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Abstract
In this paper, we provide the techniques and proofs for the results presented in
our companion paper concerning the consistency check on volume and triad
operator quantization in loop quantum gravity.
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1. Introduction

In this paper, we deliver the necessary techniques and proofs for the results discussed in our
companion paper [20]. The consistency check on the method of quantizing triads by means of
the so-called Poisson bracket identity is performed. This identity allows us to replace triads by
the Poisson brackets between the Ashtekar connection and the classical volume and places a
prominent role in the dynamics of LQG [3]. The consistency check is made by constructing an
alternative flux operator based on the Poisson bracket identity whose action is then compared
with the action of the usual flux operator, quantized in a standard way as a differential operator.

In particular, we show that one must consider the electric field of LQG as a pseudo-
2-form, since otherwise no consistent alternative flux operator can be obtained. Note that,
classically, the electric field can be considered either as a 2-form or as a pseudo 2-form; the
symplectic structure is insensitive to that when simultaneously changing the relation between
the extrinsic curvature and the connection appropriately. Furthermore, a consistent alternative
flux operator can only be achieved if one uses the volume operator introduced by Ashtekar
and Lewandowski V̂AL [6]. The Rovelli–Smolin volume operator V̂RS [5] is inconsistent with
the usual flux operator. The ambiguity of V̂AL caused by regularization can be uniquely fixed
by this consistency check. Moreover, since we apply the formula for matrix elements of the
volume operator developed in [16], this formula is tested independently through our analysis
here. Additionally, we could demonstrate that when considering higher representation weights
than the fundamental one of SU(2) for the holonomies involved in the alternative flux operator
the results stay invariant. Hence, we get no ambiguities in the quantization process. Finally,
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the factor ordering of the alternative flux operator is unique if one insists on the principle of
minimality.

These results show that instead of taking holonomies and fluxes as fundamental operators
one could instead use holonomies and volumes as fundamental operators. It also confirms that
the method to quantize the triad developed in [3] is mathematically consistent.

This paper is organized as follows. In section 2 we review the regularization and definition
of the fundamental flux operator for the benefit of the reader and in order to make the
comparison with the alternative quantization easier. In section 3 we derive the classical
expression for the alternative flux operator. In section 4 we describe in detail the regularization
of the alternative flux operator and arrive at its explicit action on spin network functions. In
section 5 we draw first conclusions about and determine general properties of the expression
obtained in section 4. In section 6 we compute the full matrix elements of the alternative flux
operator. In section 7 we show that the chosen factor ordering is unique within the minimalistic
class of factor orderings mentioned above. In section 8 we compute the matrix elements of the
fundamental flux operator. In section 9 we compare the two flux operators and discover that
there is a perfect match for any value of � if and only if Creg = 1/48, if and only if the electric
field is a pseudo-2-form and if and only if we use the AL volume operator. In section 10 we
rule out the RS volume operator explicitly. In particular, we stress that the fact that the RS
volume operator is inconsistent could not have been guessed from the outset. The consistency
check performed in this paper is non-trivial and should not be taken as criticism of the RS
volume but rather as a mechanism to tighten the mathematical structure of LQG. In section 11
we summarize and conclude. Finally, in appendices A–E we supply the detailed calculations
and proofs for the claims that we have made in the main text.

2. Review of the usual flux operator in LQG

The classical electric flux Ek(S) through a surface S in LQG is given by the integral of the
densitized triad Ea

k over a 2-surface S

Ek(S) =
∫

S

Ea
k nS

a , (2.1)

where nS
a is the conormal vector with respect to the surface S. In order to define a corresponding

flux operator in the quantum theory, we have to consider the Poisson brackets between the
classical electric flux and an arbitrary cylindrical function fγ : G|E(γ )| → C, where G is the
corresponding gauge group, namely SU(2) in our case:

{Ek(S), fγ ({he(A)}e∈E(γ ))} =
∑

e∈E(γ )

{
Ea

k , (he)AB

} ∂fγ

∂(he)AB

. (2.2)

We experience that the Poisson brackets between Ea
k and fγ can be calculated whenever the

Poisson brackets between Ea
k and the holonomy (he)AB are known. As the latter cannot

be calculated on the manifold directly because terms including distributions would appear,
we have to regularize our electric flux and also the holonomy. Then we will investigate the
regularized Poisson brackets, remove the regulator afterwards and hope that at the end of
the day we will obtain a well-defined operator. The regularization can be implemented by
smearing the 2-surface S into the third dimension, shown in figure 1, so that we get an array
of surfaces St . The surface associated with t = 0 is our original surface S.

We define our regularized classical flux as

Eε
k (S) := 1

2ε

∫ +ε

−ε

dtEk(St ). (2.3)
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Figure 1. Smearing of the surface S into the third dimension. We obtain an array of surfaces St

labelled by the parameter t with t ∈ {−ε, +ε}. The original surface S is associated with t = 0.

S

up

down

in
out

Figure 2. Edges of type up, down, in and out with respect to the surface S.

The corresponding operator Êk(S) in the quantum theory is then defined as

Êk(S)fγ := ih̄ lim
ε→0

{
Eε

k(S), fγ

}
. (2.4)

We have to derive the Poisson brackets between Eε
k (S) and any possible cylindrical function

fγ . For this purpose, we can reduce the problem to investigating the Poisson brackets for
any possible edge that is contained in the graph labelling the cylindrical function. The edges
appearing can be classified as (i) up, (ii) down, (iii) in and (iv) out. Therefore, if we know the
Poisson brackets for any of these types of edges, we will be able to derive the Poisson brackets
between Eε

k and any arbitrary fγ . The calculation of the regularized Poisson brackets can be
found, for example, in the second paper of [1]. After having removed the regulator we end up
with the following action of the flux operator on an arbitrary cylindrical function fγ ,

Êk(S)fγ = i

2
�2

p

∑
e∈E(γ )

ε(e, S)
[τk

2

]
AB

∂fγ (he′)e′∈E(γ )

∂(he)AB

, (2.5)

where τk is related to the Pauli matrices by τk := −iσk . The sum is taken over all edges of the
graph γ associated with fγ . The function ε(e, S) can take the values {−1, 0, +1} depending
on the type of edge that is considered. It is +1 for edges of type up, −1 one for down
and 0 for edges of type in or out (see figure 2).

If we introduce right invariant vector fields Xe
k , defined by

(
Xe

kf
)
(h) := d

dt
f (etτkh)

∣∣
t=0,

we can express the action of the flux operator by

Êk(S)fγ = i

4
�2

p

∑
e∈E(γ )

ε(e, S)Xe
kfγ . (2.6)
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The right invariant vector fields fulfil the following commutator relations:[
Xr

e,X
s
e

] = −2εrstX
t
e. (2.7)

By means of introducing the self-adjoint right invariant vector field Y k
e := − i

2Xk
e , we achieve

commutator relations for Y k
e which are similar to that of the angular momentum operators in

quantum mechanics[
Y r

e , Y s
e

] = iεrstY
t
e . (2.8)

Consequently, we can describe the action of Êk(S) by the action of the self-adjoint right
invariant vector field Y k

e on fγ ,

Êk(S)fγ = −1

2
�2

p

∑
e∈E(γ )

ε(e, S)Y k
e fγ . (2.9)

3. Idea and motivation of the alternative quantization of the flux operator

Recall the definition of the regularized classical flux Eε
k (S) in equation (2.3). We take the

Poisson brackets of the Ashtekar connection A
j
a and the densitized triad Eb

k given by{
Aj

a(x), Eb
k (y)
} = δ3(x, y)δa

b δ
k
j (3.1)

as our fundamental starting point. If we use a canonical transformation in order to go from the
ADM formalism to the formulation in terms of Ashtekar variables, we have two possibilities in
choosing such a canonical transformation that both lead to the Poisson brackets above. These
two possibilities are

I A
j
a = �

j
a + γ sgn(det(e))Kj

a , Ea
k = 1

2εkst ε
abces

be
t
c

II A
j
a = �

j
a + γK

j
a , Ea

k = 1
2εkst ε

abces
be

t
csgn(det(e)).

(3.2)

Here �
j
a is the SU(2)-spin connection, K

j
a is the extrinsic curvature, and γ is the Immirzi

parameter. Due to the two possible canonical transformations, we also have two possibilities
in defining an alternative densitized triad

Ea
k =


det(e)ea

k = 1
2εkst ε

abces
be

t
c√

det(q)ea
k = 1

2εkst ε
abc sgn(det(e))︸ ︷︷ ︸

=:S

es
be

t
c

=:

{
E

a,I
k

E
a,II
k ,

(3.3)

where e
j
a is the cotriad related to the intrinsic metric as qab = e

j
ae

j

b . From now on, we will use
E

a,I
k and E

a,II
k , respectively, for the two cases.

Now the idea of defining an alternative regularized flux

E
ε,I/II
k (S) := 1

2ε

∫ +ε

−ε

dt Ẽ
I/II
k (St ); Ẽ

I/II
k (St ) =

∫
St

E
a,I/II
k nSt

a (3.4)

is to express the densitized triad Ea
k in terms of the triads as above. So instead of quantizing

the densitized triad directly, we could use the above classical identities, quantize them via the
Poisson bracket identity, and check whether both quantization procedures are consistent. The
main difference between these two definitions is basically a sign factor which we will denote
by S. From the mathematical point of view, both definitions in equation (3.4) are equally
viable, thus we will keep both possibilities and emphasize the differences that occur when
we choose one or the other definition. However, note that case I leads to the anholonomic
constraint det(E) � 0 emphasized also in [13], which already seems unlikely to be reproduced
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by quantizing E as a vector field on some space of connections. Note that the precise distinction
between case I and case II is often forgotten in the LQG literature where one treats ∗E as a
2-form (I) when convenient and ∗E as a vector density (II) when convenient. While this is
classically immaterial as long as 	 is orientable, we will see that in the quantum theory this
becomes crucial.

If we parametrize the surface integral over St , we obtain for the alternative flux

Ẽ
I/II
k (St )=


∫

St

d2u εkst

[
es
b(X(u))Xb

,u3
(u)
][

et
c(X(u))Xc

,u4
(u)
]
, E

a,I
k = det(e)ea

k∫
St

d2u εkst

[
es
b(X(u))Xb

,u3
(u)
]
S
[
et
c(X(u))Xc

,u4
(u)
]
, E

a,II
k = √

det(q)ea
k ,

(3.5)

where we used the expression of the conormal vector nSt
a = εaqrX

q
,u3(u)Xr

,u4
(u) associated with

the surface St in terms of an arbitrary embedding X :
(− 1

2 , + 1
2

)2 → S; (u3, u4) �→ X(u3, u4).
Our strategy in quantizing the alternative expression of the electric flux will be as follows.

First of all, we express the triads such as es
b in equation (3.5) in terms of the Poisson brackets

between the components of the connection As
b and the volume V (R), given by

{
As

b, V (R)
}
.

Here V (R) = ∫
R

d3x
√

det q is the volume of the region R. This kind of quantization procedure
was first introduced in [3] in order to derive a well-defined expression for the Hamiltonian
constraint in the quantum theory and is used in various applications in LQG nowadays. By
comparing the action of the alternative flux operator with that for the usual flux operator later
on, we are able to verify whether this particular way of quantizing leads to the correct and
expected result. Therefore, this can be seen as an independent check of this particular method
of quantization. As the second step, we replace the connection by holonomies, for which
well-defined operators exist. For this reason, we will have to partition each surface St and
consider the limit where the partition gets finer and finer. This will be explained in more
detail later. Before we apply canonical quantization and replace the Poisson brackets by the
corresponding commutators, we want to get various issues out of the way.

3.1. Replacement of the triads by means of the Poisson brackets

As before we derive the relation between the Poisson brackets
{
As

b, V (R)
}

and the cotriads
for both expressions of Ea

k in equation (3.5). The explicit definition of the densitized triad
Ea

k in terms of the ea
k enters the calculation. Thus it is not surprising that the final result is

different for the two cases:

{
As

b, V (R)
} =


−κ

2
Ses

b, E
a,I
k = 1

2
εkst ε

abces
be

t
c

−κ

2
es
b, E

a,II
k = 1

2
εkst ε

abcSes
be

t
c.

(3.6)

By using the above identity and inserting it into equation (3.5) we get

Ẽ
I/II
k (St ) =



4

κ2

∫
St

d2u εkst

{
As

b(X(u))Xb
,u3

(u), V (R)
}{

At
c(X(u))Xc

,u4
(u), V (R)

}
,

E
a,I
k = det(e)ea

k

4

κ2

∫
St

d2u εkst

{
As

b(X(u))Xb
,u3

(u), V (R)
}
S
{
At

c(X(u))Xc
,u4

(u), V (R)
}
,

E
a,II
k = √

det(q)ea
k .

(3.7)

Here V (R) is any region containing ∪St , t ∈ [−ε, ε], and we used SS ∈ {0, +1} and thus
could completely neglect the sign factor in the case of Ea

k = det(e)ea
k , because classically
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Figure 3. Partition Pt of the surface St into small squares with a parameter edge length ε′.

the 3-metric is non-degenerate, hence S2 = 1. At this stage, we already see that the main
difference between the two expressions of Ea

k is whether we will have a sign factor in the
final (classical) expression or not. Exactly this feature will be very important in the quantum
expression, because the action of the corresponding operator differs remarkably if the operator
contains a corresponding sign operator or if it does not.

3.2. Replacement of the connections by holonomies

Our main aim is to express the components of the connections As
b(XS(u)) in terms of

holonomies for which well-defined operators on the quantum level are known. For this
reason, we partition each surface St into small squares with an parameter edge length ε′ as
shown in figure 3. We can therefore express the integral over St as the sum over the integrals
over all small squares in the limit where the partition gets infinitesimally small. Consequently,
we can rewrite equation (3.5) as

Ẽ
I/II
k (St ) =



lim
Pt→St

∑
�∈Pt

4

κ2
εkst

{
As

3(�), V (Rv(�))
}{

At
4(�), V (Rv(�))

}
,

E
a,I
k = det(e)ea

k

lim
Pt→St

∑
�∈Pt

4

κ2
εkst

{
As

3(�), V (Rv(�))
}
S
{
At

4(�), V (Rv(�))
}
,

E
a,II
k = √

det(q)ea
k ,

(3.8)

where we introduced the notation As
I (�) = ∫

eI(�)
As, I = 3, 4 for the integral over the

connection along the edge eI(�) of �. Here Rv� is any region containing the point
e3(�) ∩ e4(�) and in the limit ε′ → 0 also Rv� → v(�).

If we choose ε′ small enough, we can use the following approximation:{
As

I (�), V (Rv(�))
}τs

2
+ o(ε′2) = +heI

{
h−1

eI
, V (Rv(�))

}
. (3.9)

The above equation holds for holonomies in the spin- 1
2 representation. We would like to

generalize this relation to the case of holonomies with an arbitrary weight � in order to
construct an operator that could contain arbitrary spin representations. This could be useful
in the sense that we are then able to analyse whether the result of our alternative flux operator
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is sensitive to the chosen weight. That is, we investigate the effect of this particular kind
of factor ordering ambiguity in the classical limit. The generalization of equation (3.9) is
straightforward and leads to{

As
I (�), V (Rv(�))

}
1
2π�(τs) + o(ε′2) = +π�

(
heI

){
π�

(
h−1

eI

)
, V (Rv(�)), (3.10)

where we denote a representation with weight � by π�. By choosing ε′ small enough,
we are allowed to replace the Poisson brackets {As

3(�), V (Rv(�))} and {At
4(�), V (Rv(�))},

respectively, by Poisson brackets including holonomies. Thus the basis of the alternative flux
operator will be the following classical identity:

(�) Ẽ
I/II
k (St ) = lim

Pt→St

∑
�∈Pt

εkst

4

κ2

{
As

3(�), V (Rv(�))
}
S
{
At

4(�), V (Rv(�))
}

= lim
Pt→St

∑
�∈Pt

16

κ2

1
4
3�(� + 1)(2� + 1)

Tr
(
π�

(
he3(�)

){
π�

(
h−1

e3(�)

)
, V (Rv(�))

}
×π�(τk) S π�

(
he4(�)

){
π�

(
h−1

e4(�)

)
, V (Rv(�))

})
. (3.11)

The box around the sign factor S indicates that it is not contained in the equation if we choose
Ea,I, but occurs when we use E

a,II
k . If one wants to show the correctness of the above identity,

one has to use the following identity, tr (π�(τs)π�(τk)π�(τt )) = − 4
3�(� + 1)(2� + 1)εskt which

is derived in appendix B.
Hence, we managed to derive an alternative expression for the flux operator on the classical

level which we are able to quantize by means of well-known operators

(�)̃E
I/II
k (St ) = lim

Pt→St

∑
�∈Pt

16

κ2

1
4
3�(� + 1)(2� + 1)

Tr
(
π�

(
he3(�)

){
π�

(
h−1

e3(�)

)
, V (Rv(�))

}
×π�(τk) S π�

(
he4(�)

){
π�

(
h−1

e4(�)

)
, V (Rv(�))

})
. (3.12)

From now on, we will neglect the dependence of the edges eI(�) on the particular point PI(�)

in order to keep the expressions clearer.

3.3. Notion of convergence and factor ordering

Let us now discuss in which sense the limit ε → 0 is to be understood. First of all, we formally
have for any spin network state Ts

(�)Êε
kTs := 1

2ε

∫ ε

−ε

∑
s ′

〈Ts ′ |(�)̂̃Ek(St )|Ts〉Ts ′ (3.13)

where we sum over all spin network labels s ′ (resolution of unity). Note that the sum
∑

s ′ must
be taken under the integral as otherwise the result would automatically be zero. Moreover,
note that for each t the number of s ′ contributing is finite. Next we have

〈Ts ′ |(�)̂̃Ek(St )|Ts〉 = lim
Pt→St

∑
�∈Pt

〈Ts ′ |(�)̂̃Ek(�)|Ts〉. (3.14)

In order to simplify the notation, let us assume that for all t the limit ε′ → 0 implies Pt → St

while the parameter area of the squares within the partitions decays to zero as (ε′)2. Then we
can combine the two formulae and write

(�) ˆ̃Eε,ε′
k Ts := 1

2ε

∫ ε

−ε

dt
∑
s ′

∑
�∈Pt

〈Ts ′ |(�)̂̃Ek(�)|Ts〉Ts ′ . (3.15)
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It is easy to see that the Hilbert norm of this object vanishes with respect to the Hilbert
space HKin = L2(A, dµAL) of LQG where A is the Ashtekar–Isham space of generalized
connections and µAL is the Ashtekar–Lewandowski measure. Basically, this happens because
the norm squared involves a double integral over t, t ′ while the integrand has support only on
the measure zero subset t = t ′. Hence, we cannot use the strong operator topology as a notion
of convergence. The same applies to the weak operator topology. Rather, we will use the same
notion of convergence as that which has been used for the fundamental flux operator: given a
point A ∈ A in the space of smooth connections, we may evaluate the above expression at A

and obtain a function on A:[
(�) ˆ̃Eε,ε′

k Ts

]
(A) := 1

2ε

∫ ε

−ε

dt
∑
s ′

∑
�∈Pt

〈Ts ′ |(�)̂̃Ek(�)|Ts〉Ts ′(A). (3.16)

We now take the limit ε′ → 0 before the limit ε → 0 in the following sense: we say that

lim
ε→0

lim
ε′→0

(�) ˆ̃Ek
ε,ε′

(S) = (�)̂̃Ek(S) (3.17)

provided that for any A ∈ A and any spin network label s

lim
ε→0

lim
ε′→0

∣∣[(�) ˆ̃Eε,ε′
k (S)Ts

]
(A) − [(�)̂̃Ek(S)Ts](A)

∣∣ = 0. (3.18)

Note that the limit is pointwise in A, s and not uniform. Note also that this is a limit from the
space of operators on the space of functions of smooth connections to operators on HKin and
not a convergence of operators on HKin.

With these preparations out of the way we may now draw some first conclusions about

the action of the final operator (�) ˆ̃Ek(S). We may assume without loss of generality that both
graphs γ = γ (s), γ ′ = γ (s ′) underlying 〈Ts ′ |(�)̂̃Ek(�)|Ts〉 are adapted to S in the sense that
each of their edges has well-defined type with respect to S. If an edge e is of type up or down,
respectively, then St ∩ e �= ∅ only for t � 0 or t � 0 respectively. If e is of type in or out,
respectively, then for sufficiently small ε we have St ∩ e �= ∅ only for t = 0 or for no t at all
respectively. Now consider 〈Ts ′ |(�)̂̃Ek(�)|Ts〉 at finite ε′. Since ̂̃Ek(�) involves the volume
operator which has non-trivial action only when the state on which it acts has at least one
trivalent vertex, no matter whether we use the RS or AL volume operator, it easily follows
that
[
h−1

eI (�)
, V̂v(�)

]
, I = 3, 4 annihilates Ts unless eI (�), γ intersect each other. Hence, in

order to obtain a non-vanishing contribution, we must refine Pt in such a way that each edge
e ∈ E(γ ) intersecting St completely does so by intersecting with at least one of the eI (�)

for some I ∈ {3, 4} and at least one � ∈ Pt . Making use of the fact that classically the limit
Pt → St is independent of the refinement, we refine Pt graph by demanding that eventually
e ∩ St coincide with precisely one of the v(�) if e is of type up or down and t � 0 or t � 0
respectively. This is motivated by the fact that otherwise no such edge would contribute if
we use the AL version. If e is of type in and t = 0 then the number of intersections of e
with the eI (�) necessarily diverges as ε′ → 0. However, if we use the AL volume, all these
contributions vanish because, in order that its action be non-trivial, it needs non-coplanar
vertices, except if v(�) coincides with an endpoint of e where there might be additional edges
of adjacent e which are transversal to S. If we use the RS volume then all these intersections
contribute and the sum over � diverges for suitable s ′ as ε′ → 0. However, since we perform
the integral over t before taking ε′ → 0 and the support of the integrand for type in edges
consists of the measure zero set t = 0, the contribution vanishes, again no matter whether we
use the RS or AL volume.

We conclude that for both versions of the volume operator only edges of type up or down
will contribute, exactly as for the fundamental flux operator. However, for the AL volume the
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required ordering is more restrictive because there must be terms with both edges e3(�), e4(�)

to the right of V̂v(�). For the RS volume there are more possibilities available which we will
discuss in a later part of the paper.

Now let us derive which s ′ contribute to 〈Ts ′ |(�)̂̃Ek(�)|Ts〉 for given s and � ∈ St .
We may restrict ourselves to edges of type up or down as just discussed. The factors
π�

(
heI (�)

)
, π�

(
heI (�)

)−1
involved could a priori change the graph γ by adding the edge

eI (�) with spin J = 0, 1, . . . , 2�. However, the operator (�) ˆ̃Ek(�) is invariant under gauge
transformations at the endpoints of the eI (�) by construction, hence we must necessarily have
J = 0. Thus, even at finite ε′ the operator (�)̂̃Ek(�) does not change the range of the graph
γ . Hence, the only difference between s ′, s is that γ ′ = γ but the edge e ∈ E(γ ′) appears
split into et

1, e
t
2 with e = (et

2

)−1 ◦ (et
1

)
and et

1 ∩ et
2 = v(�) = e ∩ St . Note also that with dt

measure 1 the point St ∩ e is an interior point of e. This is important because the contribution
of 〈Ts ′ |(�)̂̃Ek(�)|Ts〉 for � ∈ S differs from that for � ∈ St , t �= 0 because in the former case
v(�) may be a vertex of higher valence than 4.

Finally, note that (�)̂̃Ek(�)|Ts〉 transforms in the spin-1 representation at v(�) because Ts

is gauge invariant there. Hence Ts ′ must have a spin-1 intertwiner at v(�).
What happens now when we take the limit as discussed is as follows. For each value of

t the sum over � can be replaced by a finite number of terms, one for each e ∈ E(γ ) of type
up or down and taking the limit ε′ → 0 becomes trivial. Next, for each value of t and each
edge e ∈ E(γ ) there will be a finite number of states Ts ′

e,t
which contribute to the sum over s ′

and which are mutually orthogonal for different e, t . The numbers 〈Ts ′
e,t

|(�)̂̃Ek(�)|Ts〉 do not
depend on t (thanks to the diffeomorphism invariance of the measure); however, the states Ts ′

e,t

do. Fortunately, considered as functions of smooth connections, the limit ε → 0 converges
and results in states Ts ′

e
where γ (s ′

e) = γ not only have the same range but also the same edge
sets. Then s, s ′

e differ only by the intertwiner at the point v = b(e).

3.4. Classical identity

Collecting all the arguments of the discussion of the last section, we end up with the following
ordering of the classical terms3,

(�)̃E
I/II
k (St ) = − lim

Pt→St

∑
�∈Pt

16

κ2

1
4
3�(� + 1)(2� + 1)

π�(τk)CBπ�

(
he4

)
CD

×{π�

(
h−1

e3

)
, V (Rv(�))

}
AB

S
{
V (Rv(�)), π�

(
h−1

e4

)}
DE

π�(he3)EA, (3.19)

where the indices {A,B,C,D,E} ∈ {−�, . . . , +�}.

4. Construction of the alternative flux operator

The Poisson brackets in equation (3.19) includes the classical volume function V (Rv(�)),
therefore the corresponding alternative flux operator will contain the volume operator V̂ . As
mentioned in the introduction, in LQG there exist two different volume operators, V̂RS and
V̂AL. Thus for each case I and II we have two different alternative flux operators depending
on the choice of V̂RS and V̂AL respectively. Hence, after canonical quantization, we end up
with four different versions of the alternative flux operator. For these four operators, we use

3 In the case of V̂RS there exists more than this symmetric factor ordering. We will discuss this aspect later in the
paper.
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Figure 4. A non-vanishing contribution to 〈Ts′ |(�)̂̃Ek(�)|Ts〉 can only be achieved if Ts contains
edges of type up and/or down, respectively, with respect to the surface St . Moreover, the edges
e3(�), e4(�) have to be attached to Ts in this specific way.

the following notation:̂̃EI
k(St ) −→ ̂̃EI,AL

k (St ),
̂̃EI,RS

k (St ) (4.1)̂̃EII
k (St ) −→ ̂̃EII,AL

k (St ),
̂̃EII,RS

k (St ). (4.2)

Before we apply canonical quantization on the classical identity in equation (3.19) we will
discuss the two volume operators V̂RS, V̂AL in more detail.

4.1. The two volume operators of LQG

4.1.1. The volume operator V̂RS of Rovelli and Smolin. The idea that the volume operator
acts only on the vertices of a given graph was first mentioned in [17]. The first version of a
volume operator can be found in [5] and is given by

V̂ (R)γ =
∫

R

d3pV̂ (p)γ

V̂ (p)γ = �3
p

∑
v∈V (γ )

δ(3)(p, v)V̂v,γ (4.3)

V̂ RS
v,γ =

∑
I,J,K

√∣∣∣ i
8
CregεijkXi

eI
X

j
eJ

Xk
eK

∣∣∣.
Here we sum over all triples of edges at the vertex v ∈ V (γ ) of a given graph γ . V̂RS is
not sensitive to the orientation of the edges, thus also linearly dependent triples have to be
considered in the sum. Moreover, we introduced a constant Creg ∈ R that we will keep
arbitrary for the moment and that is basically fixed by the particular regularization scheme
one chooses. As for the usual flux operator, we express V̂ in terms of self-adjoint vector fields
Y k

e := − i
2Xk

e . Hence, we have

εijkX
i
eI
Xj

eJ
Xk

eK
= −8iεijkY

i
eI
Y j

eJ
Y k

eK
(4.4)

and thus

V̂ RS
v,γ =

∑
I,J,K

√∣∣iCregεijkY i
eI
Y

j
eJ

Y k
eK

∣∣. (4.5)
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In order to select the gauge invariant states properly, we have to express our abstract angular
momentum states in terms of the recoupling basis. The following identity [12] holds,

1
8εijkX

i
eI
Xj

eJ
Xk

eK
= 1

4

[
Y 2

IJ , Y 2
JK

] =: 1
4qY

IJK, (4.6)

where YIJ := YI + YJ . Consequently, we get

V̂ (R)Y,RS
γ |JM;M ′〉 = �3

p

∑
v∈V (γ )∩R

∑
I<J<K

3!

√∣∣∣∣ i4Cregq̂
Y
IJK

∣∣∣∣︸ ︷︷ ︸
V̂ RS

v,γ

|JM;M ′〉. (4.7)

The additional factor of 3! is due to the fact that we sum only over ordered triples I < J < K

now. The way to calculate eigenstates and eigenvalues of V̂ is as follows. Let us introduce
the operator Q̂

Y,RS
v,IJK as

Q̂
Y,RS
v,IJK := �6

p

3!i

4
Cregq̂

Y
IJK . (4.8)

As the first step, we have to calculate the eigenvalues and corresponding eigenstates for Q̂
Y,RS
v,IJK .

If, for example, |φ〉 is an eigenstate of Q̂
Y,RS
v,IJK with corresponding eigenvalue λ, then we obtain

V̂ |φ〉 = √|λ||φ〉. Consequently, we see that while Q̂
Y,RS
v,IJK can have positive and negative

eigenvalues, V̂ has only positive ones. Furthermore, if we consider the eigenvalues ±λ of
Q̂

Y,RS
v,IJK and the corresponding eigenstate |φ+λ〉, |φ−λ〉, we note that these eigenvalues will be

degenerate in the case of the operator V̂ , as
√| + λ| = √| − λ|.

4.1.2. The volume operator V̂AL of Ashtekar and Lewandowski. Another version of the
volume operator which differs by the chosen regularization scheme was defined in [6]

V̂ (R)Y,AL
γ |JM;M ′〉 = �3

p

∑
v∈V (γ )∩R

√√√√∣∣∣∣∣3!i

4
Creg

∑
I<J<K

ε(eI, eJ , eK)q̂Y
IJK

∣∣∣∣∣︸ ︷︷ ︸
V̂ AL

v,γ

|JM;M ′〉. (4.9)

The major difference between V̂AL and V̂RS is the factor ε(eI, eJ , eK) that is sensitive to the
orientation of the tangent vectors of the edges {eI, eJ , eK}. ε(eI, eJ , eK) is +1 for right-
handed, −1 for left-handed and 0 for linearly dependent triples of edges. In the case of V̂AL

it is convenient to introduce an operator Q̂Y,AL
v that is defined as the expression that appears

inside the absolute value under the square root in V̂ AL
v,γ ,

Q̂Y,AL
v := �6

p

3!i

4
Creg

∑
I<J<K

ε(eI, eJ , eK)q̂Y
IJK (4.10)

By comparing equation (4.7) with (4.9) we note that another difference between V̂RS

and V̂AL is the fact that for the first one, we have to sum over the triples of edges outside
the square root, while for the latter one, we sum inside the absolute value under the square
root. In addition to the difference of the sign factor, the difference in the summation will
play an important role later on. Note that one arrives at (4.9) also from a usual point splitting
regularization [12].
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4.2. Canonical quantization

Usually the densitized triads, appearing in the classical flux Ek(S) are quantized as differential
operators, while holonomies are quantized as multiplication operators. If we choose the
alternative expression Ẽk(S) we will instead get the scalar volume V̂ and the so-called sign
Ŝ operator into our quantized expression. The properties of this Ŝ will be explained in more
detail below. Moreover, we have to replace Poisson brackets by commutators, following
the replacement rule {·, ·} → (1/ih̄)[·, ·]. In order to simplify the following calculations,
we achieve a form of the operator such that on the left-hand side only inverses of the

holonomies appear while right beneath the product of operators V̂ Ŝ V̂ only holonomies
appear. Thus, we make use of the identities π̂�

(
h−1

eI

)
AB

= π�(ε)ACπ�(ε)BDπ̂�

(
heI

)
DC

and
π̂�

(
heI

)
AB

= π�(ε)CAπ�(ε)DBπ̂�

(
h−1

eI

)
DC

, where π�(ε) stands for the εAB of SU(2) in a
higher representation with weight �. The explicit form can be derived from equation (B.1) in
appendix B and is given by π�(ε)AB = (−1)�−AδA+B,0. Clearly, we want the total operator

to be self-adjoint, so we will calculate the adjoint of (�)̂̃Ek(St ) and define the total and final

operator to be (�)̂̃Ek,tot(St ) = 1
2 ( ̂̃Ek(St ) + ̂̃E†

k(St )) that is self-adjoint by construction. Hence,
the final operator for V̂RS which we will use through the calculation of this paper is given by

(�)̂̃EI/II,RS
k,tot (St ) = lim

Pt→St

∑
�∈Pt

8�−4
p (−1)2�

4
3�(� + 1)(2� + 1)

π�(τk)CBπ�(ε)EI

{
+π�(ε)FC

[
π̂�

(
he4

)
FG

]†
× [[π̂�

(
he3

)
BA

]†
, V̂RS
]
Ŝ
[
V̂RS, π̂�

(
he4

)
IG

]
π̂�

(
he3

)
EA

− π�(ε)FB

[
π̂�

(
he3

)
IG

]†
× [[π̂�

(
he4

)
EA

]†
, V̂RS
]
Ŝ
[
V̂RS, π̂�

(
he3

)
FG

]
π̂�

(
he4

)
CA

}
, (4.11)

whereby we used the identity π�

(
h−1

eI

)
AB

= [π�

(
heI

)
BA

]†
, the definition of the Planck length

�−4
p := (h̄κ)−2, and additionally, π�(ε)GDπ�(ε)DH = (−1)2�δG,H .

