AT ), [I,1,+] < 5[04 +o(D)](A1,+ + A1,-),
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where
(101) o = max{2 sup v, (0) — 1,1}.
9K’
Compute
1 1
(0r F e_Taa)[§’74€TP92] = 5774671392 +n'e"Py(Prg F €7 Pyg)
1 1 1
< §n4eTP92 + §nﬁeng + EnzeT(PTg F e " Pyg)?
1 4 rp2 | 2
< SR AL

Adding up, we get
_ 1
(ar +e 789) i,:l: S 5(0& + 47}2)( i,— + Ai,-}-)a
where we have assumed 7 to be great enough. By arguments of the type given in

Subsection 2.3 and these estimates, we conclude that for every n > 0, there is a Cj,
such that

(102)  [|P% +e P+ €7 (Q%,+ e 77 Q3) + 1Py llcomyr . R) < Cpel>=07

for all 7 > 0, where § = 3—a —4n?. Since a < 3, we have § > 0 for 5 small enough.
In particular, e~7 Py and e 2" Py converge to zero exponentially. Let us draw some
conclusions from this. Let g = e’ Q2. By the above one can then for every n > 0
find a (), such that

arg — 2€2PQ7—69 (€2P_2TQ9) — 2€2PQT(2P0€2P_2TQ9 + €2P_2TQ00)

< Cuexp | 320m(®) - 3+ o0

since P/T = voo + o(1) uniformly in K'. We conclude that
1
2[¢'/2(1,0) — g'/*(10,8)] < C,y exp [5(21100(0) — & +2n%)T

for all 7 > 79, assuming 79 is great enough and § < 2infyc ks Vo (6). Assuming
first 5 to be small enough that 2% < 6 and then 7y to be great enough, we get the
conclusion that e¥’Q, converges to zero exponentially and uniformly in K'. Since
e "Py and e’7Q,¢ converge to zero exponentially and uniformly in Dk, we get
the conclusion that the same is true of e’Q.. Due to (102), we also know that
e~ 27 Pyy decays exponentially. Considering (2), we conclude that there is a 8 > 0
and a C such that
Py (7,0) < Ce™T

for all 7 € K'. Integrating this inequality, we obtain
P,(11,0) — Py(1,0) < B 1Ce P
for i > 7. Letting m — oo and integrating again, we obtain
P(7,6) > P(79,0) + voo(8) (T — 70) — B 2Ce P,

In other words, P — 7 is uniformly bounded from below by a constant on Dk,
assuming (98) holds. Since e’ ~"Q converges to zero uniformly on D, this means
that Qg converges to zero uniformly on Dg. Thus @ converges to a constant in K'.
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Consequently, even in the first case, we conclude that () converges to a constant in
all of K, so that all the conclusions above hold for K’ = K in both cases.

Let n > 0. For every 8 € K, there is a compact Ky C K containing 6 in its interior,
with respect to the topology induced by K, which is such that

a—1-2v,(0") < -2 min{afing{ Voo (6"), 1} + 21
6

for all " € Ky, where a is defined as in (101), but with K’ = Kjy. Note that we
have used the continuity of v, in K in order to get this conclusion. By (102), there
is for every n > 0 a (), such that

1Qy6(r,8)| < Cyexp %(a C 1= 20 (0') + 602)7

for §' € Ky assuming 7 is great enough. Assuming 7 to be small enough and then
T to be great enough, the expression appearing in the exponential is negative, say
—~ < 0. This implies
1Qo(11,6") — Qp(1,8")| <y 1 Cpe 7
for 71 > 7. This implies that @)y converges uniformly in Ky, but since the limit of
Q is constant in K, the limit of @y has to be zero. Letting 1 — oo, we get the
conclusion that
Qo(7,6)] <7 1Che 7.

In fact, choosing 7 small enough, we get the conclusion that e’ ~7(Qy converges to
zero exponentially in Ky. By a compactness argument, we get the same conclusion
on all of K, and by (102), we get the conclusion in Dk, .. We conclude that P;,

converges to zero exponentially on K. Thus P, converges to v on K with an
exponentially small error, and

P(1,0) = voo (0)T + ¢(6) + O(e™P7)
for some 8 > 0, where the convergence is uniform in K. O

In the following results until but not including Lemma 25, we shall assume that
we have the following setup. Let (Q,P) € S, K be a compact interval with non-
empty interior, vo, € CO°(K,R) and 1 — € < v0(f) < 1 +¢€ for all § € K and some
€ € (0,1/32]. Finally, we shall assume that P, (7,-) converges to v in K and that
Q(7,-) converges to a constant. Consequently, we are allowed to apply Lemma 19.
The result we are heading for in the end is Proposition 13, but it is convenient to
break down the proof into several smaller steps.

Lemma 20. If there is a T and a polynomial Ty, such that for all T > T,
122 (850-Q)* + P77 (9571 Q) llco i . vy < Tk,

for some k € N and 0 < j < 2, then there is a polynomial =y such that for all
T>T

(103) 1e*7 727 (85 Q)?ll oo (D, ) < Sk exp{=2[1 = (j + 2)e]7}.
Remark. In the proofs below, we shall use II and IIj to denote any polynomial.
They will be allowed to change from line to line.

Proof. Due to (100) and the assumptions, we have
1050, Q(7,60)| < Ty exp{—[1 = (j + 1)é|7}
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for § € K. We can integrate this inequality to obtain
(104) |0k Q(15,0) — 05 Q(11,0)| < Ty exp{—[1 — (j + 1){]r1 }

for 7, > 71. We conclude that 5@ converges uniformly to a continuous function.
Since @) converges to a constant by assumption, this function has to be zero, so
that

105 Q(7,6)| < My exp{~[1 — (j + 1)e|7}

for all § € K. In order to get the desired estimate for § € Dg,, — K, let ' € K be
the point in K closest to 6. Note that as a consequence, |§ — 6’| < e~ ". Thus

105 Q(7,6) — 05 Q(7,6")| < Ty exp{—[1 — (j + 1)e]r}

by the assumptions. The lemma follows due to the fact that the variation of P in
intervals of length e~7 is bounded and the assumptions. |

Note that
1{(0§8,P)* + e 2" (95T P)? + *F[(0§0-Q)* + e *" (0,7 Q)* 1} (7, )lco(mi )

can be bounded from below by e™"Fk 1 (7)/2 and from above by e”"Fg (7). In
other words, e” " Fk () considered as a norm is equivalent to this expression.

