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Abstract
In this work we will consider the concepts of partial and complete observables
for canonical general relativity. These concepts provide a method to calculate
Dirac observables. The central result of this work is that one can compute
Dirac observables for general relativity by dealing with just one constraint.
For this we have to introduce spatial diffeomorphism invariant Hamiltonian
constraints. It will turn out that these can be made to be Abelian. Furthermore
the methods outlined here provide a connection between observables in the
spacetime picture, i.e. quantities invariant under spacetime diffeomorphisms,
and Dirac observables in the canonical picture.

PACS numbers: 04.20.Fy, 04.60.−m, 04.60.Ds

1. Introduction

The most important feature of general relativity is that spacetime itself is dynamical and hence
no reference frame is preferred. This causes a lot of difficulties if one wants to quantize the
theory because in its non-relativistic formulation quantum theory requires a fixed background
and a preferred splitting of spacetime into space and time. Nevertheless, a well-developed
approach for quantizing general relativity is to apply canonical quantization to the theory, as
is done for instance in loop quantum gravity [1–3]. However the fact that no reference frame
is preferred in general relativity causes the appearance of constraints, which restrict the set
of phase space points with a physical interpretation. These constraints also generate gauge
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transformations which in the canonical theory among other things translates between different
splittings of the spacetime into space and time.

If one wants to quantize a theory with gauge symmetries one has to look for physical
observables, also called Dirac observables, i.e. phase space functions which are invariant
under gauge transformations. For general relativity this is a very difficult problem since
here also translations in time are gauge transformations. This means that one has to solve at
least partially the dynamics of general relativity in order to obtain gauge invariant quantities.
Because these dynamics are described by a complicated system of highly nonlinear partial
differential equations, it is not surprising that there are almost no gauge invariant phase space
functions known1.

Therefore it is hoped that one can at least develop an approximation scheme for Dirac
observables. To this end it is valuable to have methods with which one can find Dirac
observables in principle. One such method was proposed by Rovelli in [6] for systems with
one gauge degree of freedom. Let us assume that this gauge degree of freedom corresponds
to reparametrizations of an (unphysical) time parameter. Choose two partial observables f

and T, that is gauge variant phase space functions. The partial observable T will serve as a
clock, hence we will call it a clock variable. The complete observable F[f ;T ](τ ) expresses
the gauge invariant relation between f and T: it gives the value of f at that moment (i.e. at
that unphysical time parameter) at which T assumes the value τ . Here τ can be chosen as any
value from the range of the function T.

Hence (for systems with one constraint) complete observables are one-parameter families
of Dirac observables. One advantage of the concept of partial and complete observables
is, that it has an immediate physical interpretation. This might help in order to develop an
approximation scheme. Calculating complete observables is the same as making predictions
and the precision with which we can do these predictions will depend on the dynamics of the
theory and on the phase space region one is considering.

Now general relativity is a system with infinitely many gauge degrees of freedom.
Therefore [7] generalized the concepts of partial and complete observables to systems with
an arbitrary number of constraints. The main idea for that is to use instead of one clock
variable T as many clock variables as there are constraints. Furthermore it was shown that
complete observables can be written as a (formal) power series. Among other things this
was used in order to calculate the Poisson algebra of complete observables and also to show
that it is possible to calculate complete observables in stages, i.e. first to compute (partially)
complete observables with respect to a subalgebra of the constraints and then to use these
partially complete observables for the calculation of complete observables with respect to all
constraints. However in the second step one can ignore the subalgebra of the constraints which
were used in the first step and just deal with the remaining constraints.

Ideas on how to use complete observables in a quantization of a gauge system and more
specifically general relativity can be found in [6, 8, 9].

In this work we will apply the methods developed in [7] to general relativity. One central
result of this work is a variation of the method to calculate complete observables in stages.
Namely we will show that for a certain choice of partial observables it is possible to compute
complete observables for general relativity by dealing with just one constraint instead of
infinitely many constraints.
1 For the case of gravity in four spacetime dimensions and for asymptotically flat boundary conditions there are ten
gauge invariant phase space functions known. These are the ADM charges [4] given by the generators of the Poincaré
transformations at spatial infinity. Additionally, an observable is known which takes only a few discrete values and is
trivial on almost all points in phase space [5]. For gravity coupled to matter, in some cases gauge invariant functions
describing matter are known but in general no phase space functions which describe the gravitational degrees of
freedom (with the exception of the ADM charges). Yet there are infinitely many gauge invariant degrees of freedom.
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But first we will give an introduction of the concepts of partial and complete observables
and of the relevant results of [7] in section 2. Right from start we will consider field theories,
that is systems with infinitely many constraints. In section 2 we will also explain under which
circumstances one can reduce the number of constraints one has to deal with for the calculation
of complete observables from infinitely many to finitely many constraints.

Section 3 reviews the canonical formulation of general relativity, in particular the
connection between the canonical picture, i.e. where spacetime is split into space and time,
and the covariant picture, where one considers spacetime without such a splitting.

This is necessary to understand spacetime scalars in the canonical picture. As will be
explained in section 4 one can use these spacetime scalars as partial observables in order
to reduce the number of constraints one has to deal with for the computation of complete
observables drastically. Moreover we will show in section 5 and in the appendix how one can
construct canonical fields which behave as spacetime scalars.

In section 6 we explain how one can get rid of the spatial diffeomorphism constraints.
That means that afterwards one works only with quantities which are invariant under spatial
diffeomorphisms. In particular we introduce spatial diffeomorphism invariant Hamiltonian
constraints. Here we will show that using special partial observables one has just to deal with
one constraint in order to calculate Dirac observables invariant under all constraints.

Section 7 discusses the Poisson brackets of the spatial diffeomorphism invariant
Hamiltonian constraints introduced in section 6 and shows how one can get Abelian,
diffeomorphism invariant Hamiltonian constraints.

In section 8 we will consider the example of gravity coupled to matter scalar fields, and
we end with a summary in section 9.

2. Complete observables for field theories

In this section we will consider partial and complete observables for field theories, and at the
same time summarize those results from [7] which are necessary for this work.

For a field theory we work with a phase space M which is some Banach space of fields
given on a spatial d-dimensional manifold � and subject to some boundary conditions. Points
in � will be denoted by σ and we will assume that coordinates (σ a)da=1 have been fixed. We
will also denote the coordinate tuple (σ a)da=1 by σ . Phase space points in M will be denoted
by x or y.

The symplectic structure of this phase space is defined via canonical coordinates denoted
by (φA(σ ), πA(σ ); σ ∈ �) where A is from some finite index set A. The non-vanishing
Poisson brackets are given by

{φA(σ), πB(σ ′)} = αAδA
Bδ(σ, σ ′), (1)

where δ(σ, σ ′) is the delta function on � and αA is a coupling constant for the fields φA, πA.
Constraint field theories have an infinite set of constraints CK(σ), labelled by an index K

from some finite index set I and by the points σ of �. We will assume that all these constraints
generate gauge transformations and are hence first class, that is, that the Poisson bracket of
two constraints vanishes on the constraint hypersurface, i.e. that hypersurface in phase space,
where all the constraints vanish. Furthermore we will assume that all gauge transformations
can be generated by these constraints: i.e. consider the smeared constraint

C[�] :=
∫

�

�K(σ)CK(σ) ddσ, (2)

where �K(σ) are phase space independent smearing functions, ddσ denotes the coordinate
volume element on � and we sum over the repeated index K ∈ I. The gauge transformation
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αt
C[�] generated by this constraint acts on a field ψ as

αt
C[�](ψ(σ)) =

∞∑
r=0

t r

r!
{ψ(σ), C[�]}r . (3)

Here {g,C}r are iterated Poisson brackets, i.e. {g,C}0 = f and {g,C}r+1 = {{g,C}r , C}. We
will often set the parameter t to t = 1 and omit the corresponding index; gauge transformations
for other values of t can be obtained by rescaling the smearing functions �K .

Complete observables are phase space functions, which are invariant under such gauge
transformations, i.e. which are Dirac observables. Complete observables are associated with
partial observables, these are phase space functions, which are in general not invariant
under gauge transformations. These partial observables are divided into clock variables
T K(σ),K ∈ I, σ ∈ � and another partial observable f . We need as many clock variables
as there are constraints, therefore these are labelled by the index K ∈ I and by the points
σ ∈ �. In general the partial observables may be arbitrary functionals of the basic canonical
fields, but in the following we will often choose the partial observables also as fields, i.e. as
functionals which will give the value of some field, built from the basic canonical fields, at a
certain point σ0 ∈ �.

The complete observable F[f ;T ](τ, x) associated with the partial observable f and the
clock variables T := {T K(σ)}K∈I,σ∈� will in general depend on infinitely many parameters
τ := {τK(σ )}K∈I,σ∈� . It gives the value of the phase space function f at that point y in the
gauge orbit through x at which the clock variables give the values [T K(σ)] (y) = τK(σ ) for
all K ∈ I and all σ ∈ �.

The conditions [T K(σ)](y) = τK(σ ) should specify a unique2 point in the gauge orbit
through x. At that point one evaluates the phase space function f and this is the value the
complete observable F[f ;T ](τ, x) assumes on all points on the gauge orbit through x. Hence
complete observables are gauge invariant.

One way to calculate the value of the complete observable F[f ;T ](τ, x) is the following.
First find the point y in the gauge orbit through x at which [T K(σ)] (y) = τK(σ ). That is,
determine the flow

[αC[�](T
K(σ ))](x) =

∞∑
r=0

1

r!
{T K(σ), C[�]}r (x) (4)

and find functions βK(σ) such that

[αC[�](T
K(σ ))]�→β(x)(x) � τK(σ ) (5)

for all K ∈ I and σ ∈ �. Here the symbol � means, that the equation needs only to hold
weakly, i.e. on the constraint hypersurface, or in other words, modulo terms which are at least
linear in the constraints. In contrast to the smearing functions �K , which we assumed to be
phase space independent, the functions βK will in general depend on the phase space point x.
Therefore in equation (5) one has first to calculate the gauge transformation for general phase
space independent �L(σ) and afterwards to replace �L(σ) by the phase space dependent
functions βL(σ ). The value of the complete observable is then given by

F[f ;T ](τ, x) � [αC[�](f )]�→β(x)(x). (6)

In most cases, it will be very difficult to find an explicit expression for the flows (4) and
to solve equations (5). In [7] we therefore developed a system of partial differential equations,
which describe the complete observables. For field theories one will get functional differential

2 This uniqueness is not always necessary, as is discussed in [7].
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equations. In order to state these functional differential equations, we remark that one can
always replace one constraint set by another set of constraints as long as these define the same
constraint hypersurface. Both set of constraints will then lead to the same gauge orbits at least
on the constraint hypersurface. The main idea now is to introduce new constraints, which will
evolve the clock variables in a particularly simple way.

Consider the infinite-dimensional matrix defined by

AK
L(σ, σ ′) := {T K(σ), CL(σ ′)}. (7)

One has to find the inverse (A−1)LM(σ, σ ′) to this matrix, i.e. an integral kernel (A−1)LM(σ ′,
σ ′′) satisfying ∫

�

ddσ ′AK
L(σ, σ ′)(A−1)LM(σ ′, σ ′′) = δK

Mδ(σ, σ ′′)∫
�

ddσ ′(A−1)KL(σ, σ ′)AL
M(σ ′, σ ′′) = δK

Mδ(σ, σ ′′).
(8)

Then the new constraints C̃K are given by

C̃K(σ ) :=
∫

�

ddσ ′CL(σ ′)(A−1)LK(σ ′, σ ). (9)

Note that the integral kernel (A−1)LM(σ ′, σ ′′) is easier to obtain if AKL(σ, σ ′) is ultra-local,
i.e. AKL(σ, σ ′) ∼ δ(σ, σ ′).

