INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 23 (2006) 3849-3878 doi:10.1088/0264-9381/23/11/012

Counting a black hole in Lorentzian product
triangulations

B Dittrich! and R Loll?

! Max-Planck-Institute for Gravitational Physics, Am Miihlenberg 1, D-14476 Golm, Germany
2 Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht,
The Netherlands

E-mail: dittrich@aei-potsdam.mpg.de and r.loll@phys.uu.nl

Received 28 February 2006
Published 10 May 2006
Online at stacks.iop.org/CQG/23/3849

Abstract

We take a step towards a nonperturbative gravitational path integral for black-
hole geometries by deriving an expression for the expansion rate of null
geodesic congruences in the approach of causal dynamical triangulations. We
propose to use the integrated expansion rate in building a quantum horizon
finder in the sum over spacetime geometries. It takes the form of a counting
formula for various types of discrete building blocks which differ in how they
focus and defocus light rays. In the course of the derivation, we introduce
the concept of a Lorentzian dynamical triangulation of product type, whose
applicability goes beyond that of describing black-hole configurations.

PACS numbers: 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Very encouraging progress has been made recently in constructing spacetime dynamically
from a nonperturbative gravitational path integral, by studying the continuum limit of causal
dynamical triangulations [1-4]. The quantum geometries generated in this way exhibit
semiclassical properties at sufficiently large scales: they are four dimensional [5, 6] and
the large-scale dynamics of their spatial volume is described by an effective cosmological
minisuperspace action [7]. Their short-distance behaviour is highly nonclassical, including a
smooth dynamical reduction of the spectral dimension from four to two [8] and evidence of
fractality [6].

A question frequently asked of this and other approaches to quantum gravity is what they
have to say about the quantum dynamics of black holes and, more specifically, whether the
black-hole entropy ‘comes out right’. What is usually meant by this is whether the theory
can reproduce the Bekenstein—Hawking formula S = A/4 which relates the entropy S of a
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black hole to its area A in Planck units, and preferably at the same time provide a microscopic
explanation of the presence of black-hole entropy in terms of fundamental excitations of
geometry (see [9-11] for recent reviews). Although often portrayed as a touchstone for
quantum gravity, it should be kept in mind that the entropy formula and other thermodynamic
relations satisfied by black holes are semiclassical. Whether or not they have a fundamental
role to play in a genuinely nonperturbative formulation of the theory remains to be seen.

This naturally raises the question whether the approach of causal dynamical triangulations,
which we believe is a strong candidate for a nonperturbative theory of four-dimensional
quantum gravity, can provide new insights into the quantum properties of black holes.
Apart from having already reproduced certain classical aspects of general relativity from
first principles, the fact that the causal, Lorentzian structure of spacetime geometry plays a
central role and that a well-defined Wick rotation is available at the regularized level seem
to make this formulation particularly suited for addressing issues to do with black holes.
However, putting this into practice turns out to be a challenging proposition. Not only are
there technical obstacles to be overcome, but one also has to decide what precise quantity
should be calculated if one were given a well-defined method for performing nonperturbative
sums over geometries, such as causal dynamical triangulations, a question that has hardly
begun to be addressed.

The main choices to be made when setting up the path integral are that of an ensemble
of geometries to be summed over and of boundary conditions for the geometries. Since
numerical evaluations of the path integral must necessarily take place in a finite spacetime
volume, boundary conditions will have to be provided not only on some initial and final spatial
slice, but also on a (timelike) boundary at large radius, and potentially also on a hypersurface
at small radius to avoid any central singularity?. We will for the moment set aside the question
of how the boundary conditions should be chosen and how many black holes one can expect
to generate dynamically as a function of the boundary data. Instead we will focus on an
issue that will be relevant regardless of the geometric ensemble and boundary conditions
chosen, namely, which observable in the quantum theory can give us information about the
presence or otherwise of a black-hole configuration. In a fully nonperturbative formulation,
this is a difficult task because of the absence of a classical background structure. In the
nonperturbative path integral, all possible geometries are superposed, not just those which
represent fluctuations around a given classical background geometry. Semiclassical geometry
emerges only in the continuum limit and at sufficiently large scales [6, 7]. The problem is then
how and where in the dynamically generated quantum geometry one should look for evidence
of a black hole, say, an apparent horizon.

To simplify matters slightly, we will consider geometries with at most a single black hole
and which moreover have (an approximate) spherical symmetry. To translate these conditions
to the setting of causal dynamical triangulations, a useful concept is that of triangulations
of product type. These are roughly speaking simplicial analogues of fibred spaces, with a
triangulated base space and triangulated fibres. The inspiration for such structures comes
in part from Lorentzian semi-random lattices [13], which in turn were motivated by causal
triangulated models of quantum gravity in lower dimensions [1, 3]*.

In the context of a nonperturbative description of four-dimensional black holes, we propose
to use triangulations of product type whose base space is a simplicial version of the 7 plane,
3 A detailed discussion of the inclusion of boundary terms in causal dynamical triangulations can be found in [12].
4 The presence of a Mobius inversion formula for such semi-random lattices, relating their partition function to that
of a statistical model of geometric objects of one dimension less (see also [14]), may help to solve these models
analytically. In the context of three-dimensional quantum gravity in terms of causal dynamical triangulations, this

possibility is currently being explored [15]. A related quantum-cosmological model which introduces more ‘order’
in three-dimensional random triangulations is described in [16].
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with fibres representing the two angular directions. For simplicity, it seems a good strategy
not to include completely general geometries (triangulations) of this type in the path integral
initially, but only a subset which satisfies certain homogeneity requirements along the angular
directions, implementing an approximate spherical symmetry at a coarse-grained scale. The
fact that an exact continuous rotation symmetry cannot even in principle be realized by
the simplicial structures we are working with is not at all a drawback, but simply implies
that the path integral will necessarily include fluctuations which violate spherical symmetry,
especially at short distances. This is desirable from the point of view of the quantum theory,
because it is likely to make the model closer to the full theory than gravitational models where
an exact symmetry reduction is performed before the quantization (see [17] for an analogous
reasoning in canonical quantum gravity).

In the present work, we will not attempt to define and evaluate a nonperturbative path
integral for black holes, but pursue a more modest goal, namely, to formulate a geometric
observable for dynamical triangulations to help to determine the ‘presence’ (in the sense of
expectation values) of a black hole in the quantum theory. The observable is a simplicial
version of the integrated expansion rate for light rays, whose vanishing in the classical
continuum theory is an indicator of the presence of an apparent horizon. We derive an
analogous quantity for causal dynamical triangulations which has a particularly simple form,
and which we hope can be used to construct an efficient ‘horizon finder’ in Monte Carlo
simulations of the quantum theory. It depends only on the numbers of simplicial building
blocks of various types and orientations occurring in a given fibre of the product triangulation,
but not on how these building blocks are glued together locally. In this sense, the presence of
an apparent horizon can be established simply by counting?.

The rest of the paper is structured as follows. In section 2, we introduce the general
concept of a Lorentzian triangulation of product type, before specializing to the case of a
two-dimensional base space. For product triangulations in 2 + 1 and 2 + 2 dimensions, we
classify all simplices occurring in the fibres according to their orientation and derive some
topological relations among them. Section 3 is devoted to a discussion of extrinsic curvatures
and expansion rates. We start by recalling the classical notion of a trapped surface and compute
the light expansion rates on a surface of codimension 2 from the extrinsic curvatures and other
geometric data. We then repeat the calculation for piecewise flat manifolds, by employing a
careful limiting process at the ‘kinks’ of the triangulation®. This sets the stage for computing
the integrated expansion rates for causal dynamical triangulations. We derive the ‘counting
formulae’, our main result, in both 2 + 1 and 2 + 2 dimensions, and also give a qualitative
interpretation in terms of the focusing and defocusing of light rays by particular types of
simplices. In section 4, we construct an explicit example of a triangulated black hole in the
formalism of Lorentzian product triangulations and section 5 contains a summary and outlook.
The appendix deals with the definition of affine coordinates, which are used in some of our
derivations. Part of the work presented here is contained in the diploma thesis of one of the
authors [19].

2. Lorentzian triangulations of product type

A triangulated manifold 7 of product type is a particular case of a simplicial manifold.
Topologically speaking, it is a Cartesian product 7 = B x F of a b-dimensional base space

5 To avoid any misunderstandings, let us emphasize that this counting has nothing to do with a counting of microstates
to obtain an entropy for a black hole.
6 A related treatment in the context of classical Regge calculus has appeared previously in [18].
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Figure 1. Example of a two-dimensional Lorentzian triangulation 7 whose base space B is
the one-dimensional triangulation consisting of three timelike edges. Note that in our graphical
representation lengths are not represented isometrically, in fact, this is impossible because of
the intrinsic curvature carried by 7. There is only one type of triangular building block which
appears with either up- or down-orientation. Consequently, all spacelike edges (horizontal) and
all timelike edges (interpolating between adjacent slices of constant integer time) have identical
length, although the latter fact is not rendered faithfully in the figure.

B with an f-dimensional fibre space F. A simplicial realization of this structure consists of
a simplicial base manifold B, where to each k-dimensional simplex, 0 < k& < b (k-simplex
for short), o of B we associate a so-called o-fower, which is a particular triangulation of
o x F, whose top-dimensional simplices are of dimension k + f. We will only consider
triangulations 7 with a finite number of d-simplices. For k = b, the dimension of the
simplices in the o-towers is maximal and coincides with the dimension d = b+ f of 7.
The triangulations of these towers as well as the number of d-simplices they contain will in
general depend on the b-dimensional base simplex o. In order that the o-towers fit together
in a simplicial manifold, neighbouring towers have to satisfy matching conditions along their
common (d — 1)-dimensional boundaries, which themselves are o-towers over the (b — 1)-
dimensional simplices of the base manifold B. The triangulations of the d-dimensional towers
induce triangulations on all lower dimensional o -towers, that is, on the vertex towers, the edge
towers, etc. By definition, each vertex of a product triangulation lies in precisely one vertex
tower.