Considering the operator V̂AL, we know that for each commutator only one term will
contribute, because otherwise we cannot construct linearly independent triples of edges since
{e1, e2, e3/4} are linearly dependent. Therefore in the case of V̂AL we obtain the following final
expression:

(�)̂̃EI/II,AL
k,tot (St ) = lim

Pt→St

∑
�∈Pt

8�−4
p (−1)2�

4
3�(� + 1)(2� + 1)

π�(τk)CBπ�(ε)EI

{
+π�(ε)FC

[
π̂�

(
he4

)
FG

]†
× [π̂�

(
he3

)
BA

]†
V̂AL Ŝ V̂ALπ̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π�(ε)FB

[
π̂�

(
he4

)
IG

]†
× [π̂�

(
he3

)
EA

]†
V̂AL Ŝ V̂ALπ̂�

(
he4

)
FG

π̂�

(
he3

)
CA

}
. (4.12)

Here again for case II the sign operator is included, whereas in case I it is not.
By looking at the equation above, we see that the operator contains a lot of sums, so it does

not seem to be that trivial to actually compute expectation values. However, we will show in
the next section how we can use the given structure of the operator and derive some properties
from it that will simplify the summation and therefore the calculation of expectation values.

5. General properties of the operator (�) ̂̃Ek,tot(St)

In this section, we will discuss some general properties of the alternative flux operator. Since
these properties are valid independent of the choice of V̂AL or V̂RS we will drop this labelling
of the volume operator here. If not explicitly mentioned otherwise these properties also hold
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independently of the fact whether we are considering case I or case II. Thus, we will only talk
about the operator (�)̂̃Ek,tot(St ).

5.1. Correspondence between the AL and the abstract angular momentum system
Hilbert space

Going back to the action of the usual flux operator in equation (2.9) we see that the action of
the flux operator can be expressed in terms of self-adjoint right invariant vector fields Y k

e . The
same is true for the volume operator appearing in the new alternative flux operator. Since we
would like to utilize the technology of Clebsch–Gordan coefficients (CGC), 6j -symbols and
the like in order to calculate matrix elements of these operators with respect to spin network
states, we will discuss in detail how the AL-Hilbert space and the abstract angular momentum
system Hilbert space are related.

Consider the explicit expression for the matrix elements of the unitary transformation
matrix [πj (g)]mn for the components ψm of a totally symmetric spinor of rank 2j under
SU(2) gauge transformations reviewed in appendix E, that is, ψ ′

m = ∑j

n=−j [πj (g)]mnψn.
By elementary linear algebra, the unitary representation g �→ U(g) of SU(2) on the
linear span of the standard angular momentum states |jm〉 is obtained by transposition, i.e.
U(g)|jm〉 =∑j

n=−j [πj (g)]nm|jn〉. To see this, it is enough to check that the standard angular
momentum operators J k when written in terms of ladder operators have the same action as
the infinitesimal generators of the one-parameter groups t �→ U(exp(itτk/2)). (Recall that
iτk = σk are the Pauli matrices.) Explicitly, we find

J k|jm〉 = +
∑

n

i

2
[πj (τk)]nm|jn〉

where πj (τk) are the matrices derived in appendix E.
Now consider the functions

〈he|jm〉m′ :=
√

2j + 1[πj (he)]mm′ , (5.1)

where he denotes the holonomy along some edge e. For fixed m′ they are orthonormal just
as the |jm〉. Moreover, the operators Y k

e := −iXk
e

/
2, where Xk

e are the right invariant vector
fields on SU(2), satisfy the same algebra as the J k . Let us drop the label e for the purpose of
this paragraph. From the explicit representation of the gauge transformation on the 〈h|jm〉m′

given by V (g)〈h|jm〉m′ = 〈gh|jm〉m′ = [πj (g)]mn〈h|jn〉m′ we can explicitly calculate that
the Y k are the infinitesimal generators of the one-parameter groups t �→ V (exp(itτk/2)),
explicitly

Y k|jm〉m′ = −
∑

n

i

2
[πj (τk)]mn|jn〉m′ . (5.2)

It is instructive to verify the angular momentum algebra for J k, Y k .
The fluxes are expressed in terms of the Y k

e and the spin network states are expressed
in terms of the |jm〉em′ (the superscript e reminds us of the edge which the state |jm〉m′ is
associated with). In order to write these in terms of J k and |jm〉 we must determine the
unitary operator

W : Hjm′ → Hj

m′ ; W |jm;m′〉 =
∑

n

Wjmn|jn〉m′ (5.3)

such that WJkW−1 = Y k . Here Hjm′
is the linear span of abstract angular momentum

eigenstates |jm;m′〉 which for fixed m′ ∈ {−j,−j +1, . . . , j} are just the |jm〉 with additional



Consistency check on volume and triad operator quantization 5707

label m′ while Hj

m′ is the linear span of the spin network states |jm〉m′ , and Wjmn is a unitary
matrix.

It is not difficult to see from the above formulae that Wjmn = [πj (ε)]mn where ε = −τ2.
Therefore

W |jm;m′〉 = [πj (ε)]mn|jn〉m′ ⇔ W−1|jm〉m′ = [πj (ε
−1)]mn|jn;m′〉 (5.4)

and we will make frequent use of the identities ε−1 = εT = −ε, εgT εT = g−1 valid for any
g ∈ SL(2, C) such as g = τk and τ−1

k = −τk = τk
T .

Now in order to use these identities, consider some spin network states T
γ̃ ,�̃j, �̃m, �̃m′ , Tγ,�j, �m, �m′

and some operator ÔY which we think of as a function in the operators Y k
e . Then by unitarity〈

T
γ̃ ,�̃j, �̃m, �̃m′

∣∣ÔY

∣∣Tγ,�j, �m, �m′
〉
SNF =

∑
�̃n,�n

∏
ẽ∈E(γ̃ )

[πjẽ
(ε−1)]m̃ẽ ñẽ

×
∏

e∈E(γ )

[πje
(ε−1)]mene

〈
T ′

γ̃ ,�̃j,�̃n, �̃m′
∣∣ÔJ

∣∣T ′
γ,�j,�n, �m′

〉
ABS (5.5)

where SNF stands for the spin network Hilbert space and ABS for the abstract angular
momentum system Hilbert space. We use the following notation. Whenever we address
SNF we call them T and express them in terms of |jm〉m′ . In contrast, if we refer to states
in the abstract angular momentum system Hilbert space, we use the notation T ′ for the
abstract angular momentum system functions which result from T upon substituting |jm〉m′

by |jm;m′〉. The operator ÔJ is the same as ÔY except that Y k
e is everywhere replaced by J k

e .
The discussion above shows that we have to map the holonomies π�(h)AB in the alternative

flux operator in equation (4.12) into the abstract angular momentum system Hilbert space
via the unitary map W in equation (5.4) in order to apply technical tools of usual angular
momentum recoupling theory. Thus, if we apply the unitary map W (summation convention
is assumed)

Wπ̂�(h)AB = π�(ε
−1)AC√

2� + 1
〈h|�C;B〉, (5.6)

use the fact that π�(τk)BC = −[π�(ε)π�(τk)π�(ε
−1)]CB and the following properties of π�(ε

−1)

π�(ε
−1)AB = (−1)2�π�(ε)AB π�(ε)ABπ�(ε)BC = (−1)2�δAC

π�(ε)AB = (−1)2�π�(ε)BA

(5.7)

that can easily be derived from the explicit expression of π�(ε)AB , we end up with

(�)̂̃Ek,tot(St ) = − lim
Pt→St

∑
�∈Pt

8�−4
p (−1)2�

4
3�(� + 1)(2� + 1)

1

(2� + 1)2
π�(τk)CBπ�(ε)EI

×{+π�(ε)FC(⊗〈e3�B;A| ⊗ 〈e4�F ;G|Ô1|�I ;G〉e4 ⊗ |�E;A〉e3⊗)

−π�(ε)FB(⊗〈e3�E;A| ⊗ 〈e4�I ;G|Ô2|�F ;G〉e4 ⊗ |�C;A〉e3⊗)}. (5.8)

The definitions of the operators Ô1 and Ô2 in the four different cases are shown in
equation (5.9). We introduced the notation VqIJK in the RS case meaning that only the
contribution of the triple {eI, eJ , eK} is taken into account. Why Ô1,2 have this particular
structure in the case of RS will be explained in more detail in appendix E. Basically, the
structure displayed is due to the various contributions from the four terms involved in the
product of two commutators in equation (4.11):

O
I,AL
1 = V̂ 2

AL

O
I,RS
1 = V̂ 2

RS + V̂q124 V̂q123 − V̂q124 V̂RS − V̂RSV̂q123
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O
I,AL
2 = V̂ 2

AL

O
I,RS
2 = V̂ 2

RS + V̂q123 V̂q124 − V̂q123 V̂RS − V̂RSV̂q124

O
II,AL
1 = V̂ALŜV̂AL

O
II,RS
1 = V̂RSŜV̂RS + V̂q124 ŜV̂q123 − V̂q124 ŜV̂RS − V̂RSŜV̂q123

O
II,AL
2 = V̂ALŜV̂AL

O
II,RS
2 = V̂RSŜV̂RS + V̂q123 ŜV̂q124 − V̂q123 ŜV̂RS − V̂RSŜV̂q124 .

(5.9)

Recall from the discussion in section 3.3 that the action of both operators Êk(S), (�)̂̃Ek(S) on
any SNF was totally determined by its action on single edges of type up, down, in and out,
and that the latter two were annihilated by this operator. The surface � which intersects an
edge e of type up or down necessarily transversally splits e as e = e2(�)−1 ◦ e1(�) where
e1(�), e2(�) is of type up or down with respect to � (or St ) if e is of type up with respect to
S and conversely if e is of type down. Note that eI (�), I = 1, 2 inherit from e the same spin
label j coupling to total spin j12 at the point v(�) = e1(�) ∩ e2(�).

As the operators Ô1 and Ô2 in equation (5.8) contain the volume operator V̂ (Rv(�)),
at some point we will have to calculate matrix elements of V̂ . With this in mind, it is
advisable to work in the so-called recoupling basis right from the beginning, because the
formula for matrix elements of V̂ derived in [16] applies only to states in that particular
basis4. The particular SNF we want to work with can be characterized in the recoupling
basis by its total angular momentum j12 and its magnetic quantum number n12 (and two
additional labels m′

1,m
′
2) since the first intermediate coupling a1 is equivalent to the spin

label of the first edge which is fixed and j in our case. Therefore, we will call those states
|βj12 , n12〉m′

1,m
′
2

:= |a1 = ja2 = j12n12〉m′
1m

′
2

where n12 ∈ {−j12, . . . , j12} and m′
1,m

′
2 can be

treated as additional indices unimportant for the recoupling procedure. This means that to a
fixed choice of j12 we have (2j12 + 1)(2n12 + 1) orthogonal states |βj12 , n12〉m′

1,m
′
2

being a basis
of the Hilbert space for this particular value of j12. This SNF is also shown in figure 5.

As before we map the SNF |βj12 , n12〉m′
1,m

′
2

and the operators ÔY
1/2 into the abstract angular

momentum system Hilbert space

W |βj12 , n12〉m′
1,m

′
2
=
∑
m12

πj12(ε
−1)n12m12 |βj12 ,m12;m′

1,m
′
2〉. (5.10)

Consequently, the map W has the following effect on the matrix element of (�)̂̃Ek,tot(St ),

m̃′
1,m̃

′
2
〈βj̃ 12 , ñ12|(�) ˆ̃

EY
k,tot(St )|βj12 , n12〉m′

1,m
′
2
=
∑

m12,m̃12

πj̃ 12
(ε−1)ñ12m̃12πj12(ε

−1)n12m12

×〈βj̃ 12 , m̃12; m̃′
1m̃

′
2|(�) ˆ̃

EJ
k,tot(St )|βj12 ,m12;m′

1m
′
2〉

where for reasons of clarity we denoted by superscripts Y, J the same algebraic expression
in terms of the Y, J operators respectively. In what follows, we will drop this label and
4 Recall that in the tensor basis a state is characterized by the spin labels ji and the magnetic quantum numbers mi

and an additional label m′
i that are attached to the edges ei of a particular vertex of the corresponding graph γ . We

express a given SNF in this basis by tensor products between states |jmi〉em′
i

multiplied by corresponding intertwiners.

In contrast, in the recoupling basis states are characterized by the total angular momentum J , the total magnetic
quantum number M to which the edges couple at a particular vertex of the graph γ and the value of the intermediate
couplings. In order to know what kind of intermediate couplings are possible, we have to fix an order in which we
want to couple the edges associated at one particular vertex from the very beginning. Then the intermediate couplings
ai are successively defined by ai+1 := {|ai − ji+1|, . . . , ai + ji+1} with a1 := j1. If we choose a different order of
coupling, we will end up with a different recoupling scheme, where these two recoupling schemes are related by
so-called 3nj -symbols. (For a brief introduction to recoupling theory see, for example, [12, 16].)
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Figure 5. SNF |βj12 , n12〉 that consists of two edges, whereby one is of type up and the other of
type down with respect to the surface St . These two edges carry both a spin label j and couple at
the vertex v(�) to an resulting angular momentum j12.

it will be understood that we will be working in the abstract angular momentum space
only. The same transformation applies to the matrix element of the usual flux operator.
Since the inverse of the matrices πj12(ε

−1) exists, we can conclude that in order to show

that the matrix element of the usual flux operator and that of (�) ̂̃Ek,tot(St ) are identical, we
only have to show that after taking the limits limε→0 limε′→0 the matrix element 〈βj̃ 12 , m̃12;
m′

1m
′
2|(�)̂̃Ek,tot(St )|βj12 ,m12;m′

1m
′
2〉 agrees with the matrix element of the usual flux operator

〈βj̃ 12 , m̃12;m′
1m

′
2|Êk(S)|βj12 ,m12;m′

1m
′
2〉 for every possible value of m̃12,m12. Thus, we do

not have to consider the two additional πj12(ε
−1).

Note that also the explicit value of the matrix element of the usual flux operator will be
contracted by these πj (ε

−1). Considering gauge invariant states (j = 0) only, π0(ε
−1) = 1

is only a single number. Thus, if one would work with gauge invariant operators only, all
πj (ε

−1) would drop out in equation (5.11).

For the further calculation of 〈βj̃ 12 , m̃12; m̃′
1m̃

′
2|(�) ̂̃Ek,tot(St )|βj12 ,m12;m′

1m
′
2〉 we will

introduce the following abbreviations:

〈βj̃ 12 , m̃12;m′
1m

′
2| := 〈βj̃ 12 , m̃12| |βj12 ,m12;m′

1m
′
2〉 := |βj12 ,m12〉. (5.11)

5.2. The explicit action of (�)̂̃Ek,tot(St )

If the operator acts on such a state |βj12 , n12〉m′
1,m

′
2

it will basically add two additional edges e3

and e4 to the SNF. These edges lie in the surface St as can be seen in figure 6. Consequently,
applying the operator to the states |βj12 , n12〉 means nothing else than coupling the two
additional edges e3, e4 to the already existing edges e1, e2 and constructing a new SNF with
four edges that we will call

∣∣αJ
i ,M
〉
. We label these new states

∣∣αJ
i ,M
〉
again by their resulting

total angular momentum J and their corresponding magnetic quantum number M. The two
additional edges both carry a spin label �. These states

∣∣αJ
i ,M
〉

include three intermediate
couplings a1, a2, a3, and a4 is equal to the total angular momentum J . In contrast to |βj12 ,m12〉
we need an additional index i here for distinguishing all possible states

∣∣αJ
i ,M
〉
, because it

will be the case that for a particular value of J several values of intermediate couplings a2, a3

exist. (This becomes clearer when we explicitly describe the set of states that belong to a
particular total angular momentum J and that build a basis of the corresponding Hilbert space.)
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Figure 6. The SNF |βj12 , n12〉 is transformed into a new SNF |αJ
i M〉 by the action of (�)̂̃Ek,tot(St ).

Therefore the action of (�)̂̃Ek,tot(St ) can be expressed in terms of the recoupling basis states∣∣αJ
i ,M
〉
, where the expansion coefficients are the corresponding CGC.

Therefore the action and consequently the matrix element of (�)̂̃Ek,tot(St ) can be described
by the following expression:

〈βj̃ 12 , m̃12|(�)̂̃Ek,tot(St )|βj12 ,m12〉 = − lim
Pt→St

∑
�∈Pt

8�−4
p (−1)2�

4
3�(� + 1)(2� + 1)

1

(2� + 1)2

×
+�∑

A,B,C,E,F,G=−�

π�(τk)CBπ�(ε)E−E

ã3+�∑
J̃=|̃a3−�|

a3+�∑
J=|a3−�|

j̃ 12+�∑
ã3=|j̃ 12−�|

j12+�∑
a3=|j12−�|

δJ̃ ,J

× [+π�(ε)FC〈j̃ 12m̃12; �B |̃a3m̃12 + B〉〈̃a3m̃12 + B; �F |J̃ m̃12 + B + F 〉
× 〈j12m12; �E|a3m12 + E〉〈a3m12+E; � − E|Jm12〉δm̃12+F+B,m12

× 〈αJ̃

ĩ
,M = m̃12 + B + F ; m̃′

1m̃
′
2AG
∣∣Ô1

∣∣αJ
i ,M = m12; m′

1m
′
2AG
〉

−π�(ε)FB〈j̃ 12m̃12; �E |̃a3m̃12 + E〉〈̃a3m̃12 + E; � − E|J̃ m̃12〉
× 〈j12m12; �C|a3m12 + C〉〈a3m12 + C; �F |Jm12 + C + F 〉δm12+C+F,m̃12

× 〈αJ̃

ĩ
,M = m̃12; m̃′

1m̃
′
2AG
∣∣Ô2

∣∣αJ
i ,M = m12 + C + F ;m′

1m
′
2AG
〉] .

(5.12)

Here 〈j1m1;j2m2|JM〉 denotes the CGC that describes the coupling of the angular momentum
j1 and j2 with magnetic quantum numbers m1,m2 to a resulting angular momentum J with
magnetic quantum number M.

Since the states
∣∣αJ

i ,M
〉

for different angular momenta and different magnetic quantum

numbers are orthogonal to each other, meaning
〈
αJ̃

ĩ
, M̃
∣∣αJ

i ,M
〉 = δJ̃ ,J δM̃,M

〈
αJ

ĩ
,M
∣∣αJ

i ,M
〉

and the operator Ô leaves J and M invariant, we replaced J̃ and M̃ by J and M and added the
necessary δ-function δJ̃ ,J . Furthermore, we used the definition π�(ε)EI = (−1)�−EδE+I,0 and
substituted I by −E in the whole equation. This restriction of I together with the constraint
that
∣∣αJ

i ,M
〉

and
〈
αJ

ĩ
,M
∣∣ must have the same magnetic quantum number leads to two other

δ-functions including m12 and m̃12. Although the δ-functions above will surely simplify the
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summation, we still have 11 sums in total and some even depend on each other. Especially,
the summation over J̃ and J contains many terms. But fortunately due to the structure of the
operator we can reduce these sums.

Theorem 5.1. The resulting angular momenta J and J̃ of the states
∣∣αJ

i ,M
〉

and
〈
αJ̃

ĩ
,M
∣∣

that do contribute to the matrix element 〈βj̃ 12 , m̃12|(�)̂̃Ek,tot(St )|βj12 ,m12〉 are only j12 and j̃ 12

of the incoming states, respectively.
More precisely, the only contribution to (�)̂̃Ek(St ) is the angular momentum J = j12, while

the only contribution to (�)̂̃E†
k(St ) is J̃ = j̃ 12.

(Recall that the first term of the sum in equation (5.12) is caused by (�)̂̃Ek(St ) and the

second and negative part belongs to (�)̂̃E†
k(St ).)

Proof 5.1. First of all we will prove the following lemma. Afterwards, we will use it so as
to be able to prove the theorem just stated. �

Lemma 5.2.
+�∑

E=−�

π�(ε)E−E〈j12m12;�E|a3m12 + E〉〈a3m12 + E;� − E|Jm12〉

= (−1)−j12−�−3a3

√
2a3 + 1√
2j12 + 1

δJ,j12

(
δm12,−j12 + δm12,−j12+1 + · · · + δm12,j12

)
. (5.13)

The proof of lemma 5.2 is shown in appendix A.

We use lemma 5.2 for performing the sum over E in equation (5.12). The summation over
J̃ and J contains only one term now, so we can easily carry out these two sums. Moreover,
since the operator Ô does not change the m′-indices, we can trivially sum over the indices
A,G. This leads to an additional factor of (2� + 1)2. Accordingly, the final version of the
matrix element of the operator (�)̂̃Ek,tot(St ) with which we will start in the next section is

〈βj̃ 12 , m̃12|(�)̂̃Ek,tot(St )|βj12 ,m12〉

= − lim
Pt→St

∑
�∈Pt

8�−4
p

4
3�(� + 1)(2� + 1)

+�∑
B,C,F=−�

{
π�(τk)CB

j̃ 12+�∑
ã3=|j̃ 12−�|

j12+�∑
a3=|j12−�|

×
[

+ (−1)−F δF+C,0(−1)−j12−3a3

√
2a3 + 1√
2j12 + 1

δm̃12+F+B,m12

×〈j̃ 12m̃12;�B |̃a3m̃12 + B〉〈̃a3m̃12 + B;�F |j12m̃12 + B + F 〉
× 〈αj12

ĩ
,M = m̃12 + B + F ;m̃′

1m̃
′
2

∣∣Ô1

∣∣αj12
i ,M = m12;m′

1m
′
2

〉
− (−1)−F δF+B,0(−1)−j̃ 12−3̃a3

√
2̃a3 + 1√
2j̃ 12 + 1

δm12+C+F,m̃12

×〈j12m12;�C|a3m12 + C〉〈a3m12 + F ;�C|j̃ 12m12 + C + F 〉

× 〈αj̃ 12

ĩ
,M = m̃12;m̃′

1m̃
′
2

∣∣Ô2

∣∣αj̃ 12
i ,M = m12 + C + F ;m′

1m
′
2

〉]}
, (5.14)

where we used δJ,J̃ δJ,j12 = δJ̃ ,j12
and (−1)4� = +1. We omitted the sum over the δ-function

acting on the magnetic quantum number m12 and m̃12 respectively (see lemma 5.2). This is
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possible as long as we keep in mind that the action of the operator (�)̂̃Ek,tot(St ) is identical for
each fixed m12 and m̃12 of the states |βj12 ,m12〉 and 〈βj̃ 12 , m̃12|.

However, by simply looking at equation (5.14) we see that only the resulting angular
momentum J = J̃ = j12, j̃ 12 contributes to the matrix element 〈βj̃ 12 , m̃12|(�)̂̃Ek,tot(St )|βj12 ,

m12〉.
Consequently, we have proven theorem (5.1).
We can read off from equation (5.14) that we have already managed to reduce the number

of summations down to 5 just by investigating the physical properties of (�)̂̃Ek(S).

5.3. Behaviour of (�)̂̃Ek,tot(S) under gauge transformations

Now we will take a closer look at the behaviour of (�)̂̃Ek(S) under gauge transformations and
see that this will constrain the possible values of j̃ 12. Applying a gauge transformation on
equation (3.11) under which heI transforms as h

g
eI → g(b(eI))g

−1(f (eI)) with b(eI) and f (eI)

being the beginning and the final point of the edge eI respectively, we obtain[
(�)̃Ek(St )k,tot

]g = lim
Pt→St

∑
�∈Pt

16

κ2

1
4
3�(� + 1)(2� + 1)

Tr
(
π�

(
he3

){
π�

(
h−1

e3

)
, V (Rv(�))

}
× g−1(b(e))π�(τk)g(b(e)) S π�

(
he4

) {
π�

(
h−1

e4

)
, V (Rv(�))

} )
. (5.15)

Thus the classical expression transforms in the spin-1 representation, due to the term
g−1(b(e))π�(τk)g(b(e)). Consequently, we know that if we applied the corresponding
operator on an incoming state |βj12 ,m12〉, the action of (�)̂̃Ek(S) would change the intertwiner
at the vertex v(γ ) by 0,±1. Therefore, if we consider matrix elements of the kind
〈βj̃ 12 , m̃12|(�)̂̃Ek(S)|βj12 ,m12〉 the only non-vanishing values for j̃ 12 are j̃ 12 = j12, j12 ± 1. In
the specific case where j12 = 0, j̃ 12 can only take the value j̃ 12 = j12 + 1. Of course, we only
want to consider incoming states that are physically relevant. Therefore we have to choose an
incoming state |βj12 ,m12〉 with a total angular momentum j12 = 0 in order to ensure that this
state is gauge invariant. Hence, the transformation property of (�)̂̃Ek(S) leads to the restriction
of j̃ 12 = 1. Therefore, by means of theorem (5.1), the only total angular momentum J of
the states

∣∣αJ
i ,M
〉

that contribute to the matrix element of (�)̂̃Ek,tot(St ) is J = 0, 1. Therefore
equation (5.14) can be rewritten, according to our particular choices of j12 = 0 and j̃ 12 = 1, as

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0,m12〉 = − lim
Pt→St

∑
�∈Pt

8�−4
p

4
3�(� + 1)(2� + 1)

+�∑
B,C,F=−�

×
{

π�(τk)CB

1+�∑
ã3=|1−�|

+�∑
a3=|−�|

[
+(−1)−F δF+C,0(−1)−3a3

√
2a3 + 1δm̃12+F+B,m12

×〈1m̃12; �B |̃a3m̃12 + B〉〈̃a3m̃12 + B; �F |0m̃12 + B + F 〉
× 〈α0

ĩ
,M = m̃12 + B + F ; m̃′

1m̃
′
2

∣∣Ô1

∣∣α0
i ,M = m12;m′

1m
′
2

〉
− (−1)−F δF+B,0(−1)−1−3̃a3

√
2̃a3 + 1√

3
δm12+C+F,m̃12

×〈0m12; �C|a3m12 + C〉〈a3m12 + C; �F |1m12 + C + F 〉

× 〈α1
ĩ
,M = m̃12; m̃′

1m̃
′
2

∣∣Ô2

∣∣α1
i ,M = m12 + C + F ;m′

1m
′
2

〉]}
, (5.16)
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where m̃12 = {−1, 0, 1} and m12 = 0 is the only possible value of the magnetic quantum
number for |β0,m12〉.

In the next section, we will calculate the matrix elements 〈β1, m̃12|(�)̂̃Ek,tot(St )|β0,m12〉
of all four versions (�)̂Ẽ

I,AL
k,tot (St ),

(�)̂Ẽ
I,RS
k,tot(St ),

(�)̂Ẽ
II,AL
k,tot (St ),

(�)̂Ẽ
II,RS
k,tot (St ) of the new flux operator.

6. Matrix elements of the new flux operator (�) ̂̃Ek,tot(St)

Before we explicitly calculate the necessary matrix elements of Ô1, Ô2, the question arises:
what are the matrix elements that we need, or rather what kind of matrix elements will appear
in the recoupling procedure of equation (5.16)? As the action of V̂ and accordingly also the
action of q̂ IJK leave the total angular momentum J of a state

∣∣αJ
i ,M
〉
invariant, the whole matrix

that includes the elements of all possible values of J belonging to a particular choice of j12 and
j̃ 12 would be divided into orthogonal submatrices for each fixed total angular momentum J .
Consequently, we can actually calculate the eigenvalues and eigenstates separately for every
possible value of J . Hence, in our case we should take a detailed look at the corresponding
Hilbert spaces of J = 0, 1. Similarly to |βj12 ,m12〉 the spin labels of e1 and e2 of

∣∣αJ
i ,M
〉

are
identical (j1 = j2 = j). Therefore, we already know that a2 = j ⊗ j ∈ {0, +1, . . . , 2j} = j12

can only be an integer. Hence, a basis of the Hilbert space belonging to J = 0 is given by∣∣α0
1,M
〉

:= |a1 = j a2 = 0 a3 = � J = 0〉∣∣α0
2,M
〉

:= |a1 = j a2 = 1 a3 = � J = 0〉∣∣α0
3,M
〉

:= |a1 = j a2 = 2 a3 = � J = 0〉 (6.1)

· · ·∣∣α0
2j+1,M

〉
:= |a1 = j a2 = 2j a3 = � J = 0〉.

Here, the only possible value for a3 is a3 = �, because otherwise a3 and j4 = � could not
couple to a resulting angular momentum J = 0. Furthermore, we have assumed that the
condition a2 � 2� has to be fulfilled to ensure that a resulting total angular momentum of
J = 0 can be achieved. If this is not the case, the number of states reduces down to the
number of states where the condition a2 � 2� is still true5. Fortunately, we will not have to
calculate matrix elements of all possible combinations of states. In our case, we already know
that j̃ 12 = 1 and j12 = 0. This is equivalent to ã2 = 1 and a2 = 0 and we realize that we only
have to calculate the matrix element

〈
α0

2,M
∣∣q̂134

∣∣α0
1,M
〉

here.

The transformation properties of the operator (�)̂̃Ek(S), discussed in section 5.3, led us to
this restriction j̃ 12 = 1. Even if we have not at all been worried about any transformation
properties of the operator before, we see at this point by simply looking at equation (6.6)
that all other possible matrix elements

〈
α0

i ,M
∣∣q̂134

∣∣α0
1,M
〉

where i > 2 will vanish anyway.
This is due to the fact that for i > 2 �a2 := |̃a2 − a2| > 1. In this case, the 6j -symbols
in equation (6.6) in the last brackets will be zero and this makes the whole matrix element
vanish. Summarizing, if we start with a gauge invariant state |β0, 0〉 there exists only one
non-vanishing matrix element for the case J = 0 which is

〈
α0

2,M
∣∣q̂134

∣∣α0
1,M
〉
in our notation.