With these new constraints, we have that at least on the constraint hypersurface

{T K(σ), C̃L(σ ′)} � δK
L δ(σ, σ ′) (10)

and hence

αC̃[�](T
K(σ )) � T K(σ) + �K(σ), (11)

where C̃[�] := ∫
�

�L(σ)C̃L(σ ) ddσ .
Equations (10) and (11) mean that the flow generated by the constraint C̃K(σ ) is along

the T K(σ)-coordinate line (i.e. along the one-dimensional lines, where all the other clock
variables and all Dirac observables are constant) on the constraint hypersurface. From this it
also follows that the flows generated by the new constraints have to commute on the constraint
hypersurface, i.e. that the Poisson brackets between two of the new constraints

{C̃K(σ ), C̃L(σ ′)} = O(C2) (12)

involve only those terms, which are at least quadratic in the constraints3. We will therefore
call these constraints weakly Abelian.

With these new constraints solving equations (4) and (5) becomes trivial and we can plug
in the solutions βL(σ ) = τL(σ ) − T L(σ ) into equation (6) in order to obtain for the complete
observable

F[f ;T ](τ, x) � [αC̃[�](f )]�→(τ−T (x))(x)

�
∞∑

r=0

1

r!

∫
�

ddσ1 · · · ddσr

{ · · · {f, C̃K1(σ1)
}
, . . . , C̃Kr

(σr)
}
(x)

× (τK1(σ1) − T K1(σ1)(x)) · · · (τKr (σk) − T Kr (σr)(x)). (13)

From here it is straightforward to see that complete observables satisfy the functional
differential equations

δ

δτK(σ )
F[f ;T ](τ, x) � F[{f,C̃K (σ )};T ](τ, x), (14)

3 Indeed, equation (12) can be checked explicitly, see [7].
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with initial conditions

F[f ;T ](τ ≡ T , ·) = f. (15)

Note that equation (13) gives complete observables as a formal power series in the
(τK(σ ) − T K(σ))(x). Many properties of complete observables can be proven by using this
power series, see [7].

For instance, consider the case where we have clock variables T K(σ) and a partial
observable f = ψ(σ ∗) such that these fields have at least weakly ultra-local Poisson brackets
with the constraints, i.e. such that

{T K(σ), CL(σ ′)} ∼ δ(σ, σ ′) and {ψ(σ ∗), CL(σ ′)} ∼ δ(σ ∗, σ ′) (16)

modulo terms at least linear in the constraints. Then the matrices AK
L(σ, σ ′) and

(A−1)KL(σ, σ ′) will also be ultra-local4 and the new constraints are just given by

C̃L(σ ) = (B−1)KL(σ )CK(σ), (17)

where the phase space functions BK
L(σ) are defined by

AK
L(σ, σ ′) =: BK

L(σ)δ(σ, σ ′). (18)

Now we have also for the new constraints that

{ψ(σ ∗), C̃L(σ )} ∼ δ(σ ∗, σ ) (19)

at least on the constraint hypersurface. Hence the first-order term in the power series (15) for
the complete observable F[ψ(σ ∗),T ](τ, ·) can be written as∫

{ψ(σ ∗), C̃K(σ )}(τK(σ ) − T K(σ)) ddσ

�
∫

{ψ(σ ∗), C̃K [1]}δ(σ ∗, σ )(τK(σ ) − T K(σ)) ddσ

� {ψ(σ ∗), C̃K [1]}(τK(σ ∗) − T K(σ ∗)). (20)

Here C̃K [1] are the smeared constraints C̃K [�(K)] := ∫
�(K)(σ )C̃K(σ ) ddσ with some

smearing functions �(K) such that �(K)(σ
∗) = 1. Note that this first-order term just depends

on the parameters τK(σ ∗),K ∈ I and not on the parameter fields τK(σ ),K ∈ I, σ ∈ �. The
question is whether this holds also for the higher order terms. Consider the double Poisson
bracket of ψ(σ ∗) with two constraints{{

ψ(σ ∗), C̃K1(σ1)
}
, C̃K2(σ2)

} � {{
ψ(σ ∗), C̃K1 [1]

}
, C̃K2(σ2)

}
δ(σ ∗, σ1)

� {{
ψ(σ ∗), C̃K2(σ2)

}
, C̃K1 [1]

}
δ(σ ∗, σ1)

� {{
ψ(σ ∗), C̃K1 [1]

}
, C̃K2 [1]

}
δ(σ ∗, σ1)δ(σ

∗, σ2), (21)

where we used in the second and third line that the new constraints are weakly Abelian.
Iterating this argument we will find{ · · · {ψ(σ ∗), C̃K1(σ1)

}
, . . . , C̃Kr

(σr)
}

� { · · · {ψ(σ ∗), C̃K1 [1]
}
, . . . , C̃Kr

[1]
}
δ(σ ∗, σ1) · · · δ(σ ∗, σr). (22)

Now the power series (13) for the complete observable F[ψ(σ ∗),T ](τ, ·) simplifies very much
since all integrals over the spatial manifold � are trivially solved by delta functions:

F[ψ(σ ∗);T ](τ, ·) �
∞∑

r=0

1

r!

{ · · · {ψ(σ ∗), C̃K1 [1]
}
, . . . , C̃Kr

[1]
}

× (τK1(σ ∗) − T K1(σ ∗)) · · · (τKr (σ ∗) − T Kr (σ ∗)). (23)

4 Terms which are not ultra-local and hence are vanishing on the constraint hypersurface can be omitted.
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In this power series we have just to deal with the finitely many constraints C̃K [1],K ∈ I
and not with the infinitely many constraints C̃K(σ ),K ∈ I, σ ∈ � as is the case in the general
formula (13). Also the complete observable just depends on the finitely many parameters
τK(σ ∗) and not on the whole parameter fields τK(σ ), σ ∈ �. In correspondence with this we
are just left with the clock variables T K(σ ∗) at the point σ ∗.

We arrived at this reduction by utilizing two facts: first we used partial observables
which are already invariant with respect to almost all constraints, i.e. with respect to all
constraints except those at the point σ ∗. In [7] it is outlined that such ‘partially invariant’
partially observables can be used, in order to construct complete observables with respect to
all constraints.

Second we used weakly Abelian constraints. This ensured that the partial observables
remain ‘partially invariant’ if one applies the Poisson brackets with these constraints.

In the next section we will review the canonical formulation of general relativity and in
the following section ask for phase space functions which have ultra-local Poisson brackets
with the constraints.

3. Canonical formulation of general relativity

For extended reviews of the canonical formulation of general relativity see [3, 4, 10, 11]. We
will here just summarize the relevant results.

The phase space variables for the gravitational degrees of freedom are given by the spatial
metric gab(σ ) and the conjugated momentum pab(σ ), which are fields on the spatial manifold
�.5 We will assume that � is a compact manifold. The Poisson brackets between these fields
are given by

{gab(σ ), pcd(σ ′)} = κδc
(aδ

d
b)δ(σ, σ ′), (24)

where κ = 8πG/c3 with G Newton’s constant is the gravitational coupling constant. The
matter degrees of freedom are similarly described by matter fields defined on �. We will
consider only non-derivative couplings of matter to gravity.

The phase space variables are subject to constraints. For each point σ ∈ � there are d
diffeomorphism constraints

Ca(σ ) = grCa(σ ) + matCa(σ ) = − 2

κ
gacDbp

bc(σ ) + matCa(σ ), (25)

where D denotes the covariant (Levi-Civita) differential associated with the metric gab. The
matter parts of the diffeomorphism constraints depend on the tensorial character of the matter
fields. If these are described by spatial scalar fields ϕK and conjugated momenta πK , which
have to be scalar densities, the matter parts are given by

matCa(σ ) =
∑
K

1

αK

ϕA
,aπ

A. (26)

The subindex ‘, a’ denotes partial differentiation with respect to σa . Furthermore we have the
so-called Hamiltonian constraints

C⊥(σ ) = grC⊥(σ ) + matC⊥(σ )

= 1

κ

[
g− 1

2

(
gacgbd − 1

d − 1
gabgcd

)
pabpcd(σ ) − g

1
2 R(σ)

]
+ matC⊥(σ ). (27)

5 We will consider here the canonical formulation in the ADM variables [4].
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Here g = det(gab) is the determinant and R the Ricci scalar for the spatial metric gab. For a
non-derivative coupling the matter part matC⊥ may depend on the metric gab but not on the
gravitational momentum pab.

There may arise additional constraints for the matter fields, but we will assume that these
are already solved and one is working on the reduced phase space with respect to these matter
constraints.

General relativity is a totally constrained system, that is the Hamiltonian of the theory is
a linear combination of the constraints

H [N,Na] =
∫

�

(N(σ)C⊥(σ ) + Na(σ)Ca(σ )) ddσ, (28)

where N and Na are called lapse and shift functions. Apart from the condition that the lapse
has to be strictly positive, the lapse and shift function can be chosen arbitrarily. The constraint
algebra is given by

{H [M,Ma],H [N,Na]} = H
[
MbN,b − NbM,b,M

bNa
,b − NbMa

,b + gab(MN,b − NM,b)
]
.

(29)

Because of the appearance of the inverse metric gab this algebra is a constraint algebra with
structure functions.

Since the system is totally constrained, we know that the Hamiltonian equations of motion

∂

∂s
gab(s, σ ) = {gab(s, σ ),H [N,Na]}

∂

∂s
pab(s, σ ) = {pab(s, σ ),H [N,Na]}

(30)

and similarly for the matter fields describe the evolution with respect to an a priori unphysical
time parameter s.

Assume that one has found a complete solution to the equations of motion (30) with
some choice of lapse and shift functions. We now want to reconstruct the spacetime metric
γµν on the spacetime manifold, in the following denoted by S. So far we have just the
s-dependent spatial metric gab(s, σ ) on the d-dimensional manifold �, the lapse and shift
functions N(s, σ ),Na(s, σ ) and the conjugated momentum pab(s, σ ).

In order to reconstruct the spacetime metric, one has to embed the surface � into the
manifold S for each value of the parameter s. To this end introduce a coordinate system
(zµ)µ=0,...,d on S. The embeddings can then be written as

Zs : � → S σ 
→ Zs(σ ) ≡ (Zµ(s, σ ))dµ=0, (31)

where (Zµ(s, σ ))dµ=0 are the coordinates for the point Zs(σ ). The image of Zs is the embedded
hypersurface �s ⊂ S.

The embeddings (31) induce d-independent vector fields Z
µ
a , a = 1, . . . , d on S, which

are tangential to the hypersurfaces �s :

Zµ
a (z) := Zµ

,a(s, σ )
∣∣
zν=Zν(s,σ )

. (32)

The derivative of the embeddings (31) with respect to the parameter s defines the spacetime
deformation vector

Nµ(z) := ∂Zµ

∂s
(s, σ )

∣∣
zν=Zν(s,σ )

. (33)
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The embeddings (31) should be such that the (d + 1) vector fields
(
Nµ,Z

µ
a

)
, a = 1, . . . , d

form a basis of the tangent space to S. One can then define the spacetime metric γµν by giving
its matrix elements with respect to this basis:

γµνN
µNν(z) = (−N2 + NcNc)(z) γµνN

µZν
b(z) = Nb(z)

γµνZ
µ
a Nν(z) = Na(z) γµνZ

µ
a Zν

b(z) = gab(z),
(34)

where N(z),Na(z) are the lapse and shift functions in the Hamiltonian (28), gab(z) is the
spatial metric and Na = Nbgab. Here z refers to the point with coordinates zµ = Zµ(s, σ ).

