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Mixing of the RR and NSNS sectors in the Berenstein-Maldacena-Nastase limit
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This paper concerns instanton contributions to two-point correlation functions of Berenstein-
Maldacena-Nastase (BMN) operators in N � 4 supersymmetric Yang-Mills theory that vanish in planar
perturbation theory. Two-point functions of operators with even numbers of fermionic impurities (dual to
R � R string states) and with purely scalar impurities (dual to NS � NS string states) are considered. This
includes mixed R � R–NS � NS two-point functions. The gauge theory correlation functions are shown to
respect BMN scaling and their behavior is found to be in good agreement with the corresponding
D-instanton contributions to two-point amplitudes in the maximally supersymmetric IIB plane wave string
theory. The string theory calculation also shows a simple dependence of the mass matrix elements on the
mode numbers of states with an arbitrary number of impurities, which is difficult to extract from the gauge
theory. For completeness, a discussion is also given of the perturbative mixing of two impurity states in the
R � R and NS � NS sectors at the first nonplanar level.
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I. INTRODUCTION AND SUMMARY

The correspondence between string theory in a maxi-
mally supersymmetric IIB plane wave background [1] and
the Berenstein-Maldacena-Nastase (BMN) sector of the
N � 4 supersymmetric Yang-Mills (SYM) theory [2]
has been extensively studied at the perturbative level.
Nonperturbative aspects of the duality have recently been
analyzed in [3,4], where it was shown that the striking
agreement between the effects of D-instantons and of
Yang-Mills instantons, found in the original formulations
of the AdS/CFT correspondence [5–7], persists in the
BMN/plane wave limit. This paper extends this analysis
to include bosonic states with an even number of fermionic
impurities in the gauge theory and the corresponding R �
R states in the dual string theory. The further extension to
include fermionic states (which have an odd number of
fermionic impurities) involves a straightforward general-
ization of these results.

In the BMN limit the gauge theory-string theory corre-
spondence relates the string mass spectrum to the spectrum
of scaling dimensions of Yang-Mills gauge-invariant op-
erators of large dimension, �, and large charge, J, with
respect to a U(1) subgroup of the SU(4) R-symmetry
group. This relation is formally realized via the operator
identity

1

�
H�2� �D� J ; (1)

relating the string theory Hamiltonian to the combination
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D� J of the gauge theory dilation operator and U(1)
generator. The duality involves the double limit, �! 1,
J ! 1, with �� J kept finite, on the eigenvalues of the
operators D and J . The parameter� in (1) is related to the
mass parameter,m, entering the light-cone string action by
m � ��0p� (where p� is the light-cone momentum) and
equals the background value of the R � R fiveform. The
equality (1) implies that the eigenvalues of the operators on
the two sides should coincide. Numerous tests of this
relation have been carried out at the perturbative level
[8–14]. In [3,4] D-instanton contributions to the plane
wave string mass matrix for certain states with up to four
bosonic string excitations were shown to be in striking
agreement with instanton contributions to the matrix of
anomalous dimensions in the corresponding sectors of the
dual gauge theory. A brief review of these results is pre-
sented in [15].

In the large N limit and in the BMN sector of the gauge
theory the rôle of the ordinary ’t Hooft parameters, � and
1=N, is played by effective rescaled parameters [10,11],

�0 �
g2

YMN

J2 ; g2 �
J2

N
: (2)

In the BMN correspondence these are related to the string
parameters via

m2 � ��p��0�2 �
1

�0
; 4�gsm2 � g2; (3)

which imply that in the double scaling limit, N ! 1, J !
1, with J2=N fixed, the weak coupling regime of the gauge
theory corresponds to the limit of small gs and large m on
the string side.
-1 © 2006 The American Physical Society
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The string Hamiltonian is the sum of two pieces,

H�2� � H�2�pert �H
�2�
nonpert: (4)

The perturbative part has an expansion in powers of gs,
which gets reorganized into a series in g2. The nonpertur-
bative part contains theD-instanton induced corrections. In
the BMN limit of the N � 4 SYM theory, after the
operator mixing is resolved [16], quantum corrections to
the eigenvalues of D� J are also expected to be organ-
ised in a double series in �0 and g2 (a property referred to as
BMN scaling), with g2 playing the rôle of genus counting
parameter. According to [2] the g2 expansion in string
theory is term by term exact to all orders in �0. This means
that the free string spectrum is identified with the re-
summed planar expansion of the spectrum of the D� J
operator on the gauge side. Loop corrections in string
theory correspond to nonplanar effects in the Yang-Mills
theory. At each order in the loop expansion, the string
theory encodes an infinite series of �0 corrections in the
gauge theory at the fixed corresponding order in g2.

The large body of work on perturbative and nonpertur-
bative contributions to anomalous dimensions of BMN
operators has concentrated almost entirely on states with
bosonic impurities. Correspondingly, almost all results on
the plane wave string mass spectrum refer to strings with
bosonic excitations. However, fermionic impurities are
obviously required in any complete treatment of the mass
matrix. States with an even number of fermionic impurities
correspond to R � R states of the string theory. In general
one would expect such states to mix with those containing
bosonic impurities, or NS � NS states in the string descrip-
tion. Indeed, in [3] it was noted that certain string two-
point functions that mix the NS � NS and R � R sectors
receive nonzero D-instanton contributions even though
these states do not mix at tree level. In this paper we will
study these classes of string amplitudes in detail, together
with the dual correlation functions in the BMN limit of
N � 4 SYM. The string states and gauge theory operators
that we consider contain an arbitrary even number of
fermionic and bosonic impurities, but in specific
combinations.

On the gauge theory side we find that the two-point
functions respect BMN scaling and we determine their
dependence on the parameters, �0 and g2, in the semiclas-
sical approximation. Interestingly, we find that, depending
on the number and combination of impurities, the result
can contain arbitrarily large inverse powers of �0. The dual
string amplitudes, computed using the formalism of [4],
are shown to be in very good agreement with the gauge
theory results. The string theory calculation also shows a
remarkably simple dependence of the mass matrix ele-
ments on the mode numbers of states with an arbitrary
number of impurities. The dependence on the mode num-
bers is extremely complicated to determine through a
standard instanton calculation in the Yang-Mills theory
066004
and thus the string result represents a highly nontrivial
prediction for the gauge side.

The mixing of the NS � NS and R � R sectors can easily
be motivated from the presence of background R � R flux
in the string picture. First note that R � R charge conser-
vation is violated in tree-level closed-string scattering from
a D3-brane, so that NS � NS and R � R states mix at tree
level in AdS5 � S

5 (which is the near-horizon geometry of
a stack of coincident D3-branes). The Penrose boost that
takes AdS5 � S

5 to the maximally supersymmetric IIB
plane wave background leads to a string theory in which
R � R charge is conserved on a spherical world-sheet (tree
level). However, the nonzero background flux (nonzero �)
leads to the possibility of mixing NS � NS and R � R
states by string loop corrections, as will be indicated later
in this paper. This should mean that nonplanar perturbative
contributions in the gauge theory (i.e. beyond the zeroth
order in the g2 expansion) mix states that have bosonic
impurities with states that have an even number of fermi-
onic impurities. We will later show that this is indeed the
case by analysing the leading planar and nonplanar con-
tributions to a specific mixed two-point function.

The paper is organized as follows. In Sec. II we define
the different classes of BMN operators which we focus on
and we explain our notation. Section III discusses instanton
contributions to Yang-Mills two-point functions in the
semiclassical approximation. The calculation of the dual
D-instanton induced amplitudes in string theory is pre-
sented in Sec. IV. Section V discusses the issue of the
perturbative mixing of the NS � NS and R � R sectors
through a qualitative analysis of a specific process.
II. BMN OPERATORS

In this section we discuss certain classes of BMN op-
erators whose two-point functions we shall analyze in the
following sections. We consider bosonic operators which
are SO�4�C � SO�4�R singlets, corresponding both to R �
R states, i.e. with an even number of fermionic impurities,
and to NS � NS states, i.e. containing only bosonic impu-
rities. The operators we consider contain an arbitrary num-
ber of impurities, but in certain specific combinations. As
will be discussed in the following, in the case of R � R
states it is convenient to study operators which also contain
four bosonic impurities. The inclusion of the bosonic im-
purities simplifies the analysis in the one-instanton sector
because they allow to soak up the fermion superconformal
modes without the need to use higher order solutions for
any of the fields.