Lemma 21. Assume there are polynomials Iy and a T such that for T > T,

e " Fi k(1) < Iy (7) exp[2jer]
where k =0,...,1,1 > 1, 2j;_1 < ji <2 and jr, =0 if kK < max{0,l —2}. Then there
are polynomials E, . such that form <l —1and7>1T,

(105) 1€*7 (5" 0r Q)?lco (D %) < Emye(T) exp{=2[1 = (jm-41 + 2)e]7}.

Remark. The conditions on the jj are for technical convenience.

Proof. Let us compute, using (3),

(106)0,(e*7050,Q) = €*OH?Q — 27y ( " )63@13@;”67@
n=1

m

+262P—2T Z ( ,'ZLL ) 6£L+1P65n7n+1Q'

n=0
We shall prove the statement by induction on m. The inductive assumption is
(107) lle*F 850, Qllco(py . r) < Mo, exp(iceT)

for o = 0,...,m — 1. The argument will yield expressions for the i,. Note that by
Lemma 20 and the assumptions,

e~ 705" " Qllco(pi.. v)
105 Pllco(p . &)

where we integrated the assumed inequality in order to achieve the last estimate.
Note that this is allowed, since 1 < n+1, m—n+1 <. Inserting this information,

Mexp{—[1 = (jm—n+1 +2)€]7}

<
< I exp(jn—i—l 67—) )
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the inductive assumption and the assumptions of the lemma into (106), we get

18- (2050, Q)(7,0)| < Texp[(jmy1 + 1)er] +1I Z exp[(jn + tm—n)eT]

n=1

+II Z exp{—[1 = (jm—n+1 + Jnt1 + 3)€|T}.

n=0

The third term on the right hand side is always exponentially decaying due to the
assumptions, so it need not concern us. If m = 0, the second term does not appear,
and we obtain (107) with m = 0, ip = j1 + 1 and Dk , replaced with K. Consider
the case m = 1. Then the first and second terms have exponents of the form
(j2 + 1)er and (j1 + io)er. Since ip = j; + 1 and 2j; < js by assumption, we get
(107) with m =1, 41 = j» + 1 and Dk, replaced with K. Assume inductively that
we have (107) up to and including m —1 > 1, with i, = j,4+1 + 1 and Dk, replaced
with K. Consider m. Note that { > 3 and consider j, + im—n. In<1—-2, j, =0
and i p = Jm-n+1 + 1 < Jmy1 + 1, whichis OK. If m > n >1—1 > 2, then
im-n = 1 and j, < jmy1, which is also OK. We have (107) up to and including
o=1-1, with ¢, = jo41 + 1 and Dk ; replaced with K. In order to take the step
from K to Dg,,, consider
le=70p(e2P 850, Q)| < 2|e " Pye*t830,Q| + |e_TeQP6§+16TQ|
< Texp[(jo + j1 + 1)er] + Mexp[(jot1 + 1)eT]
< Mexp[(jot1 + Ler],

where the last inequality is due to the fact that j, + j1 < jo41. This yields the
conclusion of the lemma. O

Define

At = Apx +exp(r — Br)(0§ P)*, Ficp(r) = Zo Sup Ap 2 (7,0),
+ €Dk,r

where 3 > 0 is the constant obtained in Lemma 19. Consider (26), with I ; + and
I+ defined in (27) and (28). Note that

(108) L+ < [% +e+ Cexp (-%50} (Ag,+ + A, )-

Observe also that if we have estimates of the form
(109) €2 (950-Q)* + €227 (357 @) llco (D, v) < T 7,

for some v > 0, then the term e( Ay 4+ + Ag,—) is replaced by a term of the form
II,e™~77. Finally, note that

(11010, F ™" 8y) [exp(T — BT)(85P)*] < exp(r — B7)(85 P)?
+Cexp (—%BT) (Ak7+ + Ak7_).

Using (26), (108) and (110), we conclude that

A 1 1 . "
(111) (8- F e "0p) Ag,+ < [5 + e+ Cexp (—§5T>] (Ap + Ap =) + Lop +
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If we have (109), we can improve this estimate to
- 1 1 - N
(112) (67-3{367T89)Ak,:|: S |:§ + Cexp (—567)] (Ak’_l,-+Ak7_)+erT7’YT+IQ’k’i.

Lemma 22. Assume that
Iyjr < Ce™ " (Ap g + Ax,-)
in Dg for T > T, where v > 0. Then
e "Fg (1) < C) exp[2eT].