Let us analyse the case of a total angular momentum J = 1 now. In this case, we have
three different values of the intermediate coupling a3 = {� − 1, �, � + 1} to ensure that a total
angular momentum of J = 1 can be achieved. Hence, a basis of the corresponding Hilbert

5 Consequently, only for large enough � the Hilbert space belonging to a zero total angular momentum will be (2j +1)

dimensional; for example, for the simplest case � = 1
2 it is only two dimensional.
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space is given by∣∣α1
1,M
〉

:= |a1 = j a2 = 0 a3 = � J = 1〉∣∣α1
2,M
〉

:= |a1 = j a2 = 1 a3 = � − 1J = 1〉∣∣α1
3,M
〉

:= |a1 = j a2 = 1 a3 = �J = 1〉∣∣α1
4,M
〉

:= |a1 = j a2 = 1 a3 = � + 1J = 1〉
· · ·∣∣α1

6j−1,M
〉

:= |a1 = j a2 = 2j a3 = � − 1J = 1〉∣∣α1
6j ,M

〉
:= |a1 = j a2 = 2j a3 = �J = 1〉∣∣α1

6j+1,M
〉

:= |a1 = j a2 = 2j a3 = � + 1J = 1〉.

(6.2)

Here the condition on a2 and � is a2 � 2� + 1. Note that in the special and simplest case
where � = 1

2 the intermediate coupling a3 = � − 1
2 is not sensible, therefore this state has

to be dropped here and the Hilbert space includes only 5 × 3 = 15 states. Again, due to
the construction of the operator (�)̂̃Ek(S), we only have to consider the matrix elements with
ã2 = 1, a2 = 0 and these are precisely

〈
α1

i ,M
∣∣q̂134

∣∣α1
1,M
〉

where i = 2, 3, 4. Hence, we
see that for J = 1 three different matrix elements will contribute to the final result. As
in the case J = 0 all matrix elements

〈
α1

i ,M
∣∣q̂134

∣∣α1
1,M
〉

for i > 4 vanish, because then
�a2 := |̃a2 − a2| > 1.

We will now go back to equation (5.16) and apply our new results. Furthermore, the
discussion above showed that in the first term of equation (5.16) the only possible value for
a3, ã3 is � (case J = 0). In the second term a3 = � is still valid, but here ã3 can take the values
ã3 = {� − 1, �, � + 1}. Therefore equation (5.16) simplifies to

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0, 0〉 = − lim
Pt→St

∑
�∈Pt

8�−4
p (−1)3�

4
3�(� + 1)(2� + 1)

+�∑
B,C,F=−�

{
π�(τk)CB

×
[

+(−1)−F δF+C,0

√
2� + 1δm̃12+B+F,0〈1m̃12; �B|�m̃12 + B〉〈�m̃12 + B; �F |00〉

× 〈α0
2,M = m̃12 + B + F ; m̃′

1m̃
′
2

∣∣Ô1

∣∣α0
1,M = 0; m′

1m
′
2

〉
− (−1)−F δF+B,0δC+F,m̃12〈00; �C|�C〉〈�C; �F |1C + F 〉

×
[

+

√
2� − 1√

3

〈
α1

2,M = m̃12; m̃′
1m̃

′
2

∣∣Ô2

∣∣α1
1,M = C + F ;m′

1m
′
2

〉
−

√
2� + 1√

3

〈
α1

3,M = m̃12; m̃′
1m̃

′
2

∣∣Ô2

∣∣α1
1,M = C + F ;m′

1m
′
2

〉
+

√
2� + 3√

3

〈
α1

4,M = m̃12; m̃′
1m̃

′
2

∣∣Ô2

∣∣α1
1,M = C + F ;m′

1m
′
2

〉]}
. (6.3)

6.1. Matrix elements of Q̂AL
v and Q̂RS

v,IJK

In order to calculate the matrix elements of Ô1, Ô2 we have to calculate the matrix elements
of Q̂AL

v and Q̂RS
v,IJK as an intermediate step. Thus, we will discuss this calculation first before

we talk about the four different cases separately.
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6.1.1. Matrix elements of Q̂AL
v . First, we have to apply the map W in equation (5.4) to Q̂Y,AL

v

since we need the corresponding operator in the abstract angular momentum system Hilbert
space depending on J ,

Q̂J,AL
v := �6

p

3!i

4
Creg

∑
I<J<K

ε(eI, eJ , eK)q̂J
IJK, (6.4)

whereby q̂J
IJK results from q̂Y

IJK upon replacing Y k
e everywhere by J k

e . From now on, we will
neglect the explicit label J for Q̂J,AL

v and keep in mind that we are working in the abstract
angular momentum system Hilbert space. Our SNF under consideration

∣∣αJ
i ,M
〉
contains two

linearly independent triples constructed from the edges {e1, e3, e4} and {e2, e3, e4} for which
the sign factor is non-vanishing. Here we split an edge of type up or down as e = e−1

2 ◦ e1 and
then ε(e1, e3, e4) = −ε(e2, e3, e4) = ±1 for edges of type up and down respectively. Hence,
we have

Q̂J,AL
v := �6

p

3!i

4
Creg
(
q̂J

134 − q̂J
234

)
. (6.5)

We note that the matrix elements of Q̂AL
v apart from the constant pre-factor �6

p
3!i
4 Creg are

basically equal to the matrix elements of q̂J
IJK . In [16] a general formula for the matrix element〈

αJ
i ,M
∣∣q̂ IJK

∣∣αJ

ĩ
,M
〉

for an arbitrary n-valent vertex was derived (equation (47) in [16]). We
can use this result in order to get the desired matrix element of q̂134 and q̂234. We obtain

〈
αJ

i ,M
∣∣q̂134

∣∣αJ

ĩ
,M
〉 = 1

4
(−1)+2j+�+J

√
2j (2j + 1)(2j + 2)[2�(2� + 1)(2� + 2)]

3
2

×
√

(2a2 + 1)(2̃a2 + 1)
√

(2a3 + 1)(2̃a3 + 1)

{
j j a2

1 ã2 j

}{
J � a3

1 ã3 �

}
×
[
(−1)̃a3+̃a2

{̃
a2 ã3 �

1 � a3

}{
a3 � ã2

1 a2 �

}

− (−1)a3+a2

{
a2 a3 �

1 � ã3

} {̃
a3 � a2

1 ã2 �

}]
(6.6)

〈
αJ

i ,M
∣∣q234

∣∣αJ

ĩ
,M
〉 = +

1

4
(−1)+2j+�+J

√
2j (2j + 1)(2j + 2)[2�(2� + 1)(2� + 2)]

3
2

×
√

(2̃a2 + 1)(2a2 + 1)
√

2(a3 + 1)(2̃a3 + 1)

×
{
j j a2

1 ã2 j

}{
J � a3

1 ã3 �

}[
(−1)a2+̃a3

{
a3 � a2

1 ã2 �

} {̃
a2 � a3

1 ã3 �

}

− (−1)̃a2+a3

{̃
a3 � a2

1 ã2 �

}{
a2 � a3

1 ã3 �

}]
(6.7)

The explicit derivation can be found in appendix C. Here we already used that j1 = j2 =
j, j3 = j4 = � and a4 = J and

{
a

b

c

d

e

f

}
are the 6j -symbols defined in equation (120) in [16].

6.1.2. Matrix elements of Q̂RS
v,IJK. If we consider the operator Q̂RS

v,IJK we also have to consider
linearly dependent triples. Therefore also the triples {e1, e2, e3} and {e1, e2, e4} will contribute.
Since the sum over the triples is positioned outside the square root and the absolute value in
the case of RS (see equation (4.7) for details), we moreover have to deal with four separated
operators, namely Q̂RS

v,134, Q̂
RS
v,234, Q̂

RS
v,123, Q̂

RS
v,124. From equation (4.8) we can read off that the



5716 K Giesel and T Thiemann

matrix element of Q̂RS
v,IJK is derived from the matrix element of q̂IJK multiplied by the constant

�6
p

3!i
4 Creg. Thus, here we also need the matrix elements of q̂123 and q̂124 which are presented

below,〈
αJ

i ,M
∣∣q̂123

∣∣αJ

ĩ
,M
〉 = +

1

2
(−1)+2j+�+1(−1)̃a2−a2+a3X(j, �)

1
2 A(a2, ã2)

×
{
j j a2

1 ã2 j

}{
a3 � a2

1 ã2 �

}
[a2(a2 − 1) − ã2(̃a2 − 1)]δa3 ,̃a3 (6.8)

and〈
αJ

i ,M
∣∣q̂124

∣∣αJ

ĩ
,M
〉 = +

1

2
(−1)+2j+J X(j, �)

1
2 A(a2, ã2)A(a3, ã3)

×
{
j j a2

1 ã2 j

}{
� a2 a3

1 ã2 ã3

}{
a4 � a3

1 ã3 �

}
[a2(a2 − 1) − ã2(̃a2 + 1)].

(6.9)

6.2. Case (�)̂̃EI,AL
k,tot (St ), i.e. E

a,I
k = det(e)ea

k and V̂AL

If we consider the case of (�)̂̃EI,AL
k,tot (St ), the operators Ô1, Ô2 in equation (6.3) are Ô1 = Ô2 =

V̂ 2
AL. Going back to equations (4.7) and (6.4), we see that V̂ 2

AL = ∣∣Q̂AL
v

∣∣. Consequently, the
task of calculating matrix elements of V̂ 2

AL can be treated in the following way. As the first
step we compute the eigenvalues λ

Q
j and eigenstates {�ej } of Q̂AL

v . Afterwards, we expand the
matrix elements of V̂ 2

AL in terms of the eigenvectors of Q̂AL
v ,〈

αJ̃

ĩ
, M̃
∣∣V̂ 2

AL

∣∣αJ
i ,M
〉 =∑

j

∣∣λQ
j

∣∣〈αJ̃

ĩ
, M̃
∣∣�ej

〉〈�ej

∣∣αJ
i ,M
〉
, (6.10)

wherein we took V̂ 2
AL and Q̂AL

v to have the same eigenvectors, and if λ
Q
j is an eigenvalue of

Q̂AL
v , so is

∣∣λQ
j

∣∣ an eigenvalue of V̂ 2
AL.

The four matrix elements of V̂ 2
AL that occur in equation (6.3) are

〈
α0

2, 0
∣∣V̂ 2

AL

∣∣α0
1, 0
〉

and〈
α1

i ,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉

where i = 2, 3, 4. As the operator V̂ 2
AL does not change the total angular

momentum J and magnetic quantum number M of the states
∣∣αJ

i ,M
〉

and, moreover, the
Hilbert spaces belonging to different J are orthogonal to each other, we can calculate the cases
of J = 0 and J = 1 separately. Since these Hilbert spaces for arbitrary spin � of the edges
e3, e4 in general are (2j + 1) and (6j + 1) × 3 dimensional for J = 0 and J = 1, respectively
(see also equation (6.1) and (6.2) for this) there is much work to do. The diagonalization of
Q̂AL

v for the two easiest cases � = 0.5, 1, where the dimension of the Hilbert spaces in these
cases is so small that we were still able to calculate the eigensystems of Q̂AL

v analytically, can
be found in appendix D. Applying the eigenvector expansion, we obtain the following matrix
elements6 for V̂ 2

AL:
Surprisingly, all matrix elements turned out to be identical to zero. Therefore the operator

(�)̂̃EI,AL
k,tot (St ), at least for the spin labels � = 0.5, 1, becomes the zero operator! Consequently, it

is not consistent with the usual flux operator Êk(St ), which is definitely not the zero operator.

6.3. Case (�)̂̃EI,RS
k,tot(St ), i.e. E

a,I
k = det(e)ea

k and V̂RS

As pointed out before, we have to take into account the linearly dependent triples. The total
V̂RS is then given by

V̂RS = V̂q134 + V̂q234 + V̂q123 + V̂q124 , (6.11)

6 Note that in the case � = 1/2 the state |α1
1M〉 does not exist (see equation (6.2) for the definition of |α1

1M〉). That
is the reason why we do not have to consider this particular matrix element.
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� = 0.5 � = 1〈
α0

2 , 0
∣∣ V̂ 2

AL

∣∣α0
1 , 0
〉 = 0

〈
α0

2 , 0
∣∣ V̂ 2

AL

∣∣α0
1 , 0
〉 = 0〈

α1
2 , M
∣∣ V̂ 2

AL

∣∣α1
1 , M
〉 = 0〈

α1
3 ,M
∣∣ V̂ 2

AL

∣∣α1
1 ,M
〉 = 0

〈
α1

3 , M
∣∣ V̂ 2

AL

∣∣α1
1 , M
〉 = 0〈

α1
4 ,M
∣∣ V̂ 2

AL

∣∣α1
1 ,M
〉 = 0

〈
α1

4 , M
∣∣ V̂ 2

AL

∣∣α1
1 , M
〉 = 0

whereby for each V̂qIJK the operator identity V̂qIJK =
√∣∣QRS

v,IJK

∣∣ holds. If we consider the

expression of V̂RS in equation (6.11) together with the definition of the operators Ô1, Ô2 in
equation (5.9), we can rewrite the operators Ô1, Ô2 in the following way:

Ô
I,RS
1 = V̂ 2

q134
+ V̂ 2

q234
+ V̂q134 V̂q234 + V̂q234 V̂q134 + V̂q134 V̂q123 + V̂q124 V̂q134

+ V̂q234 V̂q123 + V̂q124 V̂q234 + V̂q124 V̂q123
(6.12)

Ô
I,RS
2 = V̂ 2

q134
+ V̂ 2

q234
+ V̂q234 V̂q134 + V̂q134 V̂q234 + V̂q123 V̂q134 + V̂q134 V̂q124

+ V̂q123 V̂q234 + V̂q234 V̂q124 + V̂q123 V̂q124 .

Similar to V̂AL we are restricted to the spin labels � = 0.5, 1 of the additional edges e3, e4,
because for higher spin labels the matrices of QRS

v,IJK cannot be diagonalized analytically
anymore. Using the operator identity V̂qIJK =√|QRS

v,IJK|, we can, as before, expand each V̂qIJK in

terms of the eigenvectors of QRS
v,IJK and use that if λ

Q
j is an eigenvalue of QRS

v,IJK , then
√∣∣λQ

j

∣∣ is
also an eigenvalue of V̂qIJK ,〈

αJ

ĩ
,M
∣∣V̂qIJK

∣∣αJ
i ,M
〉 =∑

j

√∣∣λQ
j

∣∣〈αJ

ĩ
,M
∣∣�ej 〉〈�ej

∣∣αJ
i ,M
〉
. (6.13)

The detailed calculations of the matrix elements of Ô1, Ô2 can be found in appendix E.
Here we will list only the final results. The matrix elements that are included in (�)̂̃EI,RS

k,tot(St )

are precisely
〈
α0

2, 0
∣∣ÔI,RS

1

∣∣α0
1, 0
〉

and
〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉

where i = 3, 4 for � = 0.5 and
i = 2, 3, 4 if � = 1, respectively. We get

� = 0.5 � = 1〈
α0

2 , 0
∣∣ ÔI,RS

1

∣∣α0
1 , 0
〉 = 0

〈
α0

2 , 0
∣∣ ÔI,RS

1

∣∣α0
1 , 0
〉 = 0〈

α1
2 , M
∣∣ ÔI,RS

2

∣∣α1
1 ,M
〉 = 0〈

α1
3 ,M
∣∣ ÔI,RS

2

∣∣α1
1 , M
〉 = 0

〈
α1

3 , M
∣∣ ÔI,RS

2

∣∣α1
1 ,M
〉 = 0〈

α1
4 ,M
∣∣ ÔI,RS

2

∣∣α1
1 , M
〉 = 0

〈
α1

4 , M
∣∣ ÔI,RS

2

∣∣α1
1 ,M
〉 = 0

Consequently, similar to our previous calculations with V 2
AL, we obtain only vanishing

matrix elements of Ô
I,RS
1 , Ô

I,RS
2 . Thus the matrix element 〈β1, m̃12|(�)̂̃EI,RS

k,tot(St )|β0, 0〉 is zero

as well. Consequently, analogous to the case of V̂AL, (�)̂̃EI,RS
k,tot(St ) becomes the zero operator.

It is true that due to the absence of the factor ε(eI, eJ , eK), other orderings for the RS
volume operator are available in which not V 2

RS but rather two factors of VRS sandwiched
between holonomies appear and such orderings could potentially lead to non-vanishing matrix
elements. Unfortunately, all these orderings also lead to identically vanishing matrix elements
as we prove explicitly in appendix E.
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6.4. Summarizing the results of case I

The analysis of the last two sections showed that either the operator (�)̂Ẽ
I,AL
k,tot (St ) or the operator

(�) ̂̃EI,RS
k,tot(St ) are consistent with the usual flux operator, because both of them are the zero

operators. This is due to the fact that all matrix elements of the operators Ô1, Ô2 that occur
in equation (6.3) vanish. Since the action on an arbitrary SNF can be determined from the
matrix element 〈β1, m̃12|(�) ̂̃EI,AL/RS

k,tot (St )|β0, 0〉, we know that the vanishing of this matrix

element is equivalent to the fact that (�) ̂̃EI,AL/RS
k,tot (St ) becomes the zero operator. For this

reason we can conclude, at least in the cases where we choose � = 0.5, 1, that the choice of
E

a,I
k (St ) = det(e)ea

k does not lead to an alternative flux operator that is consistent with the usual
one. To rule out the choice Ea

k (St ) = det(e)ea
k completely, we need to investigate the matrix

element for arbitrary representation weights �. For higher values of � the calculation cannot be
done analytically anymore simply due to the fact that the roots of the characteristic polynomial
of Hermitian matrices of the form Q = iA,AT = −A can be found by quadratures in general
only up to rank 9. However, the results for � = 0.5, 1 indicate that there is an abstract reason
which leads to the vanishing of the matrix elements for any �. We were not able to find such
an abstract argument yet. However, even if that was not the case and there was a range of
values for � for which not all of the matrix elements would vanish, it would be awkward that
the classical theory is independent of � while the quantum theory strongly depends on � even
in the correspondence limit of large j .

6.5. Case (�)̂̃EII,AL
k,tot (St ), i.e. E

a,II
k = S det(e)ea

k and V̂AL

Considering the case of the operator (�) ̂̃EII,AL
k,tot (St ), we can read off from equation (5.9) the

expressions Ô1 = V̂ALŜV̂AL = Ô2. Hence, again we have to compute special matrix elements
of the operators Ô1, Ô2. Since the sign operator Ŝ that corresponds to the classical expression
S := sgn(det(e)) does not exist in the literature so far, we will explain in detail how the
operator Ŝ has to be understood.

6.5.1. The sign operator Ŝ. We are dealing now with case II meaning that the densitized
triad is given by E

a,II
k = S det(e)ea

k , where S := det(e). Applying the determinant onto E
a,II
k ,

we get

det(E) = sgn(det(e)) det(q) with det(q) = [det(e)]2 � 0. (6.14)

Therefore, we obtain

sgn(det(E)) = sgn(det(e)) = S. (6.15)

In the following, we show that S = sgn(det(E)) can be identified with the sign of the
expression inside the absolute value under the square roots in the definition of the volume. For
this purpose, let us first discuss this issue on the classical level and afterwards go back into
the quantum theory and see how the corresponding operator Ŝ is connected with the operator
Q̂AL

v in equation (6.4).
In order to do this let us consider equation (3.19). This equation contains the classical

volume V (Rv(�)) where Rv(�) denotes a region centred around the vertex v(�).
The volume of such a cube is given by

V (Rv(�)) =
∫

Rv(�)

√
det(q) d3x =

∫
Rv(�)

√
|det(E)| d3x, (6.16)
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where we used det(q) = |det(E)| from equation (6.14). Introducing a parametrization of the
cube now, we end up with

V (Rv(�)) =
∫

[− ε′
2 ,+ ε′

2 ]3

∣∣∣∣∂XI (u)

∂uJ

∣∣∣∣√|det(E)(u)|d3u =
∫

[− ε′
2 ,+ ε′

2 ]3
|det(X)|

√
|det(E)(u)| d3u.

(6.17)

In order to be able to carry out the integral, we choose the cube Rv(�) small enough and thus
the volume can be approximated by

V (Rv(�)) ≈ ε′3
∣∣∣∣det

(
∂X

∂u

)
(v)

∣∣∣∣√|det(E)(v)|. (6.18)

Using the definition of det(E) = 1
3!εabcε

jklEa
j Eb

kE
c
l , we can rewrite equation (6.16) as

V (Rv(�)) =
∫

�

√∣∣∣∣ 1

3!
εabcεjklEa

j Eb
kE

c
l

∣∣∣∣ d3x. (6.19)

If we again choose Rv(�) small enough and define the square surfaces of the cube as SI, we
can re-express the volume integral over the densitized triads in terms of their corresponding
electric fluxes through the surfaces SI,

V (Rv(�)) ≈
√∣∣∣∣ 1

3!
εIJKεjklEj (SI)Ek(SJ )El(SK)

∣∣∣∣. (6.20)

The flux through a particular surfaces SI is defined as

Ej(S
I) =
∫

SI
Ea

j nSI

a nSI

a = 1

2
εIJKεabcX

b
,uJ

Xc
,uK

∣∣
nI=0. (6.21)

Here nSI

a denotes the conormal vector associated with the surface SI. Regarding equation (6.20)
we realize that inside the absolute value in equation (6.20) appears exactly the definition of
det(Ej (S

I)). Therefore we get

V (Rv(�)) ≈
√

|det(Ej (SI))|. (6.22)

On the other hand, by taking advantage of the fact that the surfaces SI are small enough so
that the integral can be approximated by the value at the vertex times the size of the surface
itself, we obtain for det(Ej (S

I))

det(Ej (S
I)) ≈ det

(
Ea

j (v)nSI

a (v)ε′2)
= det

(
Ea

j (v)
)

det
(
nSI

a (v)
)
ε′6

= det
(
E(v)
)

det
(
nSI

a (v)
)
ε′6. (6.23)

If we consider the definition of the normal vector in equation (6.21), we can show the following
identity:

nSI

a = det(X)XSI

a
(6.24)

det
(
nSI

a

) = det(X)3 det(X−1) = det(X)3

det(X)
= det(X)2.

Inserting equation (6.24) back into equation (6.23) we have

det(Ej (S
I)) ≈ det(E(v))[det(X(v))]2ε′6 (6.25)

and can conclude that equation (6.22) is consistent with the usual definition of the volume in
equation (6.18).

Since we want to identify S := sgn(det(E)) with the sign that appears inside the
absolute value under the square root in the definition of the volume, we can read off from
equation (6.22) that we still have to show sgn(det(E)) = sgn(det(Ej (S

I))). However, this can
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be done by means of equation (6.25),

sgn(det(Ej (S
I))) ≈ sgn(det(E(v))[det(X(v))]2ε′6)

= sgn(det(E(v)))sgn([det(X(v))]2)sgn(ε′6)
= sgn(det(E(v))). (6.26)

Consequently, we can identify S with the sign that appears inside the absolute value under the
square root in the definition of the volume V in the classical theory, because it was precisely
the expression det(Ej (SI )) that was used in the construction of the volume operator, defined
as the square root of absolute value of det(E). In the quantum theory, we introduced the
operator Q̂ in equation (6.4), which is basically the expression inside the absolute value in
the definition of the volume operator. Hence, it can be seen as the squared version of the
volume operator that additionally contains information about the sign of the expression inside
the absolute values. Consequently, we can identify the operator Q̂AL

v with Q̂AL
v = V̂ALŜV̂AL.

Now we will be left with the task to calculate particular matrix elements for Q̂AL
v which can

be done by means of the formula derived in [16].
In order to apply operator Ŝ onto states expressed in terms of abstract angular momentum

states, we have to use the W map defined in equation (5.4). Classically, it is the sign of det(E)

which is quantized by smearing the Ea
j with surfaces upon which we obtain fluxes. Using that

det((Ej (S
I ))) ≈ [det((∂Xa/∂uI ))]2 det

(
Ea

j

)
as the surfaces shrink to a point v as we saw

above, the sign of det(E) is the sign of the determinant of the fluxes which in turn gives the
operator Q̂v which is related to V̂v by V̂v =

√
|Q̂v|. Now Q̂AL

v is given by

Q̂Y,AL
v = Creg

∑
I,J,K

ε(eI , eJ , eK)εijk

(
i�2

pXi
eI

)(
i�2

pXj
eJ

)(
i�2

pXk
eK

)
= −8Creg�

6
p

∑
I,J,K

ε(eI , eJ , eK)εijkY
i
eI

Y j
eJ

Y k
eK

, (6.27)

because Êj (S) = i�2
p

∑
e σ (e, S)X

j
e . Applying the map W then simply transforms Y into J .

Due to the global minus sign in the above equation, we will obtain a global minus sign in front
of the whole operator (�)̂̃EII,AL

k,tot (St ). Thus, the minus sign in equation (6.3) gets cancelled.

6.5.2. Matrix elements of Ô1, Ô2 in the case of (�)̂̃EII,AL
k,tot (St ). For (�)̂̃EII,AL

k,tot (St ) the operators
Ô1, Ô2 = V̂ALŜV̂AL. We showed in the last section, where Ŝ was introduced, the following
operator identity: Q̂AL

v = V̂ALŜV̂AL. Therefore calculating matrix elements of Ô1/2 is
equivalent to calculating matrix elements of Q̂AL

v . Hence, in order to get the matrix

element for (�) ̂̃EII,AL
k,tot (St ), we need to compute the matrix elements

〈
α0

2, 0
∣∣Q̂AL

v

∣∣α0
1, 0
〉

and〈
α1

i ,M
∣∣Q̂AL

v

∣∣α1
1,M
〉

with i = 2, 3, 4. And now one big advantage of the occurrence of the
sign operator Ŝ can be observed. In case I, when we were forced to compute particular matrix
elements of V̂ 2

AL, we had to calculate the whole eigensystem of Q̂AL
v as the first step in order to

use an eigenstate expansion for the matrix elements of V̂ 2
AL. Here, since (�)̂̃EII,AL

k,tot (St ) includes
matrix elements of Q̂AL

v , we can use the formula derived in [16] to get
〈
α0

2, 0
∣∣Q̂AL

v

∣∣α0
1, 0
〉

and〈
α1

i ,M
∣∣Q̂AL

v

∣∣α1
1,M
〉

and no involved diagonalization of Q̂AL
v is needed anymore.

Moreover, we are only considering matrix elements with
∣∣α1

1,M
〉

as an incoming state∣∣α1
1,M
〉
. This state has the property that the intermediate coupling a2 of the edges e1, e2 is

zero. Thus, we have Je1 = −Je2 and therefore obtain in these cases q̂134 = −q̂234. Hence we
only have to deal with one of the triples. So, in our special case we get

Q̂AL
v = �6

p

3!i

4
Creg(ε(e1, e3, e4)q̂134 + ε(e2, e3, e4)q̂234) = σ�6

p

3!i

2
Cregq̂134, (6.28)
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where we introduced σ = +1 for edges of type up and σ = −1 for edges of type down.
Moreover, we have chosen to take q̂134 without loss of generality. In the following calculation,
we will consider the case of an up edge, so we choose σ = +1. The whole calculation is
analogous for an edge of type down with the only difference that all subsequent formulae have
to be multiplied by a factor of −1. Taking the formulae7 for the matrix elements of q̂134, q̂234

in equations (6.6), (6.7) we obtain the following result:〈
α0

2,M
∣∣q̂134

∣∣α0
1,M
〉 = 4√

3

√
j (j + 1)

√
�(� + 1)

〈
α1

2,M
∣∣q̂134

∣∣α1
1,M
〉 = 4√

3

√
j (j + 1)

√
(� + 1)3(2� − 1)√

�(2� + 1)
(6.29)〈

α1
3,M
∣∣q̂134

∣∣α1
1,M
〉 = 4√

3

√
j (j + 1)

(�(� + 1) − 1)√
�(� + 1)〈

α1
4,M
∣∣q̂134

∣∣α1
1,M
〉 = 4√

3

√
j (j + 1)

√
�3(2� + 3)√

(� + 1)(2� + 1)
.

The matrix elements do not depend on the magnetic quantum number M and are therefore
identical for any chosen value of M. From equation (6.28) we can read off that the matrix
elements of Q̂AL

v are given by equation (6.29) multiplied by a factor of
(
i�6

p
3!i
2 Creg

)
. Quite

promising at this stage is the fact that the j and � dependence of the matrix elements factorizes,
because it might be a slight indication that the whole � dependence will cancel exactly in the
end. With the result of the matrix elements we can go ahead in computing the matrix element
of (�)̂̃EII,AL

k,tot (St ) by inserting the matrix elements above into equation (6.3).

6.5.3. Explicit calculation of the matrix elements of (�)̂̃EII,AL
k,tot (St ). Multiplying the matrix

elements in equation (6.29) by the necessary factor of
(
i�6

p
3!i
2 Creg

)
, inserting them into

equation (6.3) and taking into account the global factor of −1 due to the W map of Ŝ,
we obtain

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0, 0〉 = lim
Pt→St

∑
�∈Pt

8�2
pCreg

4
3�(� + 1)(2� + 1)

(−1)3�3!2i√
3

√
j (j + 1)

×
[

+
+�∑

B=−�

{π�(τk)B(m̃12+B)(−1)B+m̃12
√

2� + 1
√

�(� + 1)

×〈1m̃12; �B | �m̃12+B〉〈�m̃12+B; �−(m̃12+B)|00〉}

−
+�∑

C=−�

{
π�(τk)(C−m̃12)C(−1)C−m̃12〈00; �m̃12C | �m̃12C〉〈�m̃12C; �m̃12−C|1m̃12〉

×
(√

2� − 1√
3

√
(� + 1)3(2� − 1)√

�(2� + 1)
−

√
2� + 1√

3

(�(� + 1) − 1)√
�(� + 1)

+

√
2� + 3√

3

√
�3(2� + 3)√

(� + 1)(2� + 1)

)}]
, (6.30)

where we put a global factor of
(
�6

p
3!i
2 Creg

)
(−1)3�4√

3

√
j (j + 1) in front of the summation. In

order to get rid of the δ-functions, we performed the sum over the indices C,F in the first term

7 This formula was originally derived for gauge invariant SNF only, but can easily be extended to gauge variant states
with a total angular momentum different from zero [19].
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and the sum over B,F, in the last term. Hence, only one summation is left. Compared to our
starting point equation (6.30), equation (5.12) has become effectively simplified. Nevertheless,
for carrying out the last sum, we have to insert the explicit expressions for the remaining CGC.
They are given by

〈1m̃12; �B | �m̃12 + B〉 = 1√
�(� + 1)


− 1√

2

√
�(� + 1) − B(B − 1)δm̃12,−1

−Bδm̃12,0

+ 1√
2

√
�(� + 1) − B(B + 1)δm̃12,+1


〈�m̃12 + B; � − (m̃12 + B)|00〉 = (−1)�−B+m̃12

√
2� + 1

〈00; �C|�C〉 = 1

〈�C; �m̃12 − C | 1m̃12〉 = (−1)�−C
√

3√
�(� + 1)(2� + 1)


− 1√

2

√
�(� + 1) − C(C + 1)δm̃12,−1

+ Cδm̃12,0

+ 1√
2

√
�(� + 1) − C(C − 1)δm̃12,+1

 .