The operators we focus on involve scalar or fermion
impurities in singlet combinations. In the BMN limit the
four scalars, ’i, not charged under U(1) transform in the
��0; 0�; �12 ;

1
2�	 of SO�4�C � SO�4�R. The N � 4 fermions,

�A� and �� _�
A , transforming in the 4 and �4 of SU(4), are

decomposed as [4]
-2
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�A� !  �a� 
 � ��a; a � 1; 4 (5)

�� _�
A !  � _�

_a 
 � � _� _a; _a � 2; 3; (6)

where  �a� and  � _�
_a have U(1) charge� 1

2 , i.e. �� J � 1,
whereas � ��a and � � _� _a have charge � 1

2 , i.e. �� J � 2.
Under the SO�4�C � SO�4�R symmetry the fermions  �a�
and � ��a transform in the ��12 ; 0�; �

1
2 ; 0�	, while  � _�

_a and
� � _� _a transform in the ��0; 1

2�; �0;
1
2�	. The definition of the

fermions � ��a and � � _� _a involves the multiplication by a
matrix which flips the SO�4�R chirality and, respectively,
lowers or raises the corresponding index. The decomposi-
tion in (5) and (6) corresponds to the decomposition of the
left- and right-moving type IIB fermions into chiral

MIXING OF THE RR AND NSNS SECTORS IN THE . . .
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SO�4�C � SO�4�R fermions [17,18], �S�; S�� and
�~S�; ~S�).

Fermion impurities in BMN operators are associated
with the insertion of the �� J � 1 fields,  �a� and  � _�

_a .
In the dual string theory this corresponds to the insertion of
S��n and S��n (or ~S��n and ~S��n) creation operators. The
conjugate fermions, � ��a and � � _� _a, which have �� J �
2, enter into the conjugate operators. In perturbation theory
the only nonzero contractions are between a fermion and
its conjugate, i.e. h �a� � � _� _bi and h � _�

_a
� ��bi. This will be

important in the analysis of correlation functions in the
next sections.

The most general BMN operator with fermionic impu-
rities that we shall consider is of the form
O k;h
‘;n;m� t

�R�R� _b;�
i;a; _�

ck;h�gYM;N;J�
XJ

p2;p3;p4;u1; . . . ;v2h�0

p2�p3�p4�u1�����v2h�J

p1�J��p2�p3�p4�u1�����v2h�

e�p;u;v;‘;n;m;J�Tr�Z�p;i�’ Z�u;�;a� � Z�v;
_�; _b�

 � 	; (7)
where various sets of indices have been grouped into
‘‘vectors,’’

p � �p1; p2; p3; p4�; u � �u1; u2; . . . ; u2k�;

v � �v1; v2; . . . ; v2h�; l � �‘1; ‘2; ‘3�;

n � �n1; n2; . . . ; n2k�; m � �m1; m2; . . . ; m2h�;

i � �i1; i2; i3; i4�; a � �a1; a2; . . . ; a2k�;

_b � � _b1; _b2; . . . ; _b2h�; � � ��1; �2; . . . ; �2k�;

_� � � _�1; _�2; . . . ; _�2h�;

(8)

and we have introduced the notation

Z �p;i�’ �
Y4

r�1

Zpr’ir ; Z�u;�;a� � �
Y2k
r�1

Zur �ar�r ;

Z�v;
_�; _b�

 � �
Y2h
r�1

Zvr �
_�r

_br
:

(9)

The coefficient e�p; u;v; ‘;n;m; J� in (7) is given by

e�p; u;v; ‘;n;m; J� � expf2�i�p2�‘1 � � � � �m2h�

� p3�‘2 � � � � �m2h�

� p4�‘3 � � � � �m2h�

� u1�n1 � � � � �m2h�

� � � � � u2k�n2k � � � � �m2h�

� v1�m1 � � � � �m2h�

� � � � � v2hm2h	=Jg: (10)
The tensor t�R�R� _b;�
i;a; _�

projects onto the SO�4�R singlet,

t�R�R� _b;�
i;a; _�

� "i1i2i3i4
Yk
r�1

"a2r�1a2r
"�2r�1�2r

Yh
s�1

" _b2s�1
_b2s" _�2s�1

_�2s

(11)

and the normalization coefficient, ck;h�gYM; N; J�, is

ck;h�gYM; N; J� �
1����������������������������������������������������

J3�2k�2h
�
g2

YMN
8�2

�
J�4�2k�2h

s : (12)

The form of the conjugate operator is similar to (7) with the
Z’s replaced by �Z’s and the  �’s and  �’s replaced,
respectively, by � �’s and � �s’. In the following we shall
consider two-point functions of the form
hOk;h

‘;n;m�x1�
�Ok0;h0

‘0;n0;m0 �x2�i, where the operator Ok;h
‘;n;m con-

tains k  � and h � pairs and the operator �Ok0;h0

‘0;n0;m0 con-
tains k  � and h0 � � pairs. The normalization of the
operators is such that two-point functions of this type (if
nonzero) are of order 1 at tree level.

The string states which we are interested in, dual to
operators of the form (7), are schematically, up to an
overall normalization, of the form (see [3] for notation)

"i1i2i3i4�
i1
�‘1
�i2�‘2

~�i3�‘1
~�i4�‘2
�S��n1

~S��n1
	 . . . �S��nk

~S��nk	

� �S��m1
~S��m1
	 . . . �S��mh

~S��mh
	j0ih; (13)

where j0ih denotes the BMN ground state and the square
brackets indicate contraction of the SO�4�C � SO�4�R in-
dices. Notice that in (13) we have inserted the same num-
ber of left- and right-moving oscillators and we have
chosen the mode numbers carried by the creation operators
to be equal in pairs. More general states satisfying the
-3
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physical level-matching condition can be constructed, but
we restrict our attention to those of the form (13) because
these form a class of states that couple to a D-instanton in
the plane wave background.

In the operator (7) k pairs of  � fermions and h pairs of
 � fermions are contracted into SO�4�C � SO�4�R sin-
glets. In the operator �Ok0;h0

‘0;n0;m0 the 2k0 � �’s and the 2h0

� �’s are similarly paired in singlets. The unique singlet
that can be constructed in this way involves contractions of
both types of SO(4) indices via " tensors, see (11). This
066004
implies that the fermions are automatically pairwise anti-
symmetrized in the color indices. In the string state (13)
there is no analogue of the color antisymmetrization, but
the contraction is allowed because the two fermions in each
pair are different, being a left- and a right-mover.

The other class of operators we consider are dual to
string states in the NS � NS sector. These involve an
arbitrary number of scalar impurities contracted into a
SO�4�C � SO�4�R singlet. Using the same notation intro-
duced in (7) the operators are
O l
‘;n � t�NS�NS�

i;j cl�gYM; N; J� l�
XJ�l

p2; p3; p4; q1; . . . ; q2l � 0

p2 � p3 � p4 � q1 � � � � � q2l � J � l

p1 � J� l� �p2 � p3 � p4 � q1 � � � � � q2l�

e�p; q; ‘;n; J� l�Tr�Z�p;i�’ Z�q;j�’ 	; (14)
where a vector notation for the indices has been used,

p � �p1; p2; p3; p4�; q � �q1; q2; . . . ; q2l�;

l � �‘1; ‘2; ‘3�; n � �n1; n2; . . . ; n2l�;

i � �i1; i2; i3; i4�; j � �j1; j2; . . . ; j2l�:

(15)

The tensor t�NS�NS�
i;j , which projects onto the SO�4�R singlet,

is

t�NS�NS�
i;j � "i1i2i3i4�j1j2

�j3j4
� � ��j2l�1j2l

; (16)

i.e. we choose singlet operators in which four scalars are
contracted via an "-tensor and the remaining 2l scalars are
contracted pairwise via Kronecker �’s. The normalization
factor in (14) is

cl�gYM; N; J� l� �
1������������������������������������

J3�2l�
g2

YMN
8�2 �

J�4�3l
q (17)

and the phase factor in the sum, e�p; q; ‘;n; J� l�, is

e�p; q; ‘;n; J� l� � expf2�i�p2�‘1 � � � � � n2l�

� p3�‘2 � � � � � n2l� � p4�‘3

� � � � � n2l� � q1�n1 � � � � � n2l�

� � � � � q2ln2l	=Jg:

(18)

Notice that the operator (14) contains a total of J� l Z
fields. This is necessary in order to give it the same
dimension and U(1) charge as operators with a total of 2l
fermionic impurities ( � and/or  �) of the type defined in
(7). The number of Z’s in the operator is reflected in the
power of g2

YMN=8�2 in the normalization (17).
The string states dual to operators of the form (14) are

(up to a normalization factor)
"i1i2i3i4�
i1
�‘1
�i2�‘2

~�i3�‘1
~�i4‘2
�j1
�n1

~�j1
�n1
�j2
�n2

~�j2
�n2
� � �

� �jl�nl ~�jl�nl j0ih; (19)

where, as in the case of the R � R state (13), we have
restricted the attention to a class of states that couple to a
D-instanton in the plane wave background: the number of
left- and right-movers in (19) is the same and the corre-
sponding mode numbers are equal in pairs.