The focus of our interest will be on Lorentzian triangulations of product type, and our
main applications will have a two-dimensional base triangulation. Note that the simplicial
manifolds one considers in the approach of causal dynamical triangulations can be thought
of as a special class of triangulations of product type, with base space B the one-dimensional
proper-time direction and fibre F a spatial hypermanifold of constant time. The simplicial
realization of B is simply a one-dimensional chain of timelike edges, all of equal length.
For d-dimensional simplicial spacetimes, the spatial slices of constant integer time ¢ are the
(d — 1)-dimensional vertex towers over the (zero-dimensional) vertices of B, and the minimal
spacetime ‘sandwiches’ between times ¢ and 7 + 1 are the edge towers over B. Each vertex of
the spacetime triangulation lies in the vertex tower of exactly one vertex in B and thus inherits
an integer time coordinate.

The simplest non-trivial case of a causal triangulation is in dimension 2, an example of
which is depicted in figure 1. The vertex towers are one-dimensional chains of spatial edges
or links and the edge towers are linear sequences of two-dimensional triangles pointing up
or down. In a useful notation that generalizes to more complicated examples, we denote an
up-triangle by [2, 1] (‘two vertices in the tower above the base vertex at time ¢, one vertex
in the tower above the base vertex at t + 1°) and a down-triangle by [1, 2] (the converse).
Each strip is uniquely characterized by a sequence of such number pairs. Analogously, the
d-simplices in a minimal spacetime sandwich of a d-dimensional causal triangulation 7 can be
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t=2

Figure 2. An edge tower o x F of a two-dimensional Lorentzian triangulation can be represented
by a one-dimensional graph consisting of long and short edges which corresponds to a cut through
the tower at some time which does not coincide with + = 1/2. In the figure, the cut at t < 1/2
is indicated by the dashed line, the short edges have length [, and the long ones /;. Because of
our planar representation, the horizontal distances in the interior of the strip are again not rendered
faithfully.

characterized by a pair [iy, i2], ix € {1, ..., d}, where i; counts the number of vertices at time
t and i, those at time 7 + 1 [4]. Since a d-simplex has d + 1 vertices, there are d different ways
how its vertices can be distributed over the two constant-time slices, leading to configurations
of type [d, 1], [d — 1,2],...,[1,d].

The product triangulations we will consider are Lorentzian, that is, they are assembled
from flat d-dimensional Minkowskian simplicial building blocks and have a product structure
with respect to the time direction. We show in the appendix that in such manifolds the notion
of a constant-time slice can be extended naturally to non-integer ¢. The resulting (d — 1)-
dimensional hypersurfaces are again piecewise flat, but the individual building blocks are
not necessarily simplices (for example, the intersection pattern obtained by cutting through
a three-dimensional Lorentzian triangulation is a simplicial manifold consisting of triangles
and rectangles). These concepts can be extended straightforwardly to the case where the base
manifold B is higher dimensional. Because of the Lorentzian structure of the triangulation,
one of the directions in B will be the time direction. For example, in the simplicial analogues
of spherically symmetric models discussed below, dim(B) = 2, with one time ¢ and one radial
direction r. Also in this case, there will be a well-defined notion of an f-dimensional fibre
F over an arbitrary non-integer base point (¢, r). This fibre takes the form of a piecewise flat
manifold, with generalized flat building blocks.

An important and useful observation is the fact that the d-dimensional geometry of a
o -tower, where o is a b-simplex in B, can be deduced entirely from the geometry of the fibre
F over a single interior point of o. A simple example is again given by a two-dimensional
Lorentzian triangulation. The fibre of constant time s over some interior point s of a strip
[#, ¢t + 1], with ¢ an integer, is a sequence of straight edges. In order to be able to distinguish
the edges that come from cutting up- and down-triangles, we must choose s # ¢ + 1/2
(a similar exclusion of symmetric points also applies in more complicated examples). This
will result in edges of two different lengths /, and I, as depicted in figure 2, and it is obvious
that we can reconstruct the entire strip (or o-tower) from the knowledge of the sequence
of the two types of edges occurring in the fibre over s. An alternative way of keeping
track of the two different types of edge that can occur in the tower is to colour-code them
(figure 3). Both procedures generalize to more complicated product manifolds, with each
o-tower represented uniquely by either a (generalized) f-dimensional triangulations or a
special type of multicoloured graph (see the following sections for further examples and the
appendix for geometric details), and the matching conditions for o -towers taken into account
appropriately.
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Figure 3. Alternatively, the same edge tower can be represented by a one-dimensional graph
consisting of edges of two colours, which can be thought of as being induced from colouring the
up- and down-triangles differently and considering a cut at midtime r = 1.5.

2.1. Lorentzian product triangulation with two-dimensional base

In preparation for later sections, we will now describe the geometry of Lorentzian triangulations
7T with a two-dimensional base space, ford = 2+ 1 and d = 2 + 2. In both cases, the top-
dimensional simplices of B are two-dimensional triangles, and 7 consists of triangle towers.
By assumption, the base manifold is itself of the form of a (1 + 1)-dimensional Lorentzian
product triangulation B = B’ x F’, of the type usually considered in two-dimensional causal
dynamical triangulations [1] and depicted in figure 1. Its base B’ is a one-dimensional
triangulation consisting of timelike edges o', with associated edge towers o’ x F' consisting
of sequences of up- and down-triangles in the spatial direction. For our general discussion, it
will not play a role whether the topology of these strips is spatially open or closed. Note that
because of the physical interpretation of the triangulations as causal spacetime geometries,
there is no symmetry between the time and spatial direction of B. Since the number of triangles
in an edge tower o’ x F’ is in general a function of time, B cannot be thought of as a product
triangulation with the spatial direction as its base.

It follows that our simplicial manifolds have the form of ‘staggered’ product triangulations,
which can be thought of as fibrations over B or B’. Accordingly, their d-simplices can
be characterized by how they fit into either of these product structures. The information
concerning the fibration 7 = B’ x F’ is simply the number pair [iy, i] which counts how
many vertices of the simplex lie in either one of the two adjacent slices of constant time ¢,
as described above. From this specification, one can uniquely deduce the geometry of the
d-simplex, i.e. which of its edges are spacelike and which are timelike, and compute all
volumes and angles of the simplex and its subsimplices. Analogously, the orientation of a d-
simplex with respect to the fibration 7 = B x F is specified by a triple of numbers [}, j», j3l,
which count how many of its d + 1 vertices lie in each one of the three vertex towers contained
ino x F.

2.2. The example of 2 + 1 dimensions

In order to train our geometric imagination, we start with the simpler case d = 3 where the
fibres F are one dimensional. From the point of view of the time fibration 7 = B’ x F’,
the three-simplices or tetrahedra come in three different time orientations, [3, 1], [2, 2] and
[1, 3]. From the point of view of the fibration 7 = B x F, there are three possibilities how a
tetrahedron can appear in a tower above a given base triangle o, which in an obvious notation
are labelled by [2, 1, 1], [1, 2, 1] and [1, 1, 2]. Consequently, one can visualize the tower over
o as a prism with triangular base, which itself is of the form of a linear sequence of tetrahedra
of these three types. Assigning three different colours to the differently oriented tetrahedra, we
note that the geometry of the triangulated prism can be encoded in a one-dimensional graph
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Figure 4. A triangle tower of a (2 + 1)-dimensional product triangulation can be represented
by a one-dimensional graph consisting of edges of three colours, corresponding to a fibre over
an interior point of the triangle. The three colours correspond to the different orientations
with which a tetrahedron can appear in the prism. The figure depicts a sequence of tetrahedra
[2,1,1],[1,2, 1], [2, 1, 1], [1, 1, 2], etc, where the labels of the three vertex towers are as indicated.

Table 1. From this table, one reads off the unique building block [, , ji, , ji;] in the triangle tower
of a (2 + 1)-dimensional product triangulation corresponding to a simplex of a one-dimensional
coloured graph (left column). The building block depends on the fibre type, as expressed by the
number of colours occurring in the coloured graph to which the simplex belongs (top row). The
three iy are colour labels.

Simplex type\in graph with colours  ijizi3 i1ip i
Edge of colour i [2i, 1. 1] [200 165 05]  [241. 00,054 ]
Vertex [Li. 1y, L] [1i0 160 05]  [Liy, 0iy, 0]

made of edges of the three colours (figure 4), namely, the graph corresponding to the fibre
over any interior point of o. This is a three-dimensional analogue of the situation depicted in
figure 3.

In order to formulate the matching conditions between neighbouring triangle towers in
this representation, one needs to translate the geometry of the edge tower common to the two
triangle towers into a one-dimensional graph. One simply considers the fibre over an interior
point of the edge in B in question. It is clear that this gives rise to a two-coloured graph,
because it represents a cut through a two-dimensional triangulated strip. Denoting by o} and
0, the two triangles in B adjacent to the edge, such a two-coloured graph is obtained by moving
an interior point in one of the o;s towards the shared edge. In the process, one type of coloured
edge disappears from the fibre above the point, because the corresponding type of tetrahedron
shares only an edge with the common edge tower and not a triangle. The matching condition
can therefore be formulated as a condition on the linear graphs characterizing oy x F and
0, x F with one colour each deleted.

We close this subsection with some further geometric observations, which are
straightforward in a three-dimensional context, but generalize to the more difficult four-
dimensional case. First, one may also associate a linear graph with a vertex tower, which
can only ever consist of edges of a single colour. Second, to this graph and any other graph
corresponding to a fibre over a point of o, the Euler relation

No=Ni+p (D

must apply, relating the number Ny of vertices in the graph to the number N; of edges,
irrespective of their colour. The variable p is either O or 1, depending on whether the graph
topology is ' or [0, 1]. Table 1 lists which building block in the triangle tower corresponds to
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which element (vertex or coloured edge) of a one-dimensional coloured graph, depending on
whether the graph comes from a fibre over an interior point of o (and thus has three colours
i1, iz, i3), from a fibre over an edge (excluding the vertices) of o (with two colours, e.g., i}, i)
or from a fibre over one of the three vertices (with a single colour, e.g., i). For an interior point
of o, relation (1) implies

Nii1 = Noji + Nigi + Nip + o, )

where the subscripts of the counting variables N}, ;, ;, refer to the characterization of tetrahedra
in the triangle tower according to the numbers [ j;, j», j3] of their vertices that lie in the vertex
towers 1, 2 and 3. Subsimplices of a given tetrahedron inherit a triplet [ j;, j», j3] in an obvious
way, with the three j; adding up to the dimension of the subsimplex plus one. This accounts
for the appearance of the counting number of triangles on the left-hand side of equation (2).
Lastly, note that for the set of graphs associated with a given base triangle, edges of a particular
colour occur with the same multiplicity in all graphs if the colour occurs in the graph at all.
This translates into the relation

Naii = Najg = Nao1 = Noygo 3)

and permutations thereof. It follows that all numbers N; ;;, in one triangle tower are
determined by N»ji, N1 and Nyjp. Moreover, these three numbers are independent, since
each type of tetrahedron can be inserted at any position of a triangular prism.