(6.31)

If we insert these CGC into equation (6.30), we will get an additional factor of (−1)� which,
combined with the already existing factor of (−1)3�, leads to a total of (−1)4� = +1 and
can therefore be neglected. Furthermore, the factors (−1)B and (−1)C are cancelled by the
corresponding inverse factors included in the CGC in equation (6.31). Hence, we get

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0, 0 = lim
Pt→St

∑
�∈Pt

8�2
pCreg

4
3�(� + 1)(2� + 1)

3!2i√
3

√
j (j + 1)

×

+
+�∑

B=−�

π�(τk)B(m̃12+b)


− 1√

2

√
�(� + 1) − B(B − 1)δm̃12,−1

−Bδm̃12,0

+ 1√
2

√
�(� + 1) − B(B + 1)δm̃12,+1




−
+�∑

C=−�

{π�(τk)(c−m̃12)c


+ 1√

2

√
�(� + 1) − C(C + 1)δm̃12,−1

+ Cδm̃12,0

− 1√
2

√
�(� + 1) − C(C − 1)δm̃12,+1


×
[
(2� − 1)

(2� + 1)

(� + 1)

�
−
(

1 − 1

�(� + 1)

)
+

(2� + 3)

(2� + 1)

�

(� + 1)

]} . (6.32)

Here we have used (−1)2m12 = +1 in the first term, absorbed the factor of (−1)m12 in a change
of sign in the CGC for m̃12 = ±1 and combined and cancelled square roots where appropriate.
Fortunately, the expression in the square brackets in the second sum is identical to one, so
equation (6.32) simplifies to

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0, 0〉 = lim
Pt→St

∑
�∈Pt

3!16i�2
pCreg

√
j (j + 1)√

3 4
3�(� + 1)(2� + 1)
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×


+�∑

B=−�

π�(τk)B(m̃12+B)


− 1√

2

√
�(� + 1) − B(B − 1)δm̃12,−1

−Bδm̃12,0

+ 1√
2

√
�(� + 1) − B(B + 1)δm̃12,+1


+

+�∑
C=−�

π�(τk)(C−m̃12)C


− 1√

2

√
�(� + 1) − C(C + 1)δm̃12,−1

−Cδm̃12,0

+ 1√
2

√
�(� + 1) − C(C − 1)δm̃12,+1


 ,

(6.33)

where we absorbed the minus sign in front of the second sum into the GCG. The τ -matrices
for an arbitrary SU(2) representation with weight � are derived in appendix B

π�(τ1)mn = −i
√

�(� + 1) − m(m − 1)δm−n,1 − i
√

�(� + 1) − m(m + 1)δm−n,−1

π�(τ2)mn =
√

�(� + 1) − m(m + 1)δm−n,−1 −
√

�(� + 1) − m(m − 1)δm−n,1 (6.34)

π�(τ3)mn = −2imδm−n,0.

Taking a closer look at the structure of these τ -matrices, we realize that a different choice
of m̃12 in equation (6.33) projects onto different τ -matrices; for example, only π�(τ3) will
contribute to the case m̃12 = 0, while in the case m̃12 = ±1 only π�(τ1) and π�(τ2) have to be
considered. Formulating this fact in terms of δ-functions and using the explicit expressions
for the τ -matrices in equation (6.34), we obtain

〈β1, m̃12|(�)̂̃Ek,tot(St )|β0, 0〉 = lim
Pt→St

∑
�∈Pt

3!16i�2
pCreg√
3

√
j (j + 1)

×


− 1√

2
δm̃12,−1{−iδk,1 + δk,2}

+ iδm̃12,0δk,3

+ 1√
2
δm̃12,1{−iδk,1 − δk,2}

 , (6.35)

whereby we used
∑�

B=−� B2 = 1
3�(� + 1)(2� + 1).

Now we take the limit limε→0 limε′→0. The discussion in section 3.3 showed that taking
the limε′→0 (that is equivalent to limPt→St

) is trivial and taking the limε→0 leads to an additional
overall factor of 1/2. So, when calculating the action of the alternative flux operator on the
state |β0, 0〉, we use the expansion

(�)̂̃Ek,tot(S)|β0, 0〉 =
+1∑

m̃12=−1

〈β1, m̃12|(�)̂̃Ek,tot(S)|β0, 0〉|β1, m̃12〉 (6.36)

and end up with the final result

(�)̂̃EII,AL
1,tot (S)|β0, 0〉 = −3!8�2

pCreg√
6

√
j (j + 1){|β1,−1〉 − |β1, +1〉}

(�)̂̃EII,AL
2,tot (S)|β0, 0〉 = −3!8i�2

pCreg√
6

√
j (j + 1){|β1,−1〉 + |β1, +1〉} (6.37)

(�)̂̃EII,AL
3,tot (S)|β0, 0〉 = −3!8�2

pCreg√
3

√
j (j + 1)|β1, 0〉.

Remarkably, in the final result the � dependence drops out completely.
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6.6. Case (�)̂̃EII,RS
k,tot (St ), i.e. Ea,II

k = S det(e)ea
k and V̂RS

In this case, the operators Ô1, Ô2 have the following form:

Ô1 = +V̂q134 ŜV̂q134 + V̂q234 ŜV̂q234 + V̂q134 ŜV̂q234 + V̂q234 ŜV̂q134 + V̂q134 ŜV̂q123

+ V̂q124 ŜV̂q134 + V̂q234 ŜV̂q123 + V̂q124 ŜV̂q234 + V̂q124 ŜV̂q123
(6.38)

Ô2 = +V̂q134 ŜV̂q134 + V̂q234 ŜV̂q234 + V̂q234 ŜV̂q134 + V̂q134 ŜV̂q234 + V̂q123 ŜV̂q134

+ V̂q134 ŜV̂q124 + V̂q123 ŜV̂q234 + V̂q234 ŜV̂q124 + V̂q123 ŜV̂q124 .

But, before continuing we want to discuss some difficulties that occur if one uses the volume
operator V̂RS in this case.

6.6.1. Problems with the sign operator Ŝ in the case of RS. When we introduced the
quantization of S → Ŝ in section 6.5.1, we realized that Ŝ has a precise relation to the
operator Q̂AL

v , i.e. Q̂AL
v = V̂ALŜV̂AL. However, this was possible because V̂AL sums over

the triples inside the absolute value under the square root (see equation (4.9)). In contrast,
V̂RS, defined in equation (4.7) consists of a sum of single square roots. Consequently, we
are not able to repeat the calculations done in section 6.5.1 if we choose V̂RS, because there
is no possible origin for a sign. This means that there exists no sign operator Ŝ that is
quantized in the same way as V̂RS is quantized. Accordingly, in a strict sense the operator
(�)̂̃EII,RS

k,tot (St ) does not exist, because Ŝ cannot be implemented in the quantum theory just using

the regularization that leads to V̂RS. The conclusion is that (�)̂̃EII,RS
k,tot (St ) is inconsistent with

the usual flux operator. In retrospect there is a simple argument why the only possibility
(�) ̂̃EI,RS

k,tot(St ) (since (�) ̂̃EII,RS
k,tot (St ) does not exist) is ruled out V̂RS without further calculation:

namely, the lack of a factor of orientation in V̂RS, like ε(eI, eJ , eK) in V̂AL, leads to the following
basic disagreement with the usual flux operator. Suppose we had chosen the orientation of
the surface S in the opposite way. Then the type of the edge e switches between up and
down and similarly for e1, e2. Then, the result of the usual flux operator would differ by a
minus sign. In the case of V̂AL we would get this minus sign as well due to ε(eI, eJ , eK),
whereas a change of the orientation of e1, e2 would not modify the result of the alternative
flux operator if we used V̂RS instead, because it is not sensitive to the orientation of the
edges.

A way out would be to use the somehow ‘artificial’ construction V̂RSŜALV̂RS, where Ŝ
denotes the sign operator Ŝ introduced in section 6.5.1. We attached the label AL to it in order
to emphasize that its quantization is in agreement with V̂AL. This is artificial for the following
reason. Suppose we have a classical quantity A := det(E) and two different functions
f1 := √|A| and f2 := sgn(A). If we want to quantize the functions f1 and f2, we do this with
the help of the corresponding operator Â and obtain due to the spectral theorem f̂ 1 =

√
|Â|

and f̂ 2 = sgn(Â). The product of operators V̂RSŜALV̂RS rather corresponds to ĝ1 = Â′ and
ĝ2 = sgn(Â), because V̂RS is quantized with a different regularization scheme than Ŝ is.
This would only be justified if

√
|Â| and Â′ would agree semi-classically. However they do

not: if we compare the expressions for VAL and VRS then, schematically, they are related in
the following way when restricted to a vertex, V̂v,AL = ∣∣ 3!i

4 Creg
∑

I<J<K ε(eI, eJ , eK)q̂ IJK

∣∣1/2

while V̂v,RS = ∑I<J<K

∣∣ 3!i
4 Cregq̂ IJK

∣∣1/2
. It is clear that apart from the sign ε(eI, eJ , eK)

the two operators can agree at most on states where only one of the q̂IJK is non-vanishing
(3- or 4-valent graphs) simply because

√|a + b| �= √|a| +
√|b| for generic real numbers

a, b.
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6.6.2. Matrix elements of Ô1, Ô2 in the case of (�)̂̃EII,RS
k,tot (St ). Nevertheless, we can analyse

whether (�)̂̃EII,RS
k,tot (St ) including V̂RSŜALV̂RS is consistent with the usual flux operator Êk(S).

In the case of (�)̂̃EII,AL
k,tot (St ), no diagonalization of the Q̂AL

v matrices was necessary because

of the operator identification Q̂AL
v = V̂ALŜV̂AL. Since this is not possible for (�)̂̃EII,RS

k,tot (St ) we
have to diagonalize the Q̂RS

v,IJK in order to get the eigenvalues and eigenvectors. Then we can
compute the matrix elements, for instance,

〈
α0

2,M
∣∣Ô1

∣∣α0
1,M
〉

by an eigenvector expansion
for each operator contained in Ô1,〈
α0

2,M
∣∣V̂qIJK ŜV̂qĨ J̃ K̃

∣∣α0
1,M
〉 = ∑

|α′〉,|α′′〉

〈
α0

2,M
∣∣V̂qIJK |α′〉〈α′|Ŝ|α′′〉〈α′′|V̂qĨ J̃ K̃

∣∣α0
1,M
〉

=
∑

|α′〉,|α′′〉

∑
k,k′,k′′

〈
α0

2,M
∣∣V̂qIJK |�ek〉〈�ek|α′〉〈α′|Ŝ|�ek′ 〉〈�ek′ |α′′〉

× 〈α′′|V̂qĨ J̃ K̃
|�ek′′ 〉〈�ek′′

∣∣α0
1,M
〉
, (6.39)

whereby |�ek〉 are the eigenvectors of the corresponding operators and |α′〉 are all
states belonging to the Hilbert space HJ . We calculated the matrix elements〈
α0

2,M
∣∣Ô1

∣∣α0
1,M
〉
,
〈
α1

3,M
∣∣Ô2

∣∣α1
1,M
〉
,
〈
α1

4,M
∣∣Ô2

∣∣α1
1,M
〉

that occur in equation (6.3) for
� = 0.5. The details can be found in appendix E. The results are shown below:〈

α0
2,M
∣∣ÔRS

1

∣∣α0
1,M
〉 = C1(�)

〈
α0

2,M
∣∣ÔAL

1

∣∣α0
1,M
〉

〈
α1

3,M
∣∣ÔRS

2

∣∣α1
1,M
〉 = C3(j, �)

〈
α1

3,M
∣∣ÔAL

2

∣∣α1
1,M
〉

(6.40)〈
α1

4,M
∣∣ÔRS

2

∣∣α1
1,M
〉 = C4(j, �)

〈
α1

4,M
∣∣ÔAL

2

∣∣α1
1,M
〉
.

Here C1(�), Ci(j, �) ∈ R and the explicit expression can be found in equations (E.82) and
(E.105). Furthermore, we expressed the matrix elements in terms of the associated AL-matrix
elements, because the whole calculation has already been done for (�)̂̃EII,AL

k,tot (St ) and therefore
in this way of writing we can easily note where differences occur. Ci(j, �) are real constants
whose values depend on the explicit value of the spin labels j and �. In the case of (�)̂Ẽ

II,AL
k,tot (St )

we could see that the whole dependence on the spin label � drops out in the final result. Hence,
if in the case of (�)̂Ẽ

II,RS
k,tot (St ) we obtain not exactly the same matrix elements as for (�)̂Ẽ

II,AL
k,tot (St ),

we already know that the � dependence will not be cancelled in the final result here. The
j dependence is basically caused by terms proportional to (

√
j (j + 1) + c)(

√
j (j + 1))−1,

whereby c ∈ N. Thus semi-classically, i.e. in the limit of large j , the numerator and the
denominator become equal and accordingly the j dependence vanishes, Ci(j, �) → Ci(�).
By reinserting the matrix elements from equation (6.40) into equation (6.3) and repeating all
the steps of the former (�)̂̃EII,RS

k,tot (St ) calculation for � = 0.5, we end up with

(�)̂̃EII,RS
1,tot (S)|β0, 0〉 = − �2

p√
6
C(j, �)Creg

√
j (j + 1){|β1,−1〉 − |β1, +1〉}

(�)̂̃EII,RS
2,tot (S)|β0, 0〉 = − �2

p√
6
C(j, �)Creg

√
j (j + 1){|β1,−1〉 + |β1, +1〉} (6.41)

(�)̂̃EII,RS
3,tot (S)|β0, 0〉 = − �2

p√
3
C(j, �)Creg

√
j (j + 1)|β1, 0〉.

Here, C(j, �) ∈ R with C(j, �) → C(�) semi-classically and

C(�) =
[
C1

(
1

2

)
− C3

(
1

2

)(
1 − 1

�(� + 1)

)
+ C4

(
1

2

)(
(2� + 3)

(2� + 1)

�

(� + 1)

)]
�=0.5

. (6.42)
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The functions C1(�), C2(�), C3(�), C4(�) can be computed analytically only for � = 0.5, 1.
Note that C2(�) is zero for � = 1/2 since the state

∣∣α1
2,M
〉

does not exist for � = 0.5 (see
equation (D.4)). For this reason it does not occur in equation (6.42). However, if we know
these constants the precise � dependence of C(�) would be

C(�) = C1(�) + C2(�)

(
(2� − 1)

(2� + 1)

(� + 1)

�

)
− C3(�)

(
1 − 1

�(� + 1)

)
+ C4(�)

(
(2� + 3)

(2� + 1)

�

(� + 1)

)
. (6.43)

Since the � dependence of Ci(�) should result from the � dependence of Q̂RS
v,IJK which is

non-trivial in general, it is very unlikely that the whole � dependence is cancelled for arbitrary
� as in the case of (�)̂̃EII,AL

k,tot (St ), where Ci(�) = 1 for i = 1, 2, 3, 4.
Thus, we conclude that the volume operator introduced by Rovelli and Smolin is not

appropriate to reproduce the result of the usual flux operator Êk(St ) and therefore cannot be
used to construct the alternative flux operator. In other words, the RS operator is inconsistent
with the fundamental flux operator on which it is based.

6.7. Summarizing the results of case II

Considering the operator (�) ̂̃EII,AL
k,tot (St ), the operators Ô1, Ô2 whose matrix elements are

included in equation (6.3) are given by Ô1 = Ô2 = V̂ALŜV̂AL. Thus we have to implement
the sign operator S = sgn(det(e)) → Ŝ on the quantum level. In section 6.5.1 we showed in
detail that Ŝ has a well-defined relation with Q̂AL

v , in particular Ŝ = sgn
(
Q̂AL

v

)
. This relation

is equivalent to the operator identity Q̂AL
v = V̂ALŜV̂AL. Consequently, it remarkably turns out

that the operators Ô1, Ô2 are identical to the operator Q̂AL
v in the case of (�)̂̃EII,AL

k,tot (St ). Along
with this comes the nice side effect that a diagonalization of the operator Q̂AL

v is no longer
necessary since now the matrix elements of Q̂AL

v instead of matrix elements of V̂AL contribute
to the calculation. Therefore, we can apply the general formula for matrix elements of Q̂AL

v

derived in [16], even for arbitrary spin labels �, and we are done. The expression for the
matrix elements of Q̂AL

v is given in equation (6.29). By reinserting these matrix elements into
equation (6.3) and following the intermediate steps discussed in section 6.5.3, we end up with
the final result in equation (6.37). For (�)̂̃EII,AL

k,tot (St ) the whole dependence on the spin label
� that is associated with the two additional edges e3, e4 drops out in the final result. Hence,
the result is independent of the chosen representation of the holonomies in the alternative flux
operator (�)̂̃EII,AL

k,tot (St ).

In the case of (�) ̂̃EII,RS
k,tot (St ) the operators Ô1, Ô2 have quite lengthly expressions that

can be found in equation (6.38). Ô1, Ô2 are both given by a sum of operators that have
the form V̂qIJK ŜV̂qĨ J̃ K̃

, whereby V̂qIJK denotes the operator V̂RS when only the contribution of
the triple {eI , eJ , eK} is considered. In contrast to Q̂AL

v , for
∑

IJK Q̂RS
v,IJK no relation with the

sign operator Ŝ can be derived. This fact is dealt with in section 6.6.1. Consequently, it is
impossible to quantize Ŝ in an analogous way as V̂RS is quantized. This is a big difference
to V̂AL where Ŝ and V̂AL could be quantized in the same manner. Therefore, the operator
(�)̂̃EII,RS

k,tot (St ) cannot be defined rigorously since Ŝ does not exist for V̂RS. Thus, the operator
(�)̂̃EII,RS

k,tot (St ) is inconsistent with the usual flux operator Êk(St ).

Nevertheless, we analysed the artificial construction V̂RSŜV̂AL for (�) ̂̃EII,RS
k,tot (St ). It is

artificial because the operator V̂RS and the operator Ŝ are quantized with respect to different
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regularization schemes and are not semi-classically consistent with each other. The results are
shown in equation (6.41).

In the next section, we will calculate the matrix element of the usual flux operator Êk(S)

in order to compare it with the results in equations (6.37) and (6.41) afterwards.

7. Matrix elements of the usual flux operator Êk(S)

In this section, we will calculate the action of the usual flux operator on our SNF |β0, 0〉 that
was used through all the calculations of the alternative flux operator before8. If we want to
use the technical tools of angular momentum recoupling theory (e.g. CGC) we have to apply
the W map in equation (5.4) to all states in the SNF Hilbert space in order to justify to work
in the angular momentum system Hilbert space. Therefore a matrix element of the usual flux
operator is given by

m′
1,m

′
2
〈βj̃ 12 , ñ12|ÊY

k (S)|βj12 , n12〉m′
1,m

′
2
=
∑

m12,m̃12

πj̃ 12
(ε−1)ñ12m̃12πj12(ε

−1)n12m12

×〈βj̃ 12 , m̃12;m′
1m

′
2|ÊJ

k (S)|βj12 ,m12;m′
1m

′
2〉.

As has been pointed out before, this mapping is similar for the alternative and the usual
flux operator. Therefore, we will only consider the matrix elements of Êk in the abstract
angular momentum system Hilbert space here. Since the inverse of π�(ε

−1) exists, a possible
difference between the usual and the alternative flux operator can only occur in the matrix
element in the abstract angular momentum Hilbert space. Throughout this section, we will
neglect the additional indices m′

1,m
′
2 of the states |βj12 ,m12〉 as we did in the calculation of

the alternative flux operator. Working in the abstract angular momentum system Hilbert space
now, we can re-express the action of Êk(S) in terms of angular momentum operators the
actions of which, on the other hand, are well known for states expressed in the tensor basis.
Thus, it is suggestive to transform the recoupling states |β0, 0〉 back into the tensor basis and
apply the operator Êk(S) onto it afterwards. Thereafter, we have to reformulate the result
again in terms of the recoupling basis in order to be able to compare this result of the usual
flux operator with the calculations of ̂̃Ek(S) in the last sections.

The state |β0, 0〉 transforms into the tensor basis according to the following linear
combination,

|β0, 0〉 =
+j∑

m=−j

〈jm, j − m|00〉|jm;m′
e1
〉e1 ⊗ |jm;m′

e2〉e2 (7.1)

=
+j∑

m=−j

(−1)j−m

√
2j + 1

|jm;m′
e1
〉e1 ⊗ |j − m;m′

e2
〉e2 , (7.2)

where we have used the explicit expression for the CGC 〈jm, j − m|00〉 = (−1)j−m√
2j+1

.
Furthermore, the two edges e1 and e2 of our graph γ couple to a resulting angular momentum
j12 = 0. Therefore, we have Ĵ k

e1
= −Ĵ k

e2
. Additionally, the tangent vectors ė1(t) and

8 Note that it so happens that for Ô = V̂ ŜV̂ = Q̂ an explicit diagonalization of Q̂ is not necessary so we may refrain
from using the recoupling basis and can work directly in the tensor basis. The associated calculations are of a similar
length but sidestep the use of CGCs and hence may be used as an independent check of our result. We did this and
the result completely agrees with the recoupling basis calculation. However, for Ô = V̂ 2 �= Q̂ it is necessary to
diagonalize Q̂ and the use of the recoupling basis becomes calculationally mandatory, which is why we have done all
calculations in this paper in the recoupling basis.
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ė2(t) have opposite orientations with respect to the surface S, from which it follows that
ε(e1, S) = −ε(e2, S) = σ , where σ = +1 for edges of type up and σ = −1 for type down
edges. Hence, we obtain

Êk(S)|β0, 0〉 = −1

2
�2

p

[
ε(e1, S)Ĵ k

e1
+ ε(e2, S)Ĵ k

e2

]|β0, 0〉

= −1

2
�2

p

+j∑
m=−j

[
ε(e1, S)Ĵ k

e1
+ ε(e2, S)Ĵ k

e2

] (−1)j−m

√
2j + 1

|jm;m′
e1
〉e1 ⊗ |j − m;m′

e2
〉e2

= − �2
p√

2j + 1

+j∑
m=−j

(−1)j−m
(
Ĵ k

e1
|jm;m′

e1
〉e1

)⊗ |j − m;m′
e2
〉e2 . (7.3)

By applying equation (7.3), we calculate the action of Êk(S) on our SNF for each k = 1, 2, 3
separately with the case k = 1 being the first one. From elementary quantum mechanics
we know that we can introduce ladder angular momentum operators Ĵ + and Ĵ− defined
by Ĵ + := Ĵ 1 + iĴ 2 and Ĵ− := Ĵ 1 − iĴ 2, respectively. Hence, we can express Ĵ 1 as
Ĵ 1 = 1

2 (Ĵ + + Ĵ−). The action of the ladder operators on a state in the abstract spin system
|jm;m′〉 with spin j and magnetic quantum number m is given by

Ĵ +|jm;m′〉 =
√

j (j + 1) − m(m + 1)|jm + 1; m′〉
(7.4)

Ĵ−|jm;m′〉 =
√

j (j + 1) − m(m − 1)|jm − 1; m′〉.
Therefore, by means of equation (7.3) we obtain for the k = 1 component of the flux operator
Ê1(S) acting on the SNF |β0, 0〉 the following result:

Ê1(S)|β0, 0〉 = − �2
p√

2j + 1

+j∑
m=−j

(−1)j−m
(
Ĵ 1

e1
|jm;m′

e1
〉e1

)⊗ |j − m; m′
e2
〉e2

= − �2
p

2
√

2j + 1

+j∑
m=−j

(−1)j−m
{
+
√

j (j + 1) − m(m + 1)|jm + 1; m′
e1
〉e1

⊗ |j − m;m′
e2
〉e2 +
√

j (j + 1) − m(m − 1)|jm − 1; m′
e1
〉e1 ⊗ |j − m;m′

e2
〉e2

}
.

(7.5)

We wish to express the final result in terms of recoupling states. Consequently, we have to
transform the tensor product |jm ± 1; m′

e1
〉e1 ⊗ |j − m; m′

e2
〉e2 back into the recoupling basis,

|jm + 1; m′〉e1 ⊗ |j − m;−m′〉e2 = −(−1)j−m

√
3

2

√
j (j + 1) − m(m + 1)

j (j + 1)(2j + 1)
|β1, 1〉

+
2j∑

j̃12=2

〈̃j12m̃2 = 1|jm + 1; j − m〉|βj̃12 , 1〉
(7.6)

|jm − 1; m′〉e1 ⊗ |j − m;−m′〉e2 = (−1)j−m

√
3

2

√
j (j + 1) − m(m − 1)

j (j + 1)(2j + 1)
|β1,−1〉

+
2j∑

j̃12=2

〈̃j12m̃2 = 1|jm + 1; j − m〉|βj̃12 ,−1〉,
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where we used the definition |βj12 ,m12〉 := |a1 = ja2 = j12m12;m′
e1
m′

e2
〉 as we did during

the whole calculation of the new flux operator. We want to expand the action of Ê1(S) on
|β0, 0〉 in terms of the states |β1,m12〉,

Ê1(S)|β0, 0〉 =
+1∑

m̃12=−1

〈β1, m̃12|Ê1(S)|β0, 0〉|β1, m̃12〉. (7.7)

As the next step, we insert equation (7.6) into equation (7.7). As j12 denotes the total angular
momentum of the state |βj12 ,m12〉, we know that two states with different values of j12 and
m12 are orthogonal to each other, meaning 〈βj̃12 , m̃12|βj12 ,m12〉 = δ̃j12,j12

δm̃12,m12 . Taking this
into account, we obtain

Ê1(S)|β0, 0〉 = −�2
p

2
√

2j + 1

+j∑
m=−j

{
−(−1)2(j−m)

√
3

2

√
(j (j + 1) − m(m + 1))2

j (j + 1)(2j + 1)
|β1, 1〉

+ (−1)2(j−m)

√
3

2

√
(j (j + 1) − m(m − 1))2

j (j + 1)(2j + 1)
|β1,−1〉

= − �2
p√
6

√
j (j + 1)

{|β1,−1〉 − |β1, 1〉
}

. (7.8)

Here we used (−1)2(j−m) = +1, as (j − m) ∈ Z and
∑j

m=−j m2 = (1/3)j (j + 1)(2j + 1).

Analogous to Ĵ 1, we can formulate Ĵ 2 in terms of ladder operators Ĵ 2 = 1
2i (Ĵ

+ − J−).
Hence, the action of the k = 2 component of the flux operator Ê2(S) acting on |β0, 0〉 is given
by

Ê2(S)|β0, 0〉 = − �2
p√

2j + 1

+j∑
m=−j

(−1)j−m
(
Ĵ 2

e1
|jm;m′

1〉e1

)⊗ |j − m;m′
2〉e2

= − �2
p

2i
√

2j + 1

+j∑
m=−j

(−1)j−m
{
+
√

j (j + 1) − m(m + 1)|jm + 1; m′
1〉e1

⊗ |j − m;m′
2〉e2 −

√
j (j + 1)− m(m − 1)|jm − 1; m′

1〉e1 ⊗ |j −m; m′
2〉e2

}
.

(7.9)

Again, we want to transform the tensor product |jm ± 1; m′
1〉e1 ⊗ |j − m;m′

2〉e2 into the
recoupling basis by means of the necessary CGC that can be found in equation (7.6). Inserting
equation (7.6) into the equation above and taking advantage of the orthogonality relation
concerning different m′s and j ′

12s, we get

Ê2(S)|β0, 0〉 = − �2
p

2i
√

2j + 1

+j∑
m=−j

{
−(−1)2(j−m)

√
3

2

√
(j (j + 1) − m(m + 1))2

j (j + 1)(2j + 1)
|β1, 1〉

− (−1)2(j−m)

√
3

2

√
(j (j + 1) − m(m − 1))2

j (j + 1)(2j + 1)
|β1,−1〉

}
= − i�2

p√
6

√
j (j + 1){|β1,−1〉 + |β1, 1〉}, (7.10)

where we again used (−1)2(j−m) = +1, as (j−m) ∈ Z and
∑j

m=−j m2 = (1/3)j (j+1)(2j+1).
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It remains to calculate the k = 3 component of Êk(S). This case is easier than the other
two components as Ĵ 3

e1
does not change the magnetic quantum number m. Rather |jm;m′〉 is

already an eigenstate of Ĵ 3
e1

:

Ĵ 3|jm〉 = m|jm〉. (7.11)

Using the eigenvalue above, we can evaluate the action of Ê3(S) on the SNF |β0, 0〉:

Ê3(S)|β0, 0〉 = − �2
p√

2j + 1

+j∑
m=−j

(−1)j−m
(
Ĵ 3

e1
|jm;m′

1〉e1

)⊗ |j − m;m′
2〉e2

= − �2
p√

2j + 1

+j∑
m=−j

(−1)j−mm|jm;m′
1〉e1 ⊗ |j − m;m′

2〉e2 . (7.12)

As we have a different tensor product |jm;m′
1〉e1 ⊗ |j − m; m′

2〉e2 than in the k = 1, 2
component case, we will consequently have a different expansion in terms of the recoupling
basis states, in particular different in terms of the CGG appearing:

|jm;m′
1〉e1 ⊗ |j − m;m′

2〉e2 = +
(−1)j−m

√
2j + 1

|β0, 0〉 +
(−1)j−mm

√
3√

j (j + 1)(2j + 1)
|β1, 0〉

+
2j∑

j̃12=2

〈̃j12m̃12 = 0|jm; j − m〉|βj̃12 , 0〉. (7.13)

Here, we can neglect the first two summands in equation (7.13). As for the k = 1, 2
component, we will expand the final result in terms of the states |β1,m12〉 (see also
equation (7.7) for this). Because |β0, 0〉 and |β1,m12〉 are orthogonal to each other, the
scalar product 〈β1,m12|β0, 0〉 vanishes. Additionally, the first summand in equation (7.13)
leads to an expression proportional to

∑+j

m=−j m = 0 when inserting it into equation (7.12).
Therefore, we will just consider the second summand of equation (7.13) as all the other terms
of the remaining sum vanish as well, because of the orthogonality relation concerning j̃12.
Hence, we get

Ê3(S)|β0, 0〉 = −(−1)j−m

√
3

2

√
(j (j + 1) − m(m − 1))2

j (j + 1)(2j + 1)
|β1, 0〉

= − �2
p√
3

√
j (j + 1)|β1, 0〉, (7.14)

where we have taken advantage of the fact that (−1)2(j−m) = +1, as (j − m) ∈ Z and used∑j

m=−j m2 = (1/3)j (j + 1)(2j + 1). Summarizing, the results of this section we can extract
from equations (7.8), (7.10) and (7.14) the following results for the three components of the
flux operator Êk(S):

Ê1(S)|β0, 0〉 = − �2
p√
6

√
j (j + 1){|β1,−1〉 − |β1, +1〉}

Ê2(S)|β0, 0〉 = − i�2
p√
6

√
j (j + 1){|β1,−1〉 + |β1, +1〉}

Ê3(S)|β0, 0〉 = − �2
p√
3

√
j (j + 1)|β1, 0〉.

(7.15)
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8. Comparison of the two flux operators

By comparing equation (7.15) with the results of (�)̂Ẽ
II,AL
k,tot (St ) in equation (6.37) and the results

of (�)̂̃EII,RS
k,tot (St ) shown in equation (6.41), we can judge whether our newly constructed flux

operators (�)̂̃EII,AL
k,tot (St ),

(�)̂̃EII,RS
k,tot (St ) are consistent with the action of the usual one Êk(S).9

Let us first discuss the operator (�)̂̃EII,AL
k,tot (St ). It transpires that

(�)̂̃EII,AL
k,tot (S)|β0, 0〉 = 3!8CregÊk(S)|β0, 0〉. (8.1)

Therefore the two operators differ only by a positive integer constant. As there is still the
regularization constant Creg in the above equation, we can now fix it by requiring that both
operators do exactly agree with each other. In fact, there is no other choice than exact agreement
because the difference would be a global constant which does not decrease as we take the
corresponding limit of large quantum numbers j . Thus, we can remove the regularization
ambiguity of the volume operator in this way and choose Creg to be Creg := 1

3!8 = 1
48 .

