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Abstract: This paper concerns instanton contributions to two-point correlation functions

of BMN operators in N =4 supersymmetric Yang–Mills that vanish in planar perturbation

theory. Two-point functions of operators with even numbers of fermionic impurities (dual

to R⊗R string states) and with purely scalar impurities (dual to NS⊗NS string states)

are considered. This includes mixed R⊗R–NS⊗NS two-point functions. The gauge theory

correlation functions are shown to respect BMN scaling and their behaviour is found to be

in good agreement with the corresponding D-instanton contributions to two-point ampli-

tudes in the maximally supersymmetric IIB plane-wave string theory. The string theory

calculation also shows a simple dependence of the mass matrix elements on the mode num-

bers of states with an arbitrary number of impurities, which is difficult to extract from the

gauge theory. For completeness, a discussion is also given of the perturbative mixing of

two-impurity states in the R⊗R and NS⊗NS sectors at the first non-planar level.
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1. Introduction and summary

The correspondence between string theory in a maximally supersymmetric IIB plane-wave

background [1] and the BMN sector of the N =4 supersymmetric Yang–Mills (SYM) theory

[2] has been extensively studied at the perturbative level. Non-perturbative aspects of the

duality have recently been analysed in [3] and [4], where it was shown that the striking

agreement between the effects of D-instantons and of Yang–Mills instantons, found in the

original formulations of the AdS/CFT correspondence [5–7], persists in the BMN/plane-

wave limit. This paper extends this analysis to include bosonic states with an even number

of fermionic impurities in the gauge theory and the corresponding R⊗R states in the dual

string theory. The further extension to include fermionic states (which have an odd number

of fermionic impurities) involves a straightforward generalisation of these results.

In the BMN limit the gauge theory – string theory correspondence relates the string

mass spectrum to the spectrum of scaling dimensions of Yang–Mills gauge invariant oper-

ators of large dimension, ∆, and large charge, J , with respect to a U(1) subgroup of the

SU(4) R-symmetry group. This relation is formally realised via the operator identity

1

µ
H(2) = D − J , (1.1)
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relating the string theory hamiltonian to the combination D − J of the gauge theory

dilation operator and U(1) generator. The duality involves the double limit, ∆ → ∞,

J → ∞, with ∆ − J kept finite, on the eigenvalues of the operators D and J . The

parameter µ in (1.1) is related to the mass parameter, m, entering the light-cone string

action by m = µα′p− (where p− is the light-cone momentum) and equals the background

value of the R⊗R five-form. The equality (1.1) implies that the eigenvalues of the operators

on the two sides should coincide. Numerous tests of this relation have been carried out at

the perturbative level [8–14]. In [3, 4] D-instanton contributions to the plane-wave string

mass matrix for certain states with up to four bosonic string excitations were shown to be

in striking agreement with instanton contributions to the matrix of anomalous dimensions

in the corresponding sectors of the dual gauge theory. A brief review of these results is

presented in [15].

In the large N limit and in the BMN sector of the gauge theory the rôle of the ordinary

’t Hooft parameters, λ and 1/N , is played by effective rescaled parameters [10,11],

λ′ =
g2

YM
N

J2
, g2 =

J2

N
. (1.2)

In the BMN correspondence these are related to the string parameters via

m2 = (µp−α
′)2 =

1

λ′
, 4πgsm

2 = g2 , (1.3)

which imply that in the double scaling limit, N → ∞, J → ∞, with J2/N fixed, the weak

coupling regime of the gauge theory corresponds to the limit of small gs and large m on

the string side.

The string hamiltonian is the sum of two pieces,

H(2) = H
(2)
pert +H

(2)
non−pert . (1.4)

The perturbative part has an expansion in powers of gs, which gets reorganised into a

series in g2. The non-perturbative part contains the D-instanton induced corrections.

In the BMN limit of the N =4 SYM theory, after the operator mixing is resolved [16],

quantum corrections to the eigenvalues of D − J are also expected to be organised in a

double series in λ′ and g2 (a property referred to as BMN scaling), with g2 playing the rôle

of genus counting parameter. According to [2] the g2 expansion in string theory is term

by term exact to all orders in λ′. This means that the free string spectrum is identified

with the resummed planar expansion of the spectrum of the D−J operator on the gauge

side. Loop corrections in string theory correspond to non-planar effects in the Yang–Mills

theory. At each order in the loop expansion, the string theory encodes an infinite series of

λ′ corrections in the gauge theory at the fixed corresponding order in g2.