2.3. The example of 2 + 2 dimensions

In comparison with the previous subsection, we will use the same simplicial base space B, but
increase the dimension of the fibre F from 1 to 2. Let us call the spatial direction of the base
space the ‘radial direction’ (as will indeed be the case in later sections). The four possible
types of four-simplices from the point of view of the time fibration are [4, 1], [3, 2], [2, 3]
and [1, 4]. These building blocks can still have different orientations within a given triangle
tower. Without loss of generality, let us assume that the three vertices of the base triangle o
have coordinates (¢, r1), (1, r2) and (#,, r3). For a [4, 1]-building block, say, there are now
three possibilities how the four vertices in the vertex tower over the time #; (with respect to the
fibration B’ x F’) can be distributed over the two vertex towers (¢, r1) and (¢, r,) (with respect
to the fibration B x F), labelled by [3, 1, 1], [1, 3, 1] and [2, 2, 1]. Similarly, a [3, 2]-building
block can occur with two orientations, [2, 1, 2] and [1, 2, 2], but there is only a single way,
[1, 1, 3], to orient a [2, 3]-building block.

The question now arises of how the geometry of a triangle tower can be captured by
looking at the two-dimensional B-fibres over (interior) points of its base triangle o, which
are cuts through 7 of constant time and radius. The top-dimensional building blocks of
these surfaces are triangles (coming from [3, 1, 1] and its permutations) and rectangles (from
[2, 2, 1] and its permutations). Like in previous examples, we can now colour-code subsets of
edges in F that will always appear with a common length, independent of the base point in B
of the fibre. Again they fall into three sets, which we will associate with the colours red, green
and blue. The triangular building blocks in F are monochrome, while the rectangles are all
bi-coloured, with opposite (and parallel) sides of identical colour. The fibre F therefore takes
the form of a piecewise flat manifold with triangles and rectangles which are glued together
along edges of identical colour.

Alternatively, it is sometimes convenient to use the graph dual to this (generalized)
triangulation. Instead of triangles we then have dual monochrome trivalent vertices, and
instead of the rectangles dual bi-coloured four-valent vertices, consisting of pairs of mutually
crossing edges of different colour. Since the subgraphs of a single colour close on themselves,
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Table 2. Four-simplices in the triangle tower over a base triangle with vertex coordinates
(t1,r1), (t1,r2) and (2, 73), how they appear in the product triangulation B’ x F’ with time
base, and in the fibres F’ and F, together with a dual representation of the latter. The three colours
are indicated by r, g and b.

Simplex type B’ x F’ type  Fibre F’ Fibre F Dual graph

[3,1,1] [4,1] Tetrahedron  Triangle rrr Three-valent vertex r
[1,3,1] [4,1] Tetrahedron  Triangle ggg Three-valent vertex g
[1,1,3] [2, 3] Prism Triangle bbb Three-valent vertex b
[2,2,1] [4,1] Tetrahedron  Rectangle grgr Four-valent vertex gr
[2,1,2] [3,2] Prism Rectangle rbrb Four-valent vertex rb
[1,2,2] [3, 2] Prism Rectangle gbgb  Four-valent vertex gb
[2,1,1]r [3,1] Triangle r Edger Edger

[1,2,1] g [3,1] Triangle g Edge g Edge g

[1,1,2]b 2, 2] Rectangle b  Edge b Edge b

[1,1,1] [2,1] Edge Vertex Polygon

the dual graph has the form of a superposition of three trivalent monochrome planar graphs.
Similar to what happened in the (2 + 1)-dimensional example, if the base point of the fibre is
an interior point of an edge of o, (dual) edges of one of the colours disappear, and if the base
point coincides with a vertex of o, there are only (dual) edges of a single colour left.

Summarizing our findings, we can say that the geometries of triangle, edge and
vertex towers of a (2 + 2)-dimensional product triangulation are uniquely characterized by
superpositions of three, two and a single monochrome trivalent planar graph, respectively’.
Table 2 summarizes the simplex types that can occur in a triangular tower, and how they appear
with respect to the various fibrations.

With this characterization in hand, we can now apply the Euler relations for planar graphs,

Ny —Ni+N3=x  3NJ"+4NSP* = 2Ny, )
relating the numbers N of building blocks of dimension d contained in the dual graphs
associated with a triangle tower. In (4), Nj = Né3)* + Né4)* is the sum of dual three- and
four-valent vertices, N; and N; are the numbers of dual edges and faces, regardless of their
colour, and yx is the Euler number of the fibre. Because there are different graphs associated
with base points in the interior of the triangle o, and its edges and vertices, (4) amounts to
a total of 14 equations for the counting numbers N, ;,;, for the various simplex types of a
given triangle tower. They can be used to express N; and N; as functions of Né3)* and Né4)*,
say. Applying (4) to the graph representing the full triangle tower and making use of the
‘translation table’, table 3, we obtain
N311+ Nizt + Nz + Nazt + Naiz + Niza — Naigp — Niot — Nua + N =
3(N311 + Nizp + Nipz) +4(No2i + Nopo + Nioz) = 2(Nogg + Niai + Nin).

Furthermore, the numbers of three- and four-valent vertices of the same colour(s) are equal
for each of the graphs in which they appear, that is,

N3i1 = N3jo = N3oi = N3o, Nayi = Nag, (6)

as well as permutations hereof. In conjunction with equations (4), they imply that each N, ;, ;,
is determined by the six numbers N3i1, Ni31, N113, Nazi, Noiz and Nyp. Moreover, within

o)

7 This picture is reminiscent of three-dimensional causal dynamical triangulations, where the three-dimensional
‘sandwich’ geometry of a discrete time step At = 1 can be represented by a dual graph which is a superposition of
two monochrome trivalent planar graphs [20].
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Table 3. From this table, one reads off the unique building block [ji,, ji,. ji;] in the triangle
tower of a (2 + 2)-dimensional product triangulation corresponding to a building block of a dual
planar coloured graph (left column). The building block [, , ji, . ji;] depends on the fibre type, as
expressed by the number of colours (three, two or one) occurring in the coloured graph to which
the simplex belongs (top row). The three iy are colour labels.

Building block\in dual graph  i1izi3 i1ip i
Three-valent vertex i} [3i. 1. 15] [3is 1025 053]  [3i1. 04y, 035 ]
Four-valent vertex iyip [21'1 2 2iy, 1,-3] [2,-1 2 2y, 0,3]

Edge i1 (20,1, 1] 20515, 05]  [241, 05y, 03]
Polygon [11'1’ Liy, 1"1] [lil’ liszi3] [11'1'0!'2’ 0"3]

each triangle tower, these numbers are independent, because one can alter them separately by
applying local changes in the geometry.

3. Extrinsic curvatures and light expansion rates

The main aim of this section is the derivation of an expression for the light expansion rate
H of a spacelike (d — 2)-dimensional surface S of constant time and constant radius in
a simplicial product manifold of dimension 4, in order to formulate necessary criteria for
the presence of black holes in the quantum theory. We start by reminding the reader of
the geometric meaning of trapped surfaces. For reasons of completeness, we then review
the construction of the expansion rate in terms of the extrinsic curvatures of S and a suitably
chosen spacelike hypersurface ¥ for the case of a smooth d-dimensional manifold (M, g.),
following the treatment in [21]. We then translate this to simplicial manifolds, starting with
a construction of the extrinsic curvatures. The expansion rate is first computed for a three-
dimensional triangulation, because the geometry of the situation is closely analogous to that
in four dimensions, but much easier to visualize. We discuss the role of different types of
simplicial building blocks and their effect in terms of the focusing and defocusing of light
rays. As one would expect, the simplicial expressions for the expansion rates are subject to
discretization ambiguities. We find that for specific choices of how the piecewise flat surface
S traverses the top-dimensional building blocks of the triangulation, the formulae for the
expansion rates in both three and four dimensions take on a particularly simple form which
will be useful in numerical simulations.

3.1. Trapped surfaces

A central question in our attempt to set up a path integral for black-hole geometries is how
one may recognize the existence of a black-hole region or a horizon in the quantum geometry.
One difficulty is that the usual definition of a black-hole region is both a classical concept and
highly non-local (for details, see [22] and references therein). To find the black-hole region
one has to know the entire spacetime manifold M = (M, g,;) and to find the entire causal
past J~(J*) of future null infinity J*. The spacetime M is then said to contain a black-hole
region if M does not coincide with the causal past of future null infinity. What motivates this
definition is the fact that ‘nothing can escape from a black hole’, and, in particular, nothing can
escape to future null infinity. The event horizon is defined as the boundary of the black-hole
region, which in turn is defined as the complement of J~(J*) in M.

This definition is not suited for the formulation of a nonperturbative path integral in
terms of dynamical triangulations, because there one can only work with spacetimes of finite
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Figure 5. Inward- and outward-pointing light rays (solid and dashed arrows) outside a black-hole
region (left) and at an apparent horizon (right). Here, we depict the situation in a (2+1)-dimensional
spacetime, where the surface S (lower circle) is one dimensional.

volume. A more local criterion for a horizon or a black-hole region is the existence of a
so-called trapped surface. This also appears in other approaches to quantum geometry (see
[23] and references therein), in classical general relativity in order to define ‘(nearly) isolated’
horizons [24], as well as in ‘horizon finders’ in numerical relativity (see, for example, [25]).