This is exactly the value of Creg that was obtained in [6] by a completely different
argument. Thus the geometrical interpretation of the value we have to choose for Creg is
perfectly provided10.

Note that the consistency check holds in the full theory and not only in the semi-classical
sector. Consequently, the operator (�)̂̃EII,AL

k,tot (St ) is consistent with the usual flux operator.

Now, considering the operator (�)̂̃EII,RS
k,tot (St ) things look differently. Here, a quantization

that is consistent with V̂RS of the sign operator Ŝ cannot be found. Accordingly, we should
stop here and draw the conclusion that (�)̂̃EII,RS

k,tot (St ) is not consistent with Êk(S). A way out

of this problem is to use artificially V̂RSŜALV̂RS for (�)̂̃EII,RS
k,tot (St ). In doing so, we obtain

(�)̂̃EII,RS
k,tot (S)|β0, 0〉 = C(j, �)CregÊk(S)|β0, 0〉, (8.2)

whereby C(j, �) ∈ R is a constant depending on the spin labels j, � in general. Precisely, the
dependence on the spin label j causes a discrepancy of (�)̂̃EII,RS

k,tot (St ) with respect to Êk(S).
But since C(j, �) → C(�) semi-classically, i.e. in the limit of large j , which is shown in
appendix E and discussed in section 6.6.2 of [20], (�) ̂̃EII,RS

k,tot (St ) including that the artificial
operator V̂RSŜALV̂RS is consistent with Êk(S) within the semi-classical regime of the theory
if we choose Creg = 1/C(�). Unfortunately, C(�) has a non-trivial � dependence which is not
acceptable because it is absent in the classical theory. Moreover, we do not see any geometrical
interpretation available for the chosen value of Creg in this case. One could possibly get rid of
the � dependence by simply cancelling the linearly dependent triples by hand from the definition
of V̂RS. But then the so-modified V̂ ′

RS and V̂AL would practically become identical on 3- and
4-valent vertices, and moreover V̂ ′

RS would now depend on the differentiable structure of 	.

9. Uniqueness of the chosen factor ordering

Since the analysis here holds for V̂AL as well as for V̂RS we neglect the explicit labelling in
this section. Now, we discuss to which extent the factor ordering chosen by us in section 3.3
is unique. For this purpose let us go back to equation (3.11). Instead of using the classical
identity shown in that equation we could have used the following identity,

9 The operators (�) ̂̃EI,AL
k,tot (St ) and (�) ̂̃EI,RS

k,tot(St ) have been ruled out before since they are the zero operator and not

consistent with the usual flux operator Êk(S).
10 The factor 8 = 23 comes from the fact that during the regularization one integrates a product of 3 δ-distributions
on R over R

+ only. The factor 6 = 3! is due to the fact that one should sum over ordered triples of edges only.
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(�)̃E′
k(St ) = lim

Pt→St

∑
�∈Pt

εkst

4

κ2

{
As

3, V (Rv(�))
}
S
{
At

4, V (Rv(�))
}

(9.1)

= lim
Pt→St

∑
�∈Pt

16

κ2
εskt

1
4
3�(� + 1)(2� + 1)

1

(2� + 1)
Tr
(
π�(τs)π�

(
he3

){
π�

(
h−1

e3

)
,

V (Rv(�))
})

Tr
(
S 11(2�+1)

)
tr
(
π�(τt )π�

(
he4

){
π�

(
h−1

e4

)
, V (Rv(�))

})
, (9.2)

where we used Tr(π�(τs)π�(τ
′
s)) = − 4

3 2�(� + 1)�(� + 1)δs,s ′ . Surely, the operator
corresponding to equation (3.11) would lead to a flux operator with a trivial action so far, for
the reason that only one edge is added to |β0, 0〉 before V̂ acts. Nevertheless, as the holonomies
commute classically, and additionally the trace is invariant under cyclic permutations, we are
allowed to insert a well-chosen unitary matrix in every trace:

Tr
(
π�(τt )π�

(
he4

){
π�l
(
h−1

e4

)
, V (Rv(�))

})
= Tr
(
π̂�(τt )π�

(
he4

){
π�

(
h−1

e4

)
, V (Rv(�))

}
π�

(
he3

)
π�

(
h−1

e3

))
= Tr
(
π�

(
h−1

e3

)
π�(τt )π�

(
he4

){
π�

(
h−1

e4

)
, V (Rv(�))

}
π�

(
he3

))
. (9.3)

Considering the trace that includes the sign factor Ŝ, we note that we have to insert two unitary
matrices here, in order to avoid a trivial action of the corresponding operator. Accordingly,
we end up with

(�)̃E′
k(St ) = lim

Pt→St

∑
�∈Pt

εkst

4

κ2

{
As

3, V (Rv(�))
}
S
{
At

4, V (Rv(�))
}

= lim
Pt→St

∑
�∈Pt

16

κ2
εskt

1
4
3�(� + 1)(2� + 1)

1

(2� + 1)

× Tr
(
π�

(
h−1

e4

)
π�(τs)π�

(
he3

){
π�

(
h−1

e3

)
, V (Rv(�))

}
π�

(
he4

))
× Tr
(
π̂�

(
he4

)
π�

(
h−1

e3

)
S 11(2�+1)π�

(
he3

)
π�

(
h−1

e4

))
× Tr
(
π�

(
h−1

e3

)
π�(τt )π�

(
he4

){
π�

(
h−1

e4

)
, V (Rv(�))

}
π�

(
he3

))
. (9.4)

When we apply the formalism of canonical quantization now, we get an operator with a
different factor ordering than the one we used before,

(�)̂̃E′
k(St ) = lim

Pt→St

∑
�∈Pt

εskt

−4�−4
p

4
3�(� + 1)(2� + 1)

1

(2� + 1)

× Tr
(
π̂�

(
h−1

e4

)
π�(τs)π̂�

(
he3

)[
V̂ (Rv(�)), π̂�

(
h−1

e3

)]
π̂�

(
he4

))
× Tr
(
π̂�

(
he4

)
π̂�

(
h−1

e3

)
Ŝ 11(2�+1)π̂�

(
he3

)
π̂�

(
h−1

e4

))
× Tr
(
π̂�

(
h−1

e3

)
π̂�(τt )π̂�

(
he4

)[
V̂
(
Rv(�), π̂�

(
h−1

e4

))]
π̂�(he3)

)
. (9.5)

Hence, the matrix element of (�)̂̃E′
k(St ) can be calculated in the following way:

〈β1, m̃12|(�)̂̃E′
k(St )|β0, 0〉 = lim

Pt→St

∑
�∈Pt

εskt

−16�−4
p

4
3�(� + 1)(2� + 1)

1

(2� + 1)

×
+1∑

m̃′
12=−1

〈β1, m̃12| tr
(
π̂�

(
h−1

e4

)
π�(τs)π̂�

(
he3

)[
V̂ (Rv(�)), π̂�

(
h−1

e3

)]
× π̂�

(
he4

))|β0, 0〉〈β0, 0| tr
(
π̂�

(
he4

)
π̂�

(
h−1

e3

)
Ŝ 11(2�+1)π̂�

(
he3

)
π̂�

(
h−1

e4

))
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× |β1, m̃′
12〉〈β1, m̃′

12| tr
(
π̂�

(
h−1

e3

)
π̂�(τt )π̂�

(
he4

)
× [V̂ (Rv(�)), π̂�

(
h−1

e4

)]
π̂�

(
he3

))|β0, 0〉. (9.6)

In order to show why this factor ordering is not appropriate to construct an alternative flux
operator, we take a closer look at the trace terms, for instance the one on the rightmost side.
Carrying out this trace leads to

〈β1, m̃′
12| tr
(
π̂�

(
h−1

e3

)
π̂�(τt )π̂�

(
he4

) [
V̂ (Rv(�)), π̂�

(
h−1

e4

)]
π̂�

(
he3

))|β0, 0〉

= lim
Pt→St

∑
�∈Pt

16�−4
p (−1)2�

4
3�(� + 1)(2� + 1)

π�(τk)CB

×〈β1, m̃′
12|π�(ε)EIπ�(ε)FCπ̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂ π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

|β0, 0〉.
(9.7)

However, this is exactly the expression of the former operator in equation (4.12) with the
small but important difference that in this case the operator Ô = {V̂ Ŝ V̂ , V̂ 2} is replaced by
the volume operator V̂ itself. As V̂ 2 and the operator V̂ have the same eigenvectors, we can
conclude from the discussion about the case where Ô = V̂ 2 in sections 6.2 and appendix D
that the matrix element is zero. Consequently, the whole flux operator (�)̂̃E′

k(St ) has a trivial
action. Therefore this factor ordering cannot be used. Moreover, one can show that the
other trace terms vanish as well, so that the trivial action of (�)̂̃E′

k(St ) is not only due to the
disappearing of the matrix element which we took as an example.

Another idea could be to put an additional trace including additional holonomies around
the already existing traces. We did this for a trace including one more holonomy and calculated
the case where all three edges that are added to |β0, 0〉 carry a spin label of � = 1

2 , and it
turned out that the result is zero, too.

10. Conclusion

In contrast to our companion paper [20], we focused in this paper on the technical and
mathematical aspects of the consistency check. By following the technical details step by
step we hope to have provided a possibility to present, among other things, the robustness of
this consistency check. For instance, the fact that case I where the densitized triad is given
by Ea

k = det(e)ea
k leads to an alternative flux operator for V̂AL as well as V̂RS, that is, the

zero operator could not have been guessed from the outset. This seems to be caused by an
abstract symmetry of the volume operator that we were not aware of until now. We would
like to be able to understand this issue from a more abstract perspective. Nevertheless, since
the quantization of the momentum operator ih̄ d

dx
on L2(R

+, dx) is also not possible, the result
that Ea

k cannot be considered as a 2-form fits perfectly well.
Quite unexpectedly, the quantization of the sign operator becomes necessary in order to

perform the consistency check. Furthermore, the explicit relation to the operator Q̂AL
v , namely,

Ŝ = sgn
(
Q̂AL

v

)
which is equivalent to the operator identity Q̂AL

v = V̂ALSV̂AL, provides us with
(i) the possibility of performing the check for arbitrary spin labels �, thanks to the techniques
developed in [16], and (ii) conclusion that V̂RS is not consistent with the usual flux operator,
because there is no way to quantize a sign operator by using the regularization that was
employed when V̂RS was defined. Even the artificial construction where one uses V̂RSŜALV̂RS

leads to an alternative flux operator that also differs from the usual one semi-classically since
it contains a regularization constant still dependent on the spin label �.

By comparing the detailed calculation of cases I and II one realizes that the sign operator
Ŝ, roughly speaking, acts like a ‘switch’ which either leads to cancellation or survival of terms
in the eigenvector expansions.
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The regularization of the alternative and the usual flux operator is based on the same
method and it turns out that the classification of edges in types up, down, in and out that is
sensible for the usual flux operator is also meaningful for the alternative one. Moreover, the
meaning of the limit as we remove the regulator and define the alternative flux operator has
to be understood in the same way as for the usual flux operator, otherwise the alternative flux
operator is identical to zero. Moreover, without the additional smearing we would be missing
a crucial factor of 1/2 and our Creg would be off the value found in [6].

The correspondence between the Ashtekar–Lewandowski (HAL) and the abstract angular
momentum system Hilbert space has to be taken into account and has a large impact on the final
result. If we had not introduced the unitary map W that allows us to transform between HAL

and the abstract angular momentum Hilbert space the result of the alternative flux operator
would differ from the result for the usual one.

Finally, all the � dependence cancels at the end. Since many �-dependent terms are
involved in the calculation as, for instance, Clebsch–Gordan coefficients, τ -matrices and the
matrix elements of Q̂AL

v , this is rather astonishing and demonstrates that all the ingredients of
this consistency check fit together harmonically.

This paper along with our companion paper [20] is one of the first papers that tightens
the mathematical structure of full LQG by using the kind of consistency argument used here.
Many more such checks should be performed in the future to remove ambiguities of LQG and
to make the theory more rigid, in particular those connected with quantum dynamics.
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Appendix A. Proof of lemma 5.2 in section 5.2

In order to keep the proof comprehensible, we express the CGC in equation (5.13) in terms of
Wigner 3j -symbols, because the symmetry properties of the Wigner 3j-symbols are easier to
handle than those of the CGC itself11. The relation between the CGC and the corresponding
3j -symbol is given by

〈j12m12; �E|a3m12 + E〉 = (−1)m12+E+j12−�
√

2a3 + 1

(
j12 � a3

m12 E −(m12 + E)

)
. (A.1)

Replacing the first CGC in equation (5.2) by the corresponding 3j -symbol and using the
definition of π�(ε)E−E , we get

+�∑
E=−�

π�(ε)E−E〈j12m12; �E|a3m12 + E〉〈a3m12 + E; � − E|Jm12〉

=
+�∑

E=−�

(−1)m12+j12
√

2a3 + 1

(
j12 � a3

m12 E −(m12 + E)

)
〈a3m12 + E; � − E|Jm12〉.

(A.2)
11 Note that we have already used the replacement I = −E in the lemma. We could have left both indices E, I

independent, but due to π�(ε)EI = (−1)�−EδE+I,0 all terms in which I �= −E will vanish anyway.
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With the help of the symmetry properties of the 3j -symbol, we are able to show that(
j12 � a3
m12 E −(m12+E)

)
is proportional to the CGC 〈a3m12 + E; � − E|j12m12〉

〈a3m12 + E; � − E|j12m12〉 = (−1)m12+3a3+�+2j12
√

2j12 + 1

(
j12 � a3

m12 E −(m12+E)

)
. (A.3)

Hence, rearranging the equation above leads to the desired proportionality(
j12 � a3

m12 E −(m12 + E)

)
= (−1)−m12−3a3−�−2j12

√
2j12 + 1

〈a3m12 + E; � − E|j12m12〉. (A.4)

The next step will be to insert equation (A.4) into equation (A.2) in order to use the
orthogonality relation of the CGC for the remaining two CGC of the rewritten version of
equation (A.2),

+�∑
E=−�

π�(ε)E−E〈j12m12; �E|a3m12 + E〉〈a3m12 + E; � − E|Jm12〉

= (−1)−�−3a3−j12

√
2a3 + 1√
2j12 + 1

�∑
E=−�

〈j12m12|a3m12 + E; � − E〉

× 〈a3m12 + E; � − E|Jm12〉, (A.5)

where we utilized that the CGC are real by convention in the last step. Now, we can take
advantage of the orthogonality relation of the CGC which is given by

�∑
E=−�

〈j12m12|a3m12 + E; �−E〉〈a3m12 + E; � − E|Jm12〉

= δJ,j12

(
δm12,−j12 + δm12,−j12+1 + · · · + δm12,j12

)
. (A.6)

Replacing the sum in equation (A.5) by the means of equation (A.6), we are able to show that
lemma (5.2) is true

+�∑
E=−�

π�(ε)E−E〈j12m12; �E|a3m12 + E〉〈a3m12 + E; � − E|Jm12〉

= (−1)−j12−�−3a3

√
2a3 + 1√
2j12 + 1

δJ,j12

(
δm12,−j12 + δm12,−j12+1 + · · · + δm12,j12

)
. (A.7)

Appendix B. τ -matrices in arbitrary representation with weight �

In order to be able to define the alternative flux (�)Ẽk(S) on the classical level, we need to
derive the matrix elements π�(τk)mn for the three τ -matrices in an arbitrary representation with
weight �. For this purpose, we will use a formula for the matrix elements suitable for general
SL(2, C) matrices h = (a b

c d

)
where a, b, c, d ∈ C and det(h) = ad − bc = 1, given in [18].

Let π�(h) be the (2� + 1)-dimensional matrix for h in a particular representation with
weight �. It is the transformation matrix between totally symmetric spinors of rank 2�. The
π�(h)mn, where m, n = {−�, . . . , �}, are given by

π�(h)mn =
∑

s

√
(� + m)!(� − m)!(� + n)!(� − n)!

(� − m − s)!(� + n − s)!(m − n + s)!s!
a�+n−sbm−n+scs d�−m−s . (B.1)



5736 K Giesel and T Thiemann

Here the sum has to be taken over all integers s that do not cause negative factorials. Using the
definition of the matrix element of the τ -matrices in a particular representation with weight �

π�(τk)mn = d

dt

∣∣∣∣
t=0

π�(e
tτk )mn, (B.2)

where τk := −iσk , and we can write down the three matrices etτk for k = 1, 2, 3 that are shown
in equation (B.3),

etτ1 = cos(t)11 + sin(t)τ1

etτ2 = cos(t)12 + sin(t)τ2 (B.3)

etτ3 = cos(t)12 + sin(t)τ3.

Inserting the above matrices into the formula in equation (B.1) and taking the derivative at the
point t = 0, we achieve a general expression for the matrix elements of the three τ -matrices
π�(τk) in a particular representation with weight �,

π�(τ1)mn = −i
√

�(� + 1) − m(m − 1)δm−n,1 − i
√

�(� + 1) − m(m + 1)δm−n,−1

π�(τ2)mn =
√

�(� + 1) − m(m + 1)δm−n,−1 −
√

�(� + 1) − m(m − 1)δm−n,1 (B.4)

π�(τ3)mn = −2imδm−n,0.

During the derivation of the alternative flux (�)Ẽk(S), we will need the following property of
the τ -matrices π�(τk).

Lemma B.1. Let π�(τk) be the (2� + 1)-dimensional matrix for τk := −iσk in a particular
representation with weight �, then the following identity holds:

tr(π�(τk)π�(τr)π�(τs)) = − 4
3�(� + 1)(2� + 1)εkrs . (B.5)

We desist from writing the proof of lemma B.1 here, since the lemma can be easily proven by
using basic algebraic tools and explicitly calculating the identity for the various cases.

Appendix C. Derivation of the formulae for the matrix elements of q̂IJK

In this section, we will derive the explicit formulae for the matrix elements of q̂IJK , namely
equations (6.6)–(6.9), because it turned out [19] that these are two special cases in which the
general formula in [16] is not applicable. Therefore we have to start from the very beginning
and use the definition of qIJK in equation (4.6). In the following, we will adopt the notation
introduced in [16] and denote different recoupling schemes by �g(IJ ) where I, J label the
momenta that are coupled together at first. Therefore, often �g(12) is called the standard
recoupling scheme. The intermediate couplings of particular scheme �g(IJ ) will be called
gi , while the intermediate couplings of our states

∣∣αJ
i ,M
〉

and
∣∣αJ

ĩ
,M
〉

are still ai and ãi ,
respectively. Using equation (4.6) for the case of I = 1, J = 3,K = 4, we obtain〈
αJ

i ,M
∣∣q134

∣∣αJ

ĩ
,M
〉 = 〈αJ

i ,M
∣∣[(J13)

2, (J34)
2]
∣∣αJ

ĩ
,M
〉

= 〈αJ
i ,M
∣∣(J13)

2(J34)
2
∣∣αJ

ĩ
,M
〉− 〈αJ

i ,M
∣∣(J34)

2(J13)
2]
∣∣αJ

ĩ
,M
〉

=
∑
�g′′(12)

 ∑
�g(13),�g(34)

g2(13)(g2(13) + 1)g2(34)(g2(34) + 1)〈�g(13)|�g′′(12)〉

× 〈�g′′(12)|�g(34)〉[〈�g(13)
∣∣αJ

i ,M
〉〈�g(34)

∣∣αJ

ĩ
,M
〉

− 〈�g(34)
∣∣αJ

i ,M
〉〈�g(13)

∣∣αJ

ĩ
,M
〉]
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=
∑
�g′′(12)

∑�g(13)

g2(13)(g2(13) + 1)〈�g(13)|�g′′(12)〉〈�g(13)
∣∣αJ

i ,M
〉

×
∑
�g(34)

g2(34)(g2(34) + 1)〈�g(34)|�g′′(12)〉〈�g(34)
∣∣αJ

ĩ
,M
〉

− [∣∣αJ
i ,M
〉←→ ∣∣αJ

ĩ
,M
〉] , (C.1)

where the last term has to be understood as the analogue of the first term when the states∣∣αJ
i ,M
〉

and
∣∣αJ

i ,M
〉

are interchanged. It was demonstrated in [16] that by means of the
Elliot–Biedenharn identity, one can actually carry out the sum over �g(13) and �g(34) in the
above equation. Hence, we will take the result from [16, 19],

∑
�g(13)

g2(13)(g2(13) + 1)〈�g(13)|�g′′(12)〉〈�g(13)
∣∣αJ

i ,M
〉

=
[

1

2
(−1)−j1−j2+j3+1X(j1, j3)

1
2 A(g′′

2 , a2)

{
j2 j1 g′′

2

1 a2 j1

}
(−1)a3

×
{
a3 j3 g′′

2

1 a2 j3

}
+ C(j1, j3)δg′′

2 ,a2

]
δg′′

3 ,a3δg′′
4 ,a4 . (C.2)∑

�g(34)

g2(34)(g2(34) + 1)〈�g(34)|�g′′(12)〉〈�g(34)
∣∣αJ

i ,M
〉

=
[

1

2
(−1)−2(j1+j2)+j4−j3(−1)a2+1(−1)a3−g′′

3 X(j3, j4)
1
2 A(g′′

3 , a3)

×
{
a2 j3 g′′

3

1 a3 j3

}
(−1)a4

{
a4 j4 g′′

3

1 a3 j4

}
+ C(j3, j4)

3∏
k=2

δg′′
k ,ak

]
δg′′

2 ,a2δg′′
4 ,a4 .

(C.3)

In order to keep the equation comprehensible, we introduced the following abbreviations:

C(a, b) := a(a + 1) + b(b + 1)

X(a, b) := 2a(2a + 1)(2a + 2)2b(2b + 1)(2b + 2) (C.4)

A(a, b) :=
√

(2a + 1)(2b + 1).

The next step is to insert equations (C.2) and (C.3) back into equation (C.1). By doing so, we
recognize that the term containing C(a, b) is symmetric under the interchange of ai ↔ ãi and
accordingly will be cancelled, because we subtract the terms where

∣∣αJ
i ,M
〉

and
∣∣αJ

ĩ
,M
〉

are
interchanged from each other. Consequently, only the first term of (C.2) and (C.3) survives
and we end up with〈
αJ

i ,M
∣∣q134

∣∣αJ

ĩ
,M
〉 = ∑

�g′′(12)

{
+

1

4
(−1)−3(j1+j2)+j4+1(−1)̃a2+1(−1)̃a3−g′′

3 (−1)a3+̃a4X(j1, j3)
1
2

×X(j3, j4)
1
2 A(g′′

2 , a2)A(g′′
3 , ã3)

{
j2 j1 g′′

2

1 a2 j1

}{
a3 j3 g′′

2

1 a2 j3

}
×
{̃
a2 j3 g′′

3

1 ã3 j3

} {̃
a4 j4 g′′

3

1 ã3 j4

}
δg′′

2 ,̃a2δg′′
4 ,̃a4δg′′

3 ,a3δg′′
4 ,a4



5738 K Giesel and T Thiemann

− 1

4
(−1)−3(j1+j2)+j4+1(−1)a2+1(−1)a3−g′′

3 (−1)̃a3+a4X(j1, j3)
1
2 X(j3, j4)

1
2

×A(g′′
2 , ã2)A(g′′

3 , a3)

{
j2 j1 g′′

2

1 ã2 j1

} {̃
a3 j3 g′′

2

1 ã2 j3

}{
a2 j3 g′′

3

1 a3 j3

}
×
{
a4 j4 g′′

3

1 a3 j4

}
δg′′

2 ,a2δg′′
4 ,a4δg′′

3 ,̃a3δg′′
4 ,̃a4

}
= +

1

4
(−1)−3(j1+j2)+j4+1(−1)̃a2+1(−1)̃a3−a3(−1)a3+a4X(j1, j3)

1
2 X(j3, j4)

1
2

×A(̃a2, a2)A(a3, ã3)

{
j2 j1 ã2

1 a2 j1

}{
a3 j3 ã2

1 a2 j3

} {̃
a2 j3 a3

1 ã3 j3

}
×
{
a4 j4 a3

1 ã3 j4

}
− 1

4
(−1)−3(j1+j2)+j4+1(−1)a2+1(−1)a3−ã3(−1)̃a3+a4

×X(j1, j3)
1
2 X(j3, j4)

1
2 A(a2, ã2)A(̃a3, a3)

{
j2 j1 a2

1 ã2 j1

} {̃
a3 j3 a2

1 ã2 j3

}
×
{
a2 j3 ã3

1 a3 j3

}{
a4 j4 ã3

1 a3 j4

}
= +

1

4
(−1)−3(j1+j2)+j4+a4X(j2, j3)

1
2 X(j3, j4)

1
2

×A(̃a2, a2)A(a3, ã3)

{
j1 j2 a2

1 ã2 j2

}{
a4 j4 a3

1 ã3 j4

}[
(−1)̃a2+̃a3

{
a3 j3 a2

1 ã2 j3

}
×
{̃
a2 j3 a3

1 ã3 j3

}
− (−1)a2+a3

{̃
a3 j3 a2

1 ã2 j3

}{
a2 j3 a3

1 ã3 j3

}]
. (C.5)

In the last line we used the symmetry properties of the 6j -symbols, in particular the fact that{
a b c

d e b

}
=
{
a b e

d c b

}
.

Recalling that for our SNF
∣∣αJ

i ,M
〉
we have j1 = j2 = j, j3 = j4 = � and a4 = J , the matrix

element of q134 can be expressed as〈
αJ

i ,M
∣∣q134

∣∣αJ

ĩ
,M
〉 = +

1

4
(−1)+2j+�+J

√
2j (2j + 1)(2j + 2)[2�(2� + 1)(2� + 2)]

3
2

×
√

(2̃a2 + 1)(2a2 + 1)
√

2(a3 + 1)(2̃a3 + 1)

{
j j a2

1 ã2 j

}{
J � a3

1 ã3 �

}
×
[
(−1)̃a2+̃a3

{
a3 � a2

1 ã2 �

} {̃
a2 � a3

1 ã3 �

}
− (−1)a2+a3

×
{̃
a3 � a2

1 ã2 �

}{
a2 � a3

1 ã3 �

}]
, (C.6)

where we used additionally that 2j ∈ Z and therefore (−1)−6j = (−1)−2j = (−1)+2j . Now
we have to repeat the whole calculation for the case I = 2, J = 3,K = 4 in order to derive
the formula for q234. Since the intermediate steps in the calculation are analogous to q134 not
all details will be given. Here equation (4.6) leads to〈
αJ

i ,M
∣∣q234

∣∣αJ

ĩ
,M
〉 = 〈αJ

i ,M
∣∣[(J23)

2, (J34)
2]
∣∣αJ

ĩ
,M
〉

=
∑
�g′′(12)

{∑
�g(23)

g2(23)(g2(23) + 1)〈�g(23)|�g′′(12)〉〈�g(23)
∣∣αJ

i ,M
〉
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×
∑
�g(34)

g2(34)(g2(34) + 1)〈�g(34)|�g′′(12)〉〈�g(34)
∣∣αJ

ĩ
,M
〉}

− [∣∣αJ
i ,M
〉←→ ∣∣αJ

ĩ
,M
〉]
. (C.7)

Thus, we need to know the result of the summation over �g(23) in this case. It is given by
[16, 19]∑
�g(23)

g2(23)(g2(23) + 1)〈�g(23)|�g′′(12)〉〈�g(23)
∣∣αJ

i ,M
〉

=
[

1

2
(−1)−j1−j2+j3+1(−1)a2−g′′

2 X(j2, j3)
1
2 A(g′′

2 , a2)

×
{
j1 j2 g′′

2

1 a2 j2

}
(−1)a3

{
a3 j3 g′′

2

1 a2 j3

}
+ C(j2, j3)δg′′

2 ,a2

]
δg′′

3 ,a3δg′′
4 ,a4 . (C.8)

Reinserting the equation above and the result of the summation over �g(34) from
equation (C.3) into equation (C.7), we get

〈
αJ

i ,M
∣∣q234

∣∣αJ

ĩ
,M
〉 = ∑

�g′′(12)

{
+

1

4
(−1)−3(j1+j2)+j4+1(−1)a2−g′′

2 +̃a2+1(−1)̃a3−g′′
3 (−1)a3+̃a4

×X(j2, j3)
1
2 X(j3, j4)

1
2 A(g′′

2 , a2)A(g′′
3 , ã3)

{
j1 j2 g′′

2

1 a2 j2

}{
a3 j3 g′′

2

1 a2 j3

}
×
{̃
a2 j3 g′′

3

1 ã3 j3

} {̃
a4 j4 g′′

3

1 ã3 j4

}
δg′′

2 ,̃a2δg′′
4 ,̃a4δg′′

3 ,a3δg′′
4 ,a4 − 1

4
(−1)−3(j1+j2)+j4+1

× (−1)̃a2−g′′
2 +a2+1(−1)a3−g′′

3 (−1)̃a3+a4X(j2, j3)
1
2 X(j3, j4)

1
2 A(g′′

2 , ã2)A(g′′
3 , a3)

×
{
j1 j2 g′′

2

1 ã2 j2

} {̃
a3 j3 g′′

2

1 ã2 j3

}{
a2 j3 g′′

3

1 a3 j3

}{
a4 j4 g′′

3

1 a3 j4

}
× δg′′

2 ,a2δg′′
4 ,a4δg′′

3 ,̃a3δg′′
4 ,̃a4

}
= +

1

4
(−1)−3(j1+j2)+j4+a4X(j2, j3)

1
2 X(j3, j4)

1
2

×A(̃a2, a2)A(a3, ã3)

{
j1 j2 a2

1 ã2 j2

}{
a4 j4 a3

1 ã3 j4

}
×
[
(−1)a2+̃a3

{
a3 j3 a2

1 ã2 j3

} {̃
a2 j3 a3

1 ã3 j3

}
− (−1)̃a2+a3

×
{̃
a3 j3 a2

1 ã2 j3

}{
a2 j3 a3

1 ã3 j3

}]
. (C.9)

In the first step, we used again the symmetry of the term containing C(a, b) in equations (C.3)
and (C.8) under the interchange of ai ↔ ãi . Furthermore, as before, we took advantage of
the symmetry properties of the 6j -symbols in order to be able to write the equation more
compactly in the last line. Let us as a last step implement the spin labels of our states

∣∣αJ
i ,M
〉
,

namely j1 = j2 = j, j3 = j4 = � and a4 = J . Moreover, as before, we rewrite (−1)−6j as
(−1)+2j .
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Considering all this we have our final result in equation (C.10),〈
αJ

i ,M
∣∣q234

∣∣αJ

ĩ
,M
〉 = +

1

4
(−1)+2j+�+J

√
2j (2j + 1)(2j + 2)[2�(2� + 1)(2� + 2)]

3
2

×
√

(2̃a2 + 1)(2a2 + 1)
√

2(a3 + 1)(2̃a3 + 1)

{
j j a2

1 ã2 j

}{
J � a3

1 ã3 �

}
×
[
(−1)a2+̃a3

{
a3 � a2

1 ã2 �

} {̃
a2 � a3

1 ã3 �

}
− (−1)̃a2+a3

{̃
a3 � a2

1 ã2 �

}{
a2 � a3

1 ã3 �

}]
. (C.10)

In the case of q̂123 the matrix element can be expressed as〈
αJ

i ,M
∣∣q123

∣∣αJ

ĩ
,M
〉 = 〈αJ

i ,M
∣∣[(J12)

2, (J23)
2]
∣∣αJ

ĩ
,M
〉

=
∑
�g′′(12)