Hence given the family of spatial metrics gab(s, σ ) satisfying (30) and the lapse and shift
functions N,Na(s, σ ) one can reconstruct the spacetime metric γµν .

In order to get the zµ-coordinate expression for the spacetime metric we introduce the
future-pointing unit normal vector to the hypersurface �s

nµ(z) = 1

N

(
Nµ − NaZµ

a

)
(z). (35)

The inverse spacetime metric γ µν can then be written as

γ µν(z) = Zµ
a Zν

ag
ab(z) − nµnν(z), (36)

where gab(z) is the inverse of gab at zµ = Zµ(s, σ ). From the inverse spacetime metric one
can calculate the spacetime metric γµν(z).

The last equation in (34) means that the spacetime metric γµν induces a spatial geometry
on �s which coincides with the geometry defined by gab(s, σ ). Also, the lapse and shift
functions have a geometrical meaning. Because of (35) we have that the deformation vector
Nµ, which connects two consecutive hypersurfaces �s and �s+ε is given by

Nµ = Nnµ + NaZµ
a . (37)

That is, the lapse function N gives the proper distance εN between the two consecutive
hypersurfaces �s and �s+ε measured in normal direction. The shift vector εNa gives the
tangential deformation that is applied to the points of � if the embedding is changed from
Zs(σ ) to Zs+ε(σ ).

Here we began with the s-dependent spatial metric fields gab(s, σ ) on � and the lapse
and shift functions N(s, σ ) and Na(s, σ ). We reconstructed the spacetime metric field γµν

using the family of embeddings (31). If we had used another family of embeddings Z′
s we

would have ended up with another spacetime metric field γ ′
µ′ν ′ . But this metric field would

by definition induce the same geometry on the surfaces Z′
s(�) as the metric field γµν on the

surfaces Zs(�) and the foliation Z′
s(�) would be still characterized by the same lapse and

shift functions. Indeed one can understand the change from γµν to γ ′
µ′ν ′ as the effect of a

coordinate transformation

zµ 
→ zµ′ = Z′
s(s, σ )|Zµ(s,σ )=zµ (38)

which also changes the coordinates of the surfaces �s from zµ = Zµ(s, σ ) to z′µ′ = Z′µ′
(s, σ ).

However one can go the other way around and consider a fixed spacetime metric field γµν

on S satisfying the Einstein equations. A family of embeddings Zs as in (31) can then be used
to define s-dependent spatial metrics on � by

gab(s, σ ) = Zµ
a Zν

bγµν(z)|zµ=Zµ(s,σ ). (39)

Also, equations (33) and (34) determine lapse and shift functions N(s, σ ) and Na(s, σ ).
Moreover the conjugated momentum pab is defined by

pab(s, σ ) = g
1
2
(
Kab − gabKc

c

)
(s, σ ) (40)
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where we raise and lower indices with gab and gab, respectively. Kab is the extrinsic curvature
of �s :

Kab(s, σ ) = Zµ
a Zν

b∇µnν(z)|zµ=Zµ(s,σ ). (41)

Here ∇ is the covariant differential on S associated with the spacetime metric γµν .
In general, a spacetime tensor field (for instance a matter field) on �s ⊂ S can be pulled

back to a spatial tensor field on � in the following way:

ta···
b···(s, σ ) = Za

µ · · ·Zν
b · · · tµ···

ν···(z)|zρ=Zρ(s,σ ), (42)

where

Za
µ = gabγµνZ

ν
b . (43)

But in pulling back tensor fields to � we will always project out the normal components
of these tensor-fields, because we have Z

µ
a nµ = Za

µnµ = 0 by definition. One can regain
these components by first projecting tensor components onto the normal vector nµ and then
pulling back the resulting expression:

ta···⊥···
b···⊥···(s, σ ) = (−1)NZa

µ · · · nρ · · ·Zν
b · · · nκ · · · tµ···ρ...

ν···κ···(z)|zρ=Zρ(s,σ ), (44)

where N is the number of contractions of lower or upper indices with the normal vector or the
normal covector. We can then regain for instance a spacetime vector as tµ = Z

µ
a ta + nµt⊥.

The two operations of pulling back and projecting onto the normal vector give the fields we
are working with in the canonical formalism.

Now if we change the embeddings Zs to Z′
s but leave the spacetime metric field γµν fixed,

the induced spatial metrics and conjugated momenta will also change as well as the lapse and
shift functions.

In particular, consider a family of embeddings of � with

Zµ(ε, σ ) = Zµ(0, σ ) + ε�(σ)nµ(z)|zν=Zν(0,σ ) + ε�a(σ )Zµ
a (0, σ ) + O(ε2). (45)

One can show [3, 11] that the induced canonical data on � for parameter value s = ε are
given by

gab(ε, σ ) � gab(0, σ ) + {gab(0, σ ),H [�,�a]}|s=0 + O(ε2)

pab(ε, σ ) � pab(0, σ ) + {pab(σ ),H [�,�a]}|s=0 + O(ε2),
(46)

with

H [�,�a] =
∫

�

(�C⊥(σ ) + �aCa(σ )) ddσ. (47)

Hence one can say that the Hamiltonian constraint C⊥ generates deformations of the embedding
of � in normal direction to the embedded surface and that the diffeomorphism constraints
Ca generate deformations in the tangential directions, i.e. spatial diffeomorphisms. We want
to remark that equations (46) are only valid if the canonical data gab(s, σ ) and pab(s, σ ) are
induced from a spacetime metric satisfying the Einstein equations.

4. Complete observables associated with spacetime scalars

It is often suggested [6, 12, 13] to construct the following spacetime diffeomorphism invariant
quantity. Choose (d + 1) spacetime scalar fields ψK,K = 0, . . . , d and calculate the value
of a (d + 2) scalar field φ at that point in spacetime at which the fields ψK assume the
values ξK .
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Hence, in order to define these observables, one needs to specify only (d + 1) parameter
values ξK and not infinitely many parameters τK(σ ), σ ∈ �, as is the case for the complete
observables in the canonical formalism.

The question arises whether one can define the same kind of observables also in the
canonical formalism. In the following we will show, that this is indeed the case. To this end
we will use the ideas sketched in section 2 and therefore look for partial observables, which
are already invariant with respect to almost all constraints. Then it may indeed happen, that
the corresponding complete observable does only depend on (d + 1) parameters and not on
the parameter fields τK(σ ), σ ∈ �. Therefore let us contemplate the question, how one can
decide in the canonical formalism, whether a certain phase space quantity can be reconstructed
as a spacetime scalar or not.

That is, given a spatial scalar ψ on �, built from the canonical fields. The equations
of motions for the latter will result in a field ψ(s, σ ) on R × �. This can be mapped to a
field ψ(z) on the spacetime manifold S by the family of embeddings Zs (see (31)). Can one
decide whether ψ(z) is also a spacetime scalar or rather something else, like the projection of
a spacetime vector onto the normal vector fields to the surfaces �s?

Indeed there is a necessary and sufficient condition for ψ to be reconstructable as a
spacetime scalar. Likewise, there are conditions for all other kinds of spacetime tensors,
summarized in the reconstruction theorem of Kuchař [11]. For the moment we will only
consider the condition for spacetime scalars, since this will give as the kind of partially
invariant partial observables we are looking for: a field ψ built from the canonical fields and
behaving as a scalar under spatial diffeomorphisms of �, is reconstructable as a spacetime
scalar if and only if we have for every point σ ∈ �{

ψ(σ),

∫
�

NC⊥(σ ′) ddσ ′
}

� 0 (48)

for all lapse functions N(σ ′) with N(σ) = 0. That is the Poisson brackets of a spacetime
scalar field with the Hamiltonian constraints (and also with the diffeomorphism constraints,
see below) have to be ultra-local.

One can prove this assertion by realizing that infinitesimal gauge transformations with
lapse functions that vanish at the point σ deform the position of the hypersurface �s in such a
way that the point σ is mapped to the same spacetime point as before. That is, the hypersurface
is tilted but the point Zs(σ ) is held fixed. A spacetime scalar should only depend on the point
Zs(σ ) but not on the shape of the hypersurface �s containing this point. In contrast to that,
the projection of a spacetime vector to the normal unit vector should depend on the shape
of the hypersurface, since the normal vector itself depends on the shape of the hypersurface,
see the appendix.

A field ψ behaves as a spatial scalar if it exhibits the following Poisson brackets with the
diffeomorphism constraints:{

ψ(σ),

∫
�

NaCa(σ
′) ddσ ′

}
= Na(σ)ψ,a(σ ). (49)

So the Poisson brackets with diffeomorphism constraints smeared with shift functions Na

which vanish at the point σ also vanish.
In the following we will call all canonical fields satisfying equations (48) and

(49) spacetime scalars. As we have seen, spacetime scalars exhibit exactly those properties,
which we need in order to apply the reasoning from section 2.

That is choose as clock variables (d + 1) fields T K,K = 0, . . . , d, satisfying
equations (48) and (49). Then we can write for the Poisson brackets between the latter
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and the constraints

AK⊥(σ, σ ′) = {T K(σ), C⊥(σ ′)} � {T K(σ), C⊥[1]}δ(σ, σ ′) =: BK⊥(σ )δ(σ, σ ′)

AK
a(σ, σ ′) = {T K(σ), Ca(σ

′)} = T K
,a (σ )δ(σ, σ ′) =: BK

a(σ )δ(σ, σ ′)
(50)

where we defined

C⊥[1] :=
∫

�

C⊥(σ ′) ddσ ′. (51)

In the following we will use lower case letters from the middle of the alphabet to denote
the set of indices {⊥, a = 1, . . . , d}. The weakly Abelian constraints at a point σ are just
linear combinations of the old constraints at the same point:

C̃K(σ ) = (B−1)j K(σ )Cj (σ ). (52)

Now, choose as partial observable f a spatial scalar field ψ evaluated at a point σ ∗, that
is f = ψ(σ ∗), where ψ satisfies requirements (48) and (49). Then we have also for the new
constraints

{ψ(σ ∗), C̃K(σ )} � {ψ(σ ∗), C̃K [1]}δ(σ ∗, σ ), (53)

with C̃K [1] = ∫
�

C̃K(σ ′) dσ ′.6

Since the new constraints C̃K are weakly Abelian, the iterated Poisson brackets of ψ(σ ∗)
with the new constraints will also involve only delta functions and we obtain for the complete
observable associated with ψ(σ ∗):

F[ψ(σ ∗);T ](τ, ·) =
∞∑

r=0

1

r!

{ · · · {ψ(σ ∗), C̃K1 [1]
}
, . . . , C̃Kr

[1]
}

× (τK1(σ ∗) − T K1(σ ∗)) · · · (τKr (σ ∗) − T Kr (σ ∗)). (54)

As for the covariant construction involving (d + 2) spacetime scalar fields mentioned at
the beginning of this section, the right-hand side of equation (54) does depend only on the
(d + 1) parameters τK := τK(σ ∗) and not on the infinitely many other values τK(σ ), σ 
= σ ∗.

Remember that the constraints generate deformations in the embedding of the
hypersurface � into the spacetime manifold S. Hence F[ψ(σ ∗);T ](τ, ·) gives the value of
ψ(σ ∗) on that family of embedded hypersurfaces for which T K(σ ∗) = τK . That is, these
embeddings have to map the point σ ∗ to the spacetime point z∗ characterized by T K(z∗) = τK .
In other words F[ψ(σ ∗);T ](τ, ·) gives the value of the spacetime scalar ψ at that point in the
spacetime manifold where the scalar fields T K are equal to τK . In this way the fields T K serve
as a physical coordinate system.