A trapped surface S is a compact spacelike surface of codimension 2, with the following
property. Consider future-directed null geodesics (i.e., light rays), which start off orthogonally
from S. This can happen in two directions, called ‘inward-pointing’ and ‘outward-pointing’,
see figure 5. (The distinction is natural since S is assumed to be closed, for instance, a sphere.)
Light rays which point outward, say, can either diverge from or converge towards each other
locally. This effect is measured by the outward-pointing expansion rate H,, which can be
either positive (for divergence), negative (for convergence) or vanishing. For a sphere in flat
Minkowski space, the expansion rate H, is everywhere positive and the analogous expansion
rate H_ for inward-pointing light rays negative. However, for a sphere inside a black hole,
even the outward-pointing light rays are bent inwards to such an extent that the expansion rate
H., becomes negative too.

Consequently, one defines a trapped surface as a compact spacelike surface of
codimension 2, whose expansion rates H, and H_ are both negative. If ‘negative’ is replaced
by ‘non-positive’ one speaks of a marginally trapped surface. The outermost marginally
trapped surface is called the apparent horizon (assuming certain technical conditions, which
are unimportant here). Its geometry is depicted in figure 5. One can show that its expansion
rate H, vanishes everywhere.

For a Schwarzschild solution, the apparent horizon coincides with the event horizon.
Moreover, a marginally trapped surface is always contained in a black-hole region, as defined
above (see [22] and references therein for a precise formulation of the theorem). This also
holds for spacetimes which do not fulfil the Einstein equations, but instead the condition
R,,k%k" > 0 for the Ricci tensor and all null vectors k?. The latter is satisfied if the Einstein
equations hold and if the matter satisfies the strong or weak energy condition.

These classical considerations motivate the replacement of the global characterization
of black holes in terms of event horizons by the more local criterion that a trapped surface
exists. The condition R,,k“k" > 0 will not in general be satisfied by the spacetime geometries
contributing to the nonperturbative path integral, because the individual path-integral histories
are arbitrarily far away from classical solutions. However, one would expect to recover such
a property at sufficiently large scales in an appropriate continuum limit of the theory. We will
in the following concentrate on the condition H, = 0 as an indicator for the presence of black
holes.

3.2. Continuum treatment

The light expansion rate H describes the expansion of a family of lightlike geodesics starting
orthogonally from the (d — 2)-dimensional surface S. It is defined by

H = V,p*, )
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where V is the Levi-Civita connection associated with the spacetime metric g, and p“ is the
tangent vector field to a future-pointing null geodesic congruence starting off orthogonally
from the surface S. In other words, p® must satisfy

pap® =0, mappls =0, (8)
and

P*Vap” =0, ©)

where m,;, is the metric induced on S by the spacetime metric g,,. Embedding S into a
spatial (constant-time) hypersurface ¥ with future-pointing unit normal vector field n* and
calling =¢“ the (outward- and inward-pointing) unit normals to S tangential to X, the (d —2)-
dimensional metric is given by

Map = 8ab t Nallp — Gaqp- (10)

For later use, we also introduce the notation
hab = &ab T NgNp = Mgp + Gaqp (11)

for the induced metric on X. Note that m,, is independent of the choice of ¥ as long as the
latter contains S. The general solution to equations (8) on S can then be written as

s = cx(n’ £4°, (12)
with coefficients cx which are positive functions on S. As long as the functions ¢y are kept
arbitrary, the general solution (12) does not depend on ¥ in the sense that if one starts with

another hypersurface ¥’ and corresponding normal vectors n'* and ¢’“, one can always find
functions ¢/, such that

ip‘“s =ci(n®£q°) = (" £q%) = jEp'“‘s. (13)
Using the decomposition (10), we can compute the expansion rates H for the inward- and
outward-pointing light rays,
H. = gabvaipb
= m“"V" py +4°q"Va* pp — n“n"V> py
=m™Va*pp = (cx)™Fp" F q") )™ [P Vo po] £ " () [FP" VT ps]
= m™V,* py. (14)

Going from the second to the third line, we have used equation (12). The terms in square
brackets vanish by virtue of relations (8) and (9). Noting that the covariant derivative is
projected onto the surface S in the last line of (14), we can simplify the expansion rate further
by using again expression (12) for the vector fields * p® on S,

He = mV,cx(ny, £ qp)
= cm®Vanp £ cam®Vaqp + [mC(ny £ @)1 Vacs
=y (—m Ky, F k). (15)

The term in square brackets vanishes by definition of p;, and in the third line we have defined
the extrinsic curvature

Kup = —hEVeny (16)
of ¥ in M and the extrinsic curvature

kap = —mShVagqy (17)
of Sin X.
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The last line of (15) shows that the signs of the expansion rates Hy. on S (which determine
whether or not S is a trapped surface) are independent of the prefactors ci introduced in
equation (12) which are always positive. Likewise, the condition H, = 0 for an apparent
horizon does not depend on the choice of the constant-time surface X and therefore on c,. Our
reason for keeping track of the prefactors ¢y explicitly is the fact that in the quantum theory
it may be convenient to monitor integrated expansion rates rather than local ones. If such an
integration were performed over a surface S at a given time and radius and if the underlying
geometry were exactly spherically symmetric, the expansion rate would be constant on S and
the ¥-dependence of the integral would simply amount to an overall factor c.. However, in
situations without exact spherical symmetry, either in a smooth or a simplicial setting, it does
matter a priori that the absolute magnitude of Hy depends on cy. If we define an ‘averagely
(minimally) trapped surface’ S in a generic geometry and for a specific hypermanifold ¥ by

#.(8) = / H./detm dS = 0, (18)
S

where +/det m dS is the invariant volume element on S, the same condition will in general not
hold for a different choice X’ of the hypermanifold containing S, as was pointed out in [26].
The average expansion rate )|, may become positive, say, because the prefactor ¢/, which
appears when one expresses p® = n® + ¢ in terms of the primed normals,

pl=c, (' +4q"", (19)

may be large in a region of positive H, (defined with respect to X) and small in a region of
negative H,, whereas the contributions from the two regions cancelled each other with respect
to the unprimed spatial slice X.

It follows that some caution has to be applied when using the vanishing of averaged
expansion rates as an indicator for the presence of black holes. This applies in particular to
the case of simplicial manifolds which by their very nature can never be exactly spherically
symmetric. Nevertheless, there are important situations—including the one considered here—
where the vanishing of the integrated expansion rate, (18), is the relevant criterion for indicating
the presence of an apparent horizon in the quantum theory. Firstly, we may use the preferred
time foliation shared by all Lorentzian triangulated geometries in a quantum superposition to
define the null geodesic congruence in terms of equation (12) with ¢+ = 1 and thus arrive
at unique values for HL. Second, as explained in the introduction, we are interested in
studying the path integral for approximately spherically symmetric geometries, in which case
the variations across S of the expansion rate H, will not be large. Moreover, the surfaces
¥ will be approximately spherically symmetric, and therefore the factors ¢/, connecting the
expansion rates of two different (approximately spherically symmetric) surfaces X and ¥’
will be approximately constant, so that the case described above will generically not occur.

One can also formulate (local or integrated) criteria for the presence of trapped surfaces
which depend quadratically on the expansion rates Hy. For example, a potential advantage
of using the product H, H_ is the fact that it is independent of the choice of the constant-time
surface ¥ [26]. A generic problem with such expressions in a simplicial approach is that
they contain products of delta functions at the same point, and any regularization procedure
is subject to a high degree of discretization ambiguity. Also, one generically cannot avoid an
explicit dependence of the formulae on the local geometry of the triangulation, as opposed
to mere counting of simplex types, which can be achieved for the linear expansion rates (cf
sections 3.4 and 3.5). For these reasons, we will not pursue this possibility presently.
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3.3. The case of piecewise linear manifolds

In this section, we will develop an expression for the expansion rate for the case of a piecewise
flat manifold and will assume that both the constant-time surface ¥ and the surface S are
fibres with respect to the two product structures involved. The second of these assumptions
we will discuss later on in sections 3.4 and 3.5, for reasons explained there. In order to apply
formula (15) to the case of a piecewise linear manifold, we have to define an expression for
the extrinsic curvature of a (piecewise linear) hypersurface in such a manifold. We begin by
considering the extrinsic curvature K, of a (d — 1)-dimensional constant-time hypersurface
3, (see the appendix for a definition) in a d-dimensional triangulation. Since the geometry
of each d-simplex is flat and Minkowskian, a constant-time surface inside it is just a linear
spacelike hypersurface (with boundaries) of this Minkowski space, and its extrinsic curvature
vanishes. We will arrive at the same result (30) as [18]. However, our prefactors will differ
from those obtained there, because we use different coordinates, which also appear as an
argument of the delta function.

A key observation is that one can always embed two adjacent d-dimensional simplices
of and o isometrically into a common d-dimensional Minkowski space. It follows that the
geometry across the (d — 1)-dimensional boundary simplex 01‘1{21 separating the two adjacent
simplices is flat. (This no longer holds for the (d — 2)-dimensional subsimplices, on which the
intrinsic curvature is concentrated.) In the common coordinate system, light rays crossing the
(d — 1)-dimensional timelike boundary simplex appear as straight lines, but a constant-time
surface will in general be seen to have a ‘kink’ there. This implies that its extrinsic curvature is
concentrated on the (d — 2)-dimensional intersections ¥, N o' of the constant-time surface
%, with the (d — 1)-dimensional timelike subsimplices. The relevant geometry is therefore
that of two linear spacelike hyperplanes in Minkowski space meeting in a kink (a (d — 2)-
dimensional linear submanifold) with a certain relative angle. The geometry is homogeneous
in the directions along the kink. In the triangulation, we can ignore these directions as long as
we stay away from the (d — 2)-dimensional boundary simplices of the (d — 1)-dimensional
timelike subsimplex.

