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well as the Zweig rule. We show that the decay width computed in the string picture is

in remarkable agreement with the decay width obtained using the phenomenological Lund
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1. Introduction

Understanding the gauge/string correspondence in the context of realistic, non-supersym-

metric, confining gauge theories remains a major open problem. No fully satisfactory

geometries dual to confining gauge theories are known so far, and there are general argu-

ments that, in order to fully describe QCD, one will have to go beyond simple supergravity

considerations. Nevertheless, it is quite remarkable that many qualitative properties of

confining theories do get reproduced correctly from computations in dual supergravity

theories. So far, a large body of work in this field has been concerned with a comparison of

hadron spectra with the spectra of states on the gravity side. This is a rather kinematical

test, and one wonders whether more dynamical properties, such as decay rates, may per-

haps also be captured by the correspondence. In recent work by Sakai and Sugimoto [1]
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Figure 1: A high-spin meson composed of heavy quarks, represented in the dual string

picture as an open string ending on a flavour brane far away from the infrared “wall”. To

good approximation, the string consists of two vertical segments, called “region I” and

one horizontal segment, called “region II”.

decays of low-spin particles (which are captured by the supergravity and DBI modes) have

been considered. The decays of high-spin mesons, which correspond to genuine stringy

processes, have, however, not been addressed so far. In the present paper, we initiate the

study of high-spin meson decays using the dual string theory description.

In the context of gauge/string duality, mesons are incorporated by adding one or more

flavour branes into confining dual geometries [2]. In this setup, mesons of low-spin are

identified with small fluctuations of the flavour brane. This has allowed for a computation

of masses and decay rates, both in the approximation in which the flavour brane is treated

as a probe [1, 3] and in the case where the backreaction is taken into account [4]. However,

the supergravity (i.e. DBI) approximation is not sufficient to deal with mesons with spin

larger than one, which from a phenomenological point of view are at least as important.

These mesons are described by genuine string excitations, and their precise treatment would

require the quantisation of strings in the confining geometries. Given the complexity of

the candidate dual geometries, this is a rather formidable task. However, very high-spin

mesons can be described in this set up using semi-classical macroscopic spinning string

configurations.

The open string configuration which we will consider is depicted in figure 1. This is

a U-shaped string, with its endpoints located on the flavour branes, and which is pulled

towards the infrared “wall” by the gravitational potential. It also extends along the “wall”,

where it is prevented from collapse by its rigid rotation. This string is equivalent to a system

two quarks connected by a flux tube, with masses proportional to the distance from the

flavour branes to the “wall”. Thus one can have high-spin mesons with light, medium or

heavy quarks. The spectrum exhibits deviation from Regge behaviour with appropriate

non-linear corrections which depend on the quark masses [5, 6].

In the present paper we study decays of high-spin mesons in detail, both from a qual-

itative as well as from a quantitative point of view. Semi-classically, the U-shaped string

can decay due to an instability of its endpoints or due to breaking of the string itself. The

first type of decay channel is associated to radiation processes on the flavour brane, and
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flavour brane

infrared “wall”

Figure 2: The basic idea behind the description of high-spin mesons in duals of confining

gauge theories (left). The open string corresponding to the meson starts on a flavour

brane, stretches to the infrared “wall”, and then reaches up again to the (same or another)

flavour brane. A decay process (right) requires that the string fluctuates, touches the

flavour brane and then reconnects to it.

will be discussed a separate publication. To describe the second family of decay channels,

recall that an open string always has to end on a brane, and that therefore the string can

break semi-classically if and only if one (or more) of its middle points touch one of the

flavour branes. If no flavour brane is present on the infrared “wall”, then classically this

condition is never satisfied for the U-shaped string of figure 1. However, semi-classically,

there is a finite probability that the string, due to the quantum fluctuations, touches one

of the flavour branes, splits and gets reconnected to it, producing two or more outgoing

mesons (i.e. “hanging” open strings, see figure 2).

Therefore, in order to compute the decay rate semi-classically, we need to compute the

probability of the horizontal part of the string to touch a flavour brane and the probability

that the string splits when it is on the brane.1 Although the calculation of the string fluc-

tuation probability is a hard task, we have found several simplification and approximation

methods which make it feasible. The main idea is to focus on the part of the geometry

near the “wall”, and then construct the string wave function in this simplified geometry by

semi-classical quantisation (for details see section 4). Once this is achieved, the probability

for finding the string at a certain distance from the “wall” can be extracted. On the other

hand, for a string which is located on the brane, the probability for it to split at any given

point can be computed using the flat space results of Dai and Polchinski [7] and Mitchell

and Turok [8]. We expect that these semi-classical computations should capture the main

features of the full string decay process. That this is indeed the case can be shown explicitly

in flat space, by comparing this splitting rate with a full quantum computation.

In gauge theory (i.e. QCD), meson decay widths are not easily computable from first

principles because of strong coupling problems. A heuristic model has therefore been

developed some thirty years ago, which goes under the name of the “Lund” model, and

very successfully describes decays of various mesons. In this model a meson is described

by two massive particles (quarks) connected by a massless relativistic string which models

1Fluctuations of the vertical parts of the strings are also possible, and would lead to decay channels

in which the initial meson decays into a meson (i.e. a hanging open string) and a glue ball (i.e. a closed

string). These channels are more suppressed due to the centrifugal force which suppresses the transverse

fluctuations, and additional powers of gs which suppress open-to-closed string amplitudes with respect to

open-to-open string amplitudes. We will therefore not discuss these processes.
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the strong force between the quarks. The probability that a string splitting event occurs

is determined by the Schwinger pair production probability. This model is in widespread

use in event generators such as Pythia [9], and has turned out to be surprisingly effective.

We will see that the main qualitative features of the Lund model are, indeed, reproduced

from the holographic stringy dual computation (for a comparison between our model and

the Lund model, see section 5). Moreover, properties such as the Zweig rule, which have to

be “added by hand” to the Lund model, are an automatic consequence of the holographic

description. Our model also predicts some deviations from the Lund model for very large

values of the spin, but there is unfortunately not yet enough experimental data in this

regime to see whether those corrections are indeed required.

In order to make this paper self-contained, we first review in section 2 in some detail

the dual picture of mesons, as it arises in the string/gauge theory correspondence (readers

familiar with this material can safely skip to the next section). In section 3 we then give

a qualitative description of the decay process of mesons, both in the old phenomenological

models as well as in the new setup. Our main quantitative result is presented in section 4,

where we show that the decay rates computed in the new picture indeed agree with the

rates obtained in the Lund model. The reader who is not interested in any technical details,

but rather in our setup and in comparison with experiment, is advised to go directly to

section 5, which can be read independently.

2. A review of the dual picture of mesons

2.1 Supergravity duals of confining gauge theories

To construct the holographic picture of mesons one first has to specify a supergravity

model which is dual to the desired confining gauge theory. By now, there are several

supergravity backgrounds which are know to be associated to confining gauge dynamics.

An important model based on near-extremal D4-branes [10] was shown to exhibit, in the

limit of large temperature, features of the low energy regime of strongly coupled pure Yang-

Mills theory [11]. In particular, the Wilson loop of these models was shown to exhibit an

area law behaviour, as required by a confining theory [12]. Recently, an analogous non-

critical supergravity model was proposed, which is dual to the same gauge system, but

without a contaminating Kaluza-Klein sector [13].

In this work we study a mechanism for meson decays which does not rely heavily on

the details of the confining background, but rather uses generic features which all known

confining geometries possess. However, some explicit parts of the computations will be

performed for a prototype class of models based on near-extremal D4-branes. Therefore,

let us first briefly review the main features of this model. The basic setup is that of type-IIA

superstring theory with a set of Nc D4-branes that wrap a circle [11]. Fermions are taken to

have anti-periodic boundary conditions along the circle. The corresponding near-horizon

limit of the background consists of a metric, a running dilaton, and a four-form RR field
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strength given by

ds2 =

(

U

R

)3/2
[

ηµνdXµdXν + f(U)dθ2
]

+

(

R

U

)3/2 [ dU2

f(U)
+ U2dΩ4

]

eφ = gs

(

U

R

)3/4

, F4 =
2πNc

V4
ǫ4 , f(U) = 1 −

(

UΛ

U

)3

.

(2.1)

Here U is the radial direction, which has dimension of length and is bounded from below

by U ≥ UΛ. We will refer to U = UΛ as the “wall” of space-time. Note, however, that this

is only a wall in coordinate space, in the same sense in which r = 0 in polar coordinates

is a “wall” of the plane. The geometry near U = UΛ is actually cigar-like. Extending

beyond U = UΛ, one ends up on the other side (i.e. at an antipodal point) of the cigar.2

The worldvolume coordinates of the D4-branes are along the Xµ (µ = 0, 1, 2, 3) direc-

tions and θ is the thermal circle. The line element of the unit four-sphere is denoted by dΩ4,

its volume by V4 = 8
3π2, its volume-form by ǫ4 and its radius R is given by R3 = πgsNcl

3
s

where ls is the string length. The size of the thermal circle follows from the requirement

that the metric does not have a conical singularity on the “horizon” at U = UΛ, and is

given by

LΛ =
4

3
π

(

R3

UΛ

)1/2

. (2.3)

It is important to note that the mass scale MΛ = 2π/LΛ is also the scale of lowest lying

Kaluza-Klein excitation and hence that the theory appears to be four dimensional if probed

below the energy scale

E <
3

2

(

UΛ

R3

)1/2

. (2.4)

The supergravity regime is valid (i.e. one can forget about higher-derivative corrections) if

the curvature radius is larger than
√

α′,

R4 ≡ UΛR3 ≫ α′2 . (2.5)

Finally, the condition that string theory is perturbative requires that

eφ < 1 ⇒ gs <

(

UΛ

R

)−3/4

. (2.6)

In summary, the prototype geometry (2.1) exhibits all features which are generic for con-

fining geometries, and will be necessary for our generic considerations of meson decays.