In order to construct gauge theory operators that can be
identified with the string states (13) and (19) one needs to
consider linear combinations of operators such as those
defined in (7) in (14). Since the creation operators in the
string states commute, it is necessary to sum, in the corre-
sponding operators, over all the possible permutations of
the ’ and  
 impurities. As in the four impurity case
studied in [4] it is also necessary to (anti-)symmetrize the
operators under permutations of the mode numbers so that
they possess the same symmetry properties as the dual
string states. This should automatically impose the con-
straint that the instanton contribution vanishes unless the
mode numbers in the operator are equal in pairs as in (13)
and (19). We shall not discuss these aspects here since we
shall not analyze the mode number dependence in the
gauge theory two-point functions.

The insertion of �� J � 2 impurities is, in general,
necessary to define well-behaved BMN operators, as ob-
served already in the case of two impurity operators in
[12,19]. This is also the case for operators in the class we
are considering. Specifically, the complete definition of the
operators should also involve terms with � ��a and � � _�a

insertions as well as terms in which pairs of’’s in a singlet
are replaced by a Z �Z insertion. However, these terms are
not relevant at leading order in the large J and largeN limit
and only need to be taken into account when g2 corrections
are computed, i.e. beyond the semiclassical approximation.
-4
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III. GAUGE THEORY TWO-POINT FUNCTIONS IN
THE ONE-INSTANTON SECTOR

In this section we briefly review the calculation of one-
instanton contributions to two-point correlation functions
in semiclassical approximation and then discuss examples
involving the operators defined in the previous section.

A. Semiclassical approximation

The one-instanton contribution to the two-point correla-
tion function of composite operators O1 and O2 in the
semiclassical approximation takes the form

G1�inst�x1; x2� �
Z

d�inst�mb; mf�e
�SinstÔ1�x1;mb; mf�

� Ô2�x2;mb; mf�; (20)

where we have denoted the bosonic and fermionic collec-
tive coordinates by mb and mf respectively. In (20)
d�inst�mb;mf� is the integration measure on the instanton
moduli space, Sinst is the classical action evaluated on the
instanton solution and Ô1 and Ô2 denote the classical
expressions for the operators computed in the instanton
background. In the case of gauge-invariant operators the
semiclassical expression (20) involves the integration over
the position and size of the instanton, x0 and �, and over the
16 fermion moduli associated with the broken supersym-
metries, �A and �	A. The bosonic moduli associated with
global gauge orientations are integrated out. The corre-
sponding fermion moduli, 
A and �
A, appear in gauge-
invariant operators in color-singlet bilinears and the inte-
gration over these moduli is reexpressed in terms of an
integration over bosonic auxiliary variables, �AB, para-
metrising a five-sphere. Instanton contributions to two-
point functions of scalar operators in N � 4 SYM have
been analyzed in [20]. Details of the calculation of two-
point functions of BMN operators were discussed in [4]
following the general analysis of [6]. Comprehensive re-
views of instanton calculus in supersymmetric gauge theo-
ries can be found in [21–23]. For a generic two-point
function one finds

hO1�x1�O2�x2�i � ��p; q; N�g8�p�q
YM e2�i�

Z
d�d4x0d5�

�
Y4

A�1

d2�Ad2 �	A�p�q�5

� Ô1�x1;�; x0;�; �; �	�

� Ô2�x2;�; x0;�; �; �	�; (21)

where the �
A
B bilinears in the operator profiles have been
rewritten in terms of the auxiliary variables �AB. In the
large-N limit

��p; q; N� �
N�p�1��1=2�

�p�q��1=2�
�1�O�1=N�	; (22)
066004
where p and q are the numbers of antisymmetric and
symmetric �
A
B bilinears, respectively.

In all the examples that we shall consider the classical
profiles of the operators take a factorized form. In such
expressions the terms which contribute to two-point func-
tions can be written schematically as

Ô�x; x0; �; �; �	;�� � f�x; x0; ��g���
Y4

A�1

��A�x�	2; (23)

where �A is a combination of the fermion modes, �A and
�	A, associated with the broken superconformal symme-
tries,

�A��x� �
1����
�
p ���A� � �x� x0��


�
� _�

�	 _�A	: (24)

The generic two-point function thus becomes

hO1�x1�O2�x2�iinst � ��p; q; N�g
8�p�q
YM e2�i�

�
Z

d�d4x0�
p�q�5

� f1�x1; x0; ��f2�x2; x0; ��

�
Z

d8�d8 �	
Y4

A�1

��A�x1�	
2��A�x2�	

2

�
Z

d5�g1���g2���: (25)

After this factorization the bosonic integration over x0 and
� is logarithmically divergent and needs to be regularized.
This signals a contribution to the matrix of anomalous
dimensions which is extracted from the coefficient of the
logarithmically divergent term.

The integration over the superconformal modes in (25)
is straightforward,

Z
d8�d8 �	

Y4

A�1

��A�x1�	
2��A�x2�	

2 � �x1 � x2�
8: (26)

Finally, as will be shown in the next section, the five-sphere
integrals in all the cases we are interested in can be reduced
to the form

IS5�a; b; c� �
Z

d5���14�23�a��12�34�b��13�24�c;

(27)

where a, b, and c are integers. This integral is a general-
ization of those encountered in the case of two and four
impurity operators and can be evaluated using the same
method described in [4]. Defining
-5
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� � �14
i �i � �1 � i�4; �� � �23

i �i � �1 � i�4;

~� � �12
i �i � �3 � i�6; �~� � �34

i �i � �3 � i�6;

�̂ � �13
i �i � �2 � i�5; �̂

� � �24
i �i � �2 � i�5;

(28)

the integral (27) can be rewritten as

IS5�a; b; c� �
Z

d�d ��d ~�d �~�d�̂d
�̂

���� ��

� ~� �~���̂
�̂

��1��� ���a� ~� �~��b��̂
�̂

��c:

(29)

This can be easily computed generalizing the calculations
of [4]. The result is

IS5�a; b; c� � �3 ��a� 1���b� 1���c� 1�

��a� b� c� 3�
: (30)

In the next subsections we shall apply this general analysis
to certain classes of two-point functions of the operators
introduced in Sec. II.

B. A class of two-point functions in the R �R sector

In this section we analyze the one-instanton contribution
to two-point functions of the operators O k;h

l;n;m and �Ok0;h0

l0;n0;m0

defined in Sec. II. The generic two-point function in this
class is

Gk;h;k0;h0

‘;n;m;‘0;n0;m0 �x1; x2� �

�
Ok;h
‘;n;m�x1�

�Ok0;h0

‘0;n0;m0 �x2�

�
; (31)

where conformal invariance and conservation of J require
k� h � k0 � h0.

The combinatorics involved in the calculation of (31) is
rather formidable and we shall not present a detailed
computation of the complete two-point functions.
However, our analysis will be sufficient to determine the
dependence of the two-point functions in this class on the
parameters gYM, N, and J, which will be compared with
the result of the dual string amplitude in Sec. IV.

As previously observed, the only nonzero free fermion
propagators are h �a� � � _� _bi and h � _�

_a
� ��bi. This implies

that the two-point functions in the class (31) are only
nonzero at tree level if k � k0 and h � h0. We will now
show that instanton contributions to these correlation func-
tions are nonzero, in the leading semiclassical approxima-
tion, if the weaker condition k� h � k0 � h0 imposed by
the symmetries is satisfied.

The dependence on the parameters, gYM,N, and J, in the
two-point function (31) can be determined analysing the
structure of the fermion zero modes in the classical profiles
of the operators in the instanton background. The combi-
nations of scalar impurities entering into Ok;h

‘;n;m and
�Ok0;h0

‘0;n0;m0 are
066004
�’12’13’24’34; �’12’34’24’13;

�’12’24’34’13; �’12’34’13’24;

�’12’13’34’24; �’12’24’13’34;

(32)

and cyclic permutations of these. All the terms in (32)
contain the same combination of fermion zero modes,

�m1
f �

2�m2
f �

2�m3
f �

2�m4
f �

2; (33)

where mA
f indicates a generic fermion zero mode in the

one-instanton sector, i.e. either a superconformal mode, �A

or �	A, or a mode of type 
A or �
A.
The zero modes contained in the pairs of fermionic

impurities in Ok;h
‘;n;m are

"ab 
��a �ba �m1

f m4
f ;

" _a _b �_� _a 
� _�
_b
� �m1

f �
2m2

f m3
f �m

4
f �

2:
(34)

Similarly the fermionic impurities in �Ok0;h0

‘0;n0;m0 contain

" _a _b
� � _a

_�
� � _� _b �m1

f �m
2
f �

2�m3
f �

2m4
f

"ab � ��a � ��b �m2
f m3

f :
(35)

Taking into account the J Z fields in O and the J Z fields in
�O the two operators contain the following combinations of
fermion modes