To analyse the geometry of the two-dimensional plane spanned by the two vectors normal
to the kink, it is convenient to use the basis vectors (ep)* and (e;)“ orthogonal to X, N 01“;{21 (see
figure 6). By convention, (ey)? is future directed and parallel to aldm_zl and (e;)“ points from
ald to 02‘1. Furthermore, we introduce corresponding Minkowski space coordinates 0, x1,
which measure the proper distances along the integral curves of (ep)* and (e;)“, respectively.
We define x! to be zero on o).

For the computation of the extrinsic curvature tensor, we need the unit normals n{}, and

n(,, to the two pieces E,(l) and E,(Z) of the constant-time surface. Because of their timelike
nature, they can be written as

n(, = cosh p;(ep)* + sinh p; (e1)", (20)

where p;, i = 1, 2, is the hyperbolic angle between n(;) and ey. Similarly, the (spacelike) unit
tangent vectors to E,(l) and E,(z) (in the span of (ep)* and (e;)“) are

sy = sinh p; (e9)“ + cosh p; (e1)". (21)

According to equation (16), the extrinsic curvature is given by the projection onto ¥, of the
covariant derivative of the normal vector field, which in our Minkowski coordinates reduces
to the usual coordinate derivative. In order to deal with the discontinuity of the normal vector
field of X, at the kink, we regularize it with the help of a family of smooth functions §, which
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Figure 6. The geometry of two neighbouring d-simplices, seen in the two-dimensional plane
perpendicular to the kink formed by the intersection of a constant-time surface (dotted lines) and
their common (d — 1)-boundary simplex. The common Minkowski coordinate frame is spanned
by the unit vectors ey and e, with corresponding coordinates ¢ and x!. The origin of the spatial
coordinate is taken to coincide with the location of the boundary simplex. Note that the normal
vectors are perpendicular in a Lorentzian sense to the constant-time surface.

converge to the delta function as ¢ — 0. The angle p between the time axis and the normal is
then approximated by
X]
pty =i+ o [ s, 22)
—&
where Ap = p, — p;. Projecting —V,n”(x') onto the hypersurface ¥, with the projection
operator h{, := 15 +n,n° (where . is the Minkowski metric), we obtain the extrinsic curvature

K(x"y = —(* +n®(x")n°(x")) Vo(cosh p(x") ()" + sinh p(x")(e;))
="+ (xHn (xS (x) Ap(er)es” (x 1)
= —8.(x")Ap cosh p(x')s* (x)s (x1), (23)

where we have used that V,x! = (e}),.

For the calculation of the extrinsic curvature k%® of the (d —2)-dimensional surface S in the
surface X,, we proceed completely analogously. The constant-time surface %, is a piecewise
linear manifold, albeit a generalization of a simplicial manifold with more general building
blocks than simplices. Again, we can now embed any two adjacent (d — 1)-dimensional
building blocks of the X,-triangulation in a (d — 1)-dimensional flat Euclidean space. We
choose the surface S as a linear (d — 2)-surface inside each building block, possibly with a
kink when one crosses from one building block to the other.

To analyse the geometry of S, consider the same two d-simplices as before and add a third
basis vector e, which is defined to be orthogonal to ey, e; and to the intersection S N aldm_zl.
For d = 3 the intersection is just a point and for d = 4 the geometry is homogeneous along
the intersection. In the latter case, we complement the basis with a fourth normalized vector

e; orthogonal to the other three and thus tangential to S N o5,
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.7;1:0‘

Figure 7. The geometry inside a constant-time hypersurface ;. The figure illustrates various
geometric quantities which appear in the calculation of the extrinsic curvature of the surface S
(dotted line) in ¥,. The surface S has been chosen straight inside either of the two neighbouring
d-simplices, so that the only non-trivial contribution to the extrinsic curvature comes from the
kink of S on the boundary between the two simplices. The vectors s(1) and s(2) may differ in the
direction of ep which is suppressed here.

The (outward-pointing) unit normals g; to =8N oid in ¥, and those tangential
vectors u(; to S " which lie in the plane spanned by e, and s(;, may be written as
q(;y = cos yi(e2)” +sin;s(y, uy = —siny;(e2)" +cos ¥is), (24)

where the angle v; is the angle between the normal g(;y and the unit vector e,. Repeating our
previous construction, we define an interpolating angle i by

Y(xh) =y + Ay ’ Se(x'"y dx"t, (25)

—&
with Ay = ¥, — ¥;. To determine the extrinsic curvature of S, we begin by calculating
Dug”(x") = g (xR (x") (VgD (xh)
= 8. (x) Ay cosh p (x)sq (xHu” (x), (26)
where D, denotes the induced covariant derivative in the submanifold ¥,. This leads to the
expression
kP (x') = =m(Deg”) (x") = —=(h*(x") = ¢ (xHg ()N (Deg”) (x")
= —8,(x" YAy cosh p(x") cos ¥ (xHu (xHu® (x1). 27)
for the extrinsic curvature of § in X,. Given the extrinsic curvatures of X, and S,
equations (23) and (27), it is now straightforward to apply the continuum formula (15) (with
¢+ = 1) and calculate the expansion rates H, of outward-pointing light rays as
Ho(x") = =k = m™Ka
=8, (x")(Ay cosh p(x") cos ¥ (x") + Ap cosh p(x") cos® Y (x1)). (28)
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For the computation of the integrated expansion rate, it is convenient to introduce the
variable p measuring the proper length along the orbits of #“. From

u* = —siny(e2)* + cos ¥ (sinh p(ey)* + cosh p(e;)“), (29)
we have dx! = cosh p cos ¥ dp, and it follows that

H.(p) = 3:(p)(AY¥ + Apcos ¥ (p)) (30)
" S(p)(AY + Apcos Pi) (31)
where ¥, = %(lﬁl + v») and we have assumed the functions §, to be symmetric. For the

case of a four-dimensional triangulation, by introducing a second (proper-length) coordinate
x3 along (e3)%, the invariant volume element +/detm dS of S assumes the simple form dp dx>.
We can now easily integrate the expansion rate over a neighbourhood in S enclosing the set
SN oldm_zl (that is, the support of the expansion rate in S), resulting in

H,dpdx® = Vol(oj1,' N S)(AY + Ap cos ). (32)
nbh.
(For a three-dimensional triangulation, d = 3, we set Vol(aldm_2l ns ) = 1). In the integral over
the whole surface S, the contributions from the (d — 3)-dimensional building blocks simply
add up to give the integral $.(S) of the expansion rate H, over the surface S,

H.(S5) = [ Ho/detmdS = )" Voloing (AY + Ap cos Yim)go-ins)- (33)
) od-Ings
When evaluating an expression like (33) for a dynamical triangulation, it is inconvenient
that the angles p; and y; defined by equations (20) and (24) depend on the indexing of
the d-simplices o1 and o,. This motivates the definition of new angles 5; = (—1)'p; and
V; = (=1)";, in terms of which we have

cosh f; = —(€)"nf;Nab. sinh p; = (€)1 Nab- Ap = fr + Py (34)

cos ¥; = (€2)"q(}Nav- sin; = 53,40 Nab» Ay =P+, (35)

where (él)fi) = (—=1)/(e;)* and 5(“[) = (=1) s(“[) are pointing towards the simplex O'id for both
i = 1 and i = 2. Furthermore, cos ¥, may be written as

cos Y = cos(3(F1 — ¥2)) = cos(3(—¥1 + ¥2)), (36)
so that all quantities Ap, Ay, cos V¥, appearing in the integrated expansion rate (33) are
independent of the index i in o?

i

3.4. The case of dynamical triangulations: 2 + 1 dimensions

In order to get an idea of what is involved in applying the framework of the previous section to
the particular case of causal dynamical triangulations, we will first consider the simpler case
of 2 + 1 dimensions. The triangulations take the form of fibrations over a two-dimensional
base manifold, parametrized by a time and a radial coordinate. Our aim will be to derive a
formula for the (integrated) expansion rate which is operationally simple to evaluate. In 2 + 1
dimensions, the surface S on which we want to define the expansion rate H. is one dimensional
and H, is concentrated on the zero-dimensional vertices v = o> N § of the piecewise straight
surface S. Following standard convention, we set the volume of these vertices to 1. Consider
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Table 4. The angles g per simplex type and per boundary simplex type contributing to the expansion
rate in 2 + 1 dimensions. As usual in causal dynamical triangulations, we fix all spacelike edges to
have a squared length 13 = 42 and all timelike edges to have 1,2 = —aa®, where a is the so-called
lattice spacing that will eventually be taken to zero. The number « parametrizes the (fixed) ratio
between the length units in time and space directions.

Simplex  Boundary simplex g

. 1
[3,1] [2,1] —arsinh =

. 1
[1,3] [1,2] arsmh\/ﬁ

. 1
[2,2] [2,1] arsinh T
[2,2] [1,2] —arsinh—-1

1+4a

Table 5. The angles ¢ per simplex type in a triangle tower of type [17 in, 17,0ut> 17+1] contributing
to the expansion rate in 2 + 1 dimensions.

liin, 7+ JousTs krt] ¥
[2,1,1] —%
[1,2,1] %
[1,1,2] 0

now afibre Sina[l7 iy, 17 ou, 17+1]-triangle tower®. Applying formula (33) for the integrated
expansion rate gives

H:(S) = —E(S) + Y Ap(v) cos Y (v), (37)
vCS
where
e(S) = %(Nzn — Ni21) (38)

is the integrated extrinsic curvature of S in ¥,. The values of the angles Ap (v) = p1(v) + p2(v)
and cos(¥,,)(v) = cos(3(¥1(v) — ¥2(v))) contributing to equation (37) can be read off
tables 4 and 5. The term (38) is just a counting term which only depends on the total number
of simplices of a certain type. This is not true for the remaining sum over vertices v in
equation (37). To evaluate it, we need to know not only the numbers of the various simplex
types but also how they are glued together. In other words, there exist pairs of triangulations
with identical numbers N,,. which nevertheless have different (integrated) expansion rates.
This dependence on the local gluing information is caused by the factor cos v, in (37) and can
be traced back to our particular choice of the surface S. In the previous subsection, we assumed §
to be straight inside each (constant-¢ hypersurface of a) three-simplex, as illustrated in figure 7.
This leads to a coincidence of angles § and v at the intersection point S N aldgzl between two
three-simplices o7 and o;. We will adopt a different choice for the surfaces S which will
simplify the functional form of the integrated expansion rate. We expect that this will speed
up an eventual numerical implementation and also simplify any analytic considerations of the
evaluation of the expectation value of the expansion rate in the path integral. The precise
choice of § is a typical discretization ambiguity, which should not make any difference when
we perform the continuum limit®. In the absence of an argument for which discretized choice

8 Here, T is an integer-valued time, and the lower-case 7 will henceforth denote a time value between T and T + 1.
The subscripts ‘in” and ‘out’ refer to vertices with radial coordinates rip and rout, With rin < Fout.
9 Obviously, such an assertion must eventually be verified.
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r

[2,1,1] 1,2,1] [1,1,2]

Figure 8. The ‘building blocks’ which constitute our surfaces S of constant radius (dashed lines)
inside the hypersurfaces %, in 2 + 1 dimensions.

of a ‘surface of constant radius’ is more natural, we will adopt the simplest prescription, both
here and in the four-dimensional case discussed in the following subsection.