The space caps off at some distance in the radial direction (corresponding to the confining

energy scale). At every fixed radial slice, the space has four-dimensional Lorentz invari-

ance (corresponding to the directions parallel to the “wall”) times the internal direction

2For future reference, let us also recall that the four-dimensional Yang-Mills gauge coupling is related

to the other parameters by

g2
YMN = 2 MΛ R3/α′ ; (2.2)

details of the derivation of this formula and the other expressions in this section can be found in [6].
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(corresponding the required global symmetries of the theory, but giving rise to unwanted

Kaluza-Klein excitations). And the warping of the space in the transverse direction is such

that the Wilson loop in this geometry shows area law behaviour.

2.2 Flavour branes in confining backgrounds

To describe the holographic picture of mesons requires the introduction of additional flavour

branes to the system of branes which give rise to confining geometries. If the number of

flavour branes is small enough, these can be treated as probes, whose dynamics is governed

by the DBI action. The open strings between the original Nc branes and the flavour branes

play the role of quarks (anti-quarks) in the fundamental (anti-fundamental) representation

of the colour and flavour groups. This way of incorporating fundamental quarks was

originally proposed by Karch and Katz [2] in the context of the AdS5×S5 model. The first

application of these ideas to a confining model was made in [14] with D7-branes probing the

Klebanov-Strassler geometry. Bending of the probe brane due to the gravitational potential

is an important effect, as it was shown to be associated to U(1)A symmetry breaking in

the work of [15]. Flavour D6-branes were introduced into the model given by (2.1) in [16].3

In order to exhibit flavour chiral symmetry breaking, one has to consider models which

exhibit UL(Nf ) × UR(Nf ) chiral symmetry. The recent model of Sakai and Sugimoto [1, 3]

incorporates this phenomenon by introducing D8/D8-branes as flavour probe branes. An

analogous non-critical model based on D4/D4-branes was analysed in [31]. For the purpose

of our calculations, the distinction between all these models is, however, irrelevant. Because

the spinning string configurations are readily available for the model with D6-branes [16],

we will restrict to this case in our explicit computations.

In order to describe flavour probe D6-branes in the geometry (2.1), it is more convenient

to introduce different coordinates in the metric in the directions transverse to the “wall”.

A metric adapted to the embedding of the D6-brane is [16]

ds̃2 = K(ρ)
[

dρ2 + ρ2dΩ2
4

]

= K(ρ)
[

dλ2 + λ2dΩ2 + dr2 + r2dφ2
]

,

U(ρ)3/2 ≡ ρ3/2 +
U2

Λ

4ρ3/2
, K(ρ) = R3/2U1/2ρ−2 , ρ2 = λ2 + r2 .

(2.7)

The probe D6-brane extends in the “wall” directions, fills out the S2 sphere spanned by dΩ2

and has nontrivial profile in the r, λ plane. The equation for the brane profile r(λ) follows

from the DBI action, and can be solved approximately in various regions. The shape

of the D6-brane in these direction is depicted in figure 3: it stretches in the r direction

from r = ρf at λ = 0 to r = r∞ at λ → ∞. Due to the non-trivial profile of the D6-brane,

the U(1)A symmetry (corresponding to rotations in the r, φ plane, i.e. in the φ direction)

is spontaneously broken and the quark condensate 〈q̄q〉 is non-zero. Asymptotically one

has r = r∞ + c
λ where r∞ is related to the QCD (current algebra) quark mass and c is

3Flavour branes have since been introduced in many other confining and non-confining models (see

e.g. [4, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]). Other related holographic models for hadrons have also been

built [27, 28, 29, 30], achieving notable success for their quantitative predictions.
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D4

D6

r

r∞

λ

ρf

ρΛ

Figure 3: Schematic overview of the embedding of the probe D6-brane, described by r(λ),

into the geometry of the stack of D4-branes (negative values of λ correspond to points

with φ → φ + π while negative values of r correspond to θ → θ + π). The dotted half-

circles are equal-potential lines of the gravitational field, the solid half-circle is the IR

“wall”. Also depicted is a high-spin meson, represented by the thick vertical line. This is

a side-on view of an open string stretching from the flavour D6-brane to the “wall”, along

the “wall”, and then back up to the flavour D6-brane.

related to the quark condensate. The U(1)A symmetry is thus restored asymptotically

when the quark mass is set to zero, but spontaneously broken due to the bending of the

brane. Equipped with this information we now proceed to describe the mesons of these

models.

2.3 High-spin mesons

The spectrum of the (pseudo) scalar and vector mesons can be extracted in the dual

supergravity backgrounds from the spectrum of the fluctuation of the flavour branes. Just

as for glueballs, these can only account for the meson states with spin smaller than or

equal to one. The other mesons should be captured by genuine string excitations, which

are generically very hard to analyse. However, when the spin of the string becomes very

large, further simplifications occur, and classical solutions of the string sigma model can

be used.

A particularly interesting large, open string configuration, was recently constructed

by Kruczenski et al. [6] and Paredes and Talavera [32]. This is an open, U-shaped string

as depicted in figure 1 and 3. It hangs from the probe D6-brane and is pulled by the

gravitational force towards the “wall” of the background. At the same time, the string

rotates in the plane parallel to the “wall”, and is extended in this direction due to the

centrifugal force. More precisely, the region spanned by the open string can be divided

into two parts:

• Region I, a “vertical” section characterised by
dρ

dR
→ ∞ ,

• Region II, a “horizontal” section
dρ

dR
→ 0 ,

where R2 = (X1)2 +(X2)2 and X1,X2 is the plane of rotation of the string. In the limit of

large angular momentum and hence large separation, the string is indeed well-approximated
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by two vertical segments and one horizontal one, and explicit simple solutions can be found

separately in these two regions.

It was further realised in [6] that this classical string configuration can be viewed

as a rigid open string with two massive endpoints, where the masses of the particles are

proportional to the vertical parts of string. The equivalence comes about as follows. To

“sew” the solutions in regions I and II one has to impose the condition that the string

endpoints move with the same velocity as the vertical parts of the string,

1 − ω2L2 = ω2L
1

(UΛ/R)3/2

∫ ρf

ρΛ

dρ
U(ρ)

ρ
= ω2L

mq

Teff
, (2.8)

where on the right-hand side of the equation we have used the expression for the mass of

the dynamical quarks [33],

mq =
1

2πα′

∫ ρΛ

ρf

dρ
√

g00gρρ =
1

2πα′

∫ ρΛ

ρf

dρ
U

ρ
. (2.9)

There are several arguments in favour of identifying the mass of the vertical part of the

string with the constituent mass of the quark, and not a current algebra mass.

The relation (2.8) is precisely the relation that one derives for a string with two massive

endpoints of mass mq. Indeed by evaluating the energy and angular momentum of the string

in the two regions one finds that

EI =
2mq√

1 − ω2L2
, JI =

2mqωL2

√
1 − ω2L2

,

EII = Teff
2

ω
arcsin(ωL) , JII = Teff

1

ω2

(

arcsin(ωL) − ωL
√

1 − ω2L2
)

.

(2.10)

The expressions in region I are those for two spinning relativistic particles. In region II

we find the energy and angular momentum of an open string in flat spacetime, with an

effective string tension Teff, given by

Teff =
1

2πα′

√

g00gxx

∣

∣

wall
=

1

2πα′

(

UΛ

R

)3/2

=
2

27π
M2

Λ (g2
YMN) . (2.11)

Combining the results from the two regions we get

E = 2
Teff

ω

(

arcsin x +

√

mq

TL

)

, J =
Teff

ω2

(

arcsin x + x2

√

mq

TL

)

, (2.12)

where x ≡ ωL. For fixed mq and Teff, there is only one free parameter, for example L,

which uniquely fixes all other parameters: the energy E, the angular momentum J and

the angular velocity ω.

There are two important limits of this solution which will be relevant for us later. The

first limit is the one in which the dynamical quarks are very light. This limit is relativistic,

as the velocity x of the endpoints tends to the velocity of light. The energy and angular

momentum reduce to

x → 1 : E → πTeffL , J → π

2
TeffL2 ⇒ J → 1

2πTeff
E2 , (2.13)
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i.e. we recover the standard Regge trajectory in flat space with the effective tension (2.11),

as expected. We thus see that the mass of the U-shaped high-spin mesons is of the order

Mhigh ∼ MΛ

√

g2
Y MN (2.14)

while recall that masses of the low spin (supergravity) mesons were Mlow ∼ MΛ ∼ MKK .

We thus see that in the supergravity regime, where g2
Y MN ≫ 1, there is a gap between

the low and high-spin mesons which hints at the fact that the holographic dual of hadron

physics will require g2
YMN ∼ 1.

The second limit is the limit of heavy quarks, i.e. the non-relativistic limit

x → 0 : mq =
TeffL

x2
→ ∞ ⇒ mq ≫ TeffL . (2.15)

This in turn implies

E = 2Teff L

(

1 +
1

x2
+ O(x3)

)

→ 2mq + 2Teff L ,

J = 2Teff L

(

1

x
+ O(x)

)

→ 2
√

Teffmq L3/2 .

(2.16)

We see that in this limit, the energy and angular momentum blow up as one would expect:

it takes an infinite amount of energy to spin very heavy particles. Note that in both these

limits, whether the quark is light or heavy is measured with respect to the total mass of

the flat part of the string. This mass is given by TeffL, rather than by TsL,

mq = −2Teff Lδx ⇔ mq ≪ 2Teff L . (2.17)

The relations (2.16) imply that for a fixed and finite energy, the length of the string has to

go to zero (in units of 1/
√

Teff) as the mass of the quarks is increased .

It is also straightforward to generalise the expressions of the energy and angular mo-

mentum of the classical meson (2.12) to the case of a meson composed of quarks of two

different masses; details can be found in [34]. In general one can associate a different value

of ρf to each of the stacks of the probe brane, namely ρfi
to the ith stack. In presently

available holographic setups, there are no limitations on the locations ρfi
and the corre-

sponding quark masses. For convenience we group them into three classes according to the

value of distance from the “wall”, which translates to three types of quark masses:

ml ≈ Teff (ρfl
− ρΛ) ≪ ΛQCD , (2.18a)

mm ≈ Teff (ρfl
− ρΛ) ∼ ΛQCD , (2.18b)

mh ≈ Teff (ρfl
− ρΛ) ≫ ΛQCD . (2.18c)

Accordingly, there are six classes of mesons according to the possible different probe branes

on which the stringy meson ends,

(l, l) , (l,m) , (l, h) , (m,m) , (m,h) , (h, h) . (2.19)
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3. Old and new descriptions of meson decay

3.1 The Casher-Neuberger-Nussinov model

Having reviewed the dual kinematical picture of glueballs and mesons, we now want to

focus on dynamical aspects. In the present section we will compare the qualitative aspects

of the old, phenomenological picture of meson decay with the new picture as it arises from

the gauge/string correspondence. A quantitative discussion follows in section 4.