The large body of work on perturbative and non-perturbative contributions to anoma-

lous dimensions of BMN operators has concentrated almost entirely on states with bosonic

impurities. Correspondingly, almost all results on the plane-wave string mass spectrum

refer to strings with bosonic excitations. However, fermionic impurities are obviously re-

quired in any complete treatment of the mass matrix. States with an even number of
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fermionic impurities correspond to R⊗R states of the string theory. In general one would

expect such states to mix with those containing bosonic impurities, or NS⊗NS states in

the string description. Indeed, in [3] it was noted that certain string two-point functions

that mix the NS⊗NS and R⊗R sectors receive non-zero D-instanton contributions even

though these states do not mix at tree level. In this paper we will study these classes of

string amplitudes in detail, together with the dual correlation functions in the BMN limit

of N =4 SYM. The string states and gauge theory operators that we consider contain an

arbitrary even number of fermionic and bosonic impurities, but in specific combinations.

On the gauge theory side we find that the two-point functions respect BMN scaling

and we determine their dependence on the parameters, λ′ and g2, in the semi-classical

approximation. Interestingly, we find that, depending on the number and combination of

impurities, the result can contain arbitrarily large inverse powers of λ′. The dual string

amplitudes, computed using the formalism of [4], are shown to be in very good agreement

with the gauge theory results. The string theory calculation also shows a remarkably simple

dependence of the mass matrix elements on the mode numbers of states with an arbitrary

number of impurities. The dependence on the mode numbers is extremely complicated to

determine through a standard instanton calculation in the Yang–Mills theory and thus the

string result represents a highly non-trivial prediction for the gauge side.

The mixing of the NS⊗NS and R⊗R sectors can easily be motivated from the presence

of background R⊗R flux in the string picture. First note that R⊗R charge conservation

is violated in tree-level closed-string scattering from a D3-brane, so that NS⊗NS and

R⊗R states mix at tree level in AdS5 × S5 (which is the near-horizon geometry of a

stack of coincident D3-branes). The Penrose boost that takes AdS5 ×S5 to the maximally

supersymmetric IIB plane-wave background leads to a string theory in which R⊗R charge

is conserved on a spherical world-sheet (tree level). However, the non-zero background flux

(non-zero µ) leads to the possibility of mixing NS⊗NS and R⊗R states by string loop

corrections, as will be indicated later in this paper. This should mean that non-planar

perturbative contributions in the gauge theory (i.e. beyond the zeroth order in the g2
expansion) mix states that have bosonic impurities with states that have an even number

of fermionic impurities. We will later show that this is indeed the case by analysing the

leading planar and non-planar contributions to a specific mixed two-point function.

The paper is organised as follows. In section 2 we define the different classes of BMN

operators which we focus on and we explain our notation. Section 3 discusses instanton

contributions to Yang–Mills two-point functions in the semi-classical approximation. The

calculation of the dual D-instanton induced amplitudes in string theory is presented in

section 4. Section 5 discusses the issue of the perturbative mixing of the NS⊗NS and R⊗R

sectors through a qualitative analysis of a specific process.

2. BMN operators

In this section we discuss certain classes of BMN operators whose two-point functions

we shall analyse in the following sections. We consider bosonic operators which are

SO(4)C×SO(4)R singlets, corresponding both to R⊗R states, i.e. with an even number of
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fermionic impurities, and to NS⊗NS states, i.e. containing only bosonic impurities. The

operators we consider contain an arbitrary number of impurities, but in certain specific

combinations. As will be discussed in the following, in the case of R⊗R states it is conve-

nient to study operators which also contain four bosonic impurities. The inclusion of the

bosonic impurities simplifies the analysis in the one-instanton sector because they allow to

soak up the fermion superconformal modes without the need to use higher order solutions

for any of the fields.