Our alternative hypersurfaces $ lie still within Y, and are piecewise straight, but we
arrange their straight segments to be dual to the edges of the original triangulation in X, as
depicted in figure 8, so that the ‘kinks’ of § no longer coincide with the points S N aldn_zl. Since
the angles Ay are still the same as for the original surface S, the first term in the expansion
rate (37) is unaffected, €(S) = €(S). However, since cos v, is now always equal to 1, we
obtain for the integrated expansion rate of $

N T ) 1 ) 1
H:(5) = —E(Nzn — Nia1) — {2 m51nhﬁ(N211 + Nm)} +2 arSlnhﬁNllz,
(39
for a triangle tower of type [l7.in, l7.0ut> L7411 For a triangle tower of type

[17, I741,in, 17+41,0ut), the first term, i.e. the extrinsic curvature of §, is unchanged (apart
from relabelling), whereas the terms coming from the extrinsic curvature of X, change sign,
leading to

R T ) )
5:(5) = _E(NIZI — Nipp) + {2 arsinh (N2 +N112)} — 2 arsinh Nopi.
o

1 1

V3+12 V1 +4a

(40)
One thing to note about equations (39) and (40) is that the two terms in curly brackets have
merely boundary character in the sense that they cancel when one considers the expansion
rate for more than one time step. For example, suppose we added the integrated expansion
rates associated with two base triangles of type [17—_1, 27] and [27, 1741] with a common
spacelike edge. Then, the contributions from the two terms in curly brackets cancel each
other, because the numbers of [17_;, 37]-tetrahedra in the first triangle tower equals the
number of [37, 174 ]-tetrahedra in the second.

A second observation about the counting formulae (39) and (40) is that they have a
direct geometric interpretation in terms of the focusing of light rays passing through the
three-dimensional building blocks of the product triangulation. Let us call the fibre direction
angular and the other spatial direction radial, and consider first a [17in, 17 out, 17+1]-triangle
tower. It contains both [3, 1]-tetrahedra (which can be split into the subtypes [2, 1, 1] and
[1, 2, 1]) and [2, 2]-tetrahedra (of subtype [1, 1, 2]). The first term in (39), which depends on
the difference (N21; — Ni21), has a purely spatial origin and is determined by the triangulation
of the spacelike edge tower. The second term (in curly brackets) in (39) gives a negative
contribution, since a [3, 1]-tetrahedron focuses light rays in the angular direction (see figure 9,
left). It also focuses light rays in the radial direction. At any rate, since these effects cancel
out for adjacent time slices as we have just explained, let us concentrate on the remaining term
in (39). As illustrated in figure 9, the [1, 1, 2]-tetrahedra defocus light in the angular direction
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Figure 9. The effect of different three-simplices in a [17in, 17 out, 17+1]-triangle tower on future-
directed light rays. We only show the angular behaviour, which is relevant for calculating the
expansion rate. Tetrahedra of type [3, 1] focus light rays in the angular direction (left), whereas
[2, 2]-tetrahedra defocus them (right).

(thus accounting for their positive contribution to the integrated expansion rate on S) and
focus it in radial direction. In a [17, 1741 in, 17+1,0ue]-triangle tower, the focusing effects are
exactly reversed: the [1, 3]-simplices defocus light rays (or timelike normal vectors) whereas
the [2, 1, 1]-tetrahedra focus in angular and defocus in radial direction. We conclude that apart
from the extrinsic curvature term ¥ of the (one-dimensional) surface S, the expansion rate is
determined by simply counting the numbers of focusing and defocusing [2, 2]-tetrahedra,
associated with the [17_1, 27]- and [27, 174;]-base triangles, respectively, and taking their
difference.

3.5. The case of dynamical triangulations: 3 + 1 = 2 + 2 dimensions

We will now generalize the treatment of the previous subsection to the case of a four-
dimensional Lorentzian (i.e., causal) dynamical triangulation which is a product of a two-
dimensional triangulated ‘r— plane’ and a two-dimensional fibre, representing the angular
directions. We will follow the same strategy as in the three-dimensional case to obtain a
simple functional form for the expansion rate §), (S) which does not depend on detailed local
gluing data.

For a (2+2)-dimensional triangulation, S is two dimensional and $)..(S) has distributional
support on the one-dimensional edges ¢ = o> N S in S. As before, if one defines the surface §
to be a two-dimensional fibre in a triangle tower, it turns out that the expansion rate does not
just depend on the numbers of the various simplex types in the triangle tower, because of the
cos Y, -terms in equation (33). We will therefore choose an alternative surface S, still inside
the constant-time hypersurface X,, but which intersects the two-dimensional building blocks
contained in ¥, orthogonally such that all cos ,,-factors will be equal to 1.

Note that in the (2+1)-dimensional case, the surface S was related to the dual triangulation
of =,—the vertices of S were positioned at the barycentres of the triangles and rectangles
which are the piecewise flat building blocks of ¥,. (The vertices inside the rectangles did not
appear explicitly, because they do not contribute to the extrinsic curvature of S.) Also in 2 +2
dimensions we will construct the surface S as part of the dual triangulation of the constant-time
surface ¥;. Recall from section 2.3 that X, consists of equilateral tetrahedra and triangular
prisms with two equilateral triangular and three rectangular sides. To construct the dual
triangulation, one places vertices at the barycentres of these tetrahedra and prisms, which one
then joins by ‘dual’ edges if they belong to neighbouring building blocks. These dual edges will
orthogonally cross the boundary faces (triangles or rectangles shared by adjacent tetrahedra
and/or prisms) exactly at their barycentres. The dual flat 2-surfaces spanned between pairs
of dual edges will therefore also intersect the two-dimensional faces of the X;-triangulation
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Figure 10. The elementary contributions of various three-dimensional building blocks in X, to the
two-dimensional surface S in a [17,ins 17 0ut, 17+1]-triangle tower. The cases not shown, associated
with four-simplices of types [1, 2, 2] and [1, 3, 1], can be obtained by exchanging the role of the
‘in” and ‘out’ vertices of the cases [2, 1, 2] and [3, 1, 1], respectively.

orthogonally. Our surfaces S will by definition be built from those dual 2-surfaces which
extend in the angular directions.

The extrinsic curvature k of a surface § with respect to X, is now concentrated on the
dual edges. For some dual edges & vanishes, for example, for the dual edges in the [27, 3741]-
building blocks in a [27, 17,]-triangle tower. We will now discuss each case in turn and
compute its associated angle contribution Ayr. Figure 10 shows the three-dimensional flat
building blocks that can appear in a constant-time hypersurface X, each with its corresponding
‘elementary’ surface contributing to S. There are essentially four different cases:

(i) The intersection of a four-simplex of type [2, 1, 2] or [1, 2, 2] with X; is a prism. The
surface § intersects both triangular faces and two of the rectangular faces. The dual
edges in S which cross the rectangular faces do not carry any extrinsic curvature but the
two edges which cross the triangular faces do. The angular difference between the two
normals involved is Ay = +m/3.

(i) The intersection of a four-simplex of type [3, 1, 1] or [1, 3, 1] with %, is a tetrahedron.
The surface S intersects three out of the four boundary triangles. Three dual edges connect
the barycentre of the tetrahedron with the centres of these three triangles. The angular
difference for each of the three dual edges is again Ay = +m/3.

(iii) The intersection of a four-simplex of type [1, 1, 3] with %, is a prism. The surface $
intersects the three boundary rectangles. Since the intersection surface is a single flat
triangle parallel to the triangular boundaries of the prism, there are no contributions to the
extrinsic curvature.

(iv) The intersection of a four-simplex of type [2, 2, 1] with %, is a tetrahedron. The surface
S intersects all four boundary triangles. However, since there are two types of dual
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Table 6. The angles g per simplex type and per boundary simplex type contributing to the expansion
rate in 2 + 2 dimensions. For the time-reversed simplices, we have g([i, k]) = —p([k, i]).

Simplex  Boundary simplex §

arsinh— L
[4,1] [3,1] drsmh\/g —
(3,2] [3,1] arsinh -2
(3,2] [2,2] drsmh«/6 —

edges which contribute with angles of opposite sign, the net contribution to the extrinsic
curvature vanishes.