Ôk;h
‘;n;m ! �m

1
f �
J�2�k�2h�m2

f �
2�h�m3

f �
2�h�m4

f �
J�2�k�2h;

�̂O
k0;h0

‘0;n0;m0 ! �m
1
f �

2�k0 �m2
f �
J�2�2k0�h0 �m3

f �
J�2�2k0�h0

� �m4
f �

2�k0 : (36)

The computation of the two-point function
Gk;h;k0;h0

‘;n;m;‘0;n0;m0 �x1; x2� in the semiclassical approximation
involves the integration over the 16 fermion superconfor-
mal modes associated with the broken Poincaré and special
supersymmetries. To saturate these integrations the two
operators must both contain

Q4
A�1��

A�2, where �A� �
1���
�
p �

���A� � �x� x0��

�
� _�

�	 _�A	. This requirement combined
with (36) implies that in the product of the profiles of the
two operators one must select terms containing

Ôk;h
‘;n;m�x1�

�̂O
k0;h0

‘0;n0;m0 �x2� ! ���
1�2��2�2��3�2��4�2	�x1�

� ���1�2��2�2��3�2��4�2	�x2�

� �
1 � �
1�J�k�2h�k0

� �
2 � �
2�J�h�2k0�h0

� �
3 � �
3�J�h�2k0�h0

� �
4 � �
4�J�k�2h�k0 ; (37)

where the 
 and �
modes will eventually be paired in color
singlet bilinears.

As discussed in [4] the integration over the five-sphere
imposes the condition that 
 and �
 modes of each flavour
-6
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appear with the same multiplicity. From (37) we thus get
the condition

J� k� 2h� k0 � J� h� 2k0 � h0 ) k� h � k0 � h0;

(38)

which is automatically satisfied by all the two-point func-
tions allowed by the symmetries.

Equation (37) is the starting point to study the depen-
dence of the two-point function (31) on the parameters
gYM, N and J. In the profile of the operator Ok;h

‘;n;m the
superconformal modes of flavour 2 and 3 can only be taken
from the impurities whereas the modes of flavour 1 and 4
can come either from the impurities or from the Z’s. As in
the examples discussed in [4] the dominant contributions in
the large J limit come from terms in which all the �1’s and
�4’s are provided the Z’s because in this case a factor of J is
associated with the choice of each Z providing one such
mode.

Satisfying the condition (38) is not sufficient to ensure
that the two-point function (31) receives a nonzero instan-
ton contribution in the BMN limit. In order to cancel the
inverse powers of N coming from the normalization of the
operators it is necessary to combine all the 
 and �
 modes
in antisymmetric bilinears, � �

�6. In the two and four
impurity cases studied in [4] this requirement was always
satisfied. In the case of the operators under consideration
the requirement is nontrivial and has important consequen-
ces. The traces in the definition of the operators can be
explicitly evaluated using the form of the instanton solu-
tion for the elementary fields. In particular, the solution for
the antichiral fermions, �� _�

A , whose components  � and � �

enter Ok;h
‘;n;m and �Ok0;h0

‘0;n0;m0 respectively, was given in [22].
Selecting in such traces the terms which contain the correct
combinations of superconformal modes shows that if any
Z’s are inserted between two contracted  �’s it is not
possible to antisymmetrize all the �

 bilinears, because
necessarily color contractions between a 
 and a �
 of the
same flavour occur. Such contributions are suppressed at
large N [see Eq. (22)] and vanish in the BMN limit. This
means that nonvanishing contributions in the BMN limit
come only from the terms with v2i � 0, i � 1; . . . ; h in the
sums in (7), effectively reducing the number of sums
involved in the calculation of the operator profile.
Analogously in the operator �Ok0;h0

‘0;n0;m0 no �Z’s can be inserted
between two contracted � �’s implying the constraint
u02i � 0, i � 1; . . . ; k0. This observation is crucial in deter-
mining the J dependence of the two-point functions we are
considering, notably in proving that they obey BMN
scaling.
066004
In all the relevant contributions to the profile of the
operators (7) the traces are independent of the way the
Z’s are grouped and only depend on the relative order of
the impurities, i.e. they do not depend on the summation
indices p, q, r, u1; . . . ; v2h. All the traces in Ôk;h

‘;n;m that
contribute in the BMN limit can be reduced to the form

Ôk;h
‘;n;m !

�8�2k�2h�x� x0�
2h

��x� x0�
2 � �2	J�3k�3h�8

� ���1�2��2�2��3�2��4�2	� �
�1
4	�J�k�h

� �c1� �
�1
2	�� �
�3
4	� � c2� �
�1
3	�� �
�2
4	�	h:

(39)

Similarly all the relevant traces in the profile of the con-
jugate operator reduce to

�̂O
k0;h0

‘0;n0;m0 !
�8�2k0�2h0 �x� x0�

2k0

��x� x0�
2 � �2	J�3k0�3h0�8

� ���1�2��2�2��3�2��4�2	� �
�2
3	�J�k
0�h0

� �c01� �

�1
3	�� �
�2
4	� � c02� �


�1
2	�� �
�3
4	�	k
0
:

(40)

In (39) and (40) c1, c2, c01, and c02 denote numerical
coefficients. As in the cases studied in [4] the dependence
on the summation indices is thus only in the phases and in
combinatorial factors associated with the multiplicity of
each contribution. The traces (39) and (40) can be factored
out of the sums. This simplifies the calculation and espe-
cially the analysis of the J dependence.

The definition of Ok;h
‘;n;m involves a sum over 3� 2k�

2h indices. However, as observed above, the number of
sums is reduced by the requirement that all the �

 bilinears
be antisymmetrized, which implies that no Z’s can be
inserted between two contracted  � fermions. Hence ef-
fectively the classical profile of the operator Ok;h

‘;n;m con-
tains only 3� 2k� h sums. Similarly the profile of
�Ok0;h0

‘0;n0;m0 contains only 3� k0 � 2h0 sums. Taking into ac-
count the multiplicity factors associated with the choice of
the four Z’s and the four �Z’s which provide, respectively,
the superconformal modes of flavour 1 and 4 in Ok;h

‘;n;m and

those of flavour 2 and 3 in �Ok0;h0

‘0;n0;m0 , the sums in Ok;h
‘;n;m

contribute to the two-point function a factor of J7�2k�h and
those in �Ok0;h0

‘0;n0;m0 a factor of J7�k0�2h0 . For instance choos-
ing all the four Z’s from the second group of p2 Z’s in the
trace in (7) leads to the sum
XJ
p2; p3; p4; u1; . . . ; v2h�1 � 0

p2 � p3 � p4 � u1 � � � � � v2h�1 � J

p1 � J � �p2 � p3 � p4 � u1 � � � � � v2h�1�

e�p; u;v; ‘;n;m; J�
1

4!
p2�p2 � 1��p2 � 2��p2 � 3� � J7�2k�h; (41)
-7
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where only the vi’s with odd index are summed over. The
combinatorics associated with these sums becomes in-
creasingly involved as the number of impurities grows. In
the case of the four impurity operators of [4] there were 35
independent traces to compute. In the general case of the
operator (7) for a fixed relative order of the impurities the
number of independent traces associated with the choice of
the four Z’s which soak up superconformal modes is

�2k� h� 7�!

4!�2k� h� 3�!
(42)

and moreover one has to sum the contributions correspond-
ing to the different relative orderings of the impurities,
since the operators considered here, unlike those of [4],
involve impurities of different types, bosonic and fermi-
onic ones. The sums such as (41) also encode the depen-
dence of the operator profiles on the integers in ‘, n, and
m, corresponding to the mode numbers of the dual string
states. Each of the sums contributing to any operator in this
class gives rise to a very complicated dependence on the
mode numbers. We shall see, however, that the string
theory analysis predicts a very simple dependence, requir-
ing dramatic simplifications on the gauge theory side.

As in the cases considered in [4], the other elements
which determine the dependence on the parameters gYM,
N, and J are, apart from the normalization of the operators,
the number of � �

�6 bilinears, the bosonic integrals over x0

and � and the five-sphere integrals.
Equations (39) and (40) show that the profiles of the two

operators contain a total of 2J� k� 3h� 3k0 � h0 � �

�6
066004
bilinears, each producing a factor of gYM

����
N
p

, so that the
total contribution to the two-point function of the � �

�6
bilinears is �gYM

����
N
p
�2J�k�3h�3k0�h0 .

The integrations over x0 and � are logarithmically di-
vergent and need to be regularized, e.g. by dimensional
regularizsation of the x0 integral. They can then be eval-
uated using standard techniques and are found to behave as
1=J2 in the large J limit.