The operators we focus on involve scalar or fermion impurities in singlet combina-

tions. In the BMN limit the four scalars, ϕi, not charged under U(1) transform in the[
(0, 0);

(
1
2 ,

1
2

)]
of SO(4)C×SO(4)R. The N =4 fermions, λAα and λ̄α̇A, transforming in the 4

and 4̄ of SU(4), are decomposed as [4]

λAα → ψ− a
α ⊕ ψ̄+

αa , a = 1, 4 (2.1)

λ̄α̇A → ψ+ α̇
ȧ ⊕ ψ̄− α̇ȧ , ȧ = 2, 3 , (2.2)

where ψ− a
α and ψ+ α̇

ȧ have U(1) charge +1
2 , i.e. ∆ − J = 1, whereas ψ̄+

αa and ψ̄− α̇ȧ have

charge −1
2 , i.e. ∆ − J = 2. Under the SO(4)C×SO(4)R symmetry the fermions ψ− a

α and

ψ̄+
αa transform in the

[(
1
2 , 0

)
;
(

1
2 , 0

)]
, while ψ+ α̇

ȧ and ψ̄− α̇ȧ transform in the
[(

0, 1
2

)
;
(
0, 1

2

)]
.

The definition of the fermions ψ̄+
αa and ψ̄− α̇ȧ involves the multiplication by a matrix which

flips the SO(4)R chirality and respectively lowers or raises the corresponding index. The

decomposition in (2.1)-(2.2) corresponds to the decomposition of the left- and right-moving

type IIB fermions into chiral SO(4)C×SO(4)R fermions [17,18], (S−, S+) and (S̃−, S̃+).

Fermion impurities in BMN operators are associated with the insertion of the ∆−J = 1

fields, ψ− a
α and ψ+ α̇

ȧ . In the dual string theory this corresponds to the insertion of S−
−n and

S+
−n (or S̃−

−n and S̃+
−n) creation operators. The conjugate fermions, ψ̄+

αa and ψ̄− α̇ȧ, which

have ∆ − J = 2, enter into the conjugate operators. In perturbation theory the only non-

zero contractions are between a fermion and its conjugate, i.e. 〈ψ− a
α ψ̄− β̇ḃ〉 and 〈ψ+ α̇

ȧ ψ̄+
βb〉.

This will be important in the analysis of correlation functions in the next sections.

The most general BMN operator with fermionic impurities that we shall consider is of

the form

O
k,h
ℓ,n,m = t(R⊗R) ḃ,α

i,a,β̇
ck,h(gYM

, N, J)

×
J∑

p2,p3,p4,u1,...,v2h=0

p2+p3+p4+u1+···+v2h≤J

p1=J−(p2+p3+p4+u1+···+v2h)

e(p,u,v; ℓ,n,m;J) Tr
[
Z(p,i)
ϕ Z(u,α,a)

ψ− Z(v,β̇,ḃ)
ψ+

]
, (2.3)

where various sets of indices have been grouped into ‘vectors’,

p = (p1, p2, p3, p4) , u = (u1, u2, . . . , u2k) , v = (v1, v2, . . . , v2h) ,

ℓ = (ℓ1, ℓ2, ℓ3) , n = (n1, n2, . . . , n2k) , m = (m1,m2, . . . ,m2h) ,

i = (i1, i2, i3, i4) , a = (a1, a2, . . . , a2k) , ḃ = (ḃ1, ḃ2, . . . , ḃ2h)

α = (α1, α2, . . . , α2k) , β̇ = (β̇1, β̇2, . . . , β̇2h) , (2.4)
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and we have introduced the notation

Z(p,i)
ϕ =

4∏

r=1

Zprϕir , Z(u,α,a)
ψ− =

2k∏

r=1

Zurψ− ar
αr

, Z(v,β̇,ḃ)
ψ+ =

2h∏

r=1

Zvrψ+ β̇r

ḃr
. (2.5)

The coefficient e(p,u,v; ℓ,n,m;J) in (2.3) is given by

e(p,u,v; ℓ,n,m;J) = exp {2πi[p2(ℓ1 + · · · +m2h) + p3(ℓ2 + · · · +m2h)

+p4(ℓ3 + · · · +m2h) + u1(n1 + · · · +m2h) + · · · + u2k(n2k + · · · +m2h)

+v1(m1 + · · · +m2h) + · · · + v2hm2h]/J} .