The extrinsic curvature of X, with respect to the four-dimensional triangulation is
concentrated on the two-dimensional faces of the X,-building blocks. The angles p needed
to calculate this quantity are listed in table 6. The surface § intersects the two-dimensional
faces orthogonally, and the extrinsic curvature term K“’m,; appearing in the expansion rate
(cf equation (28)) therefore has distributional support on these one-dimensional intersections.
Note that they do not coincide with the dual edges contained in S, but are positioned
transversally to them. To determine the integrated extrinsic curvatures K, we still need to
calculate the lengths of these intersections, which is straightforward and will lead to an
explicit #-dependence of the expansion rate. Similarly, to obtain the extrinsic curvatures k
one has to multiply the angular differences Ay with the lengths of the associated dual edges.
The final result for the integrated expansion rate for a [17 i, 17 ou, 17+1]-triangle tower and a
surface $ in a constant-time surface ¥, is given by

9:.(8) = a((l - l);%(Nm — N311) +l%(N122 — Napo)

+ {(1 — t)(—x/g)arsinh <;) (N;]] + Nz + i1\7221>}
V8V1+3a ’ 3
+ 3tarsinh <;) Niis + [((1 — t)iarsinh<i)
VoyTi+2a) " V3 2J/T+3a
1
— 2tarsinh <m> )(N212 + lez)i|> . (41)

Similarly, for a [17_y, 17,in, 17, ou]-triangle tower and a surface $ in a constant-time surface
3(r—1)++ one obtains

9:(8) = a(t;%(Nm — Npzp) + (1 — 1)%(1\7212 — Nay)

—{t(—«/g)arsinh (;) <N131 + Nz + i1\/122>}
V81 + 3 3

) [ ()

1
— 2(1 — t)arsinh (WTTQ))(NZZI + N212):|>. (42)

These formulae have the desired form of depending only on counting variables for the simplices
in a given triangle tower. As before, one can achieve a further simplification by adding
contributions from successive time layers. Consider two triangle towers which are joined

—3(1 — t)arsinh (
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by a spacelike edge in the base manifold. If one chooses the two constant-time surfaces at
which the contributions to the extrinsic curvature are evaluated to be at times (7 + ) and
(T— 1)+ (1 —1t) = (T —t), the terms in the curly brackets in (41) and (42) will cancel
each other because the numbers of the various types of [47, 1741]-simplices equal those of
the corresponding [17_;, 47]-simplices. An obvious and symmetric choice that achieves this
cancellation over a larger number of time steps is therefore to evaluate the expansion rate
always at half-integer times.

To summarize, the expansion rate in 2+2 dimensions is again a sum of terms coming from
the extrinsic curvature k of § and of the extrinsic curvature K of ¥,. The former are already
determined by the triangulation of the spacelike edge tower, namely, the partitioning of the
[4, 1]-simplices into the subtypes [3, 1, 1], [1, 3, 1] and [2, 2, 1], and similarly for the [1,4]-
simplices. In analogy with what happened in the (2 + 1)-dimensional case, the contribution
from the curvature K is determined by the distributions of the simplicial building blocks of
types [3,2] and [2,3]. In a [17in, 17,0ut, 17+1]-triangle tower, the [1, 1, 3]-simplices defocus
lightrays and in a [17_1, l7.in, l7,0ut]-triangle tower the [3, 1, 1]-simplices focus light rays in
the angular directions. This is similar to the behaviour of the [1, 1, 2]- and [2, 1, 1]-tetrahedra
in 2 + 1 dimensions. Also note that the contributions from the terms in square brackets in
(41) and (42) are small, because the (absolute value of the) prefactor is small (<0.016 for
o > 7/12, which is the range usually considered [4]). This is due to the fact that the extrinsic
curvature terms coming from the [3, 1]- and the [2, 2]-boundary simplex have opposite signs.

4. Dynamical triangulation of a black hole

In this section, we will explain how to construct a black-hole geometry in the formulation of
causal dynamical triangulations. This is not only a good exercise in translating metric data
(which still depend on a coordinate choice) into invariant geometric data, but may also be
helpful in deciding on the boundary conditions for a path integral over black-hole geometries.
In [27] a Regge calculus version of black-hole geometry was constructed. (For reviews of
Regge calculus see [28].) It should be kept in mind that unlike in Regge calculus we are
working with simplices of fixed squared edge lengths a®> and —aa? for the spacelike and
timelike edges, respectively. As is well known, these fixed building blocks are not well suited
for approximating arbitrary smooth geometries pointwise, as may be desirable in a numerical
study of classical Einstein gravity. Instead, as already discussed in the introduction, the
application we have in mind here is a nonperturbative quantum superposition of spacetime
geometries, with classical properties emerging only on sufficiently coarse-grained scales.

This property of dynamical triangulations prevents us from approximating a given smooth
manifold exactly, even in the limit as the lattice spacing a — 0. For example, it is not possible
to obtain a tessellation of three-dimensional flat Euclidean space using equilateral tetrahedra.
Nevertheless, one can usually arrange those geometric quantities—for example, the curvature
scalar—when integrated or averaged over sufficiently large patches match certain prescribed
values'?, and this is what we will employ in the following.

The explicit construction of a triangulated black hole can be simplified greatly by an
appropriate choice of coordinates in the continuum. Since causal dynamical triangulations
come with a distinguished notion of proper time, measuring the invariant distance between
hypersurfaces of constant time, it is natural to start with coordinates in a proper-time gauge,
where the lapse function is equal to one everywhere. In the following subsections, we

10 This simple strategy does not work for quantities which are non-negative, for example, the square R? of the Riemann
curvature scalar. In such cases, one may need to perform a finite ‘renormalization’ or use a more sophisticated way
of averaging. Ultimately any such prescription must be motivated by physical considerations.
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will describe the relevant black-hole configuration (given by the Kottler solution), identify
appropriate coordinates for it and construct a triangulation for the r—¢ plane of this geometry.
The latter serves as base space for a full four-dimensional triangulation which can be
constructed as a triangulation of product type. By its very construction our simplicial rendering
of the black-hole geometry is highly nonunique and should merely be regarded as an illustration
of how it can be achieved.

4.1. The Kottler solution

Since the method of dynamical triangulations requires a positive (bare) cosmological constant,
the relevant spherically symmetric black-hole configuration is not the Schwarzschild solution,
but the so-called Kottler solution which describes a black hole in a de Sitter background with a
positive cosmological constant A. The line element of the Kottler solution in Schwarzschild-
like coordinates (¢, r, 8, ¢) is given by [29]

oM 2 oM 2N\
ds2=—<1———%>dt2+<l———%> dr? +r2dQ?
r r

= —f(r)dt* + f(r)" dr? + 7 dQ%, (43)

where M is a mass parameter, L is a length parameter defined by L?> = % and dQ? is the
volume element of the unit 2-sphere. Apart from the physical singularity at r = 0, there
are two coordinate singularities at the positive real roots of f(r) if M < L/ V27, as we
will assume from now on), corresponding to the black-hole horizon and the cosmological
horizon of the de Sitter background. The latter is positioned at » = L if the mass M vanishes.
The maximal analytical continuation of the spacetime geometry (43) includes infinitely many
black-hole and cosmological horizons, but for our present purposes we will only be interested
in a region inside the cosmological horizon which contains a single black hole.

To facilitate the translation of the metric data of the Kottler solution to a dynamical
triangulation, it is convenient to work in a proper-time gauge, that is, use coordinates in which
the lapse function is equal to 1. A particular set of such coordinates is the Painlevé—Gullstrand
(PG) coordinates (t, r, 8, ¢) [30, 31], in terms of which the metric (43) assumes the form

ds? = —de® + (dr +/T— f(r) do)” + 17 dQ. “4)

We observe that the lapse function is equal to 1, but the shift N, in the radial direction
is nonvanishing, N, = /T — f. One can also find coordinates with the same constant-time
surfaces as in (44) and N, = 0, but it turns out that for our discussion keeping the nonvanishing
shift function is more convenient. A remarkable property of the PG coordinates is the fact
that the induced constant-time surfaces X, are flat Euclidean 3-spaces. Our triangulated
black hole will have the form of constant-time surfaces represented by three-dimensional
spatial triangulations which are (approximately) flat and connected to each other using the
information contained in the shift function N,.

4.2. Triangulation of the base manifold

Next, we will triangulate the geometry induced on the hypersurface {§# = const, ¢ = const},
which is parametrized by a coordinate pair (t,r). The radial coordinate r is a ‘proper-
length’ coordinate in the same sense in which t is a proper-time coordinate. It is therefore
natural to identify (a rescaled version of) t with the discrete time 7 inherent in a causal
dynamical triangulation and (a rescaled version of) r with a discrete coordinate R along the
one-dimensional spacelike triangulation ¥7. We can introduce a discrete radial coordinate R
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simply by taking a triangulated half-line!' and enumerating its vertices by 0, 1, 2, ..., starting
from the left-most vertex, say. Since spatial edges by definition have a geodesic length a,
discrete and continuous radii are related by r = aR. Similarly, one finds T = a/o + 1/4T
for the relation between the discrete and continuous times.

Consider now a spacelike edge e in X7 whose centre has radial coordinate Rr. If we
want to erect a [27, 1741]-triangle over this edge, we must decide which vertex in the next
constant-time line X7, the tip of the triangle should be connected to. Because the vector i
pointing from the middle of the edge e to the tip of the triangle is normal to the hypersurface
Y7, the displacement of this top vertex along 7., from the position Ry on X7 is determined
by the shift N,. Explicitly, the position Rz, of the top vertex is given by

Rri1 = Ry — N.(aRp)a ' At = Ry — N.(aRy)/a +1/4, (45)
where At is the modulus of the length of the vector n. In order to construct an explicit

triangulation, (45) must be approximated by integers. Whichever prescription one chooses,
the following cases may occur when calculating the locations of the tips of [2, 1]-triangles:

(0) The normal vectors i; and i, of two neighbouring [2, 1]-triangles cross within the slice
AT = 1. For this to happen, 9, N, must be positive and 9, N, > 1/At, i.e., the geometry
must vary on scales smaller than a. For the Kottler solution, this does not occur as long
asa < L =./3/A.

(i) The tips of two neighbouring [2, 1]-triangles coincide. In this case, the (component in
r-direction of the) extrinsic curvature is positive since the normals converge towards each
other.

(i1) The tips of two neighbouring [2, 1]-triangles with base in X are one or more edges apart
in X741. In this case, we fill the space between the two [27, 174 ]-triangles with the
appropriate number of [17, 27,1 ]-triangles. The extrinsic curvature is zero when a single
upside-down triangle is inserted and negative otherwise.

(iii) The position Ry, assumes negative values. For the Kottler solution this happens whenever
the discrete radial coordinate Ry satisfies

2 2
Re)? < 12M(AT?  2M(AT)? _2M <a 1)7

) (46)

a1 - L - a’ a
L2

where the approximation in the second step is justified because of a < L. In this case,

we simply omit the [2, 1]-triangles. This way one obtains a spacetime boundary which

is effectively spacelike (because there are far more spacelike than timelike edges), as

illustrated in figure 11. It corresponds to the spacelike singularity of the Kottler solution

atr =0.