Finally, additional powers of J arise from the five-sphere
integration after reexpressing the � �

�6 bilinears in terms
of �AB’s [4]. The combinations of �
�A
B	 bilinears to
consider are those in (39) and (40). The resulting five-
sphere integrals are all of the form

IS5�k; h; k0; h0� �
Z

d5���14�J�k�h��23�J�k
0�h0

� ���12���34� � ��13���24�	h�k
0
: (43)

Using the constraint k� h � k0 � h0 these integrals can be
put in the form (27) with a � J� k� h � J� k0 � h0

and b� c � h� k0. Therefore (30) immediately gives

IS5�k; h; k0; h0�jk�h�k0�h0 �
1

J2�h�k0
: (44)

Combining the various contributions described above
with the normalization factors and the moduli space mea-
sure, we can summarize the dependence on gYM, N, and J
in Gk;h;k0;h0

‘;n;m;‘0;n0;m0 �x1; x2� as follows
1������������������������������������������������������
J3�2k�2h�g2

YMN�
J�4�2k�2h

q 1����������������������������������������������������������
J3�2k0�2h0 �g2

YMN�
J�4�2k0�2h0

q
|�������������������������������������������������������{z�������������������������������������������������������}

normalized op: profiles

e2�i�g8
YM

����
N
p

|��������{z��������}
measure

�gYM

����
N
p
�2J�k�3h�3k0�h0|�������������������{z�������������������}


; �
 bilinears

1

J2|{z}
x0;� integrals

1

J2�h�k0|���{z���}
S5 integral

� J7�2k�hJ7�k0�2h0|������������{z������������}
sums

� J7�k�h�k0�h0g�k�h�k
0�h0

YM N��7=2���1=2���k�h�k0�h0�e2�i� �

�
J2

N

�
7=2
�
J2

g2
YMN

�
�1=2��k�h�k0�h0�

e2�i�;

(45)
so that the behavior of the generic two-point functions in
this class is

Gk;h;k0;h0

‘;n;m;‘0;n0;m0 �x1; x2� �
�g2�

7=2

��0��1=2��k�h�k0�h0�
e���8�

2�=�g2�0�	�i�:

(46)

The first thing to notice is that (46) shows that the two-
point functions respect BMN scaling. The leading instan-
ton contribution can be reexpressed in terms of the parame-
ters �0 and g2. The arguments given in [4] to illustrate how
the subleading corrections can give rise to a double series
in �0 and g2 can be repeated in the present case. Therefore
one can argue that the BMN scaling property of (31)
extends beyond the semiclassical approximation.

It is interesting to consider special cases of (46). If k, h,
k0 and h0 are chosen in such a way that the two-point
function is nonzero at tree level, i.e. k � k0 and h � h0,
the leading instanton contribution has no powers of �0. This
is the same behavior found for the four impurity singlet
operators.

In general instanton corrections to two-point functions
which vanish at tree level start with a nonzero power of �0.
Interestingly, among these there is a class of two-point
functions for which the leading nonzero contribution con-
tains negative powers of �0. The simplest examples of this
type involve the operators Ok;0, with only  � insertions,
-8
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and �O0;h0 , with only � � insertions. Notice, however, that
although two-point functions of this type can have arbi-
trarily large powers of �0 in the denominator, they are not
singular in the �0 ! 0 limit because of the exponential
factor exp��8�2=�0g2�.

C. A class of mixed R �R–NS �NS two-point
functions

We now study another class of correlation functions
which vanish at tree level but receive instanton contribu-
tions, namely, two-point functions corresponding to string
amplitudes mixing R � R and NS � NS states. The general
two-point function we consider is

Gk;h;l
‘;n;m;‘0;n0 �x1; x2� � hO

k;h
‘;n;m�x1�

�Ol
‘0;n0 �x2�i; (47)

where Ok;h
‘;n;m is an operator with fermionic impurities of

the form (7) and �Ol
‘0;n0 is the conjugate of the operator

defined in (14). Conformal invariance and the U(1) sym-
metry impose in this case the constraint l � k� h.

Much of the analysis in the previous subsection can be
applied to (47). The contribution of the profile of Ok;h

‘;n;m is
the same and we only need to discuss the NS � NS opera-
tor �Ol

‘0;n0 . The classical expression for Ok;h
‘;n;m contains the

combination of fermion modes in the first line of (36),

�m1
f �
J�2�k�2h�m2

f �
2�h�m3

f �
2�h�m4

f �
J�2�k�2h: (48)

In order to get a nonzero contribution to the two-point
function (47) we need to select terms in �Ol

‘0;n0 in which
the impurities contain fermion modes of each flavour with

the same multiplicity. This means that in �̂O
l
‘0;n0 we keep

terms containing

�m1
f �
l�2�m2

f �
J�2�l�m3

f �
J�2�l�m4

f �
l�2: (49)

The double scaling limit, N ! 1, J ! 1, with J2=N
finite, requires that once the fermion superconformal
modes are soaked up, all the modes of type 
 and �
 be
combined in � �

�6 bilinears. All the relevant terms in the
profiles of the operators Ok;h

‘;n;m and �Ol
‘0;n0 can then be

reduced to the form
066004
Ôk;h
‘;n;m !

�8�2k�2h�x� x0�
2h

��x� x0�
2 � �2	J�3k�3h�8

� ���1�2��2�2��3�2��4�2	� �
�1
4	�J�k�h

� �c1� �
�1
2	�� �
�3
4	� � c2� �
�1
3	�� �
�2
4	�	h;

(50)

�̂O
l
‘0;n0 !

�8

��x� x0�
2 � �2	J�3l�8

� ���1�2��2�2��3�2��4�2	� �
�2
3	�J�l

� �c01� �

�1
2	�� �
�3
4	� � c02� �


�1
3	�� �
�2
4	�	l; (51)

where c1, c2, c01, and c02 are numerical coefficients.
We can now repeat the analysis of the previous subsec-

tion to determine the dependence of (47) on gYM, N and J.
As in the case of the R � R two-point function the terms of
the form (50) in Ôk;h

‘;n;m, which contribute in the BMN limit,
involve only 3� 2k� h sums, so the resulting contribu-
tion is a factor of J7�2k�h. In the operator �Ol

‘0;n0 there is no
restriction on the sums, which therefore contribute a factor
of J7�2l.

The total number of � �

�6 bilinears in the two-point
function is 2J� k� 3h� 3l, so that the resulting contri-
bution is �gYM

����
N
p
�2J�k�3h�3l.

The x0 and � integrals are logarithmically divergent and
after regularisation can be shown to behave as 1=J2 in the
BMN limit.

The five-sphere integrals are again of the form (27).
From (50) and (51) we get

Z
d5���14�J�k�h��23�J�l���12���34� � ��13���24�	h�l;

(52)

which according to the general formula (30) behaves as
1=J2�h�l.

Combining all these contributions we can determine the
behavior of the two-point function (47) in the BMN limit,
1������������������������������������������������������
J3�2k�2h�g2

YMN�
J�4�2k�2h

q 1����������������������������������������
J3�2l�g2

YMN�
J�4�3l

q
|����������������������������������������������{z����������������������������������������������}

normalised op: profiles

e2�i�g8
YM

����
N
p

|��������{z��������}
measure

�gYM

����
N
p
�2J�k�3h�3l

; �
|����������������{z����������������}


; �
 bilinears

1

J2|{z}
x0;� integrals

1

J2�h�l|��{z��}
S5 integral

J7�2k�hJ7�2l|���������{z���������}
sums

� J7�k�hg�k�hYM N��7=2���1=2��k�h�e2�i� �

�
J2

N

�
7=2
�
J2

g2
YMN

�
�1=2��k�h�

e2�i�: (53)
The result for the generic two-point function in this class is
thus

Gk;h;l
‘;n;m;‘0;n0 �x1; x2� �

�g2�
7=2e���8�

2�=�g2�0�	�i�

��0��1=2��k�h�
: (54)
This shows that mixed R � R–NS � NS correlation func-
tions of this type receive a nonzero contribution in the one-
instanton sector in the BMN limit, if the condition l �
k� h required by the symmetries is satisfied. The result
(54) respects BMN scaling. As in the case considered in the
-9
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previous subsection, depending on the number of  � and
 � impurities, the leading contribution can start with a
positive or negative (half integer) power of �0.

Before considering the dual string calculation, we con-
clude this section with a small digression. The previous
analysis allows to easily determine the behavior of the
leading instanton contribution to two-point functions of
singlet operators with an arbitrary number of scalar impu-
rities. In [4] it was shown that for two impurity operators
the leading instanton contribution to the anomalous dimen-
sion is

�2�impur � �g2�
7=2��0�2e2�i�; (55)

whereas four impurity operators receive a leading contri-
bution of order

�4�impur � �g2�
7=2e2�i�: (56)

Repeating step by step the calculations in this section
shows that the two-point function

Gl�x1; x2� � hO
l�x1�

�Ol�x2�i; (57)

where Ol is of the form (14), behaves as �g2�
7=2e2�i�.