In [35] the decay of a meson, or rather the process of multiple quark pair production,

was described in terms of a model where a meson is built from a quark/anti-quark pair

with a colour electric flux tube between them.4 When a new pair is created at a certain

point along the flux tube, it will be pulled apart and tear the original tube into two tubes.

The model is based on two assumptions: (i) that at the hadronic energy scale of 1 GeV

the quarks can be treated as Dirac particles with constituent masses; (ii) that there is a

chromo-electric flux tube of universal thickness which is being created in a timescale that is

short compared to the hadronic timescale. The chromoelectric field is treated as a classical

longitudinal abelian field.5 The flux tube is parametrised by the radius of the tube rt, the

gauge coupling g which is also the charge of the quark and the electric field Et. The energy

per unit length stored in the tube is equal to the string tension,

Teff =
1

2
E2

t π r2
t =

1

2πα′ =
1

4
g Et (3.1)

where in the last part of the equation the Gauss law was used. It is easy to verify that

g2 = 4r2
t /α

′. When the radius of the flux tube is smaller than the size of the tube but

larger than the distance scale relevant to pair production, i.e. when it is of the order of

rt ∼ 2.5 GeV−1, the coupling constant is indeed weak, g2/8π < 1.

The process of pair creation inside the tube is mapped to a system of Dirac particles

of mass mq interacting with a constant electric field, which was solved by Schwinger. From

the probability of a single pair-creation event to occur,

Ppair prod. = exp

(

−
πm2

q

2Teff

)

, (3.2)

one derives [35] the decay probability per unit time and per unit volume,

P =
g2E2

16π3

∞
∑

n=1

1

n2
exp

(

−
2πm2

qn

gE

)

=
T 2

eff

π3

∞
∑

n=1

1

n2
exp

(

−
πm2

qn

2Teff

)

. (3.3)

This probability was then used to determine the probability of a meson to decay, which

was found to be 1 − e−V4(tM )P where tM is the meson lifetime measured in its rest frame.

The volume of the system was computed for a rotating flux tube and for a one dimensional

4This model was also suggested independently at around the same time by Gurvich [36], who obtained

similar qualitative results as Casher et al. [35].
5A more precise calculation, which does not rely on the WKB approximation and probes the full non-

abelian structure of the flux tube, was recently presented by Nayak [37].
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oscillator. For the first case we use M = πTeffL which implies that V4(tM ) = πr2
t LtM and

hence the decay width is Γ = πr2
t LP and finally

(

Γ

M

)

rot

=
2r2

t

Teff
P = (0.6 − 8.5) × 10−2 . (3.4)

The numerical value was derived by using (3.3) for the decay probability, introducing

constituent masses for mu, md and ms (taken to be 75 MeV for the light quarks and

400 MeV for the heavy ones, with Teff ≈ 0.177 GeV2) and summing it over the three

flavours.

For the case of the oscillator, the relation between the length and the mass is given

by M = TeffL and therefore on average V4(tM ) = 1
2πr2

t LtM and hence Γ = 1
2πr2

t LP which

means that
(

Γ

M

)

osc

=
π

4

(

Γ

M

)

rot

. (3.5)

From expression (3.3) two properties are immediately clear: the exponential suppression

does not depend on the length of the string, while the total probability scales linearly in

the length.

Let us finally also mention that the Casher-Neuberger-Nussinov model is not the only

model for meson decay. An alternative approach to string breaking, which does not involve

the Schwinger pair production process but rather the quantum fluctuations of the flux

tube, was developed by Kokoski and Isgur [38]. Since their model is rather different in

spirit we will not discuss it here.

3.2 Corrections due to masses and angular momentum

The model described above is one of the main ingredients of the so-called Lund fragmen-

tation model [39, 40, 41], used for prediction of meson shower and hadronisation events in

accelerators. Two simple improvements have been suggested in the literature. The first

one consists of taking into account the presence of massive particles at the string endpoints.

In this case the linear relation M = Teff L between the length and the mass of the meson

is modified. In the approximation of small quark masses one finds [42]

L

M
=

2

π Teff
− m1 + m2

2TeffM
+ O

(

m2
i

M2

)

. (3.6)

This relation has been derived by many authors, see e.g. [34, 43]. Gupta and Rosen-

zweig [43] applied this relation to decay rates, and concluded that for a decay width Γ

which is linear in the length, Γ/M is no longer a constant. It was shown in [43] that the

ratio increases with the increase of M until it reaches its universal value for large M , i.e. for

a small ratio mq/M .

Furthermore, the model of Gupta and Rosenzweig [43] incorporates the centrifugal

barrier that the quark has to pass in the tunnelling process of the pair creation. The WKB

approximation, which for the case of a single pair creation with no centrifugal barrier

reproduces exactly the exponential factor of (3.3), now reads

P ∼ exp

(

−2

∫ rc

0
dr

√

(E − V (r))2 − m2
q −

l(l + 1)

r2

)

, (3.7)
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where mq is the mass of the quark created, rc is the turning point and l is the angular

momentum of the tunnelling quark. If the quark tunnels from the point at a distance Rq

from the centre of mass to a point at a distance Rq +r, then the quark acquires the angular

momentum of the vaporised segment of the string which can easily be calculated in the

limit of small r. When this expression is inserted into (3.7) one finds that the probability

for a split of the string takes the form

P ∼ exp






−

πm2
q

2Teff

(

1 + w
6m(1−w2R2

q)

)2

(

1 − w3Rq

2Teff(1−w2R2
q)2

)3/2






, (3.8)

which means that there is an extra suppression factor which is position dependent. This

yields a preference of the string to decay in a symmetric fashion, i.e. in the middle. The

main net effect of the centrifugal potential is to increase the stability of the meson. In [43] a

comparison with experimental data was made, indicating that corrections due the massive

string end points lead to better agreement than with the massless approximation of the

basic model [35]. Due to the lack of high-precision data for decay widths, the detailed

structure of the exponent could, however, not be tested.

3.3 Decay of mesons in the new picture

Having summarised the Casher-Neuberger-Nussinov model for meson decay, as well as

the various improvements of it, the question is now whether we can reproduce those phe-

nomenological formulas from the holographically dual description. We have recalled the

description of high-spin mesons in section 2.3. These are U-shaped strings, with two verti-

cal sections that connect to the two endpoints which are on one or two flavour branes, and a

horizontal part that stretches along the infrared “wall”. Kinematically, this closely mimics

the mesons of the Lund model because, a was shown by Kruczenski et al. [6], the vertical

parts of the U-shaped string behave as two massive particles attached to the endpoints of

the string. Classically, this system is stable.

Quantum mechanically, the meson configuration is unstable. One distinguishes decay

modes due to fluctuations of the string endpoints and those associated with the splitting

of the string. The former translates into the production of low-spin mesons, which will be

discussed in a forthcoming publication. The process of splitting implies the presence of two

high-spin mesons in the outgoing state. In the present paper we will focus exclusively on

the last channel, leaving the other channel for future work. Before we go into the details of

the computation, we will first describe this decay channel qualitatively and highlight some

universal features which are independent of the actual calculation.

In the general setup described in section 2.2, the system is built from three types of

flavour branes characterised by their distance from the “wall”, namely, light medium and

heavy (l, m, h) flavour branes, and correspondingly by six types of mesons. For a meson

to decay into two mesons it has to split, in such a way that the new endpoints also lie on

a flavour brane. The decay probability thus naturally consists of two separate factors: the

probability of the string to split at a given point, multiplied with the probability that this

given point is actually located at a flavour brane.
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fluctuate + split fluctuate + split only split

Figure 4: The decay channels for a meson composed of one heavy and one intermediate-

mass quark. When the newly produced quarks are massive, the computation of the decay

width involves the computation of the probability that the string undergoes quantum

fluctuations and touches a flavour brane. This is expected to lead to exponentially sup-

pression (two figures on the left). Only when the new quarks are massless is the decay

width given simply by the open string decay decay width.

The probability of an open string to split has been studied a long time ago for strings

with Neumann boundary conditions in flat space-time [7, 8, 44]. Assuming that these

results are qualitatively correct also in a curved background6, the first factor of the decay

width is therefore under control. The results of [7, 8, 44] show that the open string decay

probability per unit length is constant, or equivalently, that the decay width is linear in

the length of the string. This linear scaling with the length is also present in the Casher-

Neuberger-Nussinov model.

The second factor is more complicated. If the string splits on the infrared “wall”, it

corresponds to the creation of two massless quarks at the new endpoints. This is clearly a

very special situation. In the general case, the string will first have to undergo quantum-

mechanical fluctuations, such that one or more points touch one of the flavour branes

associated to massive quarks. Schematically, any meson can split into three kinds of mesons

(a, b) → (a, c) + (c, b) (3.9)

where the a, b, c stands for l,m and h. In figure 4 we demonstrate the decay pattern of a

meson composed of one heavy and one intermediate-mass quark. Our goal will be to show

that this fluctuation probability is responsible for a Gaussian suppression as a function of

the mass of the newly created quarks, just like in (3.3) of the Casher-Neuberger-Nussinov

model.

Technically, it is quite complicated to compute the fluctuation probabilities, as it in-

volves the quantum dynamics of the U-shaped string in a curved background subject to

non-trivial boundary conditions. We will address this computation in detail in the next

6This assumption has been used also in the context of strings in AdS5 × S5 [45, 46].
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q

q q

q̄

q̄ q̄

q′
q̄′

Figure 5: The Zweig rule illustrated. The dominant decay channel for mesons is the

process on the left, in which the original quarks are part of the mesons in the outgoing

state. The process on the right, in which the quark and anti-quark which constitute the

initial meson annihilate, is suppressed.

section. However, several general features of meson decays can easily be seen to be auto-

matically satisfied, without further computations:

• Due to the fact that a split involves only one flavour brane, it is completely trivial in

this geometrical picture that the decay obeys the conservation of flavour symmetry.