Proof. By (111) and the assumptions of the lemma, we have
~ 1 o ~
(0r ¥ €77 0p) Ap,x < [5 +et+ Ce—‘”] (Ak,+ + Ak,-),

where § = min{3/2,~}. Thus

ﬁK,k(T) < FK,k(T) + / [1 + 2e + Ce_és] }A?’K,k(s)ds.
T

A Gronwall’s lemma type argument yields the conclusion. O
Lemma 23. Assume that
(113) 6_TFK71(T) < exp[2jl<-:7'],

forl=10,...k+1, where k > 0, 25 < jr+1 <2 and j; =0 if | < max{0,k — 1},
and that
(114)

1 A N 1 N “
Bpe < Cexp (= 77) (s +dn )+ Cexp | (5 =) 7] e + A0

in Dk for T > T, where v > 0. Then

e_TFK’k(T) S Ck.
Proof. Combining (113) with Lemma 20 and 21, we conclude that (109) holds.
Consequently, we have (112). Combining this with (114), we get

T

(15) Fanr) < Frca(@+ [ {[L+Ce] Frea(s

+Cexp [(%T— 7> s] FL2(s) + T expl(1 — ’y)s]} ds

for some 6 > 0. Let F' denote the right hand side. Let h be a function such
that h' = 14 Ce%". Finally, let g = e "F + 1. Using (115) and the fact that
h =714 O(1), one can estimate that

gl < Cef'y‘rgl/2 +Ile 7" < Hefgrgl/2

for some ¢ > 0, where we used the fact that g > 1 in the last step. Thus g is
bounded, and the lemma follows. O

Lemma 24. Assume that

1 ~ - 1 . R
L+ < Cexp (—577) (Ag,+ + Ag,—) + Cexp [(5 + 2je) 7'] (Ag,+ + Ak,_)l/2
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in Dg, for > T, where j < 2. Then
e Fi k(1) < Cpexp(2jyer),

where jj, = max{1,2j}.

Proof. The argument is similar to the proof of the previous two lemmas. O

Proposition 13. There is a T and for each k > 0 a constant Cy such that for
T>T,

(116) e_TFK7k(T) < Cg.
Proof. Consider the case k = 1. We have

T 2P (2 —27 )2 -7 1 A A
IZ,I,:I: = 2e Pge (QT — € Qg)(P.,-g +e ng) S Cexp (—iﬂ’l‘) (A1’+ + .Al,_).

By Lemma 22, we get

(117) e TFk k(1) < Crexp(2jrer)
fork=1,j3=1land7>T.

Consider the case k = 2. As a consequence of the estimates for £ = 1, we have
(118) [1€*P[(050-Q)*+e*7 (95" @)l co(pi, ) < Ti(7) exp{—2[1—=(jir1+2)€]T},

for I = 0 due to Lemmas 20 and 21. We also know that P, has a bound of the form
ITexp(jier). Consider the two different terms of I » 1. Let us start with

{0 e (QF — e > Q})]
(119)  —2?P(Q 051 0,Q — e QeI QYO0 Pk eI P)
= D aipdh(e"N)(850-Q)(350-Q) — e85 Q) (8,71 Q)]

i,5,1
(0:0T'P £ 77O 2 P),

wherem =1,i+j+1 =m+1and j,I < m. Assume first that i = m+1. Depending
on whether the derivatives hit one or two of the P:s, we have the following estimates
(120)

1 N N 3 .
Cexp (—5,37) (A2 4+ + As,_), Ilexp {— |:§ — (451 + 4)€:| T} (A2 4+ + Az,,)l/z.
If i =1, we get a bound of the form
1

(121) Mexp {— [5 - (31 + 2)6] T} (Agy + Az, )V/2
If j =1=1, we get an estimate of the form

L . 1/2
(122) Cexp 2 +2j1e ) 7| (Ao g + A2 ) /7.
The remaining terms in I > + can be estimated similarly, and by Lemma 24, we
get (117) with k = 2 and j» = 2j;. Due to Lemma 23, we get (117) with ¥ = 1 and

j1 = 0. Consequently, in the estimates of the form (122), exp[(1/2 + 2j1€)7] can be
replaced with e7/2 so that we obtain (117) with k = 2 and j» = 1 by Lemma 24.
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Induction hypothesis. Let us assume that we have (117) for £k < m with j; = 0 for
k<m—1and j,, = 1, where m > 2. We wish to prove the same statement with
m replaced by m + 1. Note that as a consequence of the induction hypothesis,

105 P(7, Mo (s r) < i, 105 P(7, ) lco(pic . r) < C exp(jmer),

for all 7 > T and kK < m — 1. Furthermore, we have (118) for | < m — 1 due to
Lemma 20 and 21. Consider (119). Assume ¢ = m + 1. If all the derivatives hit
one P, we have an estimate similar to the first estimate in (120). The remaining
cases lead to an estimate similar to the second estimate in (120). The case i = m
yields an estimate similar to the second of (120). If i < m —1, all the corresponding
derivatives of P have polynomial bounds, so that we need not concern ourselves
with them. Since j +1 < m +1, j,] < m and m > 2, we get the conclusion that
the remaining terms can be estimated as the second term in (120) or as in (121).
Consider the second term in I5 ,,, +. We need to estimate terms of the form

P20 710, P00, Q + 2¢7 70 TP PO Q)(8, 05 Q £ e 9y HQ),

where 1 <1 <m. If | <m — 1, we get an estimate similar to (121). If | = m, we
get an estimate of the form

1 .
CeXp [(5 + 2jm€> T:| (.Am+1,+ + .Am_H,_)l/Z.

In fact, we get the estimate with 2j,, replaced by j,,, but we choose this estimate
since we wish to apply Lemma 24. By Lemma 24, we conclude that (117) holds for
k =m+1 and j41 = 2. Using this information with (118) for | < m—1, we can go
through the estimates in order to see that Lemma 23 is applicable for k¥ = m. This
yields (117) for m with j, = 0. Going through the estimates for m + 1 with this
added information, one then gets (117) for m + 1 with j,,4+1 = 1. This completes
the induction and proves the proposition. O

Lemma 25. Let (Q, P) € S and assume that
1—€e< lim P(1,0) <1+4¢, lim Q(7,0) =qo
T—00 T—00

for all 8 € K, where € € (0,1/32], K is a compact interval with non-empty interior
and qo is a constant. Then we have expansions in K as stated in the conclusions
of Lemma 16.