Therefore in general operators with only scalar impurities,
at least in the class of singlets we are considering, are
expected to have an instanton induced anomalous dimen-
sion

��1�inst� � �g2�
7=2e2�i�; (58)

irrespective of the number of impurities.
In the next section we will show that the dual string

amplitudes precisely reproduce all the features of the
gauge theory two-point functions discussed here and in
Sec. III B. We will also see that string theory predicts a very
simple result for the mode number dependence, which is
extremely complicated to extract from a gauge theory
calculation.
IV. PLANE WAVE STRING TWO-POINT
AMPLITUDES

A. D-instanton induced two-point amplitudes

The two-point functions discussed in the previous sec-
tion are dual to D-instanton induced plane wave string
scattering amplitudes between external states of the form
(13) and (19). D-instanton contributions to such ampli-
tudes are computed using the boundary state constructed
in [24] and the formalism of [3].

The leading D-instanton contribution to two-point am-
plitudes comes from diagrams in which the external states
are coupled to two separate disks,

A r;s � g7=2
s e2�i�

1h�rj � 2h�s k V2ii; (59)
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where the prefactor, g7=2
s e2�i�, is (up to a numerical con-

stant) the measure on the single D-instanton moduli space
and � � C�0� � ie��, where C�0� is the R � R scalar and �
the dilaton. In (59) j�ri1 and j�si2 denote the incoming and
outgoing states, respectively, and r and s collectively in-
dicate the corresponding quantum numbers, including the
mode numbers. k V2ii is the dressed two-boundary state
[3], which contains the dependence on the bosonic and
fermionic moduli and couples to any pair of physical
states,
k V2ii � �4� ��2L � ��1L��
4� ��2R � ��1R�

�
Z

d8����Q�1 �Q
�
2 �	

8 k V̂�0�2 ii; (60)
where
k V̂�0�2 ii � �2��
8 exp

�X1
k�1

1

!k
��1�I�k ~��1�I�k � iS

�1�
�kMk

~S�1��k

�
1

!k
��2�I�k ~��2�I�k � iS

�2�
�kMk

~S�2��k

�
e�a

y
1 �a

y
2 j0i1� j0i2:

(61)
In (60) Q�1 and Q�2 denote the broken dynamical super-
symmetries on the two disks and in (61) e�a

y
1 �a

y
2 j0i1 � j0i2

is the zero-mode part of the two-boundary state after
integration over the transverse position moduli. The
�-functions in (60) arise after integration over the fermion
moduli associated with the broken kinematical
supersymmetries.

The relations (3) between the string and gauge theory
parameters imply that in order to make contact with the
semiclassical calculations of the previous section in the
double scaling limit, J ! 1, N ! 1, with J2=N fixed, we
need to study the relevant string amplitudes (59) in the
small gs and large m limit.

In computing amplitudes such as (59) one expands the
dressed two-boundary state, k V2ii, retaining only the
terms which, commuted through the eight dynamical
supercharges, give a nonzero result acting to the left as
annihilation operators on the external states. The large m
limit, relevant for the comparison with the gauge theory,
selects very specific contributions in this expansion.

B. Amplitudes in the R �R sector

To make contact with the calculation of the two-point
functions in Sec. III B we are interested in amplitudes such
as (59), where the external states are of the form (13). So
we consider
-10
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1h�
k;h
‘;n;mj � 2h�

k0;h0

‘0;n0;m0 j � "i1i2i3i4"j1j2j3j4

1

!‘1
!‘2

!‘01
!‘02

hh0j�
�1�i1
‘1

��1�i2‘2
~��1�i3‘1

~��1�i4‘2

Yk
r�1

�S�1��nr
~S�1��nr 	

Yh
s�1

�S�1��ms
~S�1��ms 	

� hh0j�
�2�j1

‘01
��2�j2

‘02
~��2�j3

‘01
~��2�j4

‘02

Yk0
r�1

�S�2��n0r
~S�2��n0r
	
Yh0
s�1

�S�2��m0s
~S�2��m0s
	; (62)
where the square brackets indicate contraction of the
spinor indices in the two SO(4) factors via " tensors and
we have used the same vector notation for the indices as in
Sec. II. Equation (62) includes the normalization factors
for the states which had been omitted in (13).

In order to compare the results with the gauge theory
semiclassical approximation we consider the large m limit
in the amplitude

A Ak;h;k0 ;h0

‘;n;m;‘0;n0;m0 � g7=2
s e2�i�

1h�
k;h
‘;n;mj � 2h�

k0;h0

‘0;n0;m0 k V2ii:

(63)

The analysis of the leading contributions in this limit
follows closely the one presented in [3] for two and four
impurity operators. We first consider the bosonic oscilla-
tors in (62) which act to the right as annihilation operators
on the boundary state. These are compensated, as in the
four impurity case of [3], by lowering from the exponent in
(61) two SM~S bilinears for each disk and commuting them
through the broken dynamical supersymmetries (four of
which are distributed on each disk in (60)) to obtain
bosonic creation operators. Recalling that in the large m
limit

S�rMr
~S�r �

2m
r
S��r ~S��r �

r
2m

S��r ~S��r (64)

and using the commutation relations in the plane wave
background [17], the annihilation of the bosonic oscillators
contributes to the amplitude a factor

m12

‘1‘2‘01‘
0
2

: (65)

The analysis of the contribution of the fermionic oscillators
is then straightforward. The only subtlety is related to the
sign of m. In our conventions the momenta of incoming
states are positive and those of outgoing states are negative,
therefore m � ��0p� > 0 on disk 1 and m< 0 on disk 2.
We need to expand the boundary state retaining only the
terms with k� h fermionic bilinears on the first disk and
k0 � h0 on the second disk in order to annihilate the factors
in the last two lines of (62). The expansion (64), valid for
m> 0, shows that on the first disk a �S��r ~S��r	 bilinear
contributes a factor of 2m=r, whereas a �S��r ~S��r	 bilinear
contributes a factor of r=2m. The situation is reversed on
the second disk. The parameterm is negative and as a result
the coefficients of the two terms in the expansion (64) are
interchanged. We get a factor of r0=2m for each �S�

�r0
~S��r0 	
066004
bilinear and a factor of 2m=r0 for each �S�
�r0

~S��r0 	 bilinear in

the outgoing state j�k
0;h0

‘0;n0;m0 i2.
Combining all the contributions and taking into account

the normalization of the external states we find that the
leading D-instanton contribution to the amplitude (63) is

Ak;h;k0;h0

‘;n;m;‘0;n0;m0 � g
7=2
s e2�i�m8��k�h���h0�k0� 1

‘1‘2‘
0
1‘
0
2

�

Qk0
i�1 n

0
i
Qh
j�1 mjQk

i�1 ni
Qh0
j�1 m

0
j

: (66)

As in the cases studied in [3] the D-instanton induced
amplitude is nonzero only if the mode numbers in both
external states are pairwise equal. Integration over the
modulus corresponding to the position of the D-instanton
in the x� direction imposes energy conservation in the
amplitude. This further constrains the mode numbers im-
posing that they be equal in pairs between the incoming
and outgoing state. However, in the large m limit this
condition reduces to the requirement that the external
states contain the same number of oscillators.

The amplitude (66) induces a correction to the string
mass matrix which, expressed in terms of Yang-Mills
parameters and rescaled by a factor of �, becomes

1

�
�M � g7=2

2 e���8�
2�=�g2�0�	�i�

1

��0�
1
2�k�h�h

0�k0�

1

‘1‘2‘
0
1‘
0
2

�

Qk0
i�1 n

0
i
Qh
j�1 mjQk

i�1 ni
Qh0
j�1 m

0
j

: (67)

The dependence on the parameters, g2 and �0, in this result
is in agreement with what we found in the dual Yang-Mills
correlation functions in Sec. III, Eq. (46). Moreover the
string result shows a very simple dependence on the mode
numbers of the external states. On the other hand, as al-
ready observed, the computation of the mode number
dependence in the gauge theory is very complicated.
They enter in the dual operators as integers in the phase
factors (10) and the dependence of the two-point functions
on these integers is determined by sums of the type (41).
The associated combinatorics is extremely involved even
for the simplest operators in this class containing only one
fermion bilinear. We shall therefore leave this part of the
result (67) as a string theory prediction for the instanton
contribution to the dual two-point functions in the gauge
theory.
-11
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C. Mixed R �R–NS �NS amplitudes

The instanton contributions to mixed R � R–NS � NS two-point functions of Sec. III C are dual to amplitudes of the
form