Note that in the power series (54) we have only to deal with the (d + 1) constraints C̃K [1]
and not with the infinitely many constraints C̃K(σ ), σ ∈ �. In section 6 we will reduce the
number of constraints we have to deal with to 1.

5. The metric as a spacetime scalar

We have seen that if one uses spacetime scalars as partial observables, that is phase space
functionals ψ(σ) satisfying equations (48) and (49), the associated complete observable will
only depend on (d + 1) parameters and not on infinitely many parameters.

Now the question arises whether there are enough phase space functionals with these
properties. Of course, if gravity is coupled to matter fields, one can construct spacetime
scalars out of these matter fields. One can also use the (spacetime) curvature tensor and

6 One can also use C̃K [�(K)] := ∫
�

�(K)(σ )C̃K(σ ) ddσ with �(K)(σ
∗) = 1.
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construct spacetime scalars from it by contraction. For a four-dimensional spacetime one can
use the so-called Bergmann–Komar invariants [12], which are four independent spacetime
scalars built from the spacetime curvature tensor. These invariants can be expressed through
the canonical data (gab, p

ab) and matter fields, if one uses the equation of motion [12].
Assume that one has chosen (d + 1) spacetime scalars T K,K = 0, . . . , d, for instance the

Bergmann–Komar invariants or scalars built from matter fields. Then one can even express
the inverse spacetime metric γ µν in the T K frame by

γ KL(z) = T K
,µT L

,ν γ µν(z). (55)

Now, if one applies a spacetime diffeomorphism to γ KL, the behaviour of γ µν as a contravariant
tensor is balanced by the covariant vectors T K

,µ . Hence each component of γ KL behaves as a
spacetime scalar. Using equation (36) these can also be expressed through canonical data and
independently of lapse and shift functions in the following way:

γ KL(z) = [
T K

,µT L
,ν (z)

(
Zµ

a Zν
bg

ab − nµnν
)
(s, σ )

]∣∣
zµ=Zµ(s,σ )

= [
T K

,a T L
,b gab(s, σ ) − nµT K

,µnνT L
,ν (s, σ )

]∣∣
zµ=Zµ(s,σ )

= [
T K

,a T L
,b gab(s, σ ) − {T K,C⊥[1]}{T L,C⊥[1]}(s, σ )

]∣∣
zµ=Zµ(s,σ )

. (56)

Here we used, that

T K
,a (s, σ ) = Zµ

a (s, σ )T K
,µ (z)

∣∣
zµ=Zµ(s,σ )

(57)

in the second line of (56) and the equations of motion

nµT K
,µ (z) = {T K,C⊥[1]}(s, σ )|zµ=Zµ(s,σ ) (58)

in the third line. (Remember that C⊥ generated deformation of the hypersurface in normal
direction.) From now on we will abbreviate {T K,C⊥[1]} with −T K

,⊥, where the minus sign
appears because of the convention in (44).

The spacetime metric γKL inverse to γ LM is given by

γKL = (B−1)aK(B−1)bLgab − (B−1)⊥K(B−1)⊥L, (59)

where (B−1)
j

K is the inverse to the matrix BK
j introduced in (50).

In the following we will show that the phase space functional

γ KL(σ ) := T K
,a T L

,b gab(σ ) − T K
,⊥T L

,⊥(σ ) (60)

satisfies indeed the requirements in order to be reconstructable as a spacetime scalar. That is, we
will show that the Poisson brackets of this quantity with the constraints (C⊥(σ ′), Ca(σ

′)) and
therefore also with the weakly Abelian constraints C̃K(σ ′) does involve only delta functions
δ(σ, σ ′) at least on the constraint hypersurface. Since the new constraints are weakly Abelian
this property holds at least weakly also for the Poisson bracket of γ KL with the smeared
constraints C̃K [1]. This gives us further phase space quantities, for which formula (54) is
applicable.

For the calculation of the Poisson brackets of γKL with the constraints, we will begin with
the diffeomorphism constraints Cc(σ

′). Since T K are spatial scalars the first summand in (60)
has to be also a spatial scalar, i.e. we have{

T K
,a T L

,b gab(σ ), Cc(σ
′)
} = [

T K
,a T L

,b gab
]
,c

(σ )δ(σ, σ ′). (61)

This also holds for the normal derivatives −T K
,⊥(σ ) in (60). More explicitly, we use the

Jacobi identity and the fact that the smeared Hamiltonian constraint C⊥(1) commutes with the
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diffeomorphism constraints Cc(σ
′) (see 29):{−T K

,⊥(σ ), Cc(σ
′)
} = {{T K,C⊥[1]}, Cc(σ

′)}
= {{T K,Cc(σ

′)}, C⊥[1]}
= {

T K
,c (σ ), C⊥[1]

}
δ(σ, σ ′)

= δ(σ, σ ′)
∂

∂σ c
{T K(σ), C⊥[1]}

=: −T K
,⊥c(σ )δ(σ, σ ′). (62)

Here we applied in the fourth line the identity{
∂

∂σ a
φ(σ ), ψ(σ ′)

}
= ∂

∂σ a
{φ(σ), ψ(σ ′)}. (63)

Hence we have

{γ KL(σ ), Cc(σ
′)} = γ KL

,c(σ )δ(σ, σ ′) (64)

and therefore γ KL(σ ) behaves indeed as a spatial scalar.
For the Poisson bracket of γ KL with the Hamiltonian constraints C⊥(σ ′) we need the

Poisson brackets between T K
,a and the Hamiltonian constraints{

T K
,a (σ ), C⊥(σ ′)

} = − ∂

∂σ a

[
T K

,⊥(σ )δ(σ, σ ′)
]

(65)

and between gab and the Hamiltonian constraints

{gab(σ ), C⊥(σ ′)} = −2g− 1
2

(
pab − 1

d − 1
gabp

)
(σ )δ(σ, σ ′) = {gab(σ ), C⊥[1]}δ(σ, σ ′).

(66)

Furthermore, in order to calculate the Poisson brackets of −T K
,⊥ with the Hamiltonian

constraints we will use again the Jacobi identity and the constraint algebra (29), namely

{C⊥[1], C⊥(σ ′)} = − ∂

∂σ ′a (gabCb)(σ
′), (67)

so that we can write{−T K
,⊥(σ ), C⊥(σ ′)

} = {{TK,C⊥[1]}, C⊥(σ ′)}
= {{TK(σ), C⊥(σ ′)}, C⊥[1]} − {{C⊥[1], C⊥(σ ′)}, T K(σ )}
= {−T K

,⊥(σ ), C⊥[1]
}
δ(σ, σ ′) +

{
∂

∂σ ′a (gabCb)(σ
′), T K(σ )

}

= {−T K
,⊥(σ ), C⊥[1]

}
δ(σ, σ ′) +

∂

∂σ ′a [Cb(σ
′){gab(σ ′), T K(σ )}]

+
∂

∂σ ′a [gab(σ ′){Cb(σ
′), T K(σ )}]

� {−T K
,⊥(σ ), C⊥[1]

}
δ(σ, σ ′) − ∂

∂σ ′a
[
gab(σ ′)T K

,b (σ )δ(σ, σ ′)
]

� {−T K
,⊥(σ ), C⊥[1]

}
δ(σ, σ ′) − gab(σ )T K

,b (σ )
∂

∂σ ′a δ(σ, σ ′), (68)

where in the last line we used the delta function identity
∂

∂σ ′b [ψ(σ ′)φ(σ )δ(σ, σ ′)] = ∂

∂σ ′b [ψ(σ)φ(σ )δ(σ, σ ′)]

= ψ(σ)φ(σ )
∂

∂σ ′b δ(σ, σ ′). (69)
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This equation can be proved by integrating both sides with test functions �(σ) and
�′(σ ′).

Finally in order to put the results of (65) and (66) and (68) together, we utilize another
delta function identity which can be proved in a similar manner as (69):

∂

∂σ ′b δ(σ, σ ′) = − ∂

∂σ b
δ(σ, σ ′). (70)

The derivatives of the delta functions in (65) and (68) then cancel each other and we will end
with

{γ KL(σ ), C⊥(σ ′)} � [−T K
,⊥aT

L
,b gab − T K

,a T L
,⊥bg

ab + T K
,a T L

,b {gab, C⊥[1]}
− T L

,⊥
{
T K

,⊥, C⊥[1]
} − T K

,⊥
{
T L

,⊥, C⊥[1]
}]

(σ )δ(σ, σ ′)

� {γ KL(σ ), C⊥[1]}δ(σ, σ ′). (71)

This finishes the proof that γ KL and therefore also γKL can be reconstructed as a spacetime
scalar.

These considerations allow the construction of all kinds of spacetime diffeomorphism
invariant quantities connected to metric properties as observables in the canonical formalism.
For instance, the spacetime volume of a certain spacetime region specified by the values of
the fields T K can be expressed as the integral over the corresponding τK -parameters over
the complete observable associated with the determinant of γKL. Quantities which involve
derivatives of the metric, as for instance curvatures, can be constructed by using the derivatives
with respect to the parameters τK of the complete observables associated with the matrix
elements of γ KL. These coincide with the complete observables associated with the phase
space function {γ KL(σ ), C̃K [1]}, which is also a spacetime scalar.

In the appendix we show how one can express general spacetime tensor fields in the
T K -coordinate system and that the so gained T K -components behave as spacetime scalars,
i.e. have ultra-local Poisson brackets with the constraints.

6. Solving the diffeomorphism constraints

Using spacetime scalars as partial observables, we managed to reduce the number of constraints
we have effectively to deal with to the (d +1) constraints C̃K [1]. That is, only these constraints
appear in power series (54).

A further reduction can be obtained if one introduces complete observables with respect
to the diffeomorphism constraints Ca(σ ), σ ∈ �, a = 1, . . . , d. This was also done in [14]
for the example of gravity coupled to an incoherent dust (albeit with another terminology).
Let us explain this idea in more detail.

In [7] it was shown that one can construct complete observables ‘in stages’, i.e. one can
first look for phase space functions which are invariant under a subalgebra of the constraint
algebra (e.g. the diffeomorphism constraints) and then use these partially invariant phase space
functions as partial observables in order to construct complete observables which are invariant
under all the constraints.

If one applies this strategy to the diffeomorphism and the Hamiltonian constraints, this
means that one has first to construct spatially diffeomorphism invariant phase space functions.
Then one uses these phase space functions as clock variables and partial observables in order to
construct complete observables with respect to the Hamiltonian constraints. One does need as
many clock variables as there are constraints left after the first step, i.e. as there are Hamiltonian
constraints; that is just one clock variable for each point σ ∈ �. The proof in [7] shows, that
if one constructs a complete observable associated with the diffeomorphism invariant clock
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variables and a diffeomorphism invariant partial observable with respect to the Hamiltonian
constraints, this complete observable is not only invariant under these Hamiltonian constraints
but also under the diffeomorphism constraints, which were not involved in the construction of
the complete observable. This statement holds despite the fact, that e.g. the Poisson bracket of
two Hamiltonian constraints is equal to a diffeomorphism constraint, i.e. that the Hamiltonian
constraints do not close among themselves.

One method to complete the first step, i.e. to find spatial diffeomorphism invariant partial
observables, is to construct complete observables with respect to the diffeomorphism group.
One could then use these partially complete observables as partial observables in order to
construct fully complete observables with respect to the Hamiltonian constraints. However
one has then to work with two very different types of phase space functions: on the one hand,
with the partially complete observables which will for instance not be labelled by the spatial
points σ ∈ � but by the parameter fields τA(σ ),A = 1, . . . , d (in special cases by just d
parameters τ a) and on the other hand, we have the Hamiltonian constraints C⊥(σ ) which are
labelled by the spatial points σ ∈ �.