Proof. Due to Corollary 13, we conclude that vy, is continuous in K. The setup
described prior to Lemma 20 thus applies. By Proposition 13, we conclude that
(116) holds. We conclude that ¥ P does not grow faster than linearly for any k.
By Lemma 20, e’"705Q and ' ~279% Q) are exponentially decaying for all k. By
Lemma 21, e8}0,Q is exponentially decaying for all k. Combining these facts
with (2)-(3), we conclude that 0§92P and 0% (e?F~27Qy) decay exponentially for
all k. Since () converges to a constant, all the conditions of Lemma 16 are fulfilled,
so that we obtain the conclusions of that lemma. O

Before proving Theorem 2 it is convenient to prove a somewhat weaker statement.
Theorem 3. Let (Q, P) solve (2)-(3) and assume that k < voo(0) < k + 2 for all

0 € K, where K is a compact interval with non-empty interior and k € N. Then
either (Q,P) has expansions in K of the form (18)-(21) or Inv(Q, P) has such
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expansions. Furthermore, the q appearing in the expansions is a constant and we
can toke o = 2.

Proof. Due to Corollary 15, we conclude that v, is continuous and that (85) holds
(possibly after having carried out an inversion). Reducing velocity, we obtain

TILngo Q2i(7-a 0) = 07 T11—>H;O PZiT (Tﬂ 0) = Voo (0) -1

fori =1,..., k. Let us use the notation z; = (Q2i, P»;). The subset S of K consisting
of 6 such that veo[z](#) = 1 is compact. For each § € S, there is a compact interval
Iy containing 6 in its interior with respect to the topology induced on K, such that
Voo[Zk](0') € [1 —1/32,1+4 1/32] for all §' € Iy. By compactness, there are 6;,
i =1,...,n such that the interiors of I; = Iy, cover S. Let

Sc =K - CJ intIi,

=1

where the interiors are computed with respect to the topology induced on K. This
set consists of two compact sets Sy and S_ with v > 1 in S; and vy < 1 in
S_. The sets Si can similarly be covered by a finite number of intervals I; 4,
i =1,...,ny, where we assume voo[z] > 1in I; + and ve[zr] < 1in I; . In each
of the intervals we get smooth expansions of (Qa, Pax) as in the conclusions of
Lemma 16, with g¢o = 0, due to Lemma 18, 25 or Proposition 3. Since the different
intervals have non-empty intersection, we get smooth expansions in all of K, with
Q@ converging to zero. Applying Lemma 17 k times, we get the conclusions of the
theorem. |

Proof of Theorem 2. Let 0 € K. If k < voo(6) < k+2, there is a neighbourhood of 6
with respect to K such that the same condition is fulfilled in this neighbourhood, cf.
Corollary 14. Assuming the neighbourhood is connected, we can apply Theorem
3 to it in order to get smooth expansions. Assume vy, () = k. Then there is
a subinterval I of K containing 6 in its interior, with respect to K, such that
Voo < k+1/64in I. There are two cases to consider. If k > 2, then k—1 < voo < k+1
in I and we can apply Theorem 3 in order to obtain expansionsin I. If K = 1, we can
apply Lemma, 19 in order to conclude that ) converges to a constant, possibly after
having applied an inversion. By Lemma 25 we get expansions in I. In particular,
if we view the solution in the disc model, there is for each § € K a neighbourhood
of 6 such that z(7,-) converges to a constant. The limit of z(r,-) therefore has to
be constant in K. After applying an inversion, if necessary, we can thus assume
that z(7,-) converges to a constant different from 1 in all of K. By the above, this
solution has expansions in a neighbourhood of each of its points. By compactness,
it has expansions in all of K. O

Corollary 17. Let (Q,P) € S and 8y € R. Assume that v (6y) > 1 and that
Voo 18 continuous at 0y. If Pr(1,00) — veo(6o), (Q, P) has expansions as in the
conclusions of Lemma 16 in a neighbourhood of 8. If P (1,00) — —vs(6p), then

Inv(Q, P) has such expansions. In particular, ve is smooth in a neighbourhood of
.
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Proof of Proposition 2. Let (Q1,P1) = GEgqy,70,0,(Q, P). By Lemma 19 and 25, we
conclude that there are functions ¢,r € C*°(K,R) and a constant gy such that

|1Pir(7, ) = Uk ry + |1 P17, ) = 7+ Bllerxr)y < Ere 77,
r T
1% Qur(7,) = Tllex ez + |€71Qu(r, ) — ao] + 7| ’

[

IN

Zpe 7,

C*(KR)
where p = 7+ ¢. Since P = —P; + 1, we get the first conclusion of the proposition.
We also have

Qr == 27Q,.
This can be used together with the above expansions in order to obtain the second
conclusion of the proposition. O

Consider (Q,P) € S. Let £ be the subset of R consisting of points 6y such that
one of the following holds

Voo = 0 in a neighbourhood of 6,

0 < v (00) <1,

Voo = 1 in a neighbourhood of 6,

Voo (Bo) > 1, and v, is continuous in 6.

The first three conditions are open and the fourth one as well, due to Corollary 17.
Note that if 8y € £, then there are smooth expansions of one form or another in a
neighbourhood of 6y, possibly after having applied an inversion to the solution.

Lemma 26. Let (Q,P) €S and let £ be as above. Then £ is open and dense.