A k;h;l
‘;n;m;‘0;n0 � g7=2

s e2�i�
1h�

k;h
‘;n;mj � 2h�

l
‘0;n0 k V2ii; (68)

where as external states we take

1h�
k;h
‘;n;mj � 2h�

l
‘0;n0 j � "i1i2i3i4"i01i02i03i04

1

!‘1
!‘2

!‘01
!‘02

!n01
� � �!n0l

2h0j�
�1�i1
‘1

��1�i2‘2
~��1�i3‘1

~��1�i4‘2

Yk
r�1

�S�1��nr
~S�1��nr 	

Yh
s�1

�S�1��ms
~S�1��ms 	

� hh0j�
�2�i01
‘01

�
�2�i02
‘02

~�
�2�i03
‘01

~�
�2�i04
‘02

Yl
u�1

���2�jun0u
~��2�jun0u

	: (69)
The calculation of the amplitude (68) is very similar to that
of the previous subsection. One should distribute four
broken dynamical supersymmetries on each disk. The
contribution of the first disk is then exactly as in the
previous R � R case. On the second disk one should lower
from the exponent two S�rMr

~S�r bilinears which after
going through the supercharges annihilate the two �’s
and the two ~�’s in the external state which are contracted
via the " tensor. Hence the contribution of these oscillators
to the amplitude is again the same as in the previous case.
The remaining pairs of bosonic oscillators in the external
state require that l factors of 1

!r
�j�r ~�j�r be lowered from

the exponent in k V2ii. In the large m limit

!r �m; ��r; ��r	 �m;

�~�r; ~��r	 �m; 8r;
(70)

so that the contribution of the l remaining pairs of bosonic
oscillators simply cancels l factors of m in the normaliza-
tion in . Notice that the only nonzero contribution is the one
just described. In particular, it is not possible to use the two
S�rMr

~S�r bilinears to annihilate pairs of external oscilla-
tors with contracted SO�4�R indices. In this case 1

!r
�j�r ~�j�r

factors lowered from the exponent would have to be com-
muted with the �’s and ~�’s contracted into the ", but these
commutators vanish for symmetry reasons.
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In conclusion the result for the amplitude (68) in the
large m limit is

A k;h;l
‘;n;m;‘0;n0 � g

7=2
s e2�i�m8��k�h� 1

‘1‘2‘
0
1‘
0
2

Qh
j�1 mjQk
i�1 ni

:

(71)

The rescaled contribution to the mass matrix is thus

1

�
�M � g7=2

2 e���8�
2�=�g2�0�	�i�

1

��0��1=2��k�h�

1

‘1‘2‘
0
1‘
0
2

�

Qh
j�1 mjQk
i�1 ni

(72)

in agreement with the Yang-Mills result (54). As in the R �
R example of the previous subsection, we also find a very
simple dependence on the mode numbers of the external
states. Notably, the result only depends on the mode num-
bers, ‘01 and ‘02, of the four oscillators contracted via the "
tensor in the NS � NS state and it is independent of the
mode numbers, n0u, u � 1; . . . ; l, of the remaining
oscillators.

From the calculation of the amplitude (68) we can
immediately deduce the result for amplitudes of the form
Al
‘;n;‘0;n0 � g7=2

s e2�i�"i1i2i3i4"i01i02i03i04
1

!‘1
!‘2

!‘01
!‘02

!n1
� � �!nl!n01

� � �!n0l
hh0j�

�1�i1
‘1

��1�i2‘2
~��1�i3‘1

~��1�i4‘2

Yl
r�1

���1�jrnr ~��1�jrnr 	

� hh0j�
�2�i01
‘01

�
�2�i02
‘02

~�
�2�i03
‘01

~�
�2�i04
‘02

Yl
s�1

���2�j
0
s

n0s
~��2�j

0
s

n0s
	 k V2ii: (73)
which correspond to the two-point functions with scalar
impurities (57) briefly discussed at the end of Sec. III C.
Both disks in this case are treated as the second disk in the
calculation of the mixed R � R–NS � NS amplitude (68).
The only nontrivial dependence on m and on the mode
numbers comes from the eight oscillators contracted via
the two " tensors, all the other oscillators and the associ-
ated normalization factors are simply cancelled by terms in
the expansion of the boundary state. The resulting contri-
bution to the string mass matrix is
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1

�
�M � g7=2

2 e���8�
2�=�g2�0�	�i�

1

‘1‘2‘01‘
0
2

; (74)

for any number, l, of oscillators in the external states. The
dependence on the parameters is again in agreement with
the gauge theory result (58). The mode number depen-
dence in (74) is very surprising from the Yang-Mills point
of view. The fact that the mass corrections, and thus the
corresponding anomalous dimensions, only depend on the
first four mode numbers in each state requires dramatic
cancellations in the dual gauge theory calculation and it
would be interesting to verify this explicitly at least for the
simplest operators in this class corresponding to l � 1.

V. PERTURBATIVE MIXING OF THE NS �NS AND
R �R SECTORS

In the previous sections we discussed two-point corre-
lation functions in N � 4 SYM, as well as the corre-
sponding plane wave string amplitudes, which vanish at
tree level but receive nonzero (D-)instanton contributions.
We will now see whether the same processes might also
receive perturbative contributions. In this section we
present a qualitative analysis of perturbative corrections
to NS � NS–R � R mixing processes of the type discussed
in sections III C and IV C. A similar analysis can be
repeated for the correlation functions and string amplitudes
of Secs. III B and IV B.

We first consider string loop corrections to a two-point
amplitude mixing NS � NS and R � R states, focusing on
the simplest process of the type (68), in which the incom-
ing and outgoing states are SO�4�C � SO�4�R singlets con-
taining, respectively, two massive fermionic oscillators and
two massive bosonic oscillators. The analysis of the one-
loop string amplitude provides nontrivial predictions for
the dual Yang-Mills two-point function which will be
addressed in the following subsection.

A. String perturbation theory

As an example of a string amplitude with mixing of the
NS � NS and R � R sectors we consider a two-point func-
tion coupling two impurity states. Since we do not have to
FIG. 1. String one-l
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worry about fermionic zero modes as in the (D-)instanton
induced amplitudes, there is no need to include additional
bosonic oscillators in the external states. The states we
consider are SO�4�C � SO�4�R singlets in the R � R sector,

j�ni
�R�R�
1 � "ab�S��n��a�~S

�
�n�

b
�j0ih; (75)

and in the NS � NS sector,

j�ni
�NS�NS�
2 �

1

!n
�ij�i�n ~�j�nj0ih: (76)

The quadratic string theory Hamiltonian is diagonal in the
bosonic and fermionic oscillators so there is no tree level
amplitude coupling the states (75) and (76). We will argue,
however, that a nonzero two-point amplitude between
these states can arise at one loop in the plane wave back-
ground, whereas it is absent in flat space. We will only
indicate the origin of this mixing since a complete evalu-
ation of the one-loop amplitude is beyond the scope of this
paper.

The one-loop string mass matrix between the two string
states (75) and (76) is given by

M12 �
�R�R�

1h�nj�H3�E
�0�
n �H2�

�1H3 �H4	j�ni
�NS�NS�
2 ;

(77)

where the first term represents gluing two cubic vertices
with propagators and summing over intermediate states,
while the second term represents a contact term whose
form is dictated by supersymmetry. The first term is sche-
matically represented in Fig. 1. The eigenvalues of the
complete mass matrix in this sector should be compared
with the eigenvalues of the dilation operator in the corre-
sponding sector of the N � 4 Yang-Mills theory. Figure 1
indicates a sum over intermediate states that couple to the
external states via the cubic vertex. In principle this sum
includes states with an arbitrary number of oscillators. The
form of the plane wave string cubic vertex [8] leads to
potentially nonzero contributions to (77) in impurity non-
preserving channels. An example of such a contribution
involves the intermediate states

j�ri � ��~S�j0ih; j�si � �~�S�j0ih: (78)
oop contribution.
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The structure of the string cubic vertex allows the coupling
of these states to the external states (75) and (76). The
process is permitted because the string cubic Hamiltonian
in the plane wave background does not factorize into left-
and right-moving parts. This is a feature which distin-
guishes the string theory interactions in the plane wave
background from those in flat space. In flat space, where
mixing of NS � NS and R � R states does not take place,
the process just described is not possible because of the
factorisation of the interaction vertex.

The above example illustrates a mechanism which
makes the perturbative mixing of the NS � NS and R �
R sectors possible in the plane wave background. The
cancellation of all the contributions of the type described
here appears extremely unlikely, although a detailed one-
loop analysis would be necessary to prove that matrix
elements such as (77) are really nonzero.