Due to the split, a new vertical line coming into a certain flavour brane is necessarily

followed by an outgoing vertical line. If the former is assigned to be a charge + then

the latter has obviously a − charge and hence charge is conserved. If there is a set

of Nf flavour branes, then the endpoints of the created pair of vertical strings are

in the complex conjugate representation of each other, and thus also the non-abelian

flavour symmetry is conserved.

• It is also clear that the pattern of decays depicted in figure 4 do not include processes

that are suppressed by the so-called Zweig rule. These suppressed decays, described

in figure 5, involve the annihilation of the original pair of quark anti-quark. In our

picture this involves fluctuations that bring together the two endpoints. This is

obviously of higher order in gs and hence further suppressed in the large-N limit.

The decay of a meson is quite different from the decay of glueballs. The reason is that

an open string corresponding to a meson can spontaneously split if and only if the splitting

point lies on a flavour probe D6-brane. Thus, for the U-shaped string as in figure 2, no

decays are possible which are as simple as the decay process of closed strings. Instead, one

has to take into account the probability that the U-shaped string fluctuates and touches the

flavour brane. This is a true quantum-mechanical effect and requires information beyond

the probability of splitting a string. In the next section, we will show that this effect can,

however, be computed in several approximations. We will thereby obtain a prediction for

the decay rate of mesons.
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4. Meson decay widths

4.1 General remarks on wave functions, probabilities and widths

In the previous sections we have reviewed the kinematical description of mesons and glue-

balls in confining backgrounds, as well as the old and the new ways to describe decay

processes. We will now turn to a quantitative analysis of the decay rates of mesons as

computed using the the gauge/string correspondence. We will see that this new way of

describing meson decay agrees also at the quantitative level with the results of the old

Casher-Neuberger-Nussinov model [35, 41, 43]. Before we go into the details of this com-

putation, we should first make some general comments concerning the construction of the

wave function and the method to extract the decay width.

The general idea behind the construction of the string wave function is the following.

One starts from the classical configuration of the rotating U-shaped string. One then

determines the spectrum of fluctuations δXM (τ, σ) around this string configuration.7 In

order to be able to quantise these fluctuations, they have to be written in decoupled form,

i.e. in terms of normal coordinates. Generically, the normal coordinates {Nn(XM )} are

nontrivial functions of all target space coordinates XM , due to the fact that the target

space metric is curved. Each mode Nn is described by its own wave function Ψn[Nn], and

the total wave function is just a product of wave functions for the individual modes,

Ψ
[

{Nn}
]

=
∏

n

Ψn

[

Nn(XM )
]

. (4.1)

Analysing the system through the normal modes Nn is in general not an easy task, because

the space is curved and the normal modes are thus hard to find.

Once the wave function is constructed, the first thing one would like to extract is the

probability that, due to quantum fluctuations, the string touches the brane at one or more

points. We will call this probability Pfluct and it is formally given by

Pfluct =

∫ ′

{Nn}

∣

∣Ψ
[

{Nn}
]
∣

∣

2
, (4.2)

where the prime indicates that the integral is taken only over those string configurations

{Nn} which satisfy the condition

max
(

U(σ)
)

≥ UB . (4.3)

This is a complicated condition to take into account, because U(σ) is a linear combination

of an infinite number of modes. While the constraint is simple in terms of U(σ), it thus

becomes highly complicated in terms of the modes Nn. The probability (4.2) only measures

how likely it is that the string touches the brane, independent of the number of points that

touch the brane. Note that this is a dimensionless probability, not a dimensionful decay

width.

7Fermionic fluctuations are irrelevant for our discussion and will be ignored throughout.
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∫

K
[

{Nn}
]

dx

x

≈ 2L × κ−1
max

Figure 6: The approximation used to separate the L-dependent factor in the decay width

from the dimensionless remainder. The integral over all configurations which touch the

string at two points and have a maximum at U = UB is, after taking into account the

dimensionful measure factor K
[

{Nn}
]

, approximately equal to L times the volume of this

subspace of configuration space.

Let us now turn to the computation of the decay width itself. As we have explained

in section 3.3, we will assume that the decay width of the mesonic string is approximately

equal to the decay width of an open string in flat space-time multiplied with the probability

that the string actually touches the flavour brane. As we have already mentioned (see also

appendix A.2), the decay width of an open string in flat space-time has been shown to be

linear in the length [7, 8, 44] (and, for dimensional reasons, therefore inversely proportional

to the tension). We can thus define the “decay width per unit length” Γopen/L, as well as

a related, dimensionless, L-independent quantity given by

Psplit :=
1

Teff

Γopen

L
. (4.4)

In terms of this “splitting probability”, the decay width of our U-shaped string is now

given by

Γ = TeffPsplit ×
∫ ′

{Nn}

∣

∣Ψ
[

{Nn}
]
∣

∣

2
K
[

{Nn}
]

. (4.5)

The factor K
[

{Nn}
]

is a measure factor with the dimension of length. It measures, for a

given string configuration, the size of the segment(s) of the string which intersect(s) the

flavour brane. We will not be very explicit about this factor. A simple way to think about

it is to consider e.g. the subspace of configurations with two intersection points for which

the maximum of U(σ) is fixed (see figure 6). There is then one direction in configuration

space which effectively integrates over all positions at which the string intersects the brane.

The K
[

{Nn}
]

measures the infinitesimal size of the intersection point(s) of the string with

the brane. Provided that the probabilities for the configurations in this integral are more

or less equal (for which we will find evidence in section 4.3), we then obtain an overall

factor L in the decay width. The overall factor L of course also arises trivially for the zero

mode fluctuation, where the string touches the brane at all points at the same time.

We will not be able to compute (4.5) as it stands, because the factor K
[

{Nn}
]

is too

complicated to write down in general. We will instead assume that any configuration is

always part of a one-parameter family of related configurations, which intersect the brane

at different points but otherwise have similar shape, as in figure 6. We will assume that

the probability for all these configurations is roughly the same, and that we can therefore
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always split off a factor L from the integral. Typically this will yield an upper bound on

the decay width, because the configurations with intersections in the middle typically have

larger probability. What remains is a dimensionless factor depending on the position of

the flavour brane. To be precise, we will compute the right-hand side of

Γ = Teff Psplit

∫ ′

{Nn}

∣

∣Ψ
[

{Nn}
] ∣

∣

2
K
[

{Nn}
]

< Teff Psplit Lκmax

∫ ′

{Nn}

∣

∣Ψ
[

{Nn}
] ∣

∣

2
, (4.6)

where Pfluct is given in (4.2) and κmax is now dimensionless, arising from our approximation

(in case all configurations would be as in figure 6, κmax would equal 1/π). In the following,

we will therefore only be concerned with the computation of

Γapprox =
(

Teff Psplit × L × κmax

)

× Pfluct . (4.7)

In particular, we will not be concerned any more with the factor in brackets, but focus

solely on the dependence of the fluctuation probability Pfluct on the position UB of the

flavour brane. This dependence on UB translates to a dependence of the decay width on

the mass of the produced quarks.

Despite this simplification, the computation of the decay width is still complicated, as

the computation of Pfluct involves dealing with the curvature of the background and taking

into account the non-trivial constraint (4.3). In the following sections, we will describe

various approximation methods which can be used to evaluate Pfluct and thereby the decay

width Γ. A justification of these simplifications will be obtained in section 4.3, where we

compare the continuum results with a numerical analysis using a string bit model.

4.2 Explicit computation of the decay widths

Let us first discuss the simplest type of approximation in which we approximate the space-

time near the “wall” with flat space-time. There are two different configurations which

may appear: the light and the heavy mesons (see section 2.3). Recall that in the case of a

light meson, i.e. when the flavour brane associated to the initial quarks is located on the

“wall”, the string endpoints satisfy Dirichlet boundary conditions. In the case of a heavy

meson, the long vertical parts of the string suppress, by their “weight”, the fluctuations of

the part of the string near the end of the horizontal part. Therefore, when viewed from

the “wall”, the string again looks like an open string with Dirichlet boundary conditions.

Hence, in both cases, one can think about these strings, in first approximation, as being

attached to the “brane” which is located at the “wall”.

Since the horizontal part of the string fluctuates near the “wall”, it experiences, at lead-

ing order approximation, a flat-space geometry. Note though, that the Dirichlet boundary

condition for heavy mesons exist solely because of the vertical gravitational potential. In

this sense, the leading order flat-space approximation refers only to the horizontal part of

the string. As the amplitudes of the fluctuations of the horizontal part of the string increase,

curvature effects set in and should be taken into account. Let us first discuss the flat-space

approximation. In order to see when it makes sense to use it, a useful intermediate step is

to introduce a coordinate

η2 =
U − UΛ

UΛ
. (4.8)

– 17 –



The expansion of the metric (2.1) around η = 0 yields, to quadratic order [47],

ds2 ∼
(

UΛ

R

)3/2

(1 +
3

2
η2)(ηµνdXµdXν) +

4

3
(R3UΛ)1/2(dη2 + η2dθ2)

+ (R3UΛ)1/2(1 +
1

2
η2)dΩ2

4 . (4.9)

We now want to quantised the fluctuations of the rigid rotating rod solution which is sitting

at the IR “wall” in the linearised metric (4.9). The solution is given by

T = Lτ , X1 = L sin τ sin σ , X2 = L cos τ sinσ , U = UΛ , (4.10)

where σ ∈ [−π/2, π/2]. This same solution is valid both for the light and heavy mesons,

since there is no coupling between the fluctuations along the “wall” and direction transverse

to it.