Proof. Consider &, the closure of £. Assume vy (fy) = 0. Either there is a
neighbourhood of 8y such that v, = 0, in which case 6y € £, or there is a sequence
61 — 6o such that 0 < v (fx) < 1. In either case fp € £. If 0 < v (fo) < 1, then
0o € £. Assume v (0g) = 1. If there is a sequence 8 — 6y such that v (6x) < 1,
we are done, so assume not. Then v, > 1 in a neighbourhood of §y. By Corollary
16 and the semi continuity of v, Voo is continuous in a neighbourhood of 4. If
Voo = 1 in a neighbourhood of 6, 8y € &. If this is not the case, y € £. Assume
inductively that all # such that v, (#) < k belong to €. Let k < v () < k + 2.
By the semi continuity of the velocity, v, < k + 2 in a neighbourhood of 6y. If
there is a sequence of §; — 6y such that v (6;) < k, then 8, € £. If there is no
such sequence, v is continuous in a neighbourhood of 6y by Corollary 15 so that
0o € £. The lemma follows by induction. O

Proof of Proposition 4. Let £ be as in Lemma 26 and let 8y € €. If v, = 0 in
a neighbourhood of 6y, we can use Proposition 2. If 0 < v (6p) < 1, we can use
Proposition 3. If v, = 1 in a neighbourhood of 8y, then we can apply Lemma 19
and Lemma 25. Finally, if vo(6g) > 1 and vy, is continuous at 6y, then we can
apply Theorem 2. |

10. CONTINUOUS DEPENDENCE ON INITIAL DATA

In order to be able to prove that the generic set of solutions is open with respect
to da, it is necessary to prove that the map from initial data to certain quantities
on the singularity is continuous under special circumstances. Let us start with the
asymptotic velocity.
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Lemma 27. Consider a solution z to (29), where 8 € R, and let z; — z with
respect to di. Assume vo[2](8) < 1 for all @ € I = [01,02]. Then v[z] is continuous
in I, as well as v[z] for I large enough, and

lim [|v[z] — v[21]llco(r,r?) = 0.
=0

Remark. Below, we shall use Lemma 1 freely. Recall that v was defined in Definition
8.

Proof. Note that since I is compact and ve[2] is continuous in I, there is a § > 0
such that veo[2](f) < 1 — 20 for all § € I. Recall the notation of Subsection 2.3.
Let us first prove that for every § € I, there is an My, a Ty and a closed interval
Iy, containing € in its interior, such that

e~ By, [2](r) < (1 - %5)2

for all 7 > Ty and [ > My. Here we consider z to be included; z, = 2. If we replace
Iy with the point 8 and z; with z, this is clear, in fact we can get a somewhat better
estimate. At Ty, one can then extend the estimate to a larger interval Iy, by
continuity, at the expense of increasing the constant on the right hand side slightly.
Since the 2; converge to z, and since the left hand side is monotonic, one then gets
the desired estimate by demanding that [ be large enough. By (32), we conclude
that

3
lp,llcop,, . r) <1 — 55
for all 7 > Ty and | > My. By increasing Ty if necessary, we can assume that

Pl (7_7 9) < 1—6
T
for all 7 > Ty, | > My and 6 € Iy. The interiors of the I form an open covering
of the compact interval I. Thus there is a finite number Iy, ..., Iy, of intervals
such that Iy = U7_, Iy, contains I in its interior. Let My = max{My,, ..., My, } and

To > max{Ty,, ..., s, } be such that Dy, C Iy for all 7 > Ty. Consequently,
Pl (7_7 0)

T
for all I > My, 7 > Ty and 6 € Dr ;. In order to get monotonicity of Gy[z;] defined

below, it will be convenient to assume that Tp is big enough that (1 — §)7 <7 —2
for all 7 > Ty. By (41),

<1-9§

nteitr < (2 mteitm)

for all 7 > T > Ty and [ > M. By arguments given in the end of Lemma 5 of [20],
we have

pulr,) zlr,s)  plme, ) (72, )

T
< 2041
GG 7 |27, )] [ [21](To)

(123) =
CO(I,R) T

for all m > 7 > Tp and I > M,. Note that this proves that v[z] is continuous, as
well as v[z] for I large enough. Let us take 75 = oo in this estimate. We get

o) 20 )| <onylagm) .
o |a(r,)l CO(I,R) gl
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Note that Lj[z](Ts) converges to a real number so that the right hand side can
be assumed to be arbitrarily small uniformly in [ by demanding that = be large
enough. Note also that

lim ‘p(Tla') 2(r,))  pul(T,) 27, 0) —0
l—oco T [z(m,)] o a(n, )| CO(IR)
for a fixed 1. These facts together yield the desired conclusion. O

In order to prove that the generic set of solutions is open in the presence of spikes,
we need to know that the limit of Q(7,-) and its first derivative under certain
circumstances depend continuously on the initial data.

Lemma 28. Consider a sequence x; = (Qi, P)) € S converging to x = (Q,P) € S.
Let us assume that there is a compact interval I with non-empty interior such that

Tll}n;o P, (T7 0) = Vo [.73] (0)

forall@ € I, and 0 < veo < 1 in I. Then the same is true for the limit of Py, forl
large enough, and we shall denote the limit of Q; on I by q[x;]. If ; converges to
x with respect to dy, then

lim [|g[z] — q[zi]llco(r,r) = 0,
l—o0
and if the convergence is with respect to ds, then

lim ||gg[z] — go[z1]l|co(r,r) = O
l—o0

Proof. The argument is similar to the proof of the previous lemma. Due to the
continuity of veo[z] on I and the conditions of the lemma, we conclude that there
is a > 0 such that
20 < vo[z](0) <1—26

for all § € I. Recall the notation of Subsection 2.3. Note that e~ "Fj[z] and
e~ "G j[z] are monotonically decaying functions and that H;[z] satisfies an estimate
(40) for all 7 > T, assuming 1 < P(s,0) < s — 1 for all s € [T,7] and 6 € Dy ;.
Similarly to the proof of the previous lemma, there is for every § € I an My, an Iy
and a Ty, where Iy is a compact interval containing @ in its interior, such that

e~ Fr,[m](7), e "G, [m](7) < (1 - ;5>

for all I > My (including | = oo) and all 7 > Ty. Since the interiors of the Iy
constitute an open covering of the compact interval I, there is a finite set of points
01, ...,0; such that the union Iy of the interiors of the Iy, contains I. Let M =
max{My,, ..., My, } and let T > max{Ty, ,...,Tp, } be such that D r is contained in
Iy. Thus