∑�g(12)

g2(12)(g2(12) + 1)〈�g(12)|�g′′(12)〉〈�g(12)
∣∣αJ

i ,M
〉

×
∑
�g(23)

g2(23)(g2(23) + 1)〈�g(23)|�g′′(12)〉〈�g(23)
∣∣αJ

ĩ
,M
〉

− [∣∣αJ
i ,M
〉←→ ∣∣αJ

ĩ
,M
〉]
. (C.11)

In order to perform the sums appearing in the equation above, we use equation (C.8) and take
advantage of

∑
�g(12)

g2(12)(g2(12) + 1)〈�g(12)|�g′′(12)〉〈�g(12)
∣∣αJ

i ,M
〉 = a2(a2 + 1)

4∏
k=2

δg′′
k ,ak

. (C.12)

Hence, we obtain〈
αJ

i ,M
∣∣q123

∣∣αJ

ĩ
,M
〉 = ∑

�g′′(12)

{
+

1

2
(−1)−j1−j2+j3+1(−1)̃a2−g′′

2 +̃a3X(j2, j3)
1
2 A(g′′

2 , ã2)

×
{
j1 j2 g′′

2

1 ã2 j2

} {̃
a3 j3 g′′

2

1 ã2 j3

}
[a2(a2 − 1)]δg′′

3 ,̃a3δg′′
4 ,̃a4δg′′

2 ,a2δg′′
3 ,a3δg′′

4 ,a4

− 1

2
(−1)−j1−j2+j3+1(−1)a2−g′′

2 +a3X(j2, j3)
1
2 A(g′′

2 , a2)

×
{
j1 j2 g′′

2

1 a2 j2

}{
a3 j3 g′′

2

1 a2 j3

}
[̃a2(̃a2 − 1)]δg′′

3 ,a3δg′′
4 ,a4δg′′

2 ,̃a2δg′′
3 ,̃a3δg′′

4 ,̃a4

= +
1

2
(−1)−j1−j2+j3+1(−1)̃a2−a2+a3X(j2, j3)

1
2 A(a2, ã2)

{
j1 j2 a2

1 ã2 j2

}
×
{
a3 j3 a2

1 ã2 j3

}
[a2(a2 − 1) − ã2(̃a2 − 1)]δa3 ,̃a3 , (C.13)

where we used again that the term proportional to C(a, b) in equation (C.8) is cancelled in
the first step. As we did before, we omitted the δ-function δa4 ,̃a4 , because a4 is equal to the
total angular momentum J of our states

∣∣αJ
i ,M
〉

and therefore we consider only cases where
a4 = ã4 anyway. However, this is different for the intermediate coupling a3, ã3. For this
reason, we have to consider δa3 ,̃a3 in the above equation. Applying the above equation to our
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particular case where j1 = j2 = j and j3 = � yields〈
αJ

i ,M
∣∣q123

∣∣αJ

ĩ
,M
〉 = +

1

2
(−1)+2j+�+1(−1)̃a2−a2+a3X(j, �)

1
2 A(a2, ã2)

{
j j a2

1 ã2 j

}
×
{
a3 � a2

1 ã2 �

}
[a2(a2 − 1) − ã2(̃a2 − 1)]δa3 ,̃a3 . (C.14)

Again, we rewrote (−1)−2j as (−1)+2j that is allowed due to 2j ∈ Z and used the symmetry
properties of the 6j -symbol where appropriate. Now, we consider the last triple q124. The
corresponding matrix element is given by〈
αJ

i ,M
∣∣q124

∣∣αJ

ĩ
,M
〉 = 〈αJ

i ,M
∣∣[(J12)

2, (J24)
2]
∣∣αJ

ĩ
,M
〉

=
∑
�g′′(12)

∑�g(12)

g2(12)(g2(12) + 1)〈�g(12)|�g′′(12)〉〈�g(12)
∣∣αJ

i ,M
〉

×
∑
�g(24)

g2(24)(g2(24) + 1)〈�g(24)|�g′′(12)〉〈�g(24)
∣∣αJ

ĩ
,M
〉

− [∣∣αJ
i ,M
〉←→ ∣∣αJ

ĩ
,M
〉]
. (C.15)

The summation including �g(24) can be performed and leads to [19]∑
�g(24)

g2(24)(g2(24) + 1)〈�g(24)|�g′′(12)〉〈�g(24)
∣∣αJ

i ,M
〉

=
[

1

2
(−1)−j1−j2+a4(−1)a2−g′′

2 (−1)+g′′
2 +a2X(j2, j4)

1
2 A(g′′

2 , a2)A(g′′
3 , a3)

×
{
j1 j2 g′′

2

1 a2 j2

}{
j3 g′′

2 g′′
3

1 a2 a3

}{
a4 j4 g′′

3

1 a3 j4

}
+ C(j2, j4)δg′′

2 ,a2δg′′
3 ,a3

]
δg′′

4 ,a4 . (C.16)

Inserting equations (C.12) and (C.8) into equation (C.15) and using again that the term
proportional to C(a, b) is antisymmetric under the interchange of

∣∣αJ
i ,M
〉↔ ∣∣αJ

ĩ
,M
〉
, we get〈

αJ
i ,M
∣∣q124

∣∣αJ

ĩ
,M
〉 = ∑

�g′′(12)

{
+

1

2
(−1)−j1−j2+̃a4(−1)̃a2−g′′

2 (−1)+g′′
2 +̃a2X(j2, j4)

1
2

×A(g′′
2 , ã2)A(g′′

3 , ã3)

{
j1 j2 g′′

2

1 ã2 j2

}{
j3 g′′

2 g′′
3

1 ã2 ã3

} {̃
a4 j4 g′′

3

1 ã3 j4

}
× [a2(a2 − 1)]δg′′

2 ,a2δg′′
3 ,a3δg′′

4 ,a4δg′′
4 ,̃a4 − 1

2
(−1)−j1−j2+a4(−1)a2−g′′

2 (−1)+g′′
2 +a2

×X(j2, j4)
1
2 A(g′′

2 , a2)A(g′′
3 , a3)

{
j1 j2 g′′

2

1 a2 j2

}{
j3 g′′

2 g′′
3

1 a2 a3

}{
a4 j4 g′′

3

1 a3 j4

}
× [̃a2(̃a2 − 1)]δg′′

2 ,̃a2δg′′
3 ,̃a3δg′′

4 ,̃a4δg′′
4 ,a4

= +
1

2
(−1)−j1−j2+a4X(j2, j4)

1
2

×A(a2, ã2)A(a3, ã3)

{
j1 j2 a2

1 ã2 j2

}{
j3 a2 a3

1 ã2 ã3

}{
a4 j4 a3

1 ã3 j4

}
× [(−1)+2̃a2a2(a2 − 1) − (−1)+2a2 ã2(̃a2 + 1)]. (C.17)
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In the last line, we took advantage of the symmetry properties of the 6j -symbol and,
moreover, used that (−1)̃a2−a2 = (−1)a2−ã2 as ã2 − a2 ∈ Z. In our special situation where
j1 = j2 = j the value of the intermediate coupling a2 and ã2 can only be an integer and thus
(−1)+2̃a2 = (−1)+2a2 = +1. Accordingly, we can completely neglect these factors and obtain〈
αJ

i ,M
∣∣q124

∣∣αJ

ĩ
,M
〉 = +

1

2
(−1)+2j+J X(j, �)

1
2 A(a2, ã2)A(a3, ã3)

{
j j a2

1 ã2 j

}{
� a2 a3

1 ã2 ã3

}
×
{
a4 � a3

1 ã3 �

}
[a2(a2 − 1) − ã2(̃a2 + 1)], (C.18)

where we additionally inserted j3 = j4 = � and a4 = J in the equation above.

Appendix D. Case (�) ̂̃EI,AL
k,tot(St): detailed calculation of the matrix elements of

Ô1 = Ô2 = V 2
AL

The aim of this section is to calculate the four matrix elements
〈
α0

2, 0
∣∣V̂ 2

AL

∣∣α0
1, 0
〉

and〈
α1

i ,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉

with i = 2, 3, 4. As has been mentioned before, in order to calculate
the matrix elements of V̂ 2

AL we first have to calculate the matrix elements of Q̂AL
v and derive

the eigenvalues and eigenvectors for Q̂AL
v . If λQ is an eigenvalue of Q̂AL

v with a corresponding
eigenvector |φ〉, then |λQ| is an eigenvalue of V 2 with the same eigenvector. Consequently, we
have to calculate all possible matrix elements of Q̂AL

v for each fixed total angular momentum
J . For this reason, we are not able to evaluate matrix elements for the case of arbitrary spin
representation, as we could do in the case of Ô1 = Ô2 = V̂ALŜV̂AL = Q̂AL

v . In that case, we
needed only particular matrix elements of Q̂AL but not the knowledge of the spectrum of Q̂AL

v

itself. However, we will calculate the matrix elements of V̂ 2
AL for the case of � = 1

2 , 1 here.
Fortunately, they already show the major difference between the case of Ô1 = Ô2 = Q̂AL

v

and Ô1 = Ô2 = V̂ 2
AL.

When we calculated the five necessary matrix elements
〈
α0

2, 0
∣∣Q̂AL

v

∣∣α0
1, 0
〉
,〈

α1
2,M
∣∣Q̂AL

v

∣∣α1
1,M
〉

and
〈
α1

i ,M
∣∣Q̂AL

v

∣∣α1
1,M
〉

in the case of Ô1 = Ô2 = Q̂AL
v with i being

2, 3, 4 in section 6.5, we took advantage of the fact that the intermediate coupling a2 of
∣∣α1

1,M
〉

is identical to zero and therefore we have Je1 = −Je2 . Furthermore, the orientations of the
two triples {e1, e3, e4}, {e2, e3, e4} were exactly opposite to each other. Accordingly, we only
needed to consider one triple, e.g. q̂134, and multiply the result by a factor of 2, because the
second triple had exactly the same contribution as the first one. Now, in contrast, we will
also have to consider matrix elements where the incoming state has intermediate couplings a2

different from zero. Consequently, in these cases we will have to consider the contribution of
the second triple exactly, as it might not just be a trivial factor of 2.

By comparing the formulae for general matrix elements of q̂134 in equation (6.6) and
of q̂234 in equation (6.7), respectively, we note that the only difference between these two
formulae is due to different pre-factors in the square brackets in front of the 6j -symbols.
Before we can actually calculate the matrix elements, we have to know how the corresponding
Hilbert space looks like.

D.1. Matrix elements for the case of a spin- 1
2 representation

Let us begin with the case � = 1
2 and a total angular momentum J = 0. From equation (6.1)

we can easily extract the basis states of this Hilbert space∣∣α0
1, 0
〉

:= ∣∣a1 = ja2 = 0 a3 = 1
2J = 0

〉∣∣α0
2, 0
〉

:= ∣∣a1 = ja2 = 1 a3 = 1
2J = 0

〉
.

(D.1)
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With the Hilbert space being only two dimensional and the fact that Q̂AL
v and consequently

q̂134, q̂234 are antisymmetric, we know that
〈
α0

2, 0
∣∣Q̂AL

v

∣∣α0
1, 0
〉 = −〈α0

1, 0
∣∣Q̂AL

v

∣∣α0
2, 0
〉

are the
only non-vanishing matrix elements. Moreover, we have ε(e1, e3, e4)

〈
α0

2, 0
∣∣q̂134

∣∣α0
1, 0
〉 =

ε(e2, e3, e4)
〈
α0

2, 0
∣∣q̂234

∣∣α0
1, 0
〉
, because the intermediate coupling a2 of

∣∣α0
1, 0
〉

is zero.
Therefore, we obtain the following matrix structure for Q̂AL

v ,

Q̂J=0
AL =

(
0 −ia
ia 0

)
, (D.2)

where a := (�6
p

3!
2 Creg

)
1
2

√
j (j + 1). We labelled the rows of Q̂J=0

AL by
∣∣αJ

i ,M
〉

and columns
by
∣∣αJ

ĩ
,M
〉
. The eigenvalues of Q̂AL

v are given by λ1 = −a, λ2 = +a with corresponding
eigenvectors �v1 = (i, 1), �v2 = (−i, 1). Hence, for V̂ 2

AL we have one degenerated eigenvalue
λ = |a| and the two corresponding eigenvector components �v1, �v2 in the basis

{∣∣α0
1, 0
〉
,
∣∣α0

2, 0
〉}

.
The matrix element

〈
α0

2, 0
∣∣V̂ 2

AL

∣∣α0
1, 0
〉

is thus given by

〈
α0

2, 0
∣∣V̂ 2

AL

∣∣α0
1, 0
〉 = 2∑

k=1

〈
α0

2, 0
∣∣V̂ 2

AL|�ek〉
〈�ek

∣∣α0
1, 0
〉 = 0. (D.3)

Here the vectors �ek denote the corresponding normed eigenvectors of V̂ 2
AL. The surprising

issue is that in contrast to the matrix element of Q̂AL
v , the analogous matrix element of V̂ 2

AL
vanishes. In this special situation where we chose � = 1

2 and the total angular momentum J

to be zero, we realize that Q̂AL
v purely consists of off-diagonal entries, while V̂ 2

AL is a diagonal
matrix. In order to calculate the remaining matrix elements, we have to consider the Hilbert
space for a total angular momentum of J = 1 in the case of � = 1

2 . Because we consider the
special case of � = 1

2 the intermediate coupling a3 = � − 1 is not sensible here. Therefore
the matrix element

〈
α1

2,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉
does not exist. Thus, we will only have two remaining

matrix elements. Using equation (6.2) for this purpose, we end up with a 4 × 3-dimensional
Hilbert space, ∣∣α1

1,M
〉

:= ∣∣a1 = j a2 = 0 a3 = 1
2J = 1

〉∣∣α1
3,M
〉

:= ∣∣a1 = j a2 = 1 a3 = 1
2J = 1

〉∣∣α1
4,M
〉

:= ∣∣a1 = j a2 = 1 a3 = 3
2J = 1

〉∣∣α1
5,M
〉

:= ∣∣a1 = j a2 = 2 a3 = 3
2J = 1

〉
,

(D.4)

where we skipped number 2 in labelling the states in order to keep our notation consistent
with the former calculations. With the states

∣∣α1
1,M
〉

being orthogonal for different values of
the magnetic quantum number M and the knowledge that Q̂AL

v does not change the magnetic
quantum number, we can treat the calculation separately for each value of M = {−1, 0, 1}.
Furthermore, we know that the result is equal for each value of M.

Thus, we have a 4 × 4 matrix, but as Q̂AL
v is antisymmetric, its diagonal entries are

zero and
(
Q̂AL

v

)
AB

= −(Q̂AL
v

)
BA

. Hence, we only have to calculate six different matrix
elements. Two out of these six matrix elements have already been calculated before
and can be extracted from equation (6.29) if we set � = 1

2 . For both matrix elements,
we have ε(e1, e3, e4)q̂134 = ε(e2, e3, e4)q̂234, so that the contribution coming from the
second triple is again only a factor of 2. So, we are left with four matrix elements that
have to be evaluated, namely

〈
α1

5,M
∣∣Q̂AL

v

∣∣α1
1,M
〉
,
〈
α1

4,M
∣∣Q̂AL

v

∣∣α1
3,M
〉
,
〈
α1

5,M
∣∣Q̂AL

v

∣∣α1
3,M
〉

and
〈
α1

5,M
∣∣Q̂AL

v

∣∣α1
4,M
〉
. By simply looking at equations (6.7) and (6.6) we see that〈

α1
5,M
∣∣Q̂AL

v

∣∣α1
1,M
〉

vanishes, because ã2 − a2 = 2 here and therefore the 6j -symbols
in the corresponding square brackets will be zero. Consequently, the matrix elements
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of q̂134 and q̂234 are zero and thus the corresponding matrix elements of Q̂AL
v disappear.

In the case of
〈
α1

4,M
∣∣Q̂AL

v

∣∣α1
3,M
〉

we have ã2 = a2. Implementing this condition into
equations (6.7) and (6.6), we realize that both equations become identical. Accordingly, we
get ε(e1, e3, e4)q̂134 = −ε(e2, e3, e4)q̂234 which leads to a vanishing matrix element for Q̂AL

v .
With all this in mind, we end up with the following expression for Q̂AL

v ,

Q̂J=1
AL =


0 +ia −i

√
2a 0

−ia 0 0 + ib√
2

+i
√

2a 0 0 −ib
0 − ib√

2
+ib 0

 , (D.5)

where we defined a := (�6
p

3!
2 Creg

)
2
3

√
j (j + 1) and b := (�6

p
3!
2 Creg

)
2
3

√
4j (j + 1) − 3. In this

case, the eigenvalues of Q̂AL
v are λ1 = λ2 = 0 and λ3 = −λ4 = −

√
3
2

√
2a2 + b2 =: −λ. The

corresponding eigenvectors are given by

�v1 =
(

b√
2a

, 0, 0, 1

)
�v3 = (0,

√
2, 0, 1)

�v4 = 1

b

(
−

√
2a,−i

√
2

3
λ, +iλ, b

)
�v5 = 1

b

(
−

√
2a, +i

√
2

3
λ,−iλ, b

)
.

(D.6)

With the first two eigenvalues being identical to zero, we do not have to consider them when
we calculate the matrix element of V̂ 2. Hence, we obtain

〈
α1

3,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉 = 4∑

k=3

〈
α1

3,M
∣∣V̂ 2

AL|�ek〉
〈�ek

∣∣α1
1,M
〉 = 0 (D.7)

〈
α1

4,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉 = 4∑

k=3

〈
α1

4,M
∣∣V̂ 2

AL|�ek〉
〈�ek

∣∣α1
1,M
〉 = 0. (D.8)

As in the case of J = 0 all matrix elements that occur in the action of the operator
1
2 ̂̃EI,AL

k,tot (St )

vanish. Consequently, the whole matrix element 〈βj̃12 , m̃12| 1
2 ̂̃EI,AL

k,tot (St )|βj12 ,m12〉 vanishes.

In order to see whether the vanishing of 〈βj̃12 , m̃12| 1
2 ̂̃EI,AL

k,tot (St )|βj12 ,m12〉 is somehow
connected with the fact that we chose the most easiest case where � = 1

2 , we will investigate
the matrix elements for the case of � = 1 as well.

D.2. Matrix elements for the case of a spin-1 representation

In the case when both additional edges carry a spin-1 representation (� = 1), the Hilbert space
belonging to a total angular momentum J = 0 is three dimensional,∣∣α0

1, 0
〉

:= |a1 = j a2 = 0 a3 = 1J = 0〉∣∣α0
2,M
〉

:= |a1 = j a2 = 1 a3 = 1J = 0〉∣∣α0
3,M
〉

:= |a1 = j a2 = 2 a3 = 1J = 0〉.
(D.9)

Again, the matrix element
〈
α0

3, 0
∣∣Q̂∣∣α0

1, 0
〉

vanishes, because �a2 := |̃a2 − a2| > 1.
Consequently, the 6j -symbols including ã2 and a2 become zero. Thus the whole matrix
element is zero. Considering the matrix element

〈
α0

3, 0
∣∣Q̂AL

v

∣∣α0
2, 0
〉

we see that we have
ã3 = a3 and ã2 = a2 + 1 here. Inserting this into equations (6.7) and (6.6), we get



Consistency check on volume and triad operator quantization 5745〈
α0

3, 0
∣∣q̂134

∣∣α0
1, 0
〉 = −〈α0

3, 0
∣∣q̂234

∣∣α0
1, 0
〉
, so that we only have to calculate one of the triples

and multiply it by 2. Hence, the operator Q̂AL
v can be described by the following matrix,

Q̂J=0 =
 0 −ia 0

+ia 0 −ib
0 −ib 0

 , (D.10)

where a := (
�6

p
3!
2 Creg

)
4√
3

√
2
√

j (j + 1) and b := (
�6

p
3!
2 Creg

)
4√
3

√
4j (j + 1) − 3. The

eigenvalues are given by λ1 = 0, λ2 = −
√

a2 + b2, λ3 = +
√

a2 + b2 =: λ. The corresponding
eigenvectors can be found in the equation below:

�v1 =
(

b√
a
, 0, 1

)
�v2 =

(
−a

b
,

i

b
λ, 1
)

�v3 =
(
−a

b
,− i

b
λ, 1
)

. (D.11)

With the eigenvectors again having only purely real and purely imaginary entries, we can
again guess that the matrix elements of V̂ 2

AL will vanish. This is indeed the case, as can be
seen in the following lines:〈

α0
2, 0
∣∣V̂ 2

AL

∣∣α0
1, 0
〉 = 3∑

k=2

〈
α0

2, 0
∣∣V̂ 2

AL|�ek〉
〈�ek

∣∣α0
1, 0
〉 = 0. (D.12)

Thus, as long as we have eigenvectors that do have only purely imaginary and purely real
components and we are furthermore forced to consider matrix element of

〈
αJ

i ,M
∣∣V̂ 2

AL

∣∣αJ
1 ,M
〉

such that one of the states has an imaginary expansion coefficient in terms of the eigenvectors,
while the other has a real expansion coefficient, we will obtain a vanishing matrix element
for V̂ 2

AL. Note that this is not the case for the operator Q̂AL
v , because there the eigenvectors

have different eigenvalues +λ and −λ. Accordingly, the corresponding terms would not be
cancelled by each other, but would just be added up.

Let us consider a total angular momentum of J = 1 now and investigate whether we will
get the same behaviour of the eigenvectors as well. For J = 1 the associated Hilbert space is
already (7 × 3) dimensional:∣∣α1

1,M
〉

:= |a1 = j a2 = 0 a3 = 1 J = 1〉∣∣α1
2,M
〉

:= |a1 = j a2 = 1 a3 = 0 J = 1〉∣∣α1
3,M
〉

:= |a1 = j a2 = 1 a3 = 1 J = 1〉∣∣α1
4,M
〉

:= |a1 = j a2 = 1 a3 = 2 J = 1〉∣∣α1
5,M
〉

:= |a1 = j a2 = 2 a3 = 1 J = 1〉∣∣α1
6,M
〉

:= |a1 = j a2 = 2 a3 = 2 J = 1〉∣∣α1
7,M
〉

:= |a1 = j a2 = 3 a3 = 2 J = 1〉.

(D.13)

In order to minimize the amount of computation, we will discuss some particular matrix
elements in advance, especially those for which we can read off the result easily from
equations (6.7) and (6.6). With a2 being zero for

∣∣α1
1,M
〉
, we know that for all matrix

elements

ε(e1, e3, e4)
〈
α1

i ,M
∣∣q̂134

∣∣α1
1,M
〉 = ε(e2, e2, e3)

〈
α1

i ,M
∣∣q̂234

∣∣α1
1,M
〉
, i = 2, . . . , 7. (D.14)

Furthermore, we have
〈
α1

i ,M
∣∣q̂134

∣∣α1
1,M
〉 = 0 for i > 4, because then �a2 = |̃a2 − a2| > 1.

For the same reason the matrix elements
〈
α1

7,M
∣∣Q̂AL

v

∣∣α1
i ,M
〉 = 0 with i = 1, . . . , 4 vanish.

As �a3 = |̃a3 − a3| > 1 for
〈
α1

i ,M
∣∣Q̂AL

v

∣∣α1
2,M
〉 = 0 for i = 4, 6, 7 these matrix elements

are zero as well. Then we can find several matrix elements where ã2 = a2 and ã3 = a3 + 1. In
this case we get ε(e1, e3, e4)

〈
α1

i ,M
∣∣q̂134

∣∣α1
i+1,M

〉 = −ε(e2, e2, e3)
〈
α1

i+1,M
∣∣q̂234

∣∣α1
i ,M
〉

with
i = 2, 3, 5 and consequently the matrix element of Q̂AL

v is zero for this particular combination
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of states
∣∣α1

i ,M
〉
. Considering these arguments, we obtain the following kind of matrix for

Q̂AL
v ,

Q̂J=1
AL =



0 −i 8
3

√
2a −i2

√
2
3a −i 2

3

√
10a 0 0 0

+i 8
3

√
2a 0 0 0 +i 4

3b 0 0

+i2
√

2
3a 0 0 0 −i 2√

3
b 0 0

+i 2
3

√
10a 0 0 0 −i 4

3
√

5
b −i2

√
3
5b 0

0 −i 4
3b + 2√

3
b +i 4

3
√

5
b 0 0 +i2

√
6
5c

0 0 0 +i2
√

3
5b 0 0 −i6

√
2
5c

0 0 0 0 −i2
√

6
5c +i6

√
2
5c 0


,

(D.15)

where we introduced

a :=
(

�6
p

3!

2
Creg

)√
j (j + 1) b :=

(
�6

p

3!

2
Creg

)√
4j (j + 1) − 3

c :=
(

�6
p

3!

2
Creg

)√
j (j + 1) − 2.

(D.16)

The seven eigenvalues of Q̂J=1
AL are

λ1 = 0

λ2 = −2

(
�6

p

3!

2
Creg

)√
4j (j + 1) − 3 = −λ3

λ4 = −
(

�6
p

3!

2
Creg

)√
24j (j + 1) − 2

(
11 +
√

121 + 8j (j + 1)(2j (j + 1) − 5)
) = −λ5

λ6 = −
(

�6
p

3!

2
Creg

)√
2
√

12j (j + 1) − 11 +
√

121 + 8j (j + 1)(2j (j + 1) − 5) = −λ7.

(D.17)

The corresponding eigenvectors can be given in the following form:

�v1 = (0, 0, γ1, δ1, 0, 0, 1)

�v2 = (0,−iβ2, +i, +iδ2, ε2, 1, 0)

�v3 = (0, +iβ2,−i,−iδ2, ε2, 1, 0)

�v4 = (+iα3, β3, γ3, δ3,−iε3, +iφ, 1)

�v5 = (−iα3, β3, γ3, δ3, +iε3,−iφ, 1)

�v6 = (+iα4, β4, γ4, δ4,−iε4, +iφ, 1)

�v7 = (−iα4, β4, γ4, δ4, +iε4,−iφ, 1).

(D.18)

All Greek letters appearing in the equation above represent real numbers. Our aim is to
calculate the matrix elements

〈
α1

i ,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉

where i = 2, 3, 4. Hence, similar to the
calculations before we have to expand the states

∣∣α1
i ,M
〉
in terms of the eigenvectors �ek that are

the normed versions of the vectors �vk . But only by looking at the structure of the eigenvectors
�ek we can already read off that the three matrix elements will vanish for the following reasons.
First of all, the first three eigenvectors do not contribute to the matrix elements at all, because
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their expansion coefficient for
∣∣α1

1,M
〉

is zero. Additionally, we have �e∗
4 = �e5 and �e∗

6 = �e7.
As the expansion coefficient for

∣∣α1
1,M
〉

is purely imaginary, while the one for
∣∣α1

i ,M
〉

with
i = 2, 3, 4 is real and, moreover, the two eigenvectors have the same eigenvalue, namely |λ3|
and |λ5| respectively, the contribution of �e4 cancels the contribution of �e5. The same is true
for �e6 and �e7. Accordingly, we get〈
α1

2,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉 = 〈α1

3,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉 = 〈α1

4,M
∣∣V̂ 2

AL

∣∣α1
1,M
〉 = 0. (D.19)

Unfortunately, we are not able to repeat the analysis for arbitrary spin representation �,
because the matrices representing Q̂ cannot be solved analytically anymore. Nevertheless,
as the structure of the basis states in the Hilbert spaces stays the same, only the amount
of states is changed, we would guess that the eigenvalues and eigenvectors look analogous
also in the general case. Hence, we would expect a vanishing of the matrix elements of
V̂ 2

AL that are contained in 〈βj̃12 , m̃12|1 ̂̃EI,AL
k,tot (St )|βj12 ,m12〉 and therefore expect that the result

of 〈βj̃12 , m̃12|1 ̂̃EI,AL
k,tot (St )|βj12 ,m12〉 is zero. In any case since the choice of � should not be

important in the semi-classical limit of large j , we can rule out the choice V̂ 2
AL already based

on the result of the present section.

Appendix E. Detailed calculation in the case of the volume operator V̂RS introduced
by Rovelli and Smolin

As the first step, we will derive the explicit expressions of the operators Ô1 and Ô2 in the case
of (�)̂̃EI,RS

k,tot(St ) and (�)̂̃EII,RS
k,tot (St ), shown in equation (6.12) and in equation (6.38), respectively.

Let us begin with (�)̂̃EI,RS
k,tot(St ). Apart from some pre-factors including numbers, which are not

important for our argument, the precise expression of (�)̂̃EI,RS
k,tot(St ) is given by a sum consisting

of eight terms,

(�)̂̃EI,RS
k,tot(St ) ∝ π�(τk)BCπ�(ε)EI

[
+π�(ε)FC

(
+π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSV̂RSπ̂�

(
he4

)
IG

π̂�

× (he3

)
EA

+ π̂�

(
h†

e4

)
FG

V̂RSπ̂�

(
h†

e3

)
BA

π̂�

(
he4

)
IG

V̂RSπ̂�

(
he3

)
EA

− π̂�

(
h†

e4

)
FG

V̂RSπ̂�

(
h†

e3

)
BA

V̂RSπ̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSπ̂�

(
he4

)
IG

V̂RSπ̂�

(
he3

)
EA

)
−π�(ε)FB

(
+π̂�

(
h†

e4

)
IG

π̂�

(
h†

e3

)
EA

V̂RSV̂RSπ̂�

(
he4

)
FG

π̂�

(
he3

)
CA

+ π̂�

(
h†

e4

)
IG

V̂RSπ̂�

(
h†

e3

)
EA

π̂�

(
he4

)
FG

V̂RSπ̂�

(
he3

)
CA

− π̂�

(
h†

e4

)
IG

V̂RSπ̂�

(
h†

e3

)
EA

V̂RSπ̂�

(
he4

)
FG

π̂�

(
he3

)
CA

− π̂�

(
h†

e4

)
IG

π̂�

(
h†

e3

)
EA

V̂RSπ̂�

(
he4

)
FG

V̂RSπ̂�

(
he3

)
CA

)]
. (E.1)

As mentioned before, the volume operator V̂RS is the sum of the contributing triples

V̂RS = V̂q134 + V̂q234 + V̂q123 + V̂q124 . (E.2)

Recall that the SNF |βj12 ,m1〉 consists of two edges e1, e2 only. Therefore if V̂RS acts before,
for instance, π̂�

(
he4

)
acts, the only non-vanishing contribution in V̂RS is due to V̂q123 , because

for V̂q134 , V̂q234 and V̂q124 the edge e4 is missing. Analogously, only V̂q124 contributes to V̂RS

when the latter is applied to |βj12 ,m1〉 before π̂�

(
he3

)
has acted. Consequently, equation (E.1)

reduces to
(�)̂̃EI,RS

k,tot(St ) ∝ π�(τk)BCπ�(ε)EI

[
+π�(ε)FC

(
+π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSV̂RSπ̂�

(
he4

)
IG

π̂�

× (he3

)
EA

+ π̂�

(
h†

e4

)
FG

V̂q124 π̂�

(
h†

e3

)
BA

π̂�

(
he4

)
IG

V̂q123π̂�

(
he3

)
EA
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− π̂�

(
h†

e4

)
FG

V̂q124 π̂�

(
h†

e3

)
BA

V̂RSπ̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSπ̂�

(
he4

)
IG

V̂q123 π̂�

(
he3

)
EA

)
−π�(ε)FB

(
+π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂RSV̂RSπ̂�

(
he3

)
FG

π̂�

(
he4

)
CA

+ π̂�

(
h†

e3

)
IG

V̂q123 π̂�

(
h†

e4

)
EA

π̂�

(
he3

)
FG

V̂q124 π̂�

(
he4

)
CA

− π̂�

(
h†

e3

)
IG

V̂q123 π̂�

(
h†

e4

)
EA

V̂RSπ̂�

(
he3

)
FG

π̂�

(
he4

)
CA

− π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂RSπ̂�

(
he3

)
FG

V̂q124 π̂�

(
he4

)
CA

)]
. (E.3)

Furthermore, V̂q123 commutes with π̂�

(
he4

)
as well as V̂q124 commutes with π̂�

(
he3

)
. Using

this, we get

(�)̂̃EI,RS
k,tot(St ) ∝ π�(τk)BCπ�(ε)EI

[
+π�(ε)FC

(
+π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSV̂RSπ̂�

(
he4

)
IG

π̂�

× (he3

)
EA

+ π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂q124 V̂q123 π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂q124 V̂RSπ̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

V̂RSV̂q123 π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

)
−π�(ε)FB

(
+π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂RSV̂RSπ̂�

(
he3

)
FG

π̂�

(
he4

)
CA

+ π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂q123 V̂q124 π̂�

(
he3

)
FG

π̂�

(
he4

)
CA

− π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂q123 V̂RSπ̂�

(
he3

)
FG

π̂�

(
he4

)
CA

− π̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

V̂RSV̂q124 π̂�

(
he3

)
FG

π̂�

(
he4

)
CA

)]
= π�(τk)BCπ�(ε)EI

[
+π�(ε)FCπ̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

(V̂RSV̂RS + V̂q124 V̂q123

− V̂q124 V̂RS − V̂RSV̂q123)π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

− π�(ε)FBπ̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

× (V̂RSV̂RS + V̂q123 V̂q124 − V̂q123 V̂RS − V̂RSV̂q124)π̂�

(
he3

)
FG

π̂�

(
he4

)
CA

]
= π�(τk)BCπ�(ε)EI

[
+π�(ε)FCπ̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

Ô
I,RS
1 π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

−π�(ε)FBπ̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

Ô
I,RS
2 π̂�

(
he3

)
FG

π̂�

(
he4

)
CA

]
, (E.4)

whereby we used the definition of Ô
I,RS
1 and Ô

I,RS
2 from equation (6.12) as well as the definition

of V̂RS in equation (E.2) in the last step. The calculation for (�)̂̃EII,RS
k,tot (St ) is similar to the small

difference that the sign operator Ŝ is sandwiched between the two volume operators V̂RS.
Hence, we end up with

(�)̂̃EII,RS
k,tot (St ) ∝ π�(τk)BCπ�(ε)EI

[
+π�(ε)FCπ̂�

(
h†

e4

)
FG

π̂�

(
h†

e3

)
BA

Ô
II,RS
1 π̂�

(
he4

)
IG

π̂�

(
he3

)
EA

−π�(ε)FBπ̂�

(
h†

e3

)
IG

π̂�

(
h†

e4

)
EA

Ô
II,RS
2 π̂�

(
he3

)
FG

π̂�

(
he4

)
CA

]
. (E.5)

Here we used the expressions for Ô
II,RS
1 and Ô

II,RS
2 in equation (6.38).