There are two ways to quantise fluctuation around (4.10): using the Nambu-Goto or

the Polyakov formulation. The main idea and subtleties related to the presence of the

constraints are reviewed in the appendix. The upshot of this analysis is that fluctuations

in the directions Xi transverse to the plane in which the string rotates (i.e. fluctuations

in the direction of the brane Xa, the radial direction Z and in the direction of internal

sphere Y m) are massless in the flat space approximation and become massive if the effects of

curvature are taken into account. The fluctuations in the direction of the angular coordinate

in the plane where the string rotates are always massive, with a sigma-dependent mass

term. As explained before, the fluctuations in the direction of the “wall” are irrelevant

for the construction of the wave function. By expanding the Polyakov action around the

solution (4.10) and keeping all terms quadratic in η, we obtain the following action for the

fluctuations in the η and Xµ directions,

S =
1

2πα′

(

UΛ

R

)3/2 ∫

dτdσ
4

3

R3

UΛ

[

(

η̇2 − η′2
)

− 8

3
b cos2(σ)

(

1 +
3

2
η2

)]

+

[(

1 +
3

2
η2

)

(

δẊµδẊνηµν − δXµ′

δXν′

ηµν

)

]

, (4.11)

where we have introduced a dimensionless quantity,

b ≡ 9

16

L2UΛ

R3
. (4.12)

We thus see that, unlike the linearised metric (4.9), the linearised action (4.11) in addition

to the small parameter η depends also on the extra parameter b, which specifies what kind

of string we are considering. Thus various approximations will depend not only on the

values of η, but also b and their relative ratio.

To get a feeling for the meaning of the parameter b, let us rewrite it as

b =

(

L

LΛ

)2

=
9

16

α′

R2

(

L2

α′
eff

)

, (4.13)
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where LΛ and R are defined in (2.3) and (2.5) respectively. We see that if b ≪ 1, the

expression (4.11) reduces to a flat-space action; this case will be considered in the following

section. As the size of the fluctuations is increased, the string starts to see the curvature

effect; these additional corrections will be discussed in section 4.2.2. Note that the b ≪ 1

regime is not compatible with the decoupling of the Kaluza-Klein states: b small implies

that the string is “short” enough to probe the extra compact directions (i.e. the energy

of the string violates condition (2.4)). However, semiclassical treatment of the string still

makes sense, as one can make the string macroscopic (L2 ≫ α′
eff). This is possible as long

as the supergravity approximation is valid, i.e. as long as R2 ≫ α′, see (4.13).

The situation is very different if b ∼ 1. A flat space limit is not possible in this case,

regardless of the size of the fluctuations. Despite the fact that the string is fully localised

along the “wall”, and probes the transverse directions only via small fluctuations, if the

length of the string along the “wall” is large enough (in units of Kaluza-Klein radius LΛ)

the string will always “see” curved transverse space. The reason for this is the potential

term bη2 in the action (4.11) which cannot be neglected for the low frequency modes (i.e.

when η̇ ∼ η′ ∼ η).8

4.2.1 The flat space approximation

As explained before, the action (4.11) can be reduced to the flat space action when b ≪ 1.

Though this condition violates the requirement that the Kaluza-Klein states decouple, this

is a generic problem of present models and we will ignore it in what follows. Making

the fluctuations η sufficiently small switches off all curvature and allows us to write the

metric (4.9) in a conformally flat form, by introducing a new radial coordinate z as

η =

√

3

4
U

1/2
Λ R−3/2 z . (4.16)

The metric then reduces to the simple form

ds2 ∼
(

UΛ

R

)3/2
(

ηµνdXµdXν + dz2
)

+ (R3UΛ)1/2dΩ2
4 . (4.17)

8The action (4.11) was obtained by linearising the Polyakov action. In this approach, the constraints

are easy to take care of at leading order (see the appendix), but become more complicated at higher orders.

The linearisation of the Nambu-Goto form leads to a more complicated action, but does not require any

separate treatment of the constraints. Therefore, studying the higher curvature effects may be simpler in

this approach.

The expansion the Nambu-Goto action in powers of η has the schematic form

S = b(q2 + q4 + . . . ) + (q2 + q4 + . . . ) + b−1(q4 + q6 + . . . ) + b−2(q6 + q8 + . . . ) + . . . . (4.14)

where q ∼ η ∼ η̇ ∼ η′. We thus see that the expansion in η leads to a double expansion, in q and bq.

Hence, independent of whether b ≪ 1 or b ≫ 1, the parameter bq has to be much smaller than one for the

semiclassical expansion (4.14) to make sense. In addition, the flat space reduction makes sense if and only if

q4/b ≪ q2 ≫ bq2 ⇒ q2 ≪ b ≪ 1 . (4.15)
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In this form it is immediately transparent that a string extended in the X and η directions

(but not in the four-sphere directions) will be described by a flat-space string action, but

with a string tension which is given by (2.11). The mass of a vertical string segment,

stretching from the infrared “wall” to the flavour brane at z = zB , is then simply given by

mq = Teff zB . (4.18)

The fluctuations in the direction of the angular coordinate in the plane where the string ro-

tates are massive, with a sigma-dependent mass term. As explained before, the fluctuations

in the direction of the “wall” are irrelevant for the construction of the wave function. By

expanding the Polyakov action around the solution (4.10), we obtain the following action

for the fluctuations in the direction transverse to the “wall”

Sfluct =
L

2πα′
eff

∫

dTdσ

[

−(∂T z)2 +
1

L2
(∂σz)2 + . . .

]

. (4.19)

Here the dots refer to fluctuations in the directions along the “wall”. Note that, by rota-

tional symmetry, we can always align the system such that fluctuations in the θ-direction

decouple. Taking into account the Dirichlet boundary conditions, the fluctuations z(σ, τ)

can be written as

z(σ, τ) =
∑

n>0

zn cos(nσ) . (4.20)

Using this expression in the action and integrating over the σ coordinate, the action for

the fluctuations in the z-direction reduces to

Sfluct =
L

2α′
eff

∫

dT

[

∑

n>0

(

−(∂T zn)2 +
n2

L2
z2
n + . . .

)

]

. (4.21)

The main result which we deduce from this formula is that the system is equivalent to

an infinite number of uncoupled linear harmonic oscillators, with frequencies n/L and

masses L/α′
eff. Note that the form of the action (4.21) (i.e. the values of the masses and

the frequencies of the linear harmonic oscillators) is gauge dependent. Thus to make compu-

tations more transparent, we have intentionally chosen the static gauge on the worldsheet,

so that these worldsheet masses and frequencies coincide with their target space values.

Note however, that the relevant combination mω which appears in the wave function is a

gauge invariant quantity.

We now write the wave function in the factorised form

Ψ({zn}, {xn}) = Ψlong({xn}) × Ψsphere({yn}) × Ψθ({θn}) × Ψtrans({zn}) . (4.22)

Because the fluctuations along the “wall” and in the compact directions are irrelevant for

the computation of the probability that the string touches the flavour brane, one can simply

“integrate” these out (and thus effectively set Ψlong = Ψsphere = Ψθ = 1). The relevant,

transverse part of the wave function is now given by

Ψ[{zn}] =

∞
∏

n=1

Ψ0(zn) , (4.23)
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where the wave functions for the individual modes are given by

Ψ0(zn) =

(

n

πα′
eff

)1/4

exp

(

− n

2α′
eff

z2
n

)

, (4.24)

where all coordinates zn are unconstrained (i.e. run from (−∞,+∞)).9 Note that negative

values of z correspond to a fluctuation of the string in antipodal directions on the cigar

(antipodal points in θ); see also the discussion of the geometry around (2.1). However,

since the flavour brane is a point in the θ-direction, the fluctuations in the negative z-

direction will not touch the flavour brane. Note that all oscillators are in the ground state,

as classically none of the modes are excited in the z-direction.

We can obtain several estimates for the probability that the string touches the flavour

brane. These are all easiest to obtain by turning the problem upside down, and asking for

bounds on the probability that the string does not touch the brane. A lower bound on

this probability is given by integrating over all values of the zn for which the sum of the zn

satisfy
∑

n>0

∣

∣zn

∣

∣ ≤ zB . (4.25)

(in words, this means that even if all modes add up constructively, the total amplitude is

still smaller than zB). This leads to an upper bound on the probability for the string to

touch the brane,

Pmax
fluct = 1 −

∫

· · ·
∫

∑

n>0 |zn|≤zB

∞
∏

n=1

dzn

∣

∣Ψ({zn})
∣

∣

2
. (4.26)

Another estimate can be constructed by considering the probability that the string

does not touch the brane. This probability can be approximated by integrating over all

values of the zn for which the amplitudes of the modes are smaller than zB (this is likely to

overestimate the probability because it includes many configurations for which the string

actually touches the brane). From this, one obtains a lower estimate for the probability

that the string touches the brane,

Pmin
fluct = 1 − lim

N→∞

∫ zB

0
dz1

∫ zB

0
dz2 · · ·

∫ zB

0
dzN

∣

∣Ψ({zn})
∣

∣

2
. (4.27)

The integral (4.27) can be evaluated numerically, see figure 7. In order to see how well this

fits the Casher-Neuberger-Nussinov model, we have fitted the result to a Gaussian. The

result is a best fit given by

Pmin
fluct ≈ exp

(

−1.3
z2
B

α′
eff

)

. (4.28)

9By expanding the fluctuations in modes, we have here found that the eigenfunctions of the energy

operator depend only on α′

eff and not on L, whereas the eigenvalues contain an overall 1/L factor. This

is easiest to understand by looking at the L-dependence of the target space energy given in (A.7) of the

appendix. It arises solely through an overall multiplication of the world-sheet Hamiltonian, and does not

influence the width of the wave functions.

– 21 –



0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Pmin
fluct

zB
√

α′
eff

Figure 7: Numerical evaluation of the lower bound on the probability Pmin (i.e. (4.27),

for N ≤ 1000) that the string touches the flavour brane (black dots). Also displayed is

a fit of the data to a Gaussian function exp(−az2/α′

eff) (blue curve). The best fit gives

a ≈ −1.3.
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Figure 8: Comparison between the contribution to Pmin
fluct of all modes N ≤ 1000 (upper

‘curve’) vs. only the lowest lying mode N = 1 (lower ‘curve’). The fit to a Gaussian is

bad when only the lowest mode is taken into account.

From the plot we also see that, for small values of zB , the deviation from the exponential

suppression is more prominent.

It is also illustrative to see the effect of the infinite number of modes present in (4.27).

We have therefore made a comparative plot of Pmin for N = 1 and for N ≤ 1000, see

figure 8.