3 3
55 < Py(1,0) <1— 55
forall 7 > T,60 € Dy, and Il > M. By increasing T if necessary, we can assume

that

Bi(r,6)
T

(124) §< <1-6

forall 7 > T, 0 € D, and I > M, and that 6T > 1. We conclude that P;; has
to converge to voo[z;] in I. Note that we can assume H[z;](T) to be bounded by
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a constant C' independent of [, since x; converges to x with respect to d;. Due to
this fact, (124) and (40), we have

T\ 2
(125) mleln <o (T)
for all > M and all 7 > T. Note in particular that
e®7Q7(r,0) < e*MQ7(7,0) < Hilwy](1) < C

forall@ eI, 7> T and I > M. Consequently

lla[z] — Q[ml]”CO(I,R) < Q(r,-) - (I[ﬂf]HCO(I,R) +1Q(7, ) = Qu(r, ‘)||O°(I,R)

+HQu(7, ) — almllcor r)
< 2067 +(|Qu(T, ) = Q(r, o1 r)-

The first conclusion of the lemma follows. Using the fact that Hj[x;] converges to
zero uniformly in / and (124), we can assume T to be big enough that

0 é
—<P,+te"Py<1-=
g SHhrxe Hg < 2

A\

forall 7 > T1, 0 € Dy, and | > M. Due to this estimate and arguments given in
Lemma 1 and Lemma 2 of [20] the function

KI[.'L' Z ||62P QT te TQ@) ||CO(DI R)

satisfies

Ki[z](7) < exp[—6(r — T1)]K;[z](T1)
for all 7 > Tj, and similarly with z replaced with z;. Note that K[z;](T1) is
bounded by a constant independent of [. Let

1,4[z] = A1 1 [z] + 7Py, Ffylz)(r Z A5 L[=]llco Dy, R)-
Note that we have (26). Due to the estimates we have, we get
1
(87— F efTag).Al,i[SL'z] < (§ + Ceé(TTl)/2> (A1,+[£El] + ./41,,[.’[7[])

+Ce 022 (A ] + AS _[1]).

The second term comes from I ; 4+ whereas the first term comes from I; ;,+. Note
that the constants are independent of [. Let us estimate

(8, £e770y) [ el J)TPQ] e(1 97 p2 +e_‘5T/2AC L[z
Adding up and assuming 77 > 0, we get the conclusion that
(0 % 700 ] < (5 + 0P 2) (U f] + 5[]
so that
Ffym)(r) < F,y [m)(Ty) + /T [1+ Cen T By ) (9)ds,
5

Assuming 7 > Ty > 271, and using Grénwall’s lemma, we conclude that
e TFfy[w(r) < Cse” T Fyy [0)(T»)
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where Cj is independent of [. Since the right hand side is bounded by a constant
independent of [ if we assume x; to converge to x with respect to d-, we get a bound
of the form

62Pl QIZGT(Ta 0) S 05
foralll > M, T > T and § € I. Due to (124), we can argue as before in order to
obtain the second conclusion of the lemma. O

Proof of Proposition 5. Let x € G, ,,, and assume that z, is a sequence of solutions
converging to x with respect to ds. Let 61, ...,0; be the non-degenerate true spikes
and 61, ...,0., be the non-degenerate false spikes. Consider a non-degenerate true
spike 6;. Letting (Q, P) = T(Q, P) where

(126) T =1Invo Gqu,‘ro,Goa

for some constants qg, 79, 6o, we get smooth expansions in a neighbourhood of 8; by
Proposition 3. Furthermore Q(r,-) converges to § with §(6;) = 0 but §s(6;) # 0.
Let I; be a compact interval containing 6; in its interior such that P, (r,-) converges
t0 voo[Z] in I; and that gy # 0 in I;. Due to Lemma 28 and the fact that T is a
continuous map from solutions to solutions with respect to dz, we conclude that for
k large enough, z has exactly one non-degenerate true spike in the interior of I; but
no false ones, and that except for the non-degenerate true spike, the velocity belongs
to the interval (0,1). The non-degenerate false spikes can be dealt with similarly
by using T' = Inv. In this way we get compact intervals I1,...,[; and I3, ..., I},
containing 61, ...,6; and 61, ...,6., respectively in their interiors. Furthermore, for
k large enough, there is exactly one non-degenerate true spike in each of int/; and
exactly one non-degenerate false spike in each of intI]. Except for these spike
points, all other elements of the intervals I; and I} have the property that Py, (7,-)
converges to a number in the interval (0,1). Let S be the complement of the
interiors of I; and I} in S*. Since S is a compact set and ve[z] is continuous on
S, there is a & > 0 such that 20 < veo[z](0) <1—2§ for all @ € S. For each 6 € S,
there is a Ty and an Iy, where Iy is an interval containing 6 in its interior, such that

e TFy,[a)(r) < (1-0)?, e TGy, la](r) < (1-0)%

for all 7 > T}, using the notation of Subsection 2.3. Since the interiors of the I
constitute an open covering, there is a finite sub covering, consisting of the interiors
of J; = Ig;/, 1=1,...,n, Letting T' = max{ng, ...,Tg/ﬂl}, we get

o< (1-0) ) enem < (1-2))

for 7 > T as long as k is great enough. The reason this is true is the fact that
it is true for 7 = T for k great enough and the fact that the left hand sides are
monotonically decaying with time. We conclude that for k& large enough, x; €
Gi,m- Consequently, the complement of G; ,,, is closed with respect to ds, and the
proposition follows. O

Proof of Proposition 6. Let © € Gy r,, 0; be a non-degenerate true spike and z, =
T oz, where T is defined in (126). Then there is a §; > 0 such that v[z2](Is,), where
I5, = [0; — 6;,6; + 4;], is contained in the open unit disc and is bounded away from
the origin. Let U; be an open neighbourhood of v[z2](Is;) which does not contain
the origin. Let O; be the set of & € S, such that v[T o £](Is;) C U;. Assume that
Iy, converges to & € O; with respect to d;. Due to the continuity of 7' and Lemma
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27, we conclude that & € O; for k large enough. Consequently, O; is open with
respect to d;. Note that for & € O;, 0 < (1 — voo[£])? < 1 in I5,. The complement
S of the I, consists of finitely many intervals on which vy [z] € (0,1). Arguing
similarly to the above, there is an open neighbourhood O of z with respect to dy
such that for £ € O vs[£](S) € (0,1). Taking the intersection of O and the O;,
1 =1,...,1, we get the desired neighbourhood. O