E.1. Case (�)̂̃EI,RS
k,tot(St ): detailed calculation of the matrix elements of Ô

I,RS
1 and

Ô
I,RS
2

As in section appendix D we will investigate the case of a spin representation � = 1
2 , 1 for

the reason that these are the two easiest cases where the matrices of Q̂RS
v,IJK can still be solved

analytically. Here, we keep the discussion succinct and mainly present our results, for the
reason that section appendix D already explains in a quite detailed way how matrix elements
of the volume operator are actually calculated.
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E.1.1. Matrix elements for the case of a spin- 1
2 representation. With � = 1

2 , the matrix
elements

〈
α0

M, 0
∣∣ÔI,RS

1

∣∣α0
1, 0
〉

and
〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉
, where i = 3, 4, contribute to the

matrix element of (�)̂̃EI,RS
k,tot(St ). The matrix elements are given by〈

α0
2,M
∣∣ÔI,RS

1

∣∣α0
1,M
〉 = +

〈
α0

2,M
∣∣V̂ 2

q134

∣∣α0
1,M
〉
+
〈
α0

2,M
∣∣V̂ 2

q234

∣∣α0
1,M
〉

+
〈
α0

2,M
∣∣V̂q134 V̂q234

∣∣α0
1,M
〉
+
〈
α0

2,M
∣∣V̂q234 V̂q134

∣∣α0
1,M
〉

+
〈
α0

2,M
∣∣V̂q134 V̂q123

∣∣α0
1,M
〉
+
〈
α0

2,M
∣∣V̂q124 V̂q134

∣∣α0
1,M
〉

+
〈
α0

2,M
∣∣V̂q234 V̂q123

∣∣α0
1,M
〉
+
〈
α0

2,M
∣∣V̂q124 V̂q234

∣∣α0
1,M
〉

+
〈
α0

2,M
∣∣V̂q124 V̂q123

∣∣α0
1,M
〉

(E.6)

and with i = 3, 4,〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂ 2

q134

∣∣α1
1,M
〉
+
〈
α1

i ,M
∣∣V̂ 2

q234

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234 V̂q134

∣∣α1
1,M
〉
+
〈
α1

i ,M
∣∣V̂q134 V̂q234

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123 V̂q134

∣∣α1
1,M
〉
+
〈
α1

i ,M
∣∣V̂q134 V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123 V̂q234

∣∣α1
1,M
〉
+
〈
α1

i ,M
∣∣V̂q234 V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123 V̂q124

∣∣α1
1,M
〉
. (E.7)

Here we used the definitions of the operators Ô
I,RS
1 , Ô

I,RS
2 in equation (6.12). These matrix

elements for Ô
I,RS
1 consist of the sum of the matrix elements with the following structure,〈
α0

2,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α0
1,M
〉 =∑

|α′〉

〈
α0

2,M
∣∣V̂qIJK |α′〉〈α′|V̂qĨ J̃ K̃

∣∣α0
1,M
〉
, (E.8)

where we expanded the matrix element in terms of basis vectors |α′〉 of the Hilbert space
HJ=0.

Now each
〈
α0

2,M
∣∣V̂qIJK |α′〉 can be calculated through an eigenvector expansion〈

α0
2,M
∣∣V̂qIJK |α′〉 =

∑
k

〈
α0

2,M
∣∣V̂qIJK |�ek〉〈�ek|α′〉

〈α′|V̂qĨ J̃ K̃

∣∣α0
1,M
〉 =∑

k

〈α′|V̂qĨ J̃ K̃
|�ek〉
〈�ek

∣∣α0
1,M
〉 (E.9)

where �ek denotes the normed eigenvectors of V̂qIJK . As in section appendix D, the eigenvectors
of V̂qIJK are equal to the eigenvectors of Q̂RS

v,IJK , and
√|λ| is an eigenvalue of V̂qIJK assuming

that the corresponding eigenvalue of Q̂RS
v,IJK is λ. (See also the discussion in section 4.1.)

The states
∣∣α0

i ,M
〉
that have to be taken into account in order to derive the matrix of Q̂RS

v,IJK
can be found in equation (D.1). Using equations (6.6)–(6.9) we get the following matrices,
eigenvalues and eigenvectors for a total angular momentum J = 0,

Q̂J=0
RS,134 =

(
0 −2ia

+2ia 0

)
, λ1 = −2a = −λ2, �v1 = (= +i, 1), �v2 = (−i, 1)

Q̂J=0
RS,234 = Q̂J=0

RS,123 = Q̂J=0
RS,124 =

(
0 +2ia

−2ia 0

)
, λ1 = −2a = −λ2, �v1 = (= −i, 1),

�v2 = (+i, 1),

(E.10)
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where we defined a := (�6
p

3!
4 Creg

)√
j (j + 1) and labelled the rows by

∣∣αJ
i ,M
〉
, whereas

columns are labelled by
∣∣αJ

ĩ
,M
〉
. Inserting these eigenvectors above into equation (E.9),

yields to vanishing off-diagonal matrix elements of V̂qIJK〈
α0

2, 0
∣∣V̂q134

∣∣α0
1, 0
〉 = 〈α0

2, 0
∣∣V̂q234

∣∣α0
1, 0
〉 = 〈α0

2, 0
∣∣V̂q123

∣∣α0
1, 0
〉 = 〈α0

2, 0
∣∣V̂q124

∣∣α0
1, 0
〉 = 0〈

α0
1, 0
∣∣V̂q134

∣∣α0
2, 0
〉 = 〈α0

1, 0
∣∣V̂q234

∣∣α0
2, 0
〉 = 〈α0

1, 0
∣∣V̂q123

∣∣α0
2, 0
〉 = 〈α0

1, 0
∣∣V̂q124

∣∣α0
2, 0
〉 = 0

(E.11)

for the reason that the expansion coefficient of
∣∣α0

1, 0
〉

is purely imaginary, whereas the one of∣∣α0
2,M
〉
is real and therefore the terms appearing in the sum of the expansion will cancel each

other (see also the explicit calculations done in section appendix D for this).
Accordingly, if we sum over |α′〉 in equation (E.8) either the first or the second matrix

element of V̂qIJK in the product is zero. Thus each
〈
α0

2,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α0
1,M
〉 = 0 and therefore

the whole sum in equation (E.6) is equivalent to zero and we have〈
α0

2,M
∣∣Ô I,RS

1

∣∣α0
1,M
〉 = 0. (E.12)

Let us discuss the matrix element
〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉

from equation (E.6) now. The four
states |α1iM〉 that are included in the Hilbert space belonging to a total angular momentum
of J = 1 are written down in equation (D.4). Inserting them into equation (6.6) leads to

Q̂J=1
RS,134 =


0 +i 2

3a −i 2
3

√
2a 0

−i 2
3a 0 −i

√
2 +i 1

3

√
2b

+i 2
3

√
2a +i

√
2 0 −i 2

3b

0 −i 1
3

√
2b +i 2

3b 0

 , λ1 = 0 = λ2,

λ3 = −
√

2

3

√
3 + 2a2 + b2 = −λ4,

(E.13)

with a := (�6
p

3!
4 Creg

)√
j (j + 1), b := (�6

p
3!
4 Creg

)√
4j (j + 1) − 3, while the corresponding

eigenvectors are given by

�v1 =
(

+
b√
2a

, 0, 0, 1

)
�v3 =

(
− 3√

2a
,
√

2, 1, 0

)

�v4 =
(

−
√

2a

b
,
−3

√
2 − i

√
3
√

3 + 2a2 + b2

3b
,
−3 + i

√
6
√

3 + 2a2 + b2

3b
, 1

)

�v5 =
(

−
√

2a

b
,
−3

√
2 + i

√
3
√

3 + 2a2 + b2

3b
,
−3 − i

√
6
√

3 + 2a2 + b2

3b
, 1

)
.

(E.14)

In contrast to the case of a total angular momentum J = 0 the expansion coefficients of∣∣α1
i ,M
〉
, where i = 3, 4, have a real and an imaginary part, while the one of

∣∣α1
1,M
〉

is real.
Consequently, we get a result different from zero here. Additionally, we show the result of〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉

with i = 3, 4, because we need these matrix elements later when we
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expand
〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉

in terms of
∣∣α1

i ,M
〉
,

〈
α1

3,M
∣∣V̂q134

∣∣α1
1,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +

√
|λ3| 12a

|λ3|2〈
α1

4,M
∣∣V̂q134

∣∣α1
1,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +

√
|λ3|6

√
2a

|λ3|2〈
α1

3,M
∣∣V̂q134

∣∣α1
5,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
5,M
〉 = −

√
|λ3|6

√
2b

|λ3|2〈
α1

4,M
∣∣V̂q134

∣∣α1
5,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
5,M
〉 = −

√
|λ3| 6b

|λ3|2 ,

(E.15)

whereby �ek are the normed eigenvectors of Q̂J=1
RS,134. The same is true for the triple q̂234 in

which case we have the following matrix and eigenvalues,

Q̂J=1
RS,234 =


0 −i 2

3a +i 2
3

√
2a 0

+i 2
3a 0 −i

√
2 −i 1

3

√
2b

−i 2
3

√
2a +i

√
2 0 +i 2

3b

0 +i 1
3

√
2b −i 2

3b 0

 , λ1 = 0 = λ2,

λ3 = −
√

2

3

√
3 + 2a2 + b2 = −λ4

(E.16)

and the corresponding eigenvectors

�v1 =
(

+
b√
2a

, 0, 0, 1

)
�v3 =

(
+

3√
2a

,
√

2, 1, 0

)
�v4 =

(
−

√
2a

b
,

3
√

2 + i
√

3
√

3 + 2a2 + b2

3b
,

3 − i
√

6
√

3 + 2a2 + b2

3b
, 1

)

�v5 =
(

−
√

2a

b
,

3
√

2 − i
√

3
√

3 + 2a2 + b2

3b
,

3 + i
√

6
√

3 + 2a2 + b2

3b
, 1

)
.

(E.17)

Accordingly, these eigenvectors yield a non-vanishing matrix element for the states
∣∣α1

i ,M
〉

where i = 3, 4 as well,

〈
α1

3,M
∣∣V̂q234

∣∣α1
1,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −

√
|λ3| 12a

|λ3|2〈
α1

4,M
∣∣V̂q234

∣∣α1
1,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −

√
|λ3|6

√
2a

|λ3|2〈
α1

3,M
∣∣V̂q234

∣∣α1
5,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
5,M
〉 = +

√
|λ3|6

√
2b

|λ3|2〈
α1

4,M
∣∣V̂q234

∣∣α1
5,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
5,M
〉 = +

√
|λ3| 6b

|λ3|2 .

(E.18)
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The situation is different if we consider the triple q̂123. In this case the matrix obtained from
equation (6.8) includes more entries that are zero due to the δ̃a3,a3 in equation (6.8),

Q̂J=1
RS,123 =


0 −i2a 0 0

+i2a 0 0 0
0 0 0 −i2b

0 0 −i2b 0

, λ1 = −2a = λ2, λ3 = −2b = −λ4. (E.19)

Therefore, the eigenvectors look much simpler

�v1 = (−i, 1, 0, 0), �v3 = (+i, 1, 0, 0), �v4 = (0, 0,−i, 1), �v5 = (0, 0, +i, 1) (E.20)

and we can easily extract from them〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉 =∑

k

〈
α1

i ,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉 =∑

k

〈
α1

i ,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
5,M
〉 = 0

〈
α1

3,M
∣∣V̂q123

∣∣α1
3,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
3,M
〉 = +

√
2a

〈
α1

3,M
∣∣V̂q123

∣∣α1
4,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
4,M
〉 = 0

〈
α1

4,M
∣∣V̂q123

∣∣α1
3,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
3,M
〉 = 0

〈
α1

4,M
∣∣V̂q123

∣∣α1
4,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
4,M
〉 = +

√
2b.

(E.21)

Here i = 3, 4. The matrix of the last triple can be evaluated by using equation (6.9). The
matrix itself and its eigenvalues can be found in the equation below:

Q̂J=1
RS,124 =


0 −i 2

3a −i 4
3

√
2a 0

+i 2
3a 0 0 −i 4

3

√
2b

+i 4
3

√
2a 0 0 +i 2

3b

0 +i 4
3

√
2b −i 2

3b 0

 , λ1 = 0 = λ2,

λ3 = −
√

2

3

√
3 + 2a2 + b2 = −λ4.

(E.22)

The corresponding eigenvectors are given by

�v1 =
(

+i
3

2
√

2
,

1

2
√

2
, 1, 0

)
, �v3 =

(
− 3

2
√

2
,

1

2
√

2
, 1, 0

)
,

�v4 =
(

0, +i
2
√

2

3
,− i

3
, 1

)
, �v5 =

(
0,−i

2
√

2

3
, +

i

3
, 1

)
.

(E.23)

In this case, either the eigenvalues or the expansion coefficients of
∣∣α1

1,M
〉

and
∣∣α1

5,M
〉

are
zero, so that we also end up with only trivial matrix elements. Only the diagonal matrix
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elements of
∣∣α1

3,M
〉
,
∣∣α1

4,M
〉

are non-vanishing:〈
α1

i ,M
∣∣V̂q124

∣∣α1
1,M
〉 =∑

k

〈
α1

i ,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0〈

α1
i ,M
∣∣V̂q124

∣∣α1
5,M
〉 =∑

k

〈
α1

i ,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
5,M
〉 = 0〈

α1
3,M
∣∣V̂q124

∣∣α1
3,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
3,M
〉 = +

√
2a〈

α1
3,M
∣∣V̂q124

∣∣α1
4,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉 = 0〈

α1
4,M
∣∣V̂q124

∣∣α1
3,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
3,M
〉 = 0〈

α1
4,M
∣∣V̂q124

∣∣α1
4,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉 = +

√
2b〈

α1
5,M
∣∣V̂q124

∣∣α1
1,M
〉 =∑

k

〈
α1

5,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0.

(E.24)

After having calculated all the necessary matrix elements of V̂qIJK , we will expand each matrix
element

〈
α1

i ,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α1
1,M
〉
included in

〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉
in terms of the basis states∣∣α1

j ,M
〉
, 〈

α1
i ,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α1
1,M
〉 =∑

|α′〉

〈
α1

i ,M
∣∣V̂qIJK |α′〉〈α′|V̂qĨ J̃ K̃

∣∣α1
1,M
〉
. (E.25)

Considering the operator V̂q123 V̂qIJK , where IJK ∈ {134, 234}. The expansion is given by〈
α1

i ,M
∣∣V̂q123 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.26)

We can read off from equation (E.21)〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉 = 〈α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉 = 〈α1

3,M
∣∣V̂q123

∣∣α1
4,M
〉

= 〈α1
4,M
∣∣V̂q123

∣∣α1
3,M
〉 = 0. (E.27)

Therefore the expansion reduces to〈
α1

i ,M
∣∣V̂q123 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

3,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
3,M
〉

+
〈
α1

4,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.28)

If we choose Ĩ J̃ K̃ = 124 we see due to
〈
α1

i ,M
∣∣V̂q124

∣∣α1
1,M
〉 = 0 (see equation (E.24))

that the matrix element of V̂q123 V̂q124 vanishes. In the case of Ĩ J̃ K̃ = 134, 234 by comparing
equation (E.15) with equation (E.18) we realize

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 =

−〈α1
i ,M
∣∣V̂q234

∣∣α1
1,M
〉 = 0. Thus, the two contributions cancel each other. Consequently,〈

α1
i ,M
∣∣V̂q123

(
V̂q134 + V̂q234 + V̂q124

) ∣∣α1
1,M
〉 = 0. (E.29)

In the case of operator V̂qIJK V̂q124 , where IJK ∈ {134, 234}, the expansion in terms of the basis
states

∣∣α1
i ,M
〉

can be written as〈
α1

i ,M
∣∣V̂qIJK V̂q124

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂q124

∣∣α1
1,M
〉
. (E.30)
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The matrix elements
〈
α1

j ,M
∣∣V̂q124

∣∣α1
1,M
〉
with j = 3, 4, 5 are identical to zero, as can be seen

from equation (E.24). Hence, only the first term in the expansion survives. Moreover, if we
choose for IJK = {134, 234}, we have

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 = −〈α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉
, as can

be seen in equations (E.15) and (E.18), so that the non-vanishing contributions get cancelled
by each other. Accordingly, we obtain〈

α1
i ,M
∣∣(V̂q134 + V̂q234

)
V̂q124

∣∣α1
1,M
〉 = 0. (E.31)

Analysing the operator V̂q134 V̂qIJK with IJK ∈ {134, 234}, we get〈
α1

i ,M
∣∣V̂q134 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.32)

From equations (E.15) and (E.18) we can extract for i = 3, 4
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 =

−〈α1
i ,M
∣∣V̂q234

∣∣α1
1,M
〉
. Hence, the expansion above yields〈

α1
i ,M
∣∣V̂q134

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉
. (E.33)

The same argument applies to the operator V̂q234 V̂qIJK with IJK ∈ {134, 234}. Therefore we
obtain here〈
α1

i ,M
∣∣V̂q234

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉
. (E.34)

Using the fact that
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 = −〈α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉

and
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉 =

−〈α1
i ,M
∣∣V̂q234

∣∣α1
5,M
〉
, which can be seen by comparing equation (E.15) with equation (E.18),

we get 〈
α1

i ,M
∣∣ (V̂q134 + V̂q234

) (
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = 0. (E.35)

Now, we add equations (E.29), (E.31) and (E.35) and note that the sum is precisely the operator
Ô

I,RS
2 . Accordingly,〈

α1
i ,M
∣∣Ô I,RS

2

∣∣α1
1,M
〉 = 0 i = 3, 4. (E.36)

Since the matrix element of Ô
I,RS
1 as well as the matrix element of Ô

I,RS
2 vanishes and exactly

these matrix elements are the only ones that contribute to
1
2 ̂̃EI,RS

k,tot(St ), the operator
1
2 ̂̃EI,RS

k,tot(St )

becomes the zero operator.

E.1.2. Matrix elements for the case of a spin-1 representation. In this subsection we will
repeat the calculation of the last subsection for the case of a spin representation � = 1. The
matrix elements that are included in the calculations of the alternative flux operator 1 ̂̃EI,RS

k,tot(St )

are
〈
α0

2,M
∣∣ÔI,RS

1

∣∣α0
1,M
〉

and
〈
α1

i ,M
∣∣ÔI,RS

2

∣∣α1
1,M
〉

where i = 2, 3, 4. The definition of Ô
I,RS
1

and Ô
I,RS
2 can be found in equation (6.12), whereas we have to, as before, derive the value of

the matrix element of each single triple.
A basis of the Hilbert space associated with a total angular momentum J = 0 can be

found in equation (D.9) and consists of four states. Hence, for every single triple Q̂v,IJK we
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obtain a 4 × 4 matrix. Starting with Q̂J=0
RS,134 we have

Q̂J=0
RS,134 =


0 −i4

√
2
3a 0

+i4
√

2
3a 0 −i4

√
1
3b

0 +i4
√

1
3b 0

 , λ1 = 0, λ2 = − 4√
3

√
2a2 + b2 = −λ3,

(E.37)

where we used equation (6.6) in order to obtain the matrix. The corresponding four
eigenvectors are given by

�v1 =
(

+i
b√
2a

, 0, 1

)
, �v2 =

(
−

√
2a

b
, +i

√
2a2 + b2

b
, 1

)

�v3 =
(

−
√

2a

b
,−i

√
2a2 + b2

b
, 1

)
.

(E.38)

As in the situation of � = 1
2 for J = 0 the remaining three triples are identical and, moreover,

just the negative of the matrix of Q̂J=0
RS,234,

Q̂J=0
RS,234 = Q̂J=0

RS,123 = Q̂J=0
RS,124 =


0 +i4

√
2
3a 0

−i4
√

2
3a 0 +i4

√
1
3b

0 −i4
√

1
3b 0

 , λ1 = 0,

λ2 = − 4√
3

√
2a2 + b2 = −λ3,

(E.39)

while the corresponding eigenvectors are

�v1 =
(

−i
b√
2a

, 0, 1

)
, �v2 =

(
−

√
2a

b
,−i

√
2a2 + b2

b
, 1

)
,

�v3 =
(

−
√

2a

b
, +i

√
2a2 + b2

b
, 1

)
.

(E.40)

Now, we expand each operator V̂qIJK V̂qĨ J̃ K̃
included in

〈
α0

2,M
∣∣Ô I,RS

1

∣∣α0
1,M
〉

with the help of
the states

∣∣α0
j ,M
〉〈

α0
2,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α0
1,M
〉 = +

〈
α1

2,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂qĨ J̃ K̃

∣∣α1
1,M
〉

+
〈
α1

2,M
∣∣V̂qIJK

∣∣α1
2,M
〉〈
α1

2,M
∣∣V̂qĨ J̃ K̃

∣∣α1
1,M
〉

+
〈
α1

2,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qĨ J̃ K̃

∣∣α1
1,M
〉
. (E.41)

From the eigenvector expansion, we get〈
α0

2,M
∣∣V̂qIJK

∣∣α1
1,M
〉 =∑

k

〈
α0

2,M
∣∣V̂qIJK |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α0

2,M
∣∣V̂qIJK

∣∣α1
3,M
〉 =∑

k

〈
α0

2,M
∣∣V̂qIJK |�ek〉

〈�ek

∣∣α1
3,M
〉 = 0,

(E.42)

where by �e1, �e2, �e3 result from �v1, �v2, �v3 by just dividing each vector by its norm. Consequently,
each term in the expansion in equation (E.41) vanishes separately and we obtain, as in the case
of � = 0.5, 〈

α0
2,M
∣∣Ô I,RS

1

∣∣α0
1,M
〉 = 0. (E.43)

If we consider a total angular momentum of J = 1 equation (D.13) tells us that we already
have to deal with seven states and consequently get a 7 × 7 matrix for each triple q̂IJK . Again
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we have to discuss the matrix elements
〈
α1

i ,M
∣∣Ô I,RS

2

∣∣α1
1,M
〉

with i = 2, 3, 4. Starting with
Q̂RS

v,134 and using equation (6.6) yields

Q̂J=1
RS,134 =



0 −i 8
3

√
2ã −i2

√
2
3 ã −i 2

3

√
10ã 0 0 0

+i 8
3

√
2ã 0 −i 4√

3
0 +i 4

3 b̃ 0 0

+i2
√

2
3 ã +i 4√

3
0 −i2

√
5
3 −i 2√

3
b̃ 0 0

+i 2
3

√
10ã 0 +i2

√
5
3 0 −i 4

3
√

5
b̃ −i2

√
3
5 b̃ 0

0 −i 4
3 b̃ +i 2√

3
b̃ +i 4

3
√

5
b̃ 0 −i2

√
3 +i2

√
6
5 c̃

0 0 0 +i2
√

3
5 b̃ +i2

√
3 0 −i6

√
2
5 c̃

0 0 0 0 −i2
√

6
5 c̃ +i6

√
2
5 c̃ 0


,

(E.44)

where we introduced

ã :=
(

�6
p

3!

4
Creg

)√
j (j + 1) b̃ :=

(
�6

p

3!

4
Creg

)√
4j (j + 1) − 3

c̃ :=
(

�6
p

3!

4
Creg

)√
j (j + 1) − 2.

(E.45)

The seven eigenvalues of Q̂RS
v,134 are

λ1 = 0

λ2 = −4

(
�6

p

3!

4
Creg

)√
j (j − 1) = −λ3

λ4 = −4

(
�6

p

3!

4
Creg

)√
j (j + 2) = −λ5

λ6 = −4

(
�6

p

3!

4
Creg

)√
2j (j + 1) − 1 = −λ7.

(E.46)

The corresponding eigenvectors can be written in the following form:

�v1 = (0, 0,−
√

15a′′′, +3a′′′,−
√

3b′′′,−b′′′, 1)

�v2 = (+ic, a − ib, d + ie, f + ig, h − i�,m + in, 1)

�v3 = (−ic, a + ib, d − ie, f − ig, h + i�,m − in, 1)

�v4 = (+ic′, a′ + ib′, d ′ − ie′, f ′ − ig′,−h′ − i�′,−m′ + in′, 1)

�v5 = (−ic′, a′ − ib′, d ′ + ie′, f ′ + ig′,−h′ + i�′,−m′ − in′, 1)

�v6 = (−ic′′,−a′′ + ib′′, d ′′ − ie′′,−f ′′ − ig′′,−h′′ − i�′′,−m′′ + in′′, 1)

�v7 = (+ic′′,−a′′ − ib′′, d ′′ + ie′′,−f ′′ + ig′′,−h′′ + i�′′,−m′′ − in′′, 1).

(E.47)

Here all letters {a, . . . , n′′} denote real numbers which depend on the chosen value for the
spin label j that is attached to the edges e1, e2. Using the expansion in terms of eigenvectors
in equation (E.9), we get〈
α1

2,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −2c2bc + 2c4b

′c′ − 2c6b
′′c′′

〈
α1

3,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +2c2ce − 2c4c

′e′ + 2c6c
′′e′′
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〈
α1

4,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +2c2cg − 2c4c

′g′ − 2c6c
′′g′′

〈
α1

5,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

5,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −2c2c� − 2c4c

′�′ + 2c6c
′′�′′

〈
α1

6,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

6,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +2c2cn + 2c4c

′n′ − 2c6c
′′n′′

〈
α1

7,M
∣∣V̂q134

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

7,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α1

2,M
∣∣V̂q134

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
5,M
〉

= +2c2(ah + b�) − 2c4(a
′h′ + b′�′) + 2c6(a

′′h′′ − b′′�′′)〈
α1

3,M
∣∣V̂q134

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
5,M
〉

= +2c2(dh − e�) − 2c4(d
′h′ − e′�′) − 2c6(d

′′h′′ − e′′�′′)〈
α1

4,M
∣∣V̂q134

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
5,M
〉

= +2c2(f h − g�) − 2c4(f
′h′ − g′�′) + 2c6(f

′′h′′ + g′′�′′)〈
α1

2,M
∣∣V̂q134

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
6,M
〉

= +2c2(am − bn) − 2c4(a
′m′ − b′n′) + 2c6(a

′′m′′ + b′′n′′)〈
α1

3,M
∣∣V̂q134

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
6,M
〉

= +2c2(dm − en) − 2c4(d
′m′ + e′n′) − 2c6(d

′′m′′ + e′′n′′)〈
α1

4,M
∣∣V̂q134

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
6,M
〉

= +2c2(f m − gn) − 2c4(f
′m′ − g′n′) + 2c6(f

′′m′′ + g′′n′′).
(E.48)

Here we introduced the constants c1, c2, c3 that are defined by

c2 :=
√|λ2|

1 + a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + �2 + m2 + n2

c4 :=
√|λ4|

1 + a′2 + b′2 + c′2 + d ′2 + e′2 + f ′2 + g′2 + h′2 + �′2 + m′2 + n′2

c6 :=
√|λ6|

1 + a′′2 + b′′2 + c′′2 + d ′′2 + e′′2 + f ′′2 + g′′2 + h′′2 + �′′2 + m′′2 + n′′2 .

(E.49)

The non-vanishing of these matrix elements is as in the case of � = 1
2 caused by the fact that

the expansion coefficients of
∣∣α1

i ,M
〉
, where i = 2, 3, 4, have real as well as imaginary parts.
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When we apply equation (6.7) to the states in equation (D.13) we obtain the following matrix,

Q̂J=1
RS,234 =



0 +i 8
3

√
2ã +i2

√
2
3 ã +i 2

3

√
10ã 0 0 0

−i 8
3

√
2ã 0 −i 4√

3
0 −i 4

3 b̃ 0 0

−i2
√

2
3 ã +i 4√

3
0 −i2

√
5
3 +i 2√

3
b̃ 0 0

−i 2
3

√
10ã 0 +i2

√
5
3 0 +i 4

3
√

5
b̃ +i2

√
3
5 b̃ 0

0 +i 4
3 b̃ −i 2√

3
b̃ −i 4

3
√

5
b̃ 0 −i2

√
3 −i2

√
6
5 c̃

0 0 0 −i2
√

3
5 b̃ +i2

√
3 0 +i6

√
2
5 c̃

0 0 0 0 +i2
√

6
5 c̃ −i6

√
2
5 c̃ 0


,

(E.50)

where we used the abbreviations

ã :=
(

�6
p

3!

4
Creg

)√
j (j + 1)

b̃ :=
(

�6
p

3!

4
Creg

)√
4j (j + 1) − 3 (E.51)

c̃ :=
(

�6
p

3!

2
Creg

)√
j (j + 1) − 2.

The eigenvalues are similar to those of q̂134

λ1 = 0

λ2 = −4

(
�6

p

3!

4
Creg

)√
j (j − 1) = −λ3

λ4 = −4

(
�6

p

3!

4
Creg

)√
j (j + 2) = −λ5

λ6 = −4

(
�6

p

3!