As argued in section 4.1, once the probability for the fluctuation Pfluct is computed,

the decay width can be computed using (4.7). The L-dependent prefactor in (4.7) will be

motivated further in section (4.3) from a full numerical analysis of the decay width using

a string bit model. Combining (4.7) with (4.28) we obtain the following expression for the
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decay width in the flat space approximation

Γflat =
(

const. × Teff Psplit × L
)

× exp

(

−1.3
z2
B

α′
eff

)

. (4.29)

Using (4.18) we can compare this directly to the Casher-Neuberger-Nussinov model.10 We

will discuss this comparison in section 5. Let us first analyse the effects that the curvature

has on the decay width.

4.2.2 Approximation using curved space

In this section we will discuss the effects of the curvature on the mesons decay widths.

In order to incorporate the leading effects of curvature, we use the expansion of the D4-

brane background (2.1) around the “wall” at U = UΛ as given in (4.9). In contrast to the

situation discussed in section 4.2.1, we will now consider the “full” metric (4.9) rather than

the truncated one (4.17).

We now need to insert this metric in the string sigma model action and expand the

latter in small fluctuations around the classical, rotating, U-shaped solution (4.10). The

action for the fluctuations in the η direction becomes

S =
1

2πα′

∫

dτdσ

[

4

3
(R3UΛ)1/2

(

η̇2 − η′2
)

− 3L2 cos2(σ)

(

UΛ

R

)3/2

η2

]

. (4.30)

Just as for the closed, folded string analysed in [47], we now find an effective equation of

motion for the fluctuation in the η direction which is given by
[

− d2

dτ2
+

d2

dσ2
− 9

8

L2 UΛ

R3

(

1 + cos(2σ)
)

]

η(τ, σ) = 0 . (4.31)

This is the Mathieu equation [5, 47]. We want to know the solutions to this equation

subject to the Dirichlet boundary conditions,

η(τ,−π

2
) = η(τ,

π

2
) = 0 . (4.32)

Solutions of (4.31) and (4.32) only exist if there is a non-zero and positive contribution

to (4.31) coming from the −d2/dτ2 term. First, factorise the solution according to

η(τ, σ) = eiωτ f(σ) , (4.33)

with a real frequency ω. The solution to (4.31) which satisfies the boundary condition at

the left end (i.e. σ = −π/2) is given, up to an overall multiplicative constant, by

f(σ) =

C

(

ω2 − b,
b

2
,−π

2

)

S

(

ω2 − b,
b

2
, σ

)

− S

(

ω2 − b,
b

2
,−π

2

)

C

(

ω2 − b,
b

2
, σ

)

. (4.34)

10We should emphasise that we do not claim that the probability is well-approximated by a Gaussian for

all values of zB . This would imply a finite value for the expectation value 〈zB〉, but the expectation value in

the ground state is known to diverge [48]. Our results only show that for relatively small zB the probability

is well-approximated by a Gaussian. At large distances the decay has to go slower than Gaussian to ensure

divergence of 〈zB〉. However, the regime in which the Casher-Neuberger-Nussinov model has been tested

corresponds to small zB. We thank Ofer Aharony for discussions on this issue.
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Figure 9: The frequencies ω, given in (4.36), as a function of the parameter b. These

frequencies correspond to modes satisfying the equation of motion (4.31) and the bound-

ary conditions (4.32). Long dashes correspond to ω2
n

= an(b/2) + b while short dashes

correspond to ω2
n

= bn(b/2) + b. For b = 0 and for b → ∞, the spectrum is degenerate.

For intermediate values of b there is level splitting.

where C and S are the Mathieu functions and b was defined in (4.12). We now need to

tune ω2 such that the boundary condition at the right end (i.e.σ = π/2) is satisfied.

This boundary condition at σ = π/2 can be satisfied by making use of the Mathieu

characteristic functions an(q) and bn(q), which give the value of the first parameter of the

even and odd Mathieu functions respectively, such that they are periodic with period 2πn.

We use the following properties of the Mathieu functions,

S(an(q), q,±π/2) = S(bn(q), q,±π/2) = 0 for even n,

C(an(q), q,±π/2) = C(bn(q), q,±π/2) = 0 for odd n.
(4.35)

These properties imply that for even n, the second term of (4.34) vanishes and the first one

satisfies both boundary conditions. For odd n, the situation is reversed, and the first term

in (4.34) vanishes altogether while the second term satisfies both boundary conditions. We

thus see that the boundary condition at σ = π/2 is satisfied for any of the frequencies

ω2
n = an(b/2) + b for n ≥ 0 ,

ω2
n = bn(b/2) + b for n > 0 .

(4.36)

This spectrum has been plotted in figure 9. At leading order these frequencies behave

like n2 but there are b-dependent (and thus L-dependent) corrections.

Knowing the frequencies of the modes, we can write down the corresponding harmonic

oscillator system. By writing the action (4.30) in terms of the target-space time T and

using the equation of motion to eliminate (after partial integration) the η′′ term, we find

S =
L

2α′
4

3
(R3UΛ)1/2

∫

dT
∑

n

[

(

dηn

dT

)2

− ω2
n

L2
η2

n

]

, (4.37)
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Figure 10: The first excited modes (i.e. corresponding to the frequencies for n = 1 in

equation (4.36)), with arbitrary normalisation. Dashing is as in figure (9). Also depicted

is the mode which survives for b = 0, i.e. in the absence of curvature (solid curve).

where ηn denotes the amplitude of the n-th mode (observe that there are actually two

modes for all n ≥ 1). The wave function for the ground state of this harmonic oscillator

behaves like

Ψ[ηn] ∼ exp

[

− 2

3α′ (R
3UΛ)1/2

(

an(b/2) + b
)1/2

η2
n

]

. (4.38)

We thus see that the Gaussian suppression factor starts with an L-independent term (as in

flat space), but then receives corrections which are L-dependent. In order to get a better

feeling for the physics stored in the wave function, let us rewrite the b parameter, using

the value valid for low-mass quarks (2.13), in terms of gauge theory quantities. This leads

to

blight quarks =
27

4
π2 J

g2
YMN

. (4.39)

The curvature corrections thus tend to suppress, through the exponential factor, the decay

of higher-spin mesons (similar to the effect of the centrifugal barrier of (3.7)). One should,

however, keep in mind that both in the old string model and in our setup, the corrections

due to finite quark masses (3.6) tend to enhance the decay as J increases. There are thus

two competing effects. Unfortunately, the experimental data of the decay of high-spin

mesons into other high-spin mesons is rather scarce. We will return to a comparison with

experiment in section 5.

4.3 Approximation using a string bit model in flat space

So far, we have used a continuum description to determine the decay width. However,

an alternative way to set up the computation is to use a discrete approximation, where

instead of a continuum string one uses a set of beads and springs. This of course introduces a

certain approximation, but it has the advantage that the integration over the right subset of

configuration space becomes much more manageable. As a result, we obtain an independent

verification of the decay rates obtained in the previous sections.
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Figure 11: The discretised string, consisting of a number of horizontal rigid rod segments

(blue) connected by vertical springs. Also depicted are the flavour brane at z = zB; this

flavour brane has a finite width.

The situation we will consider is as in figure 11. We will again make the approximation

in which the string is very close to the “wall”, so that the metric becomes flat, as in (4.17).

The string tension of the string bit model should thus be taken equal to Teff given in (2.11).

We now want to compute the probability that, when the system is in the ground state,

one or more beads are at the brane at x = zB . In order to write down the wave function

as a function of the positions xi of the beads, we have to go to normal coordinates in

which the equations of motion decouple. Denote the string tension by Teff, the number

of beads by N , their individual masses by M and the length of the system by L, which

satisfies L = a (N + 1). The action is given by

S =
1

2

∫

dt

(

N
∑

n=1

M ẋ2
n − Teff

a

N+1
∑

n=1

(

xn − xn−1

)2

)

, (4.40)

where xN+1 ≡ 0. This action corresponds to taking Dirichlet boundary conditions at the

endpoints, i.e. infinitely massive quarks at the endpoints of the string. The normal modes

and their frequencies are then given by [49]

ym =
1

N + 1

N
∑

n=1

sin

(

mnπ

N + 1

)

xn , ω2
m =

4Teff N(N + 1)

Mtot L
sin2

(

mπ

2(N + 1)

)

, (4.41)

for which the inverse reads

xn = 2

N
∑

m=1

sin

(

mnπ

N + 1

)

ym . (4.42)

These expressions have been written in such a way that it is easy to take the continuum

limit N → ∞ while keeping L, Teff and the total mass Mtot = N M fixed. In particular,

lim
N→∞

ω2
m =

m2π2 Teff

Mtot L
. (4.43)
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In the relativistic limit Mtot = TeffL; we then get ω2
m = m2π2/L2. The action then reads

lim
N→∞

S(Mtot = TeffL) = Teff

∫

dt

∫ L

0
dσ
[

ẋ(σ)2 − x′(σ)2
]

. (4.44)

which will be useful for comparison later (note that σ is normalised to run from 0 to L).

The system is now decoupled and the action for the normal coordinates is

S = (N + 1)M

∫

dt
N
∑

m=1

(

ẏ2
m − ω2

my2
m

)

(4.45)

The wave function is a product of wave functions for the normal modes,

Ψ
(

{y1, y2, . . .}
)

=

N
∏

m=1

(

2(N + 1)Mωm

π

)1/4

exp
(

−(N + 1)Mωm y2
m

)

. (4.46)

The wave function Ψ({x1, x2, . . .}) is now obtained simply by inserting the normal modes

(4.41), which of course results in a complicated exponential in terms of the xn. Note that

the width of the Gaussian behaves as

lim
N→∞

(N + 1)Mωm = lim
N→∞

(N + 1)
TeffL

N

mπ

L
= Teffπm . (4.47)

This expression depends linearly on Teff and is independent of L, in agreement with the

continuum analysis of section 4.1.