11. GEOMETRIC PROPERTIES OF T°3-GOWDY METRICS

Let us state the results we need concerning the behaviour of the curvature. First
we need to introduce some terminology. Let M = R x T3. This is the spacetime
manifold. Let ¢ : M — R be defined by t(s,z) = s. Let v : (a,b) - M be a future
oriented inextendible causal curve, i.e. (y/,8;) > 0. Note that the regularity we
have in mind here is that of piecewise smoothness. Then

lim #[y(s)] = oo

The reason is that t[y(s)] is a monotonically decreasing function. Thus the limit
above must exist. If it equals a € R, then the causal character of the curve and the
fact that P, (@, A are smooth functions on

[t{~[(a+b)/2]},a] x T°
yield the conclusion that the curve is extendible. Let us use the notation

m(s) =t[y(s)], 0(s) =6[x(s)]-
Here 6 is of course only defined locally, but this will not be a problem for our
considerations. Due to the causality of the curve, we have

doN* . (dr\’
— <e — .
ds - ds

s d 7(s)
ds < / e_T(—d—;)ds = / (—e )dr = e 7).

o0

Thus
d_9

/Gds

In particular, this proves that 6(s) converges to something as s — a. We shall call
this limit 6o[y]. Furthermore, we see that 6[y(s)] always belongs to Dy 4] ¢[(s)]-

Lemma 29. Consider a T3-Gowdy spacetime (M, g), i.e. g is of the form (1) and
P, Q, X\ satisfy (2)-(5). Lety: (a,b) = M be an inextendible future directed causal
curve. Then, using the above terminology, if veo(6o[7]) # 1,

lim (Ragys R*0)y(s)] = oo.

Proof. As was noted before the statement of the lemma, 6[y(s)] always belongs
t0 Dyq[],¢[v(s)]- Thus we only need to concern ourselves with a region defined by
7 > 79 and 6 € Dgy,|,) ;- Due to Proposition 9, Corollary 5 and Proposition 8, we
have quite good understanding for how the solution behaves in such a region. This
is enough to obtain the conclusion of the lemma. O

In the proof of strong cosmic censorship, the following result is useful.

Lemma 30. Consider a Lorentz manifold (M,g) such that for each timelike geo-
desic, the Kretschmann scalar Rog,5 R0 is unbounded in every incomplete direc-
tion. Then (M,g) is C?-inextendible.
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Remark. The concept of C2-inextendibility is specified in Definition 5.

Proof. Assume the spacetime is extendible and recall the notation of Definition 5.
Let us first prove that there is a timelike geodesic beginning in i(M) and ending
outside of i(M). Since i(M) # M and M is connected, there must be a point
p € Di(M), and since i(M) is an open subset of M, p ¢ i(M). Let U be a convex
neighbourhood of p and let ¢ € U be such that there is a timelike geodesic from ¢ to
p with non-zero length. If ¢ € i(M), we already have what we desire. Assume g ¢
i(M). Note that there is a neigbourhood V of p such that there is a timelike geodesic
between any point in V' and ¢. Since V is a neighbourhood of a boundary point
of i(M), we conclude that there is a timelike geodesic with the desired properties.
In other words, we can assume that there is a timelike geodesic v : [0,1] = M
with the property that ([0,1)) C (M) and v(1) ¢ i(M). Then 7lj,) is an
inextendible timelike geodesic when viewed in M. Consequently, it either has to
have infinite length or the Kretschmann scalar has to become unbounded along it.
Both possibilities lead to a contradiction. |

Lemma 31. The spacetime defined by the metric (1) on M = R x T? is globally
hyperbolic.

Proof. Let 7y : (s—,s4+) — M be an inextendible causal curve in (M,g) and let
M, = {r} x T® for some 7 € R. Assume ~ does not intersect M,. There are
two possibilities; either ¢[y(s)] < 7 for all s or the opposite inequality holds for all
s, cf. the notation above. Since the cases are similar, let us assume the former.
Assuming (7',0;) < 0, we get the conclusion that ~y(s) is contained in a compact
set for all s € [sg,s4+) for a fixed so € (s_,s4). Since t[y(s)] is monotonically
increasing and bounded from above, we conclude that it converges. Let 79 =
t[y(s0)]. Since [10,7] x S? is compact, P, @ and A and their derivatives are bounded
on this set. Since t[y(s)] converges and + is a causal curve, we conclude that the
spatial component of v also has to converge. O

Proposition 14. Consider a causal geodesic v : (s_,s4+) — M, where M =
R x T° with a metric of the form (1) where P, Q and X\ satisfy (2)-(5). Assume
(v'(8), Or|y(s)) < 0. Then vy is past incomplete.

Remark. In the Gowdy spacetimes, 7 — —oo corresponds to the expanding direc-
tion, so it is natural to consider the vectorfield 0, to be past directed. A causal
geodesic with the properties stated in the proposition is thus past directed, i.e.
increasing s corresponds to going into the past.