4
Creg

)√
2j (j + 1) − 1 = −λ7

(E.52)

and can be used to derive the corresponding eigenvectors

�v1 = (0, 0,−
√

15a′′′, +3a′′′,−
√

3b′′′,−b′′′, 1)

�v2 = (−ic, a − ib, d + ie, f + ig,−h + i�,−m − in, 1)

�v3 = (+ic, a + ib, d − ie, f − ig,−h − i�,−m + in, 1)

�v4 = (−ic′, a′ + ib′, d ′ − ie′, f ′ − ig′, h′ + i�′,m′ − in′, 1)

�v5 = (+ic′, a′ − ib′, d ′ + ie′, f ′ + ig′, h′ − i�′,m′ + in′, 1)

�v6 = (+ic′′,−a′′ + ib′′, d ′′ − ie′′,−f ′′ − ig′′, h′′ + i�′′,m′′ − in′′, 1)

�v7 = (−ic′′,−a′′ − ib′′, d ′′ + ie′′,−f ′′ + ig′′, h′′ − i�′′,m′′ + in′′, 1)

(E.53)

where we again suppose that {a, . . . , n′′} denote real numbers. Thus the desired matrix
elements are〈
α1

2,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +2c2bc − 2c4b

′c′ + 2c6b
′′c′′

〈
α1

3,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −2c2ce + 2c4c

′e′ − 2c6c
′′e′′
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〈
α1

4,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −2c2cg + 2c4c

′g′ + 2c6c
′′g′′

〈
α1

5,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

5,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = −2c2c� − 2c4c

′�′ + 2c6c
′′�′′

〈
α1

6,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

6,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +2c2cn + 2c4c

′n′ − 2c6c
′′n′′

〈
α1

7,M
∣∣V̂q234

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

7,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α1

2,M
∣∣V̂q234

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
5,M
〉

= −2c2(ah + b�) + 2c4(a
′h′ + b′�′) − 2c6(a

′′h′′ − b′′�′′)〈
α1

3,M
∣∣V̂q234

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
5,M
〉

= −2c2(dh − e�) + 2c4(d
′h′ − e′�′) + 2c6(d

′′h′′ − e′′�′′)〈
α1

4,M
∣∣V̂q234

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
5,M
〉

= −2c2(f h − g�) + 2c4(f
′h′ − g′�′) − 2c6(f

′′h′′ + g′′�′′)〈
α1

2,M
∣∣V̂q234

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

2,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
6,M
〉

= −2c2(am − bn) + 2c4(a
′m′ − b′n′) − 2c6(a

′′m′′ + b′′n′′)〈
α1

3,M
∣∣V̂q234

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

3,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
6,M
〉

= −2c2(dm − en) + 2c4(d
′m′ + e′n′) + 2c6(d

′′m′′ + e′′n′′)〈
α1

4,M
∣∣V̂q234

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

4,M
∣∣V̂q234 |�ek〉

〈�ek

∣∣α1
6,M
〉

= −2c2(f m − gn) + 2c4(f
′m′ − g′n′) − 2c6(f

′′m′′ + g′′n′′).
(E.54)

In the case of Q̂RS
v,123 equation (6.8) leads to a matrix that looks less complicated,

Q̂J=1
RS,123 =



0 0 = i
√

2
3a 0 0 0 0

0 0 0 0 0 0 0

−i
√

2
3a 0 0 0 +i 4√

3
b 0 0

0 0 0 0 0 +i4
√

3
5b 0

0 0 −i 4√
3
b 0 0 0 0

0 0 0 −i4
√

3
5b 0 0 +i12

√
2
5c

0 0 0 0 0 −i12
√

2
5c 0


, (E.55)
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with

a :=
(

�6
p

3!

4
Creg

)√
j (j + 1)

b :=
(

�6
p

3!

4
Creg

)√
4j (j + 1) − 3 (E.56)

c :=
(

�6
p

3!

2
Creg

)√
j (j + 1) − 2,

and the corresponding eigenvalues

λ1 = 0 = λ2 = λ3

λ4 = −4

(
�6

p

3!

4
Creg

)√
3
√

2j (j + 1) − 3 = −λ5 (E.57)

λ6 = −4

(
�6

p

3!

4
Creg

)√
2j (j + 1) − 1 = −λ7.

Unsurprisingly, the eigenvectors are simpler as well and are shown below:

�v1 =
(

0, 0, 0,

√
6

α
, 0, 0, 1

)
, �v2 +

(
1√
2β

, 0, 0, 0, 1, 0, 0

)
, �v3 = (0, 1, 0, 0, 0, 0, 0)

�v4 =
(

0, 0, 0,− 1√
6
α, 0,−i

√
5

6
γ, 1

)
, �v5 =

(
0, 0, 0,− 1√

6
α, 0, +i

√
5

6
γ, 1

)

�v6 = (−
√

2β, 0,−iδ, 0, 1, 0, 0), �v7 = (−
√

2β, 0, +iδ, 0, 1, 0, 0). (E.58)

Here, the dependence on j of the components of �vk is less tricky and therefore we mention
them explicitly for those interested,

α := b

c
, β := a

b
, γ :=

√
2a2 − 3

c
, δ :=

√
7a2 − 3

b
. (E.59)

These eigenvectors demonstrate that all matrix elements
〈
α1

i ,M
∣∣V̂ 2

q123

∣∣α1
1,M
〉
, where i =

2, 3, 4, are zero,

〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

i ,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉 = 4∑

k=1

〈
α1

i ,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
5,M
〉 = 0 (E.60)

〈
α1

i ,M
∣∣V̂q123

∣∣α1
6,M
〉 = 4∑

k=1

〈
α1

i ,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0,

as we have either an expansion coefficient equal to zero or the combination of a real and
a purely imaginary expansion coefficient. The last triple that has to be discussed is Q̂RS

v,124.
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Considering equation (6.9) we get

Q̂J=1
RS,124 =



0 +i 4
3

√
2a +i2

√
2
3a −i 2

3

√
10a 0 0 0

−i 4
3

√
2a 0 0 0 −i 8

3b 0 0

−i2
√

2
3a 0 0 0 +i 2√

3
b −2ib 0

+i 2
3

√
10a 0 0 0 +i 2

3
√

5
b +i2

√
3
5b 0

0 +i 8
3b −i 2√

3
b −i 4

3
√

5
b 0 0 −i6

√
6
5c

0 0 +2ib −i2
√

3
5b 0 0 +i6

√
2
5c

0 0 0 0 +i6
√

6
5c −i6

√
2
5c 0


,

(E.61)

where we introduced

a :=
(

�6
p

3!

4
Creg

)√
j (j + 1)

b :=
(

�6
p

3!

4
Creg

)√
4j (j + 1) − 3 (E.62)

c :=
(

�6
p

3!

4
Creg

)√
j (j + 1) − 2.

The seven eigenvalues of q̂124 are

λ1 = 0 = λ2 = λ3

λ4 = −4

(
�6

p

3!

4
Creg

)√
3
√

2j (j + 1) − 3 = −λ5 (E.63)

λ6 = −4

(
�6

p

3!

4
Creg

)√
2j (j + 1) − 1 = −λ7

and the corresponding eigenvectors can be expressed as

�v1 =
(

0, 3

√
3

10

1

α
,−3

√
2

5

1

α
, 0, 0, 0, 1

)
, �v2 =

(
−
√

2

3

1

β
, 0, 0, 0,

1√
3
, 1, 0

)
,

�v3 =
(

0,
1√
5
,

√
3

5
, 1, 0, 0, 0

)

�v4 =
(

0,−1

3

√
5

6
α,

√
5

2

1

6
α,− 1

6
√

6
α, +i

√
5

2
γ,−i

√
5

6
γ, 1

)

�v5 =
(

0,−1

3

√
5

6
α,

√
5

2

1

6
α,− 1

2
√

6
α,−i

√
5

2
γ, +i

√
5

6
γ, 1

)

�v6 =
(

2

√
2

3
β, +i

2√
3
δ, +iδ,−i

√
5

3
δ,

1√
3
, 1, 0

)

�v7 =
(

2

√
2

3
β,−i

2√
3
δ,−iδ, +i

√
5

3
δ,

1√
3
, 1, 0

)
,

(E.64)
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with the following abbreviations:

α := b

c
, β := a

b
, γ :=

√
2a2 − 3

2c
, δ :=

√
2a2 − 1

b
. (E.65)

For this particular triple the matrix elements disappear as well, because the first three
eigenvalues are zero, the eigenvectors �v4, �v5 have an expansion coefficient for

∣∣α1
1,M
〉

which
is zero, and the vectors �v6, �v7 have a real expansion coefficient for

∣∣α1
1,M
〉
, while the one for

the states
∣∣α1

i ,M
〉

with i being 2, 3, 4 is purely imaginary. Consequently, we have

〈
α1

i ,M
∣∣V̂q124

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

i ,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

(E.66)〈
α1

7,M
∣∣V̂q124

∣∣α1
1,M
〉 = 4∑

k=1

〈
α1

7,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
1,M
〉 = 0.

The expansion of each operator V̂qIJK V̂qĨ J̃ K̃
that occurs in the operator Ô

I,RS
2 is given by

〈
α1

i ,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α1
1,M
〉 = 7∑

k=1

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
k ,M
〉〈
α1

k ,M
∣∣V̂qĨ J̃ K̃

∣∣α1
1,M
〉
. (E.67)

Considering the operator V̂q123 V̂qIJK where IJK ∈ {134, 234, 124}, the expansion above leads
to〈
α1

i ,M
∣∣V̂q123 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
2,M
〉〈
α1

2,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
6,M
〉〈
α1

6,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
7,M
〉〈
α1

7,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.68)

We can read off from equation (E.60)
〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉 = 0 with i = 2, 3, 4 and j = 1, 5, 6.

Consequently, the expansion reduces to〈
α1

i ,M
∣∣V̂q123 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q123

∣∣α1
2,M
〉〈
α1

2,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
7,M
〉〈
α1

7,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.69)

Since
〈
α1

7,M
∣∣V̂qIJK

∣∣α1
1,M
〉 = 0 for IJK ∈ {134, 234, 124} as can be seen in equations (E.48),

(E.54) and (E.66), the last term in the sum drops out. Furthermore,
〈
α1

i ,M
∣∣V̂q124

∣∣α1
1,M
〉 = 0,

whereas
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 = −〈α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉
. Accordingly, the non-vanishing

contributions of the triples {e1, e3, e4} and {e2, e3, e4} cancel each other. Hence, we get〈
α1

i ,M
∣∣V̂q123

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = 0. (E.70)

In the case of the operator V̂qIJK V̂q124 with IJK ∈ {134, 234}, we can expand the matrix elements
as〈
α1

i ,M
∣∣V̂qIJK V̂q124

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉
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+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
2,M
〉〈
α1

2,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
6,M
〉〈
α1

6,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
7,M
〉〈
α1

7,M
∣∣V̂q124

∣∣α1
1,M
〉
. (E.71)

In equation (E.66) is shown
〈
α1

j ,M
∣∣V̂q124

∣∣α1
1,M
〉 = 0 with j = 2, 3, 4, 7. Therefore, we can

neglect four terms in the sum above and get〈
α1

i ,M
∣∣V̂qIJK V̂q124

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
6,M
〉〈
α1

6,M
∣∣V̂q124

∣∣α1
1,M
〉
. (E.72)

By comparing the results in equation (E.48) with that in equation (E.48), we note
that
〈
α1

i ,M
∣∣V̂q134

∣∣α1
j ,M
〉 = −〈α1

i ,M
∣∣V̂q134

∣∣α1
j ,M
〉

whereby i = 2, 3, 4 and j = 1, 5, 6.
Accordingly, this yields〈

α1
i ,M
∣∣ (V̂q134 + V̂q234

)
V̂q124

∣∣α1
1,M
〉 = 0. (E.73)

The expansion in terms of
∣∣α1

k ,M
〉
of the operator V̂q134 V̂qIJK whereby IJK ∈ {134, 234} can be

found below:〈
α1

i ,M
∣∣V̂q134 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
2,M
〉〈
α1

2,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
6,M
〉〈
α1

6,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
7,M
〉〈
α1

7,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.74)

If we compare equation (E.48) with equation (E.54), we realize that
〈
α1

i ,M
∣∣V̂q134

∣∣α1
j ,M
〉 =

−〈α1
i ,M
∣∣V̂q234

∣∣α1
1,M
〉

with i = 2, 3, 4 and
∣∣α1

7,M
〉〈
α1

7,M
∣∣V̂qIJK

∣∣α1
1,M
〉 = 0 Therefore, we

have〈
α1

i ,M
∣∣V̂q134

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
6,M
〉〈
α1

6,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉
. (E.75)

The same argument applies to the operator V̂q234 V̂qIJK whereby IJK ∈ {134, 234}, so that its
expansion is given by〈
α1

i ,M
∣∣V̂q234

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
6,M
〉〈
α1

6,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉
. (E.76)

By using
〈
α1

i ,M
∣∣V̂q134

∣∣α1
j ,M
〉 = −〈α1

i ,M
∣∣V̂q134

∣∣α1
j ,M
〉

where i = 2, 3, 4 and j = 1, 5, 6
which can be easily extracted from equations (E.48) and (E.54), we obtain〈

α1
i ,M
∣∣ (V̂q134 + V̂q234

) (
V̂q134 + V̂q234 + V̂q124

) ∣∣α1
1,M
〉 = 0. (E.77)
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If we add up equations (E.70), (E.73) and (E.77) the operators V̂qIJK V̂qĨ J̃ K̃
add up to the operator

Ô
I,RS
2 . Hence, we can conclude〈

α1
i ,M
∣∣Ô I,RS

2

∣∣α1
1,M
〉 = 0 i = 2, 3, 4. (E.78)

Since, the matrix elements of Ô
I,RS
1 and Ô

I,RS
2 also vanish in the case of a spin label � = 1,

the operator 1 ̂̃EI,RS
k,tot(St ) is the zero operator as well.

E.2. Case (�)̂̃EII,RS
k,tot (St ): detailed calculation of the matrix elements of Ô

II,RS
1 and

Ô
II,RS
2

In this section, we discuss the matrix elements
〈
α0

2,M
∣∣ÔII,RS

1

∣∣α0
1,M
〉
and
〈
α0

2,M
∣∣Ô II,RS

2

∣∣α0
1,M
〉

that contribute to the matrix element of the alternative flux operator (�)̂̃EII,RS
k,tot (St ). As discussed

in section 6.6.1, from our point of view the operator (�)̂̃EII,RS
k,tot (St ) including the combination

V̂RSŜALV̂RS is highly artificial. Nevertheless, we investigate this operator in detail for a spin
label � = 0.5 here.

E.2.1. Matrix elements for the case of a spin- 1
2 representation. In order to calculate the

matrix element of (�)̂̃EII,RS
k,tot (St ), we have to know the matrix elements

〈
α0

2,M
∣∣Ô II,RS

1

∣∣α0
1,M
〉

and
〈
α1

i ,M
∣∣ÔII,RS

2

∣∣α0
1,M
〉
. This can be seen in equation (6.3). The explicit definition of the

operators Ô
II,RS
1 , Ô

II,RS
2 are shown in equation (6.38). Here, the calculation for Ô

II,RS
1 , Ô

II,RS
2

differs from the discussion of Ô
I,RS
1 , Ô

I,RS
2 in the last section, because now additionally the

sign operator Ŝ occurs sandwiched between the two volume operators V̂RS. Since the matrices
of the operators Q̂RS

v,IJK and their corresponding eigenvectors and eigenvalues are already given
in the last section, we will not show them here again, but only refer to the results of the last
section.

The expansion of each operator V̂qIJK ŜV̂qĨ J̃ K̃
that contributes to Ô

II,RS
2 is given by

〈
α0

2,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α0
1,M
〉 = 2∑

i,j=1

〈
α0

2,M
∣∣V̂qIJK

∣∣α0
i ,M
〉〈
α0

i ,M
∣∣Ŝ∣∣α0

j ,M
〉〈
α0

j ,M
∣∣V̂qĨ J̃ K̃

∣∣α0
1,M
〉

= 〈α0
2,M
∣∣V̂qIJK

∣∣α0
2,M
〉〈
α0

2,M
∣∣Ŝ∣∣α0

1,M
〉〈
α0

1,M
∣∣V̂qĨ J̃ K̃

∣∣α0
1,M
〉
, (E.79)

because V̂qRS is diagonal in this case.
The matrix elements of the sign operator Ŝ can be calculated by〈

α0
i ,M
∣∣Ŝ∣∣α0

j ,M
〉 =∑

k

〈
α0

i ,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α0
j ,M
〉 =∑

k

sgn
(
λ

Q
k

)〈
α0

i ,M
∣∣�ek

〉〈�ek

∣∣α0
j ,M
〉
,

(E.80)

whereby λ
Q
k denotes the eigenvalue of the operator Q̂J=0

v,AL associated with the eigenvector �ek .
Using the results of Q̂J=0

RS,IJK in equation (E.10), we end up with〈
α0

2,M
∣∣V̂qIJK

∣∣α0
2,M
〉 = 〈α0

1,M
∣∣V̂qIJK

∣∣α0
1,M
〉 = √

2a

IJK ∈ {134, 234, 123, 124} 〈
α0

2,M
∣∣Ŝ∣∣α0

1,M
〉 = +i.

(E.81)

Considering the definition of Ô
II,RS
1 in equation (6.38) and the results above, we obtain〈

α0
2,M
∣∣ÔII,RS

1

∣∣α0
1,M
〉 = +i18a = +i9aAL = 9

〈
α0

2,M
∣∣Ô II,AL

1

∣∣α0
1,M
〉

=: C1(�)
〈
α0

2,M
∣∣ÔII,AL

1

∣∣α0
1,M
〉
. (E.82)
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Here we used a = 1
2aAL that can be found by comparing the matrix entries of opQJ=0

v,AL with
the one of Q̂J=0

RS,IJK . We want to express everything in terms of the AL parameters here in order

to compare the results of (�)̂̃EII,RS
k,tot (St ) and (�)̂̃EII,AL

k,tot (St ) directly.

For the operator Ô
II,RS
2 , we have to consider the case of a total angular momentum J = 1.

The expansion of V̂qIJK V̂qĨ J̃ K̃
in terms of the basis states

∣∣α1
k ,M
〉

of HJ=1 is shown below:〈
α1

i ,M
∣∣V̂qIJK V̂qĨ J̃ K̃

∣∣α1
1,M
〉 =∑

j,k

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
j ,M
〉〈
α1

j ,M
∣∣Ŝ∣∣α1

k ,M
〉〈
α1

k ,M
∣∣V̂qĨ J̃ K̃

∣∣α1
1,M
〉
.

(E.83)

In this case the matrix elements of the sign operator Ŝ are given by〈
α1

j ,M
∣∣Ŝ∣∣α1

k ,M
〉 =∑

k′

〈
α1

j ,M
∣∣Ŝ|�ek′ 〉〈�ek′

∣∣α1
k ,M
〉 =∑

k′
sgn
(
λ

Q
k′
)〈
α1

j ,M
∣∣�ek′
〉〈�ek′
∣∣α1

k ,M
〉
.

(E.84)

By using the results shown in section 6.5, we obtain〈
α1

j ,M
∣∣Ŝ∣∣α1

j ,M
〉 =∑

k

〈
α1

j ,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
j ,M
〉 = 0

〈
α1

j ,M
∣∣Ŝ∣∣α1

i ,M
〉 =∑

k

〈
α1

j ,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
i ,M
〉 = −〈α1

i ,M
∣∣Ŝ∣∣α1

j ,M
〉

〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉 =∑

k

〈
α1

3,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
1,M
〉 = −i

aAL

λAL〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉 =∑

k

〈
α1

4,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
1,M
〉 = −i

aAL

λAL
(E.85)〈

α1
5,M
∣∣Ŝ∣∣α1

1,M
〉 =∑

k

〈
α1

5,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
1,M
〉 = 0

〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉 =∑

k

〈
α1

3,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
5,M
〉 = −i

bAL√
2λAL〈

α1
4,M
∣∣Ŝ∣∣α1

3,M
〉 =∑

k

〈
α1

4,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
3,M
〉 = 0

〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉 =∑

k

〈
α1

4,M
∣∣Ŝ|�ek〉

〈�ek

∣∣α1
5,M
〉 = −i

bAL

λAL
.

Here we explicitly labelled the constants aAL, bAL by AL, because they differ from the constants
a, b used in the case of V̂RS. The relation between these two constants is for J = 1 only a
factor of 2/3, namely aAL = ( 2

3

)
a and bAL = ( 2

3

)
b. This can be easily seen by comparing the

matrix entries of Q̂J=1
v,AL with the one of Q̂J=1

RS;IJK . Additionally, we labelled the eigenvalue λAL

by AL, because Q̂J=1
v,AL and Q̂J=1

RS;IJK have different eigenvalues.
Starting with the operator V̂qIJK V̂q124 with IJK ∈ {134, 234, 123} and taking into account

the vanishing of certain matrix elements of Ŝ shown in equation (E.85), we get the following
expansion:〈
α1

i ,M
∣∣V̂qIJK V̂q124

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂q124

∣∣α1
1,M
〉
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+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂q124

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂q124

∣∣α1
1,M
〉
. (E.86)

From equation (E.24) we can read off
〈
α1

i ,M
∣∣V̂q124

∣∣α1
1,M
〉 = 0 with i = 3, 4, 5. Hence, only

the first two terms of the sum are not zero,〈
α1

i ,M
∣∣V̂qIJK V̂q124

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉

= +
〈
α1

i ,M
∣∣V̂qIJK

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉
. (E.87)

The matrix elements that are necessary to know in order to calculate the matrix element of
V̂qIJK V̂q124 explicitly are given below:〈
α1

1,M
∣∣V̂q124

∣∣α1
1,M
〉 =∑

k

〈
α1

1,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
1,M
〉 = √

2a

〈
α1

3,M
∣∣V̂q134

∣∣α1
3,M
〉 = 〈α1

3,M
∣∣V̂q234

∣∣α1
3,M
〉∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
3,M
〉

=
(

3 +
12

λ2

)√
λ〈

α1
3,M
∣∣V̂q134

∣∣α1
4,M
〉 = 〈α1

3,M
∣∣V̂q234

∣∣α1
4,M
〉∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉

=
(

6
√

2

λ2
− 3

√
2

)√
λ

〈
α1

4,M
∣∣V̂q134

∣∣α1
3,M
〉 = 〈α1

4,M
∣∣V̂q234

∣∣α1
3,M
〉∑

k

〈
α1

4,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
3,M
〉

=
(

6
√

2

λ2
− 3

√
2

)√
λ

〈
α1

4,M
∣∣V̂q134

∣∣α1
4,M
〉 = 〈α1

4,M
∣∣V̂q234

∣∣α1
4,M
〉∑

k

〈
α1

4,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉

=
(

6 +
6

λ2

)√
λ〈

α1
3,M
∣∣V̂q123

∣∣α1
3,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
3,M
〉 = √

2a

〈
α1

4,M
∣∣V̂q123

∣∣α1
4,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉 = √

2b

〈
α1

3,M
∣∣V̂q123

∣∣α1
4,M
〉 = 〈α1

4,M
∣∣V̂q123

∣∣α1
3,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q124 |�ek〉

〈�ek

∣∣α1
4,M
〉 = 0.

(E.88)

Thus, we obtain〈
α1

3,M
∣∣ (V̂q134 + V̂q234 + V̂q123

)
V̂q124

∣∣α1
1,M
〉 = −i12aAL

√
λ
√

2a

λAL
− i2aAL

a

λAL (E.89)〈
α1

4,M
∣∣ (V̂q134 + V̂q234 + V̂q123

)
V̂q123

∣∣α1
1,M
〉 = +i

√
218aAL

√
λ
√

2a

λAL
+ i

√
2aAL

2
√

ab

λAL
.
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The operator V̂q123 V̂qIJK where IJK ∈ {134, 234} can be expanded as〈
α1

i ,M
∣∣V̂q123 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.90)

The results in equation (E.21) show
〈
α1

3,M
∣∣V̂q123

∣∣α1
4,M
〉 = 〈

α1
3,M
∣∣V̂q123

∣∣α1
4,M
〉 = 0.

Moreover, by comparing equation (E.15) with equation (E.18), we note
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 =

−〈α1
i ,M
∣∣V̂q234

∣∣α1
1,M
〉

where i = 3, 4. Consequently, we have〈
α1

i ,M
∣∣V̂q123

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉

= +
〈
α1

i ,M
∣∣V̂q123

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q123

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉
.

(E.91)

The particular matrix elements that contribute to the expansion above are〈
α1

3,M
∣∣V̂q123

∣∣α1
3,M
〉 =∑

k

〈
α1

3,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
3,M
〉 = √

2a

〈
α1

4,M
∣∣V̂q123

∣∣α1
4,M
〉 =∑

k

〈
α1

4,M
∣∣V̂q123 |�ek〉

〈�ek

∣∣α1
4,M
〉 = √

2b

〈
α1

1,M
∣∣V̂q134

∣∣α1
1,M
〉 = 〈α1

1,M
∣∣V̂q234

∣∣α1
1,M
〉 =∑

k

〈
α1

1,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉 = +

12a2

λ2

√
λ

〈
α1

5,M
∣∣V̂q134

∣∣α1
1,M
〉= 〈α1

5,M
∣∣V̂q234

∣∣α1
1,M
〉=∑

k

〈
α1

5,M
∣∣V̂q134 |�ek〉

〈�ek

∣∣α1
1,M
〉=−6

√
2ab

λ2

√
λ.

(E.92)

Using the results above, we obtain〈
α1

3,M
∣∣V̂q123

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = −i12aAL

(2a2 + b2)
√

2a
√

λ

λALλ2
(E.93)〈

α1
4,M
∣∣V̂q123

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +i

√
212aAL

(2a2 + b2)
√

2b
√

λ

λALλ2
,

whereby we used a = (3/2)aAL and bAL = (2/3)b. Expanding the operator V̂q134 V̂qIJK where
IJK ∈ {134, 234} yields〈
α1

i ,M
∣∣V̂q134 V̂qIJK

∣∣α1
1,M
〉 = +

〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

3,M
〉〈
α1

3,M
∣∣V̂qIJK

∣∣α1
1,M
〉
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+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉〈
α1

1,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
5,M
〉〈
α1

5,M
∣∣Ŝ∣∣α1

4,M
〉〈
α1

4,M
∣∣V̂qIJK

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉

= +
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣V̂qIJK

∣∣α1
1,M
〉
. (E.94)

As before by using
〈
α1

i ,M
∣∣V̂q134

∣∣α1
1,M
〉 = −〈α1

i ,M
∣∣V̂q234

∣∣α1
1,M
〉

where i = 3, 4, the
expansion reduces to〈
α1

i ,M
∣∣V̂q134

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉

= +
〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q134

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣(V̂q134 + V̂q234)

∣∣α1
1,M
〉
. (E.95)

The same is true for V̂q234 V̂qIJK , thus〈
α1

i ,M
∣∣V̂q234

(
V̂q134 + V̂q234

) ∣∣α1
1,M
〉

= +
〈
α1

i ,M
∣∣V̂q234

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

1,M
〉〈
α1

1,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
3,M
〉〈
α1

3,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉

+
〈
α1

i ,M
∣∣V̂q234

∣∣α1
4,M
〉〈
α1

4,M
∣∣Ŝ∣∣α1

5,M
〉〈
α1

5,M
∣∣ (V̂q134 + V̂q234

) ∣∣α1
1,M
〉
.
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Inserting the explicit results of the matrix elements of V̂q134 and V̂q234 , we get〈
α1

3,M
∣∣ (V̂q134 + V̂q234

) (
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = −i12aAL18

(
2a2 + b2

λALλ

)
(E.97)〈

α1
4,M
∣∣ (V̂q134 + V̂q234

) (
V̂q134 + V̂q234

) ∣∣α1
1,M
〉 = +i12

√
2aAL18

(
2a2 + b2

λALλ

)
,

where for the latter matrix element we used a = (3/2)aAL and bAL = (2/3)b. By summing
the results in equations (E.89), (E.93) and (E.97), we obtain the result of the operator Ô

II,RS
2 ,

because the separated operators V̂qIJK V̂qĨ J̃ K̃
exactly add up to Ô

II,RS
2 :〈

α1
3,M
∣∣ÔII,RS

2

∣∣α1
1,M
〉 = −iaAL

(
12

√
λ
√

2a

λAL
+ 12

a

λAL

+ 12
(2a2 + b2)

√
2a

√
λ

λALλ2
+ 12 · 18

(
2a2 + b2

λALλ

))
〈
α1

4,M
∣∣ÔII,RS

2

∣∣α1
1,M
〉 = +i

√
2aAL

(
18

√
λ
√

2a

λAL
+

2
√

ab

λAL

+ 12
(2a2 + b2)

√
2b

√
λ

λALλ2
+ 12 · 18

(
2a2 + b2

λALλ

))
.

(E.98)

Since the eigenvalues

λAL =
√

3

2

√
2a2

AL + b2
AL and λ =

√
2

3

√
2a2 + b2 + 3, (E.99)
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the matrix elements of Ô
II,RS
2 will depend on the spin label j in general. The relation between

the matrix elements of Ô
II,RS
2 and Ô

II,AL
2 is given by〈

α1
3,M
∣∣Ô II,RS

2

∣∣α1
1,M
〉 = C3

(
j, 1

2

)〈
α1

3,M
∣∣Ô II,AL

2

∣∣α1
1,M
〉

(E.100)〈
α1

4,M
∣∣Ô II,RS

2

∣∣α1
1,M
〉 = C4

(
j, 1

2

)〈
α1

4,M
∣∣Ô II,AL

2

∣∣α1
1,M
〉
,

whereby

C3

(
j,

1

2

)
=
(

12

√
λ
√

2a

λAL
+ 12

a

λAL
+ 12

(2a2 + b2)
√

2a
√

λ

λALλ2
+ 12 · 18

(
2a2 + b2

λALλ

))

C4

(
j,

1

2

)
=
(

18

√
λ
√

2a

λAL
+

2
√

ab

λAL
+ 12

(2a2 + b2)
√

2b
√

λ

λALλ2
+ 12 · 18

(
2a2 + b2

λALλ

))
.

(E.101)

In order to see whether this dependence vanishes in the semi-classical regime of the theory,
i.e. in the limit of large j , we will analyse this limit now.

E.2.2. Semi-classical limit of the matrix elements of Ô
II,RS
2 . First, let us investigate the

semi-classical behaviour of the eigenvalues λAL and λ,

λAL =
√

3

2

√
2a2

AL + b2
AL

(E.102)

λ =
√

2

3

√
2a2 + b2 + 3 =

√
3

2

√
2a2

AL + b2
AL +

4

3
,

whereby we used aAL = (2/3)a and bAL = (2/3)b. Hence, semi-classically, we get λ → λAL.
The constants aAL, bAL are given by

aAL :=
(

�6
p

3!

2
Creg

)
2

3

√
j (j + 1) bAL :=

(
�6

p

3!

2
Creg

)
2

3

√
4j (j + 1) − 3. (E.103)

Accordingly, in the semi-classical limit bAL → 2aAL.
Summarizing, in the semi-classical sector of the theory, we have

λ → λAL, bAL → 2AL ⇒ λAL → 3aAL. (E.104)

If we express all a, b occurring in C3
(
j, 1

2

)
, C4
(
j, 1

2

)
in terms of aAL and bAL, and afterwards

take the semi-classical limit, we end up with

C3
(
j, 1

2

)→ C3
(

1
2

) = 9 · 42 C4
(
j, 1

2

)→ C4
(

1
2

) = (18 + 1)(18 +
√

2). (E.105)

It is precisely due to the linearly dependent triples that the awkward
√

2 term appears which
certainly lacks any combinatorial or geometrical interpretation.
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