We will therefore replace the Hamiltonian constraints C⊥(σ ), σ ∈ � by another set
of constraints which are also gained as partially complete observables with respect to the
diffeomorphism group. Hence these new constraints are Hamiltonian constraints invariant
under spatial diffeomorphism and therefore if one computes complete observables with
respect to these constraints one works entirely with functions that are invariant under spatial
diffeomorphisms.

But first we have to show that the so introduced new Hamiltonian constraints are equivalent
to the old ones. To this end consider a first class constraint algebra C with a subalgebra C1.
The constraints in this subalgebra will be denoted by Ca , where a is here a possibly continuous
index in an index set A. The remaining constraint set will be denoted by C2 and the constraints
in this set by Cj with an index j from an index set J . Choose a set of clock variables Ta, a ∈ A
such that the equations Ta = τa ∀a ∈ A provide good gauge conditions for some fixed real
numbers τa, a ∈ A.7 This condition will ensure that the partially complete observables are
well defined.

Define the partially complete observables D[Cj :Tc](τc, ·) with respect to the constraint set
C1 and associated with the clock variables Tc, c ∈ A and the constraints Cj , j ∈ J (and with
the fixed parameters τa, a ∈ A). Here we use the symbol D instead of F in order to indicate
that we compute the complete observable with respect to the subalgebra C1. We have to
show that the vanishing of the constraints D[Cj :Tc](τc, ·) at points of the submanifold C1,
defined by the vanishing of the constraints in C1, is equivalent to the vanishing of the original
constraints Cj , j ∈ J at such points.

On the one hand, if all the constraints Cj , j ∈ J vanish at a point x ∈ C1 then also the
constraints D[Cj :Tc](τc, ·), j ∈ J vanish at this point. The reason for that is, that D[Cj :Tc](τc, ·)
is at least linear in the constraints Ca ∈ C1 or Cj ∈ C2 as can be seen by using the power
series (13) for complete observables and the fact that the constraint algebra C is first class, i.e.
Poisson brackets of constraints are at least linear in the constraints.

On the other hand, if all the constraints D[Cj ;Tc](τc, ·) vanish at a point x ∈ C1 they
will vanish on the complete C1-orbit through the point x. In particular, they will vanish
at that point y in this orbit where Ta(y) = τa for all a ∈ A. But at this point we have
Cj(y) = D[Cj ;Tc](τc, y) = 0. Hence also the constraints Cj vanish at the point y, i.e. this
point and also the C1-orbit through this point and in particular the point x are positioned inside

7 That is, the chosen gauge must be accessible from an arbitrary point on the constraint hypersurface and the gauge
conditions must fix the gauge completely, that is there is no gauge transformation other than the identity, that preserves
the gauge.
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the constraint hypersurface C, where the constraints Cj , j ∈ J and the constraints Ca, a ∈ A
vanish.

Therefore the vanishing of the constraints D[Cj ;Tc](τc, ·), j ∈ J is equivalent to the
vanishing of the constraints Cj , j ∈ J : Both constraint sets are equivalent if completed with
the constraint algebra C1. But now C1 is an ideal in the algebra C1 ∪ {

D[Cj ;Tc](τc, ·), j ∈ J
}
.

Given a C1-invariant function f and C1-invariant clock variables Tj , j ∈ J , one can
therefore compute the complete observable either with respect to the constraints Cj or with
respect to the constraints D[Cj ;Tc](τc, ·). The result of both procedures is (weakly) the same,
since both complete observables are invariant under the constraints and coincide on the
(C2-)gauge fixing {Tk = τk, k ∈ J }.

Let us next consider the construction of partially complete observables with respect to the
diffeomorphism group. Afterwards we will come back to the partially complete observables
associated with the Hamiltonian constraints.

To begin with we choose d clock variable fields T A(σ ),A = 1, . . . , d and another field
ψ(σ). We have to assume that the fields T A define a good8 coordinate system on �, this
means in particular that det

(
T A

,a

)
should not vanish. We will demand that the fields T A behave

as space time scalars according to the requirements (48) and (49).
We can then define the partially complete observable D[ψ(σ ∗);T A](Y) with respect to the

diffeomorphism constraints and associated with the phase space functional ψ(σ ∗). Here we
renamed the parameter field τA(σ ) into Y = (YA(σ ))dA=1 and omitted the dependence on the
phase space point x.

If the field ψ(σ) behaves as a spatial scalar, i.e. if we have

{ψ(σ), Cb(σ
′)} = ψ,b(σ )δ(σ, σ ′), (72)

then the complete observable DY
ψ(σ ∗) will only depend on the d parameters YA := YA(σ ∗)

and not on the values the parameter fields YA assume at the other points of �. This can be
understood by the same reasoning as used in section 4 to argue that complete observables
associated with spacetime scalars depend only on d + 1 parameters.

Now any spatial (densitized) tensor can be made into a spatial scalar by multiplying it with
appropriate factors of the Jacobian matrix (∂T A/∂σ a)da,A=1, its inverse and its determinant.
For instance, for the spatial metric and the conjugated momentum we can define the quantities

gAB(Y ) := D[gabSa
ASb

B(σ ∗);T A](Y) (73)

pAB(Y ) := D[pabT A
,a T B

,b det(Sc
C)(σ ∗);T A](Y), (74)

where (Sa
A(σ ))da,A=1 is the inverse matrix to the matrix

(
T A

,b (σ )
)d

b,A=1 and the fields YA satisfy

YA(σ ∗) = YA.
In the following we will assume that the fields {T A}dA=1 are part of the canonical

coordinates and we will denote the conjugated momenta by {�A}dA=1. Furthermore we will
suppose that there is a spacetime scalar field T 0 such that {T 0(σ ), C⊥(1)} does not vanish.
This field will be used as clock variable with respect to the Hamiltonian constraints. We define
the partially complete observables associated with these variables in the following way:

T 0(Y ) := D[T 0(σ ∗);T A](Y) (75)

�A(Y ) := D[�A det(Sc
C)(σ ∗);T A](Y), (76)

where again YA = YA(σ ∗).
8 That is, the map T := (T A) : � → (T A)(�) ⊂ R

d should be bijective for each phase space point on the constraint
hypersurface CD defined by the vanishing of all diffeomorphism constraints. Furthermore we will assume that the
image (T A)(�) ⊂ R

d is the same for each phase space point in CD .
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In order to define partially complete observables associated with the Hamiltonian
constraints we first multiply these by det

(
Sc

C

)
since the Hamiltonian constraints are densities

of weight one. We then have spatially diffeomorphism invariant Hamiltonian constraints

C⊥(Y ) := D[det(Sc
C)C⊥(σ ∗);T A](Y) (77)

which will also depend only on the d parameters YA = YA(σ ∗) and not on the whole parameter
fields YA(σ ), σ ∈ �.

We have shown above that the constraints {D[det(Sc
C)C⊥(σ );T A](Y), σ ∈ �} are equivalent

to the original set of constraints {C⊥(σ )σ ∈ �} if one sublements both sets with the
diffeomorphism constraints. (The determinant factor does not matter, since it was assumed
that it does not vanish.) Now we have that D[det(Sc

C)C⊥(σ );T A](Y) = C⊥(Y ) where Y = Y(σ ).
Since we have assumed that the fields T A provide a good coordinate system we have that{
D[det(Sc

C)C⊥(σ );T A](Y), σ ∈ �
} = {

C⊥(Y ), (YA)dA=1 ∈ (T A)dA=1(�) ⊂ R
d
}
. (78)

Hence we can use the constraint set
{
C⊥(Y ), (YA)dA=1 ∈ (T A)dA=1(�) ⊂ R

d
}

and the
other partially complete observables in order to compute fully complete observables. For this
we need to specify the Poisson brackets between two partially complete observables. In [7]
it was shown that the Poisson bracket between two complete observables associated with the
phase space functions f and g is given by the complete observable associated with the Dirac
bracket {f, g}D of the two partial observables. Here the Dirac bracket is with respect to the
gauge fixing where all the clock variables are equal to some constants. That is we have

{D[φ(σ ∗);T A](Y),D[ψ(σ ∗∗);T A](Y)} = D[{φ(σ ∗),ψ(σ ∗∗)}D;T A], (Y) (79)

where {·, ·}D is the Dirac bracket with respect to the diffeomorphism constraints {Cb(σ )}db=1,

σ ∈ � and the gauge fixings {T A(σ ) = YA(σ ); σ ∈ �}. This equation holds on the
submanifold CD of phase space, defined by the vanishing of all the diffeomorphism constraints.
Therefore, in the following all equations need just to hold on this hypersurface CD .

The Dirac bracket is given by

{φ(σ ∗), ψ(σ ∗∗)}D = {φ(σ ∗), ψ(σ ∗∗)} −
∫

�

{
φ(σ ∗), Sb

ACb(σ )
}{T A(σ ), ψ(σ ∗∗)} ddσ

+
∫

�

{φ(σ ∗), T A(σ )}{Sb
ACb(σ ), ψ(σ ∗∗)

}
ddσ (80)

and coincides with the usual Poisson bracket if the two phase space functions involved do
not depend on the momenta {�A}dA=1, that is if they have vanishing Poisson brackets with the
clock variables {T A}dA=1. However, we can replace every phase space function by a phase
space function not depending on these momenta if one solves the diffeomorphism constraints
Cb: since the clock variables are scalars, these have to be of the form

Cb = 1

αA

�AT A
,b + C

(R)
b , (81)

where C
(R)
b does not depend on the momenta {�A}dA=1. In particular, the diffeomorphism

constraints are linear in these momenta and hence can be easily solved for these:

�A = −αASb
AC

(R)
b . (82)

Since D[Cb(σ ∗);T A](Y) = 0 on CD , the partially complete observable associated with �A will
coincide with the observable associated with −αASb

AC
(R)
b on CD . Hence before calculating
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Poisson brackets between partially complete observables, we replace the momenta �A by the
expressions −αASb

AC
(R)
b . If this is done the Dirac brackets are just given by the usual Poisson

brackets.
Let us consider the Poisson brackets between gAB and pCD as an example:{

D[gabSa
ASb

B(σ ∗);T A](Y),D[pcdT C
,c T D

,d det(Sc
C)(σ ∗∗);T A](Y)

} = κD[det(Sc
C)(σ ∗∗)δ(σ ∗,σ ∗∗)δC

(AδD
B);T A](Y)

= κδC
(AδD

B)[det(YC, c)(σ ∗∗)]−1δ(σ ∗, σ ∗∗) = κδC
(AδD

B)δ(Y
′, Y ′′), (83)

where we used that D[T B(σ );T A](Y) = YB(σ ) and defined Y ′A := YA(σ ∗) and Y ′′A :=
YA(σ ∗∗). Hence the fields gAB and pAB are canonically conjugated to each other. This holds
also for all the other partially complete observables associated with canonically conjugated
fields (except for the clock variables T A and their conjugated momenta).