B. N � 4 SYM perturbation theory

The arguments in the previous subsection strongly in-
dicate that string two-point amplitudes mixing the NS �
NS and R � R sectors receive nonzero perturbative contri-
butions in the maximally supersymmetric plane wave
background, unlike the corresponding processes in flat
space. This observation, combined with the vanishing of
the same amplitudes at tree level, has nontrivial implica-
tions for the two-point functions of the dual operators in
the BMN limit of the N � 4 Yang-Mills theory. In the
BMN correspondence the tree level result for a string
amplitude encompasses the whole planar perturbative ex-
pansion of the gauge theory, i.e. it is exact to all orders in
the �0 expansion. String loop corrections correspond to
nonplanar corrections in the gauge theory, with both sides
being reorganized in a series in powers of g2. Therefore the
results of the previous subsection predict that Yang-Mills
correlation functions dual to mixed NS � NS–R � R string
amplitudes should be zero at all orders in the planar
approximation, but should receive nonzero perturbative
corrections at the nonplanar level. In this section we
show that this is indeed the case, at the leading nontrivial
order, for the two-point function dual to the amplitude
considered in the previous subsection.

The operators dual to the string states (75) and (76) are,
respectively, of the form
1In order to avoid subtleties associated with potential quadratic
divergences, in the following we assume that the diagrams have
been regulated using dimensional regularization. The presence
O 1 �
"ab������������������������

J
�
g2

YMN
8�2

�
J�2

s XJ
p�0

e2�ipn=J Tr�ZJ�p ��aZp �b� �

(79)

of quadratic divergences in correlation functions of composite
operators in N � 4 SYM was discussed in [25]. We thank
Massimo Bianchi and Yassen Stanev for a discussion on these
issues.
and
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�O 2 �
1������������������������

J
�
g2

YMN
8�2

�
J�3

s XJ�1

q�0

e�2�iqn=J Tr� �ZJ�1�q’i �Zq’i�:

(80)

The operator �O2 contains J� 1 �Z fields so that it has the
same bare dimension as O1. This is reflected in the power
of g2

YMN in the normalization. Notice that in this section
we are using the same conventions adopted in the rest of
the paper, which are not the standard ones used in pertur-
bative calculations. In our normalizations the Yang-Mills
coupling appears in the action only as an overall factor of
1=g2

YM. Hence all the interaction vertices are proportional
to 1=g2

YM and all the propagators are proportional to g2
YM.

With these conventions the normalisations of the operators
O1 and �O2 are such that the two-point functions hO1

�O1i

and hO2
�O2i are of order 1 at tree level.

We are interested in perturbative corrections to the two-
point function

G�x1; x2� � hO1�x1�
�O2�x2�i; (81)

which vanishes at tree level.
Let us first analyze the planar contributions. These cor-

respond to tree level amplitudes in string theory and thus
are expected to vanish. The leading perturbative contribu-
tions in the planar approximation correspond to diagrams
with the two distinct topologies represented in Fig. 2.

The couplings in the N � 4 Lagrangian which are
relevant for these diagrams are

L int �
1

g2
YM

Tr�Z� � �2
_� ; � � _�3	 � �Z;’i	� �Z;’i	�: (82)

We shall not compute explicitly the diagrams in Fig. 2.
The sum of the two types of contributions is logarithmi-
cally divergent1. For simplicity, in the following we shall
-14
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only discuss the combinatorics associated with diagrams of
the topology (a) in Fig. 2. Our considerations apply to the
diagrams of type (b) as well and it is understood that the
two types of contributions are included in the calculation of
the two-point function.

The planar diagrams in Fig. 2 require p � 0 in the
operator O1 (i.e. no Z lines can be present between the
two fermions) and q � 0 or q � 1 in the operator O2 (there
can be at most one �Z between the two scalars in the trace).
Indicating with dashed lines the hZ �Zi propagators, with
dotted lines the h’’i propagators and with plain lines the
fermion propagators, the relevant diagrams are those in
Fig. 3. The first two diagrams involve the q � 0 term in the
operator �O2, whereas the third diagram involves the q � 1
term.

Taking into account the normalization of the operators
the sum of the diagrams in Fig. 3 and the analogous ones
obtained from (b) in Fig. 2 gives

1������������������������
J
�
g2

YMN
8�2

�
J�2

s 1������������������������
J
�
g2

YMN
8�2

�
J�3

s 1

g4
YM

� g2�J�6�
YM NJ�4�1� e�2�in=J�f�x1; x2�

�
�2�in�g3

YMN
3=2

J2 f�x1; x2�

�
1

J1=2
�2�in���0�3=2f�x1; x2�; (83)

where the logarithmically divergent function f�x1; x2� is
determined integrating over the position of the interaction
points. In (83) the power of gYM results from the combi-
nation of two interaction vertices, J� 6 propagators and
the normalization of the operators. The power of N in the
numerator in the first line comes from the color contrac-
tions. The factor

�1� e�2�in=J� (84)

comes from the sum of the three diagrams in Fig. 3. The
first two diagrams give the 1 (no exponential because they
FIG. 3. Planar diag

066004
correspond to q � 0 in �O2) and the third diagram gives the
exponential term. It has weight 2 and a relative minus sign
with respect to the first two diagrams. Expanding (84) for
large J gives the result in (83), which vanishes in the BMN
limit. Therefore the leading planar perturbative contribu-
tions vanish as expected.

Let us now consider the leading nonplanar corrections to
the two-point function (81). These correspond to string
loop corrections to the dual amplitude which are expected
to be nonzero in the plane wave background. The leading
nonplanar corrections in the gauge theory are suppressed
by a factor of 1=N2 with respect to the planar contributions.
In order for the nonplanar corrections to survive in the
BMN limit additional powers of J should arise. There are
two sources of powers of J in Feynman diagrams: the sums
in the definitions of the operators and the number of dia-
grams at each genus. The operators (79) and (80) involve
one sum each, so that potentially the sums can give a factor
of J2. This, however, requires that the sums be independent
and the exponential factors in the operators be cancelled. It
is easy to verify that this is never the case. For operators
containing J elementary fields the number of diagrams at
genus g grows as J2g, so that again at the level of the
leading nonplanar corrections one can potentially get a
factor of J2 adding diagrams which give an equal contri-
bution. This is what happens in the case of the two-point
function (81). The relevant set of nonplanar diagrams is
depicted in Fig. 4. A similar set of diagrams is obtained
from (b) in Fig. 2. The number of diagrams in these series
grows as J2.

There are three sets of diagrams with the topologies in
Fig. 4. The three sets can be obtained as nonplanar defor-
mations of the three diagrams in Fig. 3. Corresponding
diagrams in the three series differ in the number of �Z lines
between the two ’i impurities in the operator �O2, i.e. they
involve different terms in the sum in (80). This implies that
adding up the three sets does not generate a factor such as
(84) which would give a 1=J suppression as in (83).

In the case of the series obtained deforming the second
diagram in Fig. 3 all the diagrams correspond to q � 0 in
the operator �O2, whereas in the other two series the dia-
grams have �Z lines originating between the two ’i lines
and thus correspond to different values of q. The leading
large-N contribution from the sum of the three series
corresponding to the diagrams in Fig. 4 and the analogous
rams of type (a).
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FIG. 4. Nonplanar contributions surviving in the BMN limit.
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ones obtained from (b) in Fig. 2 is
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1

2
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i
2n�

�
f�x1; x2�

�

�
1

2
�

i
2n�

�
�g2�

2��0�3=2f�x1; x2�; (85)

where we have used

XJ
k�0

�J� k��1� 2e�2�i�k�1�n=J � e�2�ikn=J�

� J2

�
1

2
�

i
2n�

�
(86)

in the large J limit.
Therefore the two-point function (81) receives a non-

vanishing contribution at the leading nonplanar level in the
BMN limit. The induced contribution to the matrix of
anomalous dimensions is of order �g2�

2��0�3=2.
Elements of the matrix of anomalous dimensions corre-

sponding to nonreal operators, such as those that we have
considered, are in general complex. This is the case for the
contribution extracted from the coefficient in (85) as well
066004
as for the vanishing planar contribution (83). The matrix
element corresponding to the conjugate operators is the
complex conjugate of the one computed here, so that the
resulting matrix is Hermitian and has real eigenvalues
corresponding to the physical scaling dimensions of the
operators. Notice also that, although half-integer powers of
�0 appear in two-point functions mixing operators with
fermionic and bosonic impurities, the anomalous dimen-
sions obtained resolving the mixing have an expansion in
integer powers of �0.

In this section we have presented a qualitative analysis
of the leading perturbative contributions to a two-point
function with mixing of the NS � NS and R � R sectors.
Similar considerations can be repeated for the string am-
plitudes of the type described in Sec. IV B and the dual
gauge theory correlation functions of Sec. III B. String
amplitudes of the form (62) and (63) with k � k0 and h �

h0 vanish at tree level, but are expected to receive a nonzero
contribution at one loop. Therefore the dual two-point
functions (31) should have the same behavior as the mixed
ones, i.e. they should vanish in the planar approximation at
all orders in �0, but they should receive nonvanishing
corrections beyond the zeroth order in g2.
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