The advantage of the discrete model is that we can now integrate the square of the

wave function over precisely the right subspace of configuration space in order to determine

the probability that the string touches the brane (remember that this is the step which

is hard in the continuum, because in the continuum those boundary conditions have to

be rewritten as conditions on the normal modes). For each bead position, we define the

integration intervals corresponding to being “at the brane” and being “elsewhere in space”

by
Ibrane :

[

− zB − ∆, −zB

]

∪
[

zB, zB + ∆
]

,

Ispace :
〈

−∞, −zB − ∆
]

∪
[

− zB , zB

]

∪
[

zB + ∆, ∞
〉

.
(4.48)

Here ∆ is the width of the flavour brane, which of course has to be taken equal to a finite

value in order to be left with a finite probability. The probability of finding a configuration

which has, e.g., one bead at the brane and all others away from it, is then given by

P(one bead at brane) =

N
∑

i=1

∫

Ibrane

dxi

∏

k 6=i

∫

Ispace

dxk J
(

{y1, y2, . . . , yN}, {x1, x2, . . . , xN}
)

×
∣

∣

∣
Ψ
(

{x1, x2, . . . , xN}
)

∣

∣

∣

2
. (4.49)

The factor J is a Jacobian arising from the change of normal coordinates to the original

positions of the beads (and which is just a constant since the transformation is linear, so
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it can be computed by demanding that the integral of |Ψ|2 over the full x-space is equal to

one). Similar expressions exists for other subsets of configuration space where more than

one bead is located at the brane.

Let us now consider the simplest decay process, namely the one-meson to two-meson

process. The total decay width is a sum of decay widths labelled by the number of beads

which are at the brane,

Γmeson→2 mesons =
∑

p

Γ
(p)
meson→2 mesons . (4.50)

where the partial width Γ(p) is given by

Γ
(p)
meson→2 mesons =

∑

all configurations
with p beads at brane

p · Pconfiguration · Teff Psplit · length per bead . (4.51)

The factor p occurs because a configuration with p beads at the brane can decay in p differ-

ent ways into a two-string configuration. The symbol Psplit is the dimensionless coefficient

related to the decay width of open strings, as described around (4.4).

In the discrete picture, it is easy to see that the decay width grows linearly with the

length of the string. Namely, consider the system with Teff fixed and N fixed (and large

in the continuum limit). The total length (and thus the total mass) is now changed by

varying the spacing a. The partial decay width Γ(1), for instance, is given by

Γ
(1)
meson→2 mesons =

N
∑

i=1

Pbead i at brane · Teff Psplit · a
N + 1

N

≈ Pone bead at brane · Teff Psplit · L , (4.52)

where the last equality holds when the probability to sit at the brane is approximately the

same for all beads (recall, in this context, the discussion in section 4.1). In fact, as long as
∑

i Pbead i at brane scales linearly in N , one obtains a linear dependence of the decay width

on L. For the partial width Γ(N) the proportionality with L is in actually trivial,

Γ
(N)
meson→2 mesons = N · Pall beads at brane · Teff Psplit · a

N + 1

N

= Pall beads at brane · Teff Psplit · L . (4.53)

Let us now analyse the total decay width. Clearly, integrals of the type (4.49) are

complicated because they involve exponentials which are not decoupled Gaussians (alter-

natively one could of course integrate directly over the ym, as in the continuum discussion,

but then one has to deal with complicated boundary conditions). However, one can cer-

tainly do these integrals numerically using Monte-Carlo integration.

With such a numerical integration process, we have obtained results which are close to

the ones which we obtained using approximation methods in the continuum. An example

of the decay width of a six-bead system is given in figure 12. By computing the decay
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Figure 12: Total decay width (divided by TeffPsplit L) for a six-bead system, with a

brane width of 0.1
√

α′

eff, as a function of the distance zB of the IR “wall” to the flavour

brane. Superposed is a best-fit Gaussian, with parameters Γ = 0.12 exp(−1.22 z2
B

/α′

eff).

The string is allowed to split if a bead is at the brane, but the other beads are allowed to

be anywhere (both below and above the brane).

width for various values of N and extrapolating to large-N , one finds that the decay width

is well-approximated by

Γbeads = const. · exp

(

−1.0
z2
B

α′
eff

)

· Teff Psplit · L . (4.54)

This extrapolation includes not just an extrapolation to large-N , but also an extrapolation

to small value of the brane width.11

The match with the Gaussian curve is rather striking. It is perhaps good to emphasise

that this shape of the decay width is only obtained when “being at the brane” and “being

somewhere else” is defined as in (4.48). If one allows the string to split not only when

a bead is at the brane, but also when the bead is above the brane, the decay width is

qualitatively different. A different result is also obtained if one disallows the string to split

when any of the beads is above the brane. See figure 14 for details.

The result (4.54) is to be compared with the result of the Casher-Neuberger-Nussinov

model, given by (3.2). By using expression (4.18) for the mass of the produced quarks

in terms of the distance between the “wall” and the flavour brane, we see that the decay

width in their model, when translated into string theory variables, is given by

ΓCNN = const. · exp

(

−1

4

z2
B

α′
eff

)

· Teff Psplit · L . (4.55)

The exponents of (4.54) and (4.55) do not agree. However, we should perhaps not be

too surprised about this, given the fact that it is not entirely clear yet whether the mass

appearing in (2.9) is constituent, current or something in between.

11After completion of this work we learned that a very similar calculation was done, analytically, in the

appendix of [38], though with an entirely different, non-holographic underlying picture.
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Figure 13: The behaviour of the scale of the Gaussian shape of the decay width as a

function of the number of beads N . A best-fit exponential curve has been superposed,

which suggest that the scale approaches one in the large-N limit.
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Figure 14: Comparison of the effect of various incorrect prescriptions for the compu-

tation of the decay width (for five beads). When a bead is merely required to be at or

above the brane in order to be allowed to split, one obtains the red curve (diamonds).

On the other hand, when the string is only allowed to split when none of the beads are

above the brane, one obtains the blue curve (stars).

Finally, let us remark once more that the results obtained with the string bit model

support the assumptions made in section 4.1, in particular those which lead to the conclu-

sion that the decay width is linear in the length of the string.

5. Summary of the results and comparison with experiment

In this section we will summarise the results obtained throughout the paper, and compare

them with the available experimental data. Since our construction is very generic (i.e. it
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does not crucially rely on the details of the geometry dual to QCD) we focus on the

qualitative features of the decay width as they follow from our model, rather than on exact

numbers.

In this paper we have studied decays of two types of high-spin mesons: those consisting

of two heavy or two light quarks. These mesons were modelled by classical, open U-shaped

strings (see figure 1) with long and short vertical parts, respectively. The main idea for the

computation of meson decay widths was to study the fluctuations of the horizontal part of

the U-shaped string in the direction transverse to the “wall”, and from there deduce the

probability that the string touches the flavour probe brane (see figure 2). This probability

was then multiplied with the probability for the string to reconnect with the probe, using

the flat space results for string decay widths of [7].

In order to compute the probability for the transverse fluctuations we had to con-

struct the string wave function (4.1), for which it was necessary to perform a semi-classical

quantisation of the string fluctuations around the classical U-shaped configuration. Given

that the full confining background (2.1) is complicated, and that we are anyhow mainly

interested in infrared phenomena of the theory, we have focused in all our computations

only on the region near the “wall”.

The description of the U-shaped strings also simplifies in this approximation. Both

for mesons with heavy quarks and for mesons with light quarks, the horizontal part of the

U-shaped string can be modelled as an open string with Dirichlet boundary conditions on

the “wall”. This is obvious for the mesons with light quarks (where the flavour brane is on

the “wall”). For mesons with heavy quarks the vertical parts of the string cannot easily

fluctuate in the transverse direction in the full geometry due to their weight, and thereby

impose Dirichlet boundary conditions on the endpoints of the horizontal segment. Note

though, that the Dirichlet boundary condition for heavy mesons exist solely because of the

vertical gravitational potential. At leading order, the horizontal part of the string undergoes

fluctuations near the wall just like in flat space. As the amplitude of the fluctuations is

increased, the curvature effects can be taken into account perturbatively.

Within the frame work of these approximations the decay width Γflat for heavy, high-

spin mesons (4.29) was shown to exhibit a) linear dependence on the string length (i.e. the

mass of the meson) b) exponential suppression with the masses of the produced quarks

c) flavour conservation, d) suppression in the large-Nc limit and e) the Zweig rule. The

third feature is automatically built into the setup, and corresponds to the geometrical fact

that when a string splits, it produces two endpoints on the same brane. The suppression

in the large-Nc limit follows from the fact that reconnection of the string to the brane is an

open string process, and thus is weighted with a gs ∼ 1/Nc factor. The Zweig rule, which

is not automatic in the Lund model, is similarly a simple consequence of the holographic

description of mesons. Processes violating the Zweig rule (see section 3.3) would involve

simultaneous annihilation of the endpoints of the open string and splitting of the string in

the middle, and are thus suppressed by extra powers of the string coupling constant.

These first three of the features listed above are in very good agreement with the

experimentally tested Lund model formula (4.55) as computed in [35]. In relation to the

exponential suppression of Γ, we should in particular note that the quark masses which
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Figure 15: The decay width divided by the mass of the mesons on the K∗ trajectory, ver-

sus the mass of the states [50]. These satisfy Γ/M = const. only very approximately. Also

depicted is a fit based on the assumption of a constant width per unit length, i.e. Γ ∼ L,

together with the finite quark mass relation between the length and the mass, (3.6). Our

model based on the gauge/string duality predicts a lower decay width at higher spin, but

the data are too scarce to say anything conclusive about such corrections.

figure in the Lund result (4.55) are the so-called “constituent” quark masses, i.e. masses

which are of the order of hadronic masses (for example ∼ 300 MeV for u, d quarks, and

∼ 500 MeV for the s quarks [35]). In our model the mass figuring in the exponent is related

to the mass of the vertical parts of the string, and thus corresponds to the constituent mass

rather than the current algebra mass. The latter is related to the asymptotic separation

of the D4 and D6-branes (i.e. to the parameter r∞ in figure 3).12

The main differences between our results and those of the Lund model are contained in

the precise form of the exponent, in particular in the dependence on the spin of the initial

meson. Let us explain what we mean here more precisely. However, as a general remark,

note that the fine structure of the exponent in (4.55) has not been extensively tested in

experiments so far and in particular not for the decay of high-spin mesons.

The quantity which can be extracted experimentally is Γ/M , where Γ is the partial

decay width and M the mass of the initial meson. The Lund formula (4.55) and our flat

space results both imply that the ratio Γ/L is constant on the same Regge trajectory,

see (4.54) and (4.55). Here L is the length of the horizontal part of the U-shaped string,

i.e. the length of the flux tube in the Lund model. Thus, if one approximates mesonic

Regge trajectories with straight lines (i.e uses the condition M = TeffL), then we expect

that the ratio Γ/M is constant on a Regge trajectory. The experimental data however,

support this statement only very approximately (see for example the decay widths for the

12Note that even if r∞ = 0, the constituent quark masses are non-zero, corresponding to the fact that

the non-flat profile of the D6-brane, as depicted in figure 3, persists even in this case.
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K∗ trajectory in figure 15).