In summary, the Poisson brackets between partially complete observables are structurally
the same as the Poisson brackets between the original fields with the exceptions of terms that
depend on the momenta {�A}dA=1. But these can be replaced by using (82). In particular a
field ψ(σ) being a spacetime scalar will retain this property, that is, at least weakly we will
have

{ψ(Y ), C⊥(Y ′)} ∼ δ(Y, Y ′). (84)

This follows if we apply formula (80) in order to calculate the Dirac bracket between the field
ψ(σ ∗) and the constraint det

(
Sc

C

)
C⊥(σ ∗∗),

{
ψ(σ ∗), det

(
Sc

C

)
C⊥(σ ∗∗)

}D � det
(
Sc

C

)
(σ ∗∗)

(
{ψ(σ ∗), C⊥(σ ∗∗)}

−
∫

�

{
ψ(σ ∗), Sb

ACb(σ )
}{T A(σ ), C⊥(σ ∗∗)} ddσ

+
∫

�

{ψ(σ ∗), T A(σ )}{Sb
ACb(σ ), C⊥(σ ∗∗)

}
ddσ

)
. (85)

The first two summands on the right-hand side do not contain derivatives of delta functions
because all Poisson brackets appearing there are at least weakly proportional to delta functions.
Furthermore because of the first class property of the constraints the last summand vanishes
weakly. Hence we can write{
ψ(σ ∗), det

(
Sc

C

)
C⊥(σ ∗∗)

}D � det
(
Sc

C

)
(σ ∗∗)δ(σ ∗, σ ∗∗)

× ({ψ(σ ∗), C⊥[1]} − ψ,bS
b
AT A

,⊥(σ ∗)
)
. (86)

Now, as one can check by direct calculation (see for instance (62)), the two summands in the
big brackets behave as spatial scalars. That is, the partially complete observable associated
with these summands will only depend on the d parameters YA = YA(σ ∗). A calculation
similar to (83) shows that

{ψ(Y ), C⊥(Y ′)} � D({ψ(σ ∗),C⊥[1]}−ψ,bSb
AT A

,⊥(σ ∗));T A](Y
A)δ(Y, Y ′) (87)

which proves the assertion (84).
Therefore, if one computes complete observables associated with such a field ψ(Y ) and a

clock variable field T 0(Y ) arising also from a spacetime scalar field T 0(σ ) one can apply the
same reasoning as in section 4: define the weakly Abelian Hamiltonian constraints

C̃(Y ) := B−1(Y )C⊥(Y ), (88)

where B(Y ) is determined by {T 0(Y ), C⊥(Y ′)} = B(Y )δ(Y, Y ′). The iterated Poisson brackets
of ψ(Y ) with the constraints C̃(Y ′), C̃(Y ′′), . . . will contain only delta functions and no
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derivatives of delta functions. Therefore, we can write for the power series of the complete
observable associated with the phase space functional ψ(Y ∗):

F[ψ(Y ∗);T 0](τ, ·) =
∞∑

r=0

1

r!
{ψ(Y ∗), C̃[1]}r (τ 0(Y ∗) − T 0(Y ∗))r , (89)

where C̃[1] := ∫
Y(�)

C̃(Y ) ddY .
Hence for the computation of the complete observable associated with a field ψ(Y )

satisfying (84) we are reduced to the consideration of just one constraint C̃[1].

7. Abelian diffeomorphism invariant Hamiltonian constraints

Under the assumption that there exists such clock variable fields T A(σ ), σ ∈ � as explained in
the last section we managed to replace the original Hamiltonian constraints by diffeomorphism
invariant Hamiltonian constraints.

The Poisson bracket of two smeared Hamiltonian constraints C⊥[N ] and C⊥[N ′] is equal
to a smeared diffeomorphism constraint, see equation (29). Therefore one might speculate
that the diffeomorphism invariant Hamiltonian constraints Poisson commute with each other.
Let us check this by a direct calculation. The Poisson bracket of two diffeomorphism invariant
Hamiltonian constraints is given by

{C⊥(Y ), C⊥(Y ′)} = D[{det(Sc
C)C⊥(σ ∗),det(Sc

C)C⊥(σ ∗∗)}D;T A](Y), (90)

where Y = Y(σ ∗) and Y ′ = Y(σ ∗∗) and from here on all equations hold modulo
diffeomorphism constraints9.

According to (80) the Dirac bracket appearing on the right-hand side of the last equation
can be calculated to{
det

(
Sc

C

)
C⊥(σ ∗), det

(
Sc

C

)
C⊥(σ ∗∗)

}D

= {C⊥(σ ∗), C⊥(σ ∗∗)} det
(
Sc

C

)
(σ ∗) det

(
Sc

C

)
(σ ∗∗)

+
{
C⊥(σ ∗), det

(
Sc

C

)
(σ ∗∗)

}
det

(
Sc

C

)
(σ ∗)C⊥(σ ∗∗)

+
{
det

(
Sc

C

)
(σ ∗), C⊥(σ ∗∗)

}
C⊥(σ ∗) det

(
Sc

C

)
(σ ∗∗)

+
(
det

(
Sc

C

)
C⊥

)
,b
Sb

A(σ ∗) det
(
Sc

C

)
T A

,⊥(σ ∗∗)δ(σ ∗, σ ∗∗)

− det
(
Sc

C

)
T A

,⊥(σ ∗)
(
det

(
Sc

C

)
C⊥

)
,b

Sb
A(σ ∗∗)δ(σ ∗, σ ∗∗)

= {
C⊥(σ ∗), det

(
Sc

C

)
(σ ∗∗)

}
det

(
Sc

C

)
(σ ∗)C⊥(σ ∗∗)

+
{
det

(
Sc

C

)
(σ ∗), C⊥(σ ∗∗)

}
C⊥(σ ∗) det

(
Sc

C

)
(σ ∗∗) (91)

where the first term on the right-hand side does not appear in the next equation because it is
proportional to a diffeomorphism constraint. The remaining Poisson brackets are given by{
C⊥(σ ∗), det

(
Sc

C

)
(σ ∗∗)

} = −det
(
Sc

C

)
Sa

A(σ ∗∗){C⊥(σ ∗), T A
,a (σ ∗∗)}

= −det
(
Sc

C

)
Sa

A(σ ∗∗)
∂

∂σ ∗∗a

(
T A

,⊥(σ ∗∗)δ(σ ∗∗, σ ∗)
)

(92)

9 However, note the following point. Since the spatial diffeomorphism constraints define an algebra with structure
constants in contrast to an algebra with structure functions, it is possible to define the constraints C⊥(Y ) as phase
space functions which are invariant under the diffeomorphism constraints on the whole phase space and not just on
the hypersurface CD defined by the vanishing of the diffeomorphism constraints. If this is done the Poisson bracket of
two such constraints C⊥(Y ) and C⊥(Y ′) has to be also diffeomorphism invariant, i.e. if it involves the diffeomorphism
constraints then only in a diffeomorphism invariant combination.
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where in the last line we used equation (65). Hence for the Dirac bracket (91) we are left with{
det

(
Sc

C

)
C⊥(σ ∗), det

(
Sc

C

)
C⊥(σ ∗∗)

}D = −det
(
Sc

C

)
C⊥T A

,⊥Sa
A(σ ∗∗) det

(
Sc

C

)
(σ ∗)

× ∂

∂σ ∗∗a
δ(σ ∗∗, σ ∗) + det

(
Sc

C

)
C⊥T A

,⊥Sa
A(σ ∗)det

(
Sc

C

)
(σ ∗∗)

∂

∂σ ∗a
δ(σ ∗, σ ∗∗).

(93)

That gives for the Poisson brackets (90)

{C⊥(Y ), C⊥(Y ′)} = −T A
,⊥C⊥(Y ′)

∂

∂Y ′A δ(Y ′, Y ) + T A
,⊥C⊥(Y )

∂

∂YA
δ(Y, Y ′). (94)

The constraints C⊥(Y ) are non-Abelian because of the Poisson bracket between the
determinant det

(
Sc

C

)
(σ ∗∗) and the constraint C⊥(σ ∗) which contains a derivative of a delta

function. However, one might try to multiply the constraint C⊥(σ ∗) with another non-vanishing
density of weight (−1) in order to get a spatial scalar and such that this density has ultra-local
Poisson brackets with the constraints. Such a density would be g− 1

2 . Let us therefore define

Cabel(Y ) = D
[g− 1

2 C⊥(σ ∗);T A]
(Y) = g− 1

2 (Y )C⊥(Y ), (95)

where Y = Y(σ ∗). (Remember that g− 1
2 (Y ) = D

[det(T C
,c )g

− 1
2 (σ ∗);T A]

(Y)). Indeed we have for

the Poisson brackets of these constraints{
g− 1

2 C⊥(σ ∗), g− 1
2 C⊥(σ ∗∗)

}D = {
g− 1

2 (σ ∗), C⊥(σ ∗∗)
}
C⊥(σ ∗)g− 1

2 (σ ∗∗)

+
{
C⊥(σ ∗), g− 1

2 (σ ∗∗)
}
g− 1

2 (σ ∗)C⊥(σ ∗∗)

−
∫

�

(
g− 1

2 C⊥
)
,a
(σ ∗)Sa

A(σ )δ(σ ∗, σ )
{
T A(σ ), g− 1

2 C⊥(σ ∗∗)
}

ddσ

−
∫

�

{
g− 1

2 C⊥(σ ∗), T A(σ )
}(

g− 1
2 C⊥

)
,a
(σ ∗∗)Sa

A(σ )δ(σ ∗∗, σ ) ddσ. (96)

The first two terms on the right-hand side of the last equation cancel each other because the
Poisson brackets involved are proportional to delta functions. The last two terms cancel each
other if the Poisson bracket{
T A(σ ), g− 1

2 C⊥(σ ∗∗)
} = −T A

,⊥(σ )g− 1
2 (σ ∗)δ(σ, σ∗) +

{
T A(σ ), g− 1

2 (σ ∗∗)
}
C⊥(σ ∗∗) (97)

is ultra-local, i.e. if the last term on the right-hand side of (97) vanishes or at least does not
contain derivatives of delta functions. This is the case, if T A are matter fields.

That is, if
{
T A(σ ), g− 1

2 (σ ∗∗)
} ∼ δ(σ, σ ∗) or if this expression vanishes the constraints

Cabel(Y ) are Abelian (modulo diffeomorphism invariant terms that vanish on CD). We can
also choose to work with these constraints in order to calculate fully complete observables.
Note, however, that if the clock variables T 0(Y ) Poisson commute with g− 1

2 (Y ′) the constraints
C̃abel(Y ) := ({T 0(Y ), Cabel[1]})−1Cabel(Y ) coincide with the constraints C̃(Y ) defined in (88).

We want to remark that diffeomorphism invariant Abelian Hamiltonian constraints
were defined before, for instance in [14] for gravity coupled to incoherent dust. However
there Abelianess is reached by another method: first one solves the Hamiltonian and the
diffeomorphism constraints for the momenta �K conjugated to the matter fields T K,K =
0, 1, . . . , d. This results in constraints of the form CK = �k + hK where the phase space
functions hK do not depend on the momenta �K . Such constraints are Abelian but they
will typically involve square roots, since the original Hamiltonian constraints are quadratic in
(some of) the momenta. One can then define partially complete observables with respect to the
diffeomorphism constraints and associated with the new constraints C0(σ ), σ ∈ � (multiplied
by the determinant of the inverse of

(
T A,,a (σ ))da,A=1

)
. These constraints will still be Abelian,
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because the constraints C0(σ ) are independent from the momenta �A,A = 1, . . . , d. Our
constraints have the advantage that it is not necessary to solve the constraints for some of the
momenta and hence they do not involve square roots but will have a similar structure as the
original constraints, see the example in section 8.

8. Coupling gravity to scalar fields

In this section we will consider gravity (in four spacetime dimensions) coupled to four scalar
fields {T K}3

K=0. These four scalar fields will serve as clock variables.
The diffeomorphism and Hamiltonian constraints for this system are given by

Cb = grCb + matCb C⊥ = grC⊥ + matC⊥ (98)

with the matter contributions

matCb =
∑
K

(K)Cb =
∑
K

1

αK

�KT K
,b

matC⊥ =
∑
K

(K)C⊥ =
∑
K

1

2αK

(
g− 1

2 (�K)2 + g
1
2 gabT K

,a T K
,b + 2g

1
2 V(K)(T

L)
)
.