Proof. We proceed as in [19]. Consider the orthonormal basis given by
eo = 6/\/4+3T/48T, e; = e/\/4fr/489’ ey = 67'/27P/2607 e3 = €T/2+P/2(85 _ Qaa)‘
Define

¢ = 67/\/4737-/47 fO = _<’ylan|’Y)7 fk = <’yl7ek|’y>
for k = 1,2,3. Observe that Y fZ < f& due to causality. Let 79 =t o. By the
arguments given above, yo(s) = 00 as s = s;—. Furthermore, the #-coordinate of

v converges to p[y]. We shall here omit the reference to v and simply write 6y.
Consider
dfo

ds = _<71=V7’60> == zf“fb'(ell/’VeueO) 0.

v
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Using the knowledge we have concerning the asymptotics, cf. Proposition 8 and 9,

Ber, Vereo) =~ 1O —1), ez, Veseo) = —5(1—P,), dles, Vegeo) = —5(14 )

and all other elements of the matrix ¢(e,, Ve, eo) converge to zero as s — s —.
Note that the §-coordinate of y(s) belongs to Dy, ¢(s)]- Let

O = ¢ oy(er, Ve eo) 0.

There are in principle three different cases to consider. If v, (6g) < 1, then 6; > 0
and 62,05 < 0, if we neglect an error which converges to zero. If v, (6p) > 1, then
61 < 0 in the limit and one of 6,, 63 converges to [V (o) — 1]/2 and the other is
negative in the limit. We have

df
T 2 VoD fibk+bordf3

k
where we here and below shall use the notation § for any function such that §(s) — 0
as s = s;— and ¢ = 1/¢. Depending on the different cases we get one of

d 1 dj 1
To s worfz @) ~11+vorsfs, T s yorsiiveto) 11 +voris
Compute

dpoy O dyo  OY dm

— 0 —+—O _

ds ~— or ds o0 ds

where ~; is the #-coordinate of v (observe that even though this is not well defined,
the derivative is). However,

d d
T2 =vorfe, L =explror/a—0/4f
so that
dip o 1
VX > 42 0 foly (0 (o) +3) + ).
ds 4
Letting h = fo - ¢ oy, we get
dh _ dfy dip oy
ds d8¢07+f0 ds
Depending on the different cases we thus get one of the following inequalities
dh 1.5,
- > =
7 2 2h [v5(80) + 1+ 0],
dh 1., N 1.,
= > = — > - .
= 2 [2 = 2000 (60) + vi + 3+ 0] > Th7[4 + 4]
Thus there is an s; such that for s > s;

dh, .1,
%(3) > gh (8)-

We get the conclusion that the geodesic is past incomplete. O



ON THE CONCEPT OF AN ASYMPTOTIC VELOCITY IN T3-GOWDY SPACETIMES 59

REFERENCES

[1] Berger B, Isenberg J and Weaver M 2001 Oscillatory approach to the singularity in spacetimes
with T2 isometry Phys. Rev. D 64 084006

[2] Berger B and Garfinkle D 1998 Phenomenology of the Gowdy universe on 7% x R Phys. Rev.
D 57 1767-77

[3] Berger B and Moncrief V 1993 Numerical investigation of cosmological singularities Phys. Rev.
D. 48 4676-4688

[4] Chae M and Chrusciel P T 2004 On the dynamics of Gowdy space times Commun. Pure Appl.
Math. 57 1015-1074

[5] Fourés-Bruhat Y 1952 Théoréme d’existence pour certains systémes d’équations aux derivées
partielles non linéaires Acta Mathematica 88 141

[6] Choquet-Bruhat Y, Geroch R 1969 Global aspects of the Cauchy problem in general relativity
Comm. Math. Phys. 14 329-335

[7] Chrusciel P T and Isenberg J 1993 Nonisometric vacuum extensions of vacuum maximal glob-
ally hyperbolic spacetimes Phys. Rev. D (3) 48 no 4 1616-1628

[8] Chrusciel P T 1990 On spacetimes with U(1) x U(1) symmetric compact Cauchy surfaces Ann.
Phys. NY 202 100-50

[9] Chrusciel P T, Isenberg J and Moncrief V 1990 Strong cosmic censorship in polarised Gowdy
spacetimes Class. Quantum Grav. 7 1671-80

[10] Chrusciel P T 1991 On uniqueness in the large of solutions of Einstein’s equations (’strong
cosmic censorship’) Proc. Centre for Mathematical Analysis vol 27 Australian National Uni-
versity

[11] Garfinkle D and Weaver M 2003 High velocity spikes in Gowdy spacetimes Phys. Rev. D 67
124009

[12] Gowdy R H 1974 Vacuum spacetimes with two-parameter spacelike isometry groups and
compact invariant hypersurfaces: Topologies and boundary conditions Ann. Phys. NY 83
20341

[13] Grubisi¢ B and Moncrief V 1993 Asymptotic behaviour of the T3 x R Gowdy space-times
Phys. Rev. D 47 2371-82

[14] Isenberg J and Moncrief V 1990 Asymptotic behaviour of the gravitational field and the
nature of singularities in Gowdy space times Ann. Phys 199 84-122

[15] Kichenassamy S and Rendall A 1998 Analytic description of singularities in Gowdy spacetimes
Class. Quantum Grav. 15 1339-55

[16] Moncrief V 1981 Global properties of Gowdy spacetimes with T3 x R topology Ann. Phys.
NY 132 87-107

[17] Rendall A 2000 Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity
Class. Quantum Grav. 17 3305-16

[18] Rendall A and Weaver M 2001 Manufacture of Gowdy spacetimes with spikes Class. Quantum
Grav. 18 2959-76

[19] Ringstrém H 2004 On Gowdy vacuum spacetimes Math. Proc. Camb. Phil. Soc. 136 485-512

[20] Ringstrom H 2004 Asymptotic expansions close to the singularity in Gowdy spacetimes A
Spacetime Safari: Essays in honour of Vincent Moncrief, Special issue of Class. Quantum
Grav., Eds. B Berger and J Isenberg 21 S305-S322

[21] Ringstrom H 2004 On a wave map equation arising in General Relativity Commun. Pure
Appl. Math. 57 657-703

MAX-PLANCK-INSTITUT FUR (GRAVITATIONSPHYSIK, AM MUHLENBERG 1, D-14476 GoLMm, GER-
MANY