There are at least two ways in which the observed deviations from constant Γ/M could

be incorporated in the model. One way is by incorporating the fact that in nature, Regge

trajectories are not straight lines and the relation between the meson mass and the effective

string “length” L is modified, due to the presence of massive quark endpoints (3.6).13 This

kinematical effect is automatically incorporated for our U-shaped string, since the U-shaped

string satisfies (3.6). Note that this effect means that for fixed energy, the string length

is shorter, and hence the meson is more stable than with massless quarks. As the spin of

mesons is increased, this effect is “washed” out, as the energy stored in the string becomes

much larger than the energy of the quarks. The correction to Γ/M due to the finite quark

masses indeed seems to be in much better agreement with the experimental data, see for

instance the fit to the widths of the K∗ trajectory in figure 15.

The other reason for deviation of Γ/M from a constant value could be a modification

to the exponential factor for the decay rates. In the “standard” Lund model the ratio Γ/M

is “blind” to the value of the spin of the mesons. The same is true for our model in the flat

space approximation, since the probabilities for the fluctuations in the direction transverse

to the “wall” were independent of the spin (i.e. length) of the classical string (4.24). How-

ever, both the Lund model and our setup allow for an improvement of the exponential term

to incorporate spin effects. In the Lund model the Schwinger pair production in the flux

tube is modified due to the presence of a centrifugal barrier (see (3.7) and the discussion

around it). This effect leads to a stabilisation of mesons with the increase of their spin. In

our setup, inclusion of curvature terms leads to the effect that fluctuations in the transverse

direction become dependent on the properties of the string around which they are excited

(see (4.11)). The leads to a twofold effect (4.38). Firstly, for a given meson, the lifetime

is increased as compared to the prediction in flat space, i.e. as compared to the simple

Lund approximation (it becomes harder to fluctuate in the transverse direction due to the

“positive” curving of the space). Secondly, for a given trajectory, the mesons become more

stable as their spin is increased. We would like to emphasise that the direction in which

these corrections act is very generic, and basically independent of the particular model

under consideration. Since both our model and the improved Lund model seem to predict

similar behaviour of the decay rates of high-spin mesons (namely that they do not decay

as fast as the naive Lund model predicts), it would be extremely interesting to see whether

experimental data offers support for this behaviour. More precise data to be collected in

the future will hopefully allow for more detailed tests of the exponential factors, and thus

allow one to discriminate between various models.

13This simple mechanism cannot be used to explain deviations from the straight line for the Pomeron

trajectory (which corresponds to a closed string). In this case, the one-loop world-sheet corrections do,

however, modify the relation in the right direction [5]. Similar worldsheet quantum effects also modify the

Regge trajectories for mesons, but are much less relevant than the classical corrections due to the quark

masses.
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A. Appendix

A.1 Semiclassical quantisation of macroscopic strings

In this appendix we discuss the general formalism required for quantisation of fluctuations

of the string around a given classical solution. Most of this is based on appendix A of Frolov

and Tseytlin [51].

One starts from the Polyakov string action in a curved background, gauge-fixed to a

conformal worldsheet metric,

S =
1

2πα′

∫

dτ

∫ 2π
√

α′

0
dσ GMN

[

ẊM ẊN − XM ′XN ′
]

. (A.1)

In order to write down the lowest-energy state of the system, we have to find an expression

for operator corresponding to the space-time energy of a string state. So we assume that the

target-space metric has been written proper-time form, G0i = 0, and that all components

are independent of time so that it admits a time-like Killing vector. The energy operator

is then given by P0, or

E = P0 =
−1

2πα′

∫ 2π
√

α′

0
dσ Gtt ṫ . (A.2)

Using the Virasoro constraint, this expression can be converted to an expression which

involves the oscillators. The constraint reads

−Gtt ṫ
2 + Gij

[

ẊiẊj + X ′iX ′j
]

= 0 . (A.3)

Now first expand the time coordinate around its classical value t = Lτ + t̃. The con-

straint (A.3) then allows one to derive the expression

Gttṫ =
1

2
LGtt +

1

L
H(t̃, X, Y, Z) . (A.4)

Here H(t̃, X, Y, Z) is the world-sheet Hamiltonian density,

H(t̃, X, Y, Z) = −Gtt
˙̃t2 + Gij

[

ẊiẊj + X ′iX ′j
]

. (A.5)

Now also expand the other fields around the classical solution, i.e.

Xi = Xi
0 + X̃i , (A.6)

where Xi
0 can for instance be the solution given in (4.10). Upon integration over the σ

coordinate, the terms linear in the fluctuations integrate to zero, so that the result becomes

E = const. +
1

L

∫ 2π
√

α′

0
dσH(T̃ , X̃, Ỹ , Z̃) . (A.7)

This is the classical expression for which we want to write down the corresponding quantum

operator and the lowest-eigenvalue eigenstate.
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A.2 Decays of massive open strings in flat space-time

We briefly review here the decay of open bosonic strings and the type-I superstrings via a

split into two open strings. We follow the papers [7, 44].

Intuitively, the string can split at any point of it and hence one expects that the decay

rate will be proportional to the length of the string Γ ∼ L. This property was indeed

proved for the bosonic critical open [7, 52] and closed string [44] as well as for the critical

superstring theory [53, 54]. The idea is to use the optical theorem and compute the total

decay rate by taking the imaginary part of the self energy function. Whereas in [44, 52] the

annulus diagram associated with the split and rejoining of an open string was computed,

the authors of [7] use a trick and translate the problem into that of disk amplitude with

two closed string vertex operators. This is done by assuming one compact space dimension

of period L around which the initial and final string are wound. So the process is that of

an incoming closed string that opens up and then closes again to yield an outgoing closed

string.

The corresponding amplitude takes the form

iA =
iTN

g2
L

[

κ

2π
√

L

]2 ∫

|z|<1
d2z 〈: eip0X(0) :: e−ip0X(z) :〉 , (A.8)

where g is the coefficient of the open string tachyon operator, κ is the gravitational coupling,

the normalisation factor iTN/g2 is determined by calculating the amplitude of a graviton

to couple to two open string tachyons, the factor L comes from the zero modes along

the compact direction and the 1/
√

L factor for each vertex operator follows from the

normalisation of the centre of mass wave function of the string. By using the operator

product expansions of the left and right-moving modes of the string one finds that the

integrand of (A.8) is given by

〈: eip0X(0) :: e−ip0X(z) :〉 = |zz̄|−2(1 − zz̄)−γ , (A.9)

where γ = L2T
2π − 2. Performing the integral, taking the imaginary part of the amplitude

and using Stirling’s approximation one finds that

ImA = −TNκ2

2g2
γ (A.10)

which means that in the large-L limit the decay rate equals [7]

Γ = − Im δm = − 1

2m
ImA =

TNκ2

4g2E
γ → TNκ2

8πg2
L =

g2T 13

226π12
NL . (A.11)

In the last step κ was expressed in terms of g2 and T using either unitarity, careful treatment

of the path integral normalisation, or by factorisation of the annulus amplitude. The decay

rate is thus linear in the length of the string. Using the relation between the length, the

mass and the excitation level M2 = n/α′ = L2/α′2 it is clear that the decay rate is also

linear in the mass of the string, and goes with the square root of the excitation level.
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Figure 16: The setup for the computation of the open string decay width as used by Dai

and Polchinski [7].

Eventually the decay rate has units of time−1 ∼ M so we rewrite (A.11) in the following

form

Γ =
1

π23
√

245
M , (A.12)

where, following [7], the decay rate of (A.11) was multiplied by 16π
g2

1

N
√

(πT )25
.

The calculations of Turok et al. [44, 52] include the evaluation of the planar contribution

to the self energy. The self energy which is related to the shift of the trajectory has threshold

cuts along the positive mass-squared axis, and the discontinuity across the cut gives the

decay rate. To determine the values of the decay rates of the asymptotically high-mass

states, the method of stationary phase was used to compute the self energy integrals in

the upper and lower half planes. It was shown that the decay rates are independent of the

endpoint charges, namely the decay of the different gauge representation are the same.

The decay rate of [52] does not agree in general with the one computed by [7], as the

former paper finds a decay rate which is not (at leading order) linear in the length L of the

string. However, the disagreement disappears in the critical dimension (see the note added

in proof in [52]). Since the two methods of calculations used in [7] and [44, 52] are different,

the fact that the results agree in the critical dimension is significant. In particular it seems

to imply that the impact of the endpoints is not important and indeed the split is a local

property. If this conclusion is correct, it is more probable that the massive endpoints of

our open strings would not dramatically influence the probability to split.

– 37 –



References

[1] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD”, Prog.

Theor. Phys. 113 (2005) 843–882, hep-th/0412141.

[2] A. Karch and E. Katz, “Adding flavor to AdS/CFT”, JHEP 06 (2002) 043,

hep-th/0205236.

[3] T. Sakai and S. Sugimoto, “More on a holographic dual of QCD”, hep-th/0507073.

[4] J. Erdmenger and I. Kirsch, “Mesons in gauge/gravity dual with large number of

fundamental fields”, JHEP 12 (2004) 025, hep-th/0408113.

[5] L. A. Pando Zayas, J. Sonnenschein, and D. Vaman, “Regge trajectories revisited in

the gauge/string correspondence”, Nucl. Phys. B682 (2004) 3–44, hep-th/0311190.

[6] M. Kruczenski, L. A. P. Zayas, J. Sonnenschein, and D. Vaman, “Regge trajectories

for mesons in the holographic dual of large-Nc QCD”, JHEP 06 (2005) 046,

hep-th/0410035.

[7] J. Dai and J. Polchinski, “The decay of macroscopic fundamental strings”, Phys.

Lett. B220 (1989) 387.

[8] D. Mitchell and N. Turok, “Statistical properties of cosmic strings”, Nucl. Phys.

B294 (1987) 1138.
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