(99)

Here �K are the momenta conjugated to the scalar fields T K such that {T K(σ),�L(σ ′)} =
αKδK

L δ(σ, σ ′), where αK are coupling constants for the matter fields. V(K)(T
L) are potentials

for the matter fields, depending on the scalar fields T L.
Let us calculate the weakly Abelian constraints. First, we will do that for arbitrary

couplings and an arbitrary choice of spacetime scalar fields as clock variables T K . The matrix
BK

j defined in (50) can be written as

BJ
j =

(
−T 0

,⊥ T 0
,a

−T A
,⊥ T A

,a

)
=

(−T 0
,⊥ T 0

,bS
b
B

−T A
,⊥ δA

B

) (
1 0

0 T B
,a

)
(100)

where Sb
B is the inverse to T B

,a . This allows us to invert the matrix (100) in the following
way:

(B−1)j J = 1

E

(
1 0
0 Sa

B

)(
1 −T 0

,bS
b
A

T B
,⊥ EδB

A − T B
,⊥T 0

,bS
b
A

)
(101)

= 1

E

(
1 −T 0

,bS
b
A

Sa
BT B

,⊥ ESa
A − Sa

BT B
,⊥T 0

,bS
b
A

)
, (102)

where

E = −T 0
,⊥ + T 0

,aS
a
AT A

,⊥. (103)

The weakly Abelian constraints are then given by C̃K = (B−1)j KCj , e.g. for K = 0 we have

C̃0(σ ) = 1

E

(
C⊥ + T A

,⊥Sb
ACb

)
(σ ). (104)

For the coupling of gravity to four scalar fields (104) becomes

C̃0(σ ) = (
g− 1

2 �0 − g− 1
2 T 0

,aS
a
A�A

)−1(
C⊥ − g− 1

2 �ASb
ACb

)
(σ ). (105)

For the matrix elements of the inverse spacetime metric γ KL(σ ) := T K
,a T L

,b gab(σ ) −
T K

,⊥T L
,⊥(σ ) we will get

γ KL(σ ) = T K
,a T L

,b gab − g−1�K�L(σ), (106)
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i.e. the spacetime metric in the T K frame involves the conjugated momenta to the
fields T K .

Let us turn to the methods developed in section 6. The clock variables do not satisfy all the
assumptions made in this section, nevertheless it might be helpful to use the diffeomorphism
invariant Hamiltonian constraints defined there, in order to calculate Dirac observables, which
are at least well defined in some parts of phase space, that is in parts in which the clock
variables give good coordinates in the sense of section 6.

The spatial diffeomorphism invariant Hamiltonian constraints are given by

C⊥(Y ) = 1

κ
g− 1

2

(
pABpAB − 1

2
p2

)
(Y ) +

1

κ
g

1
2 R(Y ) +

1

2α0
g− 1

2 (�0)
2(Y )

+
1

2α0
g

1
2 gABT 0

,AT 0
,B(Y ) +

1

2
g− 1

2 (Y )

3∑
A=1

1

αA

(�A)2(Y )

+
1

2
g

1
2 (Y )

3∑
A=1

1

αA

gAA(Y ) + g
1
2

3∑
K=0

1

αK

V(K)(T
0(Y ), YB). (107)

Here we used the notation g(Y ) = det(gAB(Y )), T 0
,A(Y ) = (

T 0
,bS

b
A

)
(Y ) and so on. The

momenta {�A(Y )}3
A=1 are abbreviations for

�A(Y ) = −αADY
det(Sc

C)Sb
A(grCb+(0)Cb)(σ ∗)

:= 2αA

κ
gACDBpBC(Y ) − αA

α0
T 0

,A�0(Y ), (108)

with YB(σ ∗) = YB . Here DB is the covariant derivative in YB-also direction associated with
the metric gCD .

As explained in section 7 multiplying the constraints (107) by g− 1
2 (Y ) gives

diffeomorphism invariant Hamiltonian constraints that are Abelian.
The weakly Abelianized constraints are defined by

C̃(Y ) = B−1C⊥(Y ) with

B(Y ) = {T 0(Y ), C⊥(Y )} = g− 1
2 (Y )

(
�0(Y ) −

3∑
A=1

T 0
,A�A(Y )

)
.

(109)

Note that the Hamiltonian constraints (107) depend explicitly on the (physical) coordinates
{YA}3

A=1 via the potentials V(K). In particular (107) does not transform as a density under
transformations in Y. This is caused by the fact that the {YA}3

A=1 are coordinates defined by
the values of the physical fields T A and that these fields are coupled to the other degrees
of freedom. An invariance of (107) under transformations in YA will only occur if the
original Hamiltonian constraints are invariant under the corresponding transformations in the
fields T A.

The partially complete observable associated with the inverse metric γ KL (106) also
depends on the gravitational momentum pAB(Y ) via the momenta �A(Y ):

γ 00(Y ) = T 0
,AT 0

,BgAB(Y ) − g−1�0�0(Y )

γ A0(Y ) = T 0
,BgAB(Y ) − g−1�A�0(Y )

γ AB(Y ) = gAB(Y ) − g−1�A�B(Y ).

(110)
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Finally the complete observable associated with γ KL is given by the formal power series

F[γ KL(Y ∗);T 0](τ
0, ·) =

∞∑
r=0

1

r!
{γ KL(Y ∗), C̃[1]}r (τ 0(Y ∗) − T 0(Y ∗))r . (111)

9. Summary

We applied the concepts of partial and complete observables to general relativity. One main
result is that one can reduce the number of constraints one has to deal with from infinity to 1.

The two main ideas thereby were the following: first to use as partial observables phase
space functions which are already invariant under almost all constraints. Such phase space
functions are provided by canonical fields that behave as spacetime scalars. Second for the
calculation of complete observables we use weakly Abelian constraints. Under the application
of these constraints ‘almost gauge invariant’ phase space functions remain ‘almost invariant’.
We hope that for the cases where one has to deal with just one constraint it is much simpler to
develop an approximation scheme for complete observables. Here it may be possible to use
already existing methods.

Also we showed how one can solve the diffeomorphism constraint and introduce spatial
diffeomorphism invariant Hamiltonian constraints, which moreover can be made to be
(strongly) Abelian. These Abelian diffeomorphism invariant Hamiltonian constraints can
in principle be quantized on the Hilbert state of diffeomorphism invariant states, see [15] for
a related proposal. This is in contrast to the original Hamiltonian constraints, which are not
diffeomorphism invariant and therefore cannot be promoted to operators on this Hilbert state.
In loop quantum gravity one therefore quantizes the Hamiltonian constraints on the kinematical
Hilbert state (of states which are not diffeomorphism invariant), however the regularization
procedure involves the topology of the diffeomorphism invariant Hilbert space in an intricate
way, see [16]. The diffeomorphism invariant Hamiltonian constraints proposed in this work
have the advantage that their structure is similar to the original constraints, hence it could be
possible to use for their quantization techniques from [16]. However one has either to find
clock variables which provide good spatial coordinates or propose methods how to deal with
clock variables which do not satisfy the requirements from section 6 everywhere on Cd .

Furthermore we connected the notion of gauge invariant observables in the spacetime
picture, i.e. (spacetime) quantities invariant under spacetime diffeomorphism, with the notion
of Dirac observables in the canonical picture, i.e. phase space functions which are invariant
under the flow of the spatial diffeomorphism and Hamiltonian constraints. This might facilitate
a comparison of covariant and canonical quantization procedures based on observables.

An important role is played by the clock variables. We know that complete observables
associated with arbitrary (bounded) phase space functions will exist and be globally well
defined, if the clock variables provide a good parametrization of the gauge orbits . However
also if the clock variables do not provide a good parametrization it may be possible to calculate
complete observables, as is shown in [7]. So one should choose the clock variables such that
a parametrization is at least provided locally in phase space.

We will end with a remark on the quantization of complete observables. These complete
observables depend on the classical parameters τ , which in some sense replace the classical
time parameter t, that we use in non-relativistic quantum mechanics. A quantum complete
observable will encode the probability to find outcomes of a certain measurement. This
measurement is among other things characterized by the classical parameters τ . These
parameters could for instance prescribe values of matter fields, specifying the spacetime
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region at which the measurement has to take place. However, it is interesting to note that
although the matter fields are quantized the parameters τ are just classical parameters.
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Appendix. Reconstruction of spacetime tensors

The reconstruction theorem of Kuchař [11] does not only state conditions for canonical fields to
be reconstructable as spacetime scalars but also gives conditions for the normal and tangential
components of higher order tensor fields. We will review these conditions and then show
in more generality than in section 5 how to express these fields in a T K -frame and that the
so-obtained components behave as spacetime scalars, i.e. have ultra-local Poisson brackets
with the constraints.

To begin with consider a spacetime covector tµ. Using formulae (42) and (44) we define
the tangential and normal components of this covector by

ta(z) := Zµ
a (σ )|zν=Zν(σ )tµ(z) and t⊥(z) := −nµ(z)tµ(z), (A.1)

where Z : � → S is an embedding of � into the spacetime manifold S. The spacetime
covector can then be written as tµ = taZ

a
µ + t⊥nµ. The components ta and t⊥ can be either seen

as fields on the embedded hypersurface Z(�) (which will however depend on the embedding
Z, see below) or as fields on �: tj (σ ) = tj (z)|zν=Zν(σ ).

Now consider an embedding Zε which maps the point σ ∗ to the same spacetime point as
Z, i.e. which tilts the new embedding with respect to the old one:

Zµ(ε, σ ) = Zµ(0, σ ) + ε�(σ)nµ(z)|zν=Zν(0,σ ) + O(ε2), (A.2)

where Zµ(0, σ ) ≡ Zµ(σ) and �(σ ∗) = 0. The new tangential basis Z
µ
,a(ε, σ

∗)|(z∗)ν=Zν(0,σ ∗)
to the hypersurface Z(ε,�) at the point z∗ = Z(0, σ ∗) differs from the old one by

Zµ
,a(ε, σ

∗)|(z∗)ν=Zν(0,σ ∗) = Zµ
,a(0, σ ∗) + ε�,a(σ

∗)nµ(z∗) + O(ε2). (A.3)

The new normal vector (ε)nµ can be found by using that 0 = (ε)nµγµνZ
ν
,a(ε). Differentiating

this equation with respect to ε we will get

Zµ
,a(0, σ ∗)γµν

∂

∂ε

(ε)nν(z∗) = �,a(σ
∗). (A.4)

Multiplying both sides of this equation with Za
µ′(0, σ ∗) and using Za

µ′Z
µ
a = δ

µ

µ′ − nµ′nµ as
well as nν

∂
∂ε

(ε)nν = 0 we arrive at
(ε)nµ(z∗) = (0)nµ(z∗) + γ µν(z∗)Za

µ(0, σ ∗)�,a(σ
∗) + O(ε2). (A.5)

Now the spacetime covector tµ at the point z∗ does of course not depend on the shape of
the embedded hypersurface. The projections in (A.1) therefore change to
(ε)ta(z

∗) = Zµ
a (ε, σ ∗)tµ(z∗) = (0)ta(z

∗) − ε�,a(σ
∗)(0)t⊥(z∗) + O(ε2)

(ε)t⊥(z∗) = (−1)(ε)nµtµ(z∗) = (0)t⊥(z∗) − εgab�,a(σ
∗)(0)tb(z

∗) + O(ε2).
(A.6)

On the other hand, we know that the Hamiltonian constraint

C⊥[�] :=
∫

�

�(σ)C⊥(σ ) ddσ (A.7)
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generates the deformation (A.2) of the embedding of the spatial hypersurface �. A necessary
condition for canonical fields ta(σ ) and t⊥(σ ) to be reconstructable as a spacetime covector is
therefore that

{ta(σ ), C⊥[�]} = −�,at⊥(σ ) {t⊥(σ ), C⊥[�]} = −gab�,atb(σ ) (A.8)

holds at least on the constraint hypersurface for all smearing functions � with �(σ) = 0.
A further requirement, that ensures the appropriate behaviour under diffeomorphisms

tangential to the hypersurface, is that ta behaves as a spatial covector under spatial
diffeomorphisms and t⊥ as a spatial scalar, i.e.