Figure 11 shows the typical features of a dynamically triangulated black hole: approaching
smaller radii, the tips of the [2, 1]-triangles get dragged more and more towards the centre
of the black hole (left). Similarly, a freely falling particle which starts at some radius r on a
surface X1 and normal to it will roughly follow the direction of the timelike normals of these
triangles and finally fall into the singularity. The horizon in this picture is located at the radius
ry at which the line r = const is lightlike.

4.3. Triangulation of the four-dimensional manifold

Finally, we will sketch how to construct a four-dimensional dynamically triangulated black-
hole geometry by suitably triangulating the fibres F over one of the triangulated base spaces

11 numerical simulations, there will always be a maximal radius Rpyax, because of the finiteness of the spacetime
volume.
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Figure 11. Example of a dynamically triangulated black hole. The thick lines correspond to light
rays and the vertical light ray on the right runs along the horizon.

B of the previous section. In other words, one has to provide a triangulation of the triangle
towers o x F for all triangles o of the base space, as described in section 2.3. Since there is
no triangulation which is exactly spherically symmetric, the spherical symmetry of the Kottler
solution can be implemented at most in an averaged sense. We will formulate conditions on
the numbers of various simplex types in the fibres which must be satisfied in order that the fibre
triangulations can be made homogeneous on large scales [ > a. We will not spell out how
these building blocks should be distributed over the fibres in a maximally uniform manner.

Since the spatial hypersurfaces 2, of the metric (44) are flat, the radii  provide a direct
measure of the areas of the associated 2-spheres {t = const,r = const}. This implies
that a vertex tower with radial coordinate R should contain (approximately) c; R? triangles,
where ¢; &~ 4w /A, is of order 1 and A, is the area of a spatial triangle in units of a. This
consideration fixes the number of triangles in a vertex tower and therefore the numbers of
[3r, Lg+1]- and [1g, 3g+1]-tetrahedra in a spatial edge tower located between the radii R and
R + 1. What remains to be specified is the number of [2g, 2+ ]-tetrahedra in the spatial edge
tower. This can be done by demanding that the (absolute value of the) integrated intrinsic
curvature of the edge tower be minimal, i.e. as close to zero as possible.

Fixing thus the numbers of simplices appearing in the triangulated surfaces X; of
constant time implies that also the numbers of [47, 17.1]- and [17, 474]-simplices (in the
[27, 1741]- and [17, 27,4 ]-triangle towers, respectively) of the four-dimensional triangulation
are fixed. Similarly, the number of [17 iy, 17 out, 37+1]-simplices in a [27, 174 ]-triangle tower
is already specified by the volume of the vertex tower over the tip of the triangle vertex
with time coordinate 7 + 1. All we are left with are the numbers of [27 iy, 17 out, 27+1]-
and [17in, 27.0ut, 27+1]-simplices or, equivalently, the numbers of [27, 27, ]-simplices in the
timelike edge towers [17, 174;]. These numbers can also be determined by demanding a
vanishing integrated four-dimensional intrinsic curvature scalar, see [19] for details.

5. Summary and outlook

In this paper, we have derived an explicit expression for the expansion rate of light rays
for a simplicial manifold of the kind that occurs in the sum over geometries in the causal
dynamical triangulations approach to quantum gravity. Its prime intended use is in a horizon
finder in the quantum theory. The vanishing of the infegrated version of the expansion rate
is an indicator for an apparent horizon in situations where the geometry along the angular
directions is homogeneous at sufficiently large scales. Our non-integrated expression for the
expansion can also be used in more general situations, but a numerical horizon search would
be considerably more involved, because the expansion rate would have to be monitored not
just as a function of radius and time, but also of the two angular directions.
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As a first step towards understanding the role of black holes in nonperturbative quantum
gravity, we suggest to investigate the situation where the geometric configurations are
approximately spherically symmetric. In practice, one would first search for the formation of
an apparent horizon as a function of the boundary conditions. This will involve monitoring the
integrated expansion rate ), ($) given in equations (39) and (40) as a function of the discrete
radius and time coordinates of the triangulated base manifold. One will have to work out
how the local Monte Carlo moves [4] change the counting variables appearing in £, (S) in
a small neighbourhood of triangle towers. If one manages to find evidence for an apparent
horizon, one will try to understand whether also other large-scale properties of the geometry
match those of a (classical) black hole. Ultimately, one is of course interested in the quantum
deviations from the classical geometry, especially near the horizon and for very small radii,
to obtain further insights into a possible quantum origin of (horizon) entropy and a quantum
resolution of the central singularity. These are doubtless ambitious goals, but with some luck
and ingenuity they may just be within reach of our computational means.
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Appendix

In this appendix, we define the concept of affine coordinates for flat simplices, and use them to
describe hypersurfaces X, of constant time, as well as the surfaces S used in the computation
of the extrinsic curvatures in section 3.3. For illustrative purposes, we also perform a simple
model calculation for d = 2.

For the computation of various geometrical quantities like the angles (34) and (35)
appearing in the expansion rate (33), it is very convenient to introduce affine or barycentric
coordinates (see, for instance, [32]). Consider a d-simplex o embedded into d-dimensional
Minkowski space. Let the vectors ¥ i.»J =1,...,d + 1, point from the (arbitrarily chosen)
origin to the (d + 1) vertices of the simplex. One can then describe an arbitrary point P in o
as the centre of mass of (d + 1) appropriately chosen masses m/ > 0 located at the vertices of
the simplex,

d+1
P:me'ﬁj, (A.1)
j=1
where the sum of the coordinates m/ is normalized to
d+1
Somi =1 (A2)
j=1

An affine vector can be defined by the difference of two points P; and P,

d+1
PF, =Y (m] — m])i, a3

J=1
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The sum of the vector components y/ := (mé — m{) in (A.3) vanishes because of the
normalization (A.2). We can therefore replace the vectors v; in (A.3) by the affine basis
vectors

d+1
aj =1 dﬁiﬁb (A4)

which are overcomplete due to ), a; = 0.
In order to express the metric in affine coordinates, we still need a basis of 1-forms dual
to {a;}. Because of the overcompleteness of the vector basis, the dual basis {a’} is defined by

< 1
ky _ 3k ._ sk
Wﬂ)—%~%—d+y (A.5)
where Sj. is the projector onto the space of affine coordinates, i.e. it projects an arbitrary
(d + 1)-tuple of numbers into one whose sum vanishes and it acts as the identity on tuples
(', ..., y®") which have a vanishing sum }_ y/ = 0.
The (Minkowski) metric components of a simplex in affine coordinates take the form [32]

fiij = —300u 818 (A.6)
where lizj is the squared geodesic length of the edge between the ith and jth vertices. The
metric 2-form is then given by n = fj;;a’a’. Since 3; s on the right-hand side of (A.6) are
projections onto the space of affine coordinates, they can be replaced by ordinary Kronecker
symbols 5;. if (A.6) is contracted with coordinate tuples that already fulfil the affine coordinate

condition (i.e., sum up to zero). One can check equation (A.6) by contracting it with the
simplex edges e(;j 1= V; — U; = a; — a; which gives the expected result

n(eajs eijp) = llzj (A7)

With the help of the barycentric coordinates, one can give an easy characterization of
the fibres with respect to the two different product structures introduced in section 2, namely,
the constant-time hypersurfaces ¥, and the surfaces S of codimension 2. First, consider a
d-simplex of type [N7, Nr41], thatis, a simplex having Ny vertices in the hypersurface X1 and
Nr41 vertices in the neighbouring surface X7,;. The barycentric coordinates (m', m*h
of any point in the intersection of ¥7,,,0 < ¢ < 1, and the d-simplex [Ny, Nr,] satisfy

d+1

Zmuwﬂ—y—gjw (A.8)

j=Nr+1

This condition describes a linear subspace whose points have a ‘constant distance’ from the
T- and the (T + 1)-vertices.

A surface S can be characterized in an analogous manner. Consider a d-simplex of type
[NT.in» N7 out» Nr+1], with Nr i, vertices in the inner and Nt o in the outer vertex tower at
time T and N7, vertices in the vertex tower at time 7 + 1. (We use ‘inner’ and ‘outer’ merely
as labels to distinguish between the two vertex towers at equal time.) Then, the intersection of
the d-simplex with the surface S is the set of points having ‘constant distance’ to these three
set of vertices,

N7 in N7,in+NT 0ut d+1
E m! =r, E m’ =s, E m’ =t, (A.9)
Jj=1 J=Nr,int+1 J=N7,in+N1 out1

where r + s + ¢ = 1. Obviously, these points also fulfil equation (A.8), which shows that S is
a submanifold of X7.,;.
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To illustrate the construction, consider the simple case of a two-dimensional Lorentzian
triangulation containing a spacelike hypersurface ¥7,,. We want to calculate the angles p
defined in (34) to compute the extrinsic curvature of X7,,. Take a [27, 174]-triangle and
introduce barycentric coordinates (m', m?, m?). From equation (A.6), the components of the
Minkowski metric in affine coordinates are given by

0 for i=j,
Nij =43y—

aa
2

for e a spacelike edge, (A.10)

I\’Nth

for e(j) atimelike edge,

where we have assumed that the metric is contracted with affine coordinate tuples only. The
tangential vector to X7, is s = ¢;(1, —1, 0), with a normalization constant ¢;. Orthogonal to

this and future directed is the normal vector n = ¢, (—%, —%, l). If we take as the timelike

boundary simplex the edge e(; 3), the future-directed vector parallel to it is ey = co(—1, 0, 1).
Lastly, orthogonal to ey and pointing into the 2-simplex is the vector

5 -1 -2« 1
€ =C T,l,ﬁ . (All)

Application of the formulae (34) to the (normalized) vectors ey, &, and n leads to the angle

1
,5[2‘1] = —arsinh (m) . (A12)

By an analogous calculation for an ‘upside-down’ triangle [17,27.;], one obtains the
corresponding angle py12) = —pp2.1-
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