{ta(σ ), �C[ ��]} = �bta,b(σ ) + �b
,atb(σ ) {t⊥(σ ), �C[ ��]} = �bt⊥,b(σ ) (A.9)

for all smearing functions �b, b = 1, . . . , d, where

�C[ ��] :=
∫

�

�b(σ )Cb(σ ) ddσ. (A.10)

In [11] it is shown that conditions (A.8) and (A.9) are also sufficient in order that

tµ(z∗) = (ε)ta(σ
∗)Za

µ(ε, σ ∗) + (ε)t⊥(σ ∗)(ε)nµ(z∗) (A.11)

does not depend on the embedding (A.2) i.e. on the parameter ε. To this end one has to check
the dependence of Za

µ(ε, σ ∗) = γνµ(z∗)gab(σ ∗)Zν
b(ε, σ

∗) and (ε)nµ(z∗) = γµν(z
∗)(ε)nν(z∗)

on ε. This dependence follows from equations (A.3) and (A.5) and the fact that neither γµν(z
∗)

nor the inverse spatial metric gab(σ ∗) depends on ε. The independence of gab(σ ∗) can be seen
by considering the spatial metric gab:

gab(σ
∗) = Zµ

a Zν
b(ε, σ

∗)γµν(z
∗)

= (
Zµ

a (0, σ ∗) + ε�,a(σ
∗)nµ(z∗)

)(
Zν

b(0, σ ∗) + ε�,b(σ
∗)nν(z∗)

)
γµν(z

∗) + O(ε2)

= Zµ
a Zν

b(0, σ ∗)γµν(z
∗) + O(ε2). (A.12)

Now using equations (A.6) and (A.3) and (A.5) in equation (A.11) one can see that tµ(z∗)
does not depend on ε.

Similarly to conditions for spacetime covectors one can derive conditions for the tangential
and normal components of higher order covariant tensors. For instance the tangential, normal
and mixed components of a second-order covariant tensor are defined by contracting the two
spacetime indices either with Z

µ
,a and/or with nµ. As explained above these change under

a tilt of the embedding and therefore the components have to show the following behaviour
under the application of a smeared Hamiltonian constraint C⊥[�] with �(σ) = 0:

{tab(σ ), C⊥[�]} = −�,at⊥b(σ ) − �,bta⊥(σ )

{ta⊥(σ ), C⊥[�]} = −�,at⊥⊥(σ ) − gbc�,btac(σ )

{t⊥b(σ ), C⊥[�]} = −gac�,atcb(σ ) − �,bt⊥⊥(σ )

{t⊥⊥(σ ), C⊥[�]} = −gab�,atb⊥(σ ) − gab�,at⊥b(σ ).

(A.13)

Furthermore the components should have the appropriate behaviour under spatial
diffeomorphisms:

{tab(σ ), �C[ ��]} = �ctab,c(σ ) + �c
,atcb(σ ) + �c

,btac(σ )

{ta⊥(σ ), �C[ ��]} = �cta⊥,c(σ ) + �c
,atc⊥(σ )

{t⊥b(σ ), �C[ ��]} = �ct⊥b,c(σ ) + �c
,bt⊥c(σ )

{t⊥⊥(σ ), �C[ ��]} = �ct⊥⊥,c(σ ).

(A.14)
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In order to derive conditions for the components

ra := Za
µrµ and r⊥ := nµrµ (A.15)

of a contravariant spacetime vector consider the contraction of a spacetime vector rµ with a
spacetime covector tµ:

rµtµ = (
raZµ

a + r⊥nµ
)(

tbZ
b
µ + t⊥nµ

) = rata − r⊥t⊥. (A.16)

The expression (rata − r⊥t⊥)(σ ) has to behave as a spacetime scalar, i.e. the Poisson bracket
with the Hamiltonian constraint C⊥[�] where �(σ) = 0 has to vanish (at least on the constraint
hypersurface). From that we arrive at the following conditions for the tangential and normal
components of a contravariant spacetime vector:

{ra(σ ), C⊥[�]} = −�,bg
abr⊥(σ ) {r⊥(σ ), C⊥[�]} = −�,br

b(σ ).(A.17)

The Poisson brackets with the diffeomorphism constraints have to be as follows:

{ra(σ ), �C[ ��]} = �cra
,c(σ ) − �a

,cr
c(σ ) {r⊥(σ ), �C[ ��]} = �cr⊥

,c(σ ). (A.18)

From here it is straightforward to give conditions for higher order contravariant tensors and
mixed tensors.

To express a tensor field in T K components note that according to equations (65) and (68)
T K

,a and T K
⊥ behave as the tangential and normal components of a covariant spacetime vector.

Therefore the T K component of a contravariant spacetime vector rµ is given by

rK = T K
,µ rµ = T K

a ra − T K
,⊥r⊥. (A.19)

That is, if we have canonical fields ra and r⊥ satisfying conditions (A.17) and (A.18) we know
that rK := T K

a ra − T K
,⊥r⊥ are spacetime scalars, i.e. have ultra-local Poisson brackets with

the constraints (C⊥(σ ), Ca(σ )).
Similarly one can show that (B−1)aK and (B−1)⊥K satisfy the conditions for the tangential

and normal components of a contravariant spacetime vector. To this end consider the Poisson
bracket of (B−1)j K; j =⊥, a with a smeared Hamiltonian constraint{
(B−1)j K(σ ), C⊥[�]

} = −(B−1)j L(B−1)kK(σ )
{
BL

k(σ ), C⊥[�]
}

= −(B−1)j L

(
(B−1)aK

(
�BL⊥

)
,a
(σ )

+ (B−1)⊥K

(
�(σ)

{
BL⊥(σ ), C⊥[1]

}
+ �,ag

abBL
b(σ )

))
= �(σ)

{
(B−1)j K(σ ), C⊥[1]

}
− δ

j

⊥�,a(B
−1)aK(σ ) − δ

j

bg
ab�,a(B

−1)⊥K(σ). (A.20)

Here we used that BL
a = T L

,a and BL⊥ = −T L
,⊥ as well as the Poisson brackets (65) and (68).

According to equation (A.20) the components (B−1)aK and (B−1)⊥K fulfil requirements
(A.17). Requirements (A.18) can be checked similarly:{
(B−1)j K(σ ), �C[ ��]

} = −(B−1)j L

(
(B−1)aK

(
�bBL

b

)
,a
(σ ) + (B−1)⊥K�b

(
BL⊥

)
,b
(σ )

)
= −δ

j

b�
b
,a(B

−1)aK(σ ) − �b(B−1)j L

(
(B−1)aKBL

a

)
,b

(σ )

+ δj
a�

b
(
(B−1)aK

)
,b

(σ ) − �b(B−1)j L

(
(B−1)⊥KBL⊥

)
,b

(σ )

+ δ
j

⊥�b
(
(B−1)⊥K

)
,b

(σ )

= �b
(
(B−1)j K

)
,b

(σ ) − δ
j

b�
b
,a(B

−1)aK(σ ). (A.21)
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Hence (B−1)aK and (B−1)⊥K are the components of a contravariant spacetime vector. That
is, if we have canonical fields ta and t⊥ behaving as the components of a covariant spacetime
vector then

tK := (B−1)aKta − (B−1)⊥Kt⊥ (A.22)

will behave as spacetime scalars. With this definition we will also have that rKtK = rata−r⊥t⊥
is equal to the contraction of rµ with tµ, therefore tK are the components of tµ in the T K -
coordinates.

Higher order tensor fields can be expressed in the T K -basis by using prescriptions (A.19)
and (A.22) in order to contract contravariant or covariant indices, respectively. If all indices
are contracted in this manner the resulting fields will behave as spacetime scalars in the sense
that they will have ultra-local Poisson brackets with the diffeomorphism and the Hamiltonian
constraints.

Note that definition (59) of the T K -metric components is consistent with this description.
To see this remember that the tangential and normal components of the spacetime metric are
given by

γ⊥⊥ = nµnνγµν = −1 γ⊥b = −nµZν
bγµν = 0

γa⊥ = −nµZν
aγνµ = 0 γa⊥ = Z

µ
a Zν

bγµν = gab.
(A.23)

Hence we have γKL = (B−1)aK(B−1)bLgab − (B−1)⊥K(B−1)⊥L.
Finally, with the help of the complete observables associated with a certain choice of clock

variables T K(σ), σ ∈ �,K = 0, . . . , d, one can show that canonical fields which behave as
spacetime scalars transform also as spacetime scalars under diffeomorphisms. With this we
mean the following. Consider a canonical field φ(σ) behaving as a spacetime scalar. Starting
with some initial conditions, i.e. at a certain phase space point x evolve this field according
to equations (30) to a one-parameter field φ(s, σ ) and choose a one-parameter family of
embeddings Zs as in (31). We will end up with a solution φ(z) in some coordinate system
{zµ}dµ=0. For simplicity we will assume that the whole spacetime manifold S can be covered

with one patch of coordinates {zµ}dµ=0 taking values in some subset K ∈ R
d+1.

Now one can do the same procedure with differing lapse and shift functions and with a
differing family of embeddings Z′

s ′ but starting at the same phase space point x. That is one
will end up with a different solution φ′(z′) in some other coordinate system {z′µ}dµ=0 and we
will assume that these coordinates take values in the same subset K as the coordinates above.
The question is whether there is a spacetime diffeomorphism that transforms the field φ(z)

into φ′(z′).
We will assume that also the clock variables T K(σ) behave as spacetime scalars and

moreover the following: if one performs the above procedure with the clock variables the
function T : K � z 
→ {T K(z)}dK=0 ∈ T (K) is bijective. The same should hold for
T ′ : K � z′ 
→ {T ′K(z′)}dK=0 ∈ T ′(K) with T ′(K) = T (K). Hence we can define the
inverse function z′ : T (K) � t 
→ z′(t) ∈ K by T ′(z′(t)) = t and with the help of this inverse
function the coordinate transformation K � z 
→ z′ = z′(T (z)) ∈ K.

This means that we should have

φ(z) = φ′(z′(T (z))), (A.24)

if φ transforms as a spacetime scalar. We will show equation (A.24) using complete
observables. Because of their interpretation we know that

φ(z) = F[φ(σ ∗);T ](τ ; x) φ′(z′) = F[φ(σ ∗);T ](τ
′; x), (A.25)

where the fields τ(σ ), τ ′(σ ) have to satisfy τK(σ ∗) = T K(z) and τ ′K = T ′K(z′), respectively.
Now, we need just to use that T ′K(z′(T (z))) = T K(z) in the second equation of (A.25),
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showing that indeed

φ′(z′(T (z))) = F[φ(σ ∗);T ](τ ; x) = φ(z) (A.26)

with τK(σ ∗) = T ′K(z′(T (z))) = T K(z).
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