The tensor t(R⊗R) ḃ,α

i,a,β̇
projects onto the SO(4)R singlet,

t(R⊗R) ḃ,α

i,a,β̇
= εi1i2i3i4

k∏

r=1

εa2r−1a2r
εα2r−1α2r

h∏

s=1

εḃ2s−1 ḃ2sεβ̇2s−1β̇2s
(2.6)

and the normalisation coefficient, ck,h(gYM
, N, J), is

ck,h(gYM
, N, J) =

1√
J3+2k+2h

(
g2
YM

N

8π2

)J+4+2k+2h
. (2.7)

The form of the conjugate operator is similar to (2.3) with the Z’s replaced by Z̄’s and

the ψ−’s and ψ+’s replaced respectively by ψ̄−’s and ψ̄+s’. In the following we shall

consider two-point functions of the form 〈Ok,h
ℓ,n,m(x1) Ō

k′,h′

ℓ′,n′,m′(x2)〉, where the operator

O
k,h
ℓ,n,m contains k ψ− and h ψ+ pairs and the operator Ō

k′,h′

ℓ′,n′,m′ contains k′ ψ̄− and h′ ψ̄+

pairs. The normalisation of the operators is such that two-point functions of this type (if

non-zero) are of order 1 at tree level.

The string states which we are interested in, dual to operators of the form (2.3), are

schematically, up to an overall normalisation, of the form (see [3] for notation)

εi1i2i3i4 α
i1
−ℓ1α

i2
−ℓ2α̃

i3
−ℓ1α̃

i4
−ℓ2

[
S−
−n1

S̃−
−n1

]
. . .

[
S−
−nk

S̃−
−nk

][
S+
−m1

S̃+
−m1

]
. . .

[
S+
−mh

S̃+
−mh

]
|0〉h ,
(2.8)

where |0〉h denotes the BMN ground state and the square brackets indicate contraction

of the SO(4)C×SO(4)R indices. Notice that in (2.8) we have inserted the same number

of left- and right-moving oscillators and we have chosen the mode numbers carried by the

creation operators to be equal in pairs. More general states satisfying the physical level-

matching condition can be constructed, but we restrict our attention to those of the form

(2.8) because these form a class of states that couple to a D-instanton in the plane-wave

background.

In the operator (2.3) k pairs of ψ− fermions and h pairs of ψ+ fermions are contracted

into SO(4)C×SO(4)R singlets. In the operator Ō
k′,h′

ℓ′,n′,m′ the 2k′ ψ̄−’s and the 2h′ ψ̄+’s are

similarly paired in singlets. The unique singlet that can be constructed in this way involves

contractions of both types of SO(4) indices via ε tensors, see (2.6). This implies that the

fermions are automatically pairwise antisymmetrised in the colour indices. In the string
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state (2.8) there is no analogue of the colour antisymmetrisation, but the contraction is

allowed because the two fermions in each pair are different, being a left- and a right-mover.

The other class of operators we consider are dual to string states in the NS⊗NS sector.

These involve an arbitrary number of scalar impurities contracted into a SO(4)C×SO(4)R
singlet. Using the same notation introduced in (2.3) the operators are

O
l
ℓ,n = t(NS⊗NS)

i,j cl(gYM
, N, J + l)

J+l∑

p2,p3,p4,q1,...,q2l=0

p2+p3+p4+q1+···+q2l≤J+l

p1=J+l−(p2+p3+p4+q1+···+q2l)

e(p,q; ℓ,n;J + l) Tr
[
Z(p,i)
ϕ Z(q,j)

ϕ

]
,

(2.9)

where a vector notation for the indices has been used,

p = (p1, p2, p3, p4) , q = (q1, q2, . . . , q2l) ,

ℓ = (ℓ1, ℓ2, ℓ3) , n = (n1, n2, . . . , n2l) ,

i = (i1, i2, i3, i4) , j = (j1, j2, . . . , j2l) . (2.10)

The tensor t(NS⊗NS)

i,j , which projects onto the SO(4)R singlet, is

t(NS⊗NS)

i,j = εi1i2i3i4 δj1j2δj3j4 · · · δj2l−1j2l
, (2.11)

i.e. we choose singlet operators in which four scalars are contracted via an ε-tensor and the

remaining 2l scalars are contracted pairwise via Kronecker δ’s. The normalisation factor

in (2.9) is

cl(gYM , N, J + l) =
1√

J3+2l
(
g2
YM

N

8π2

)J+4+3l
(2.12)

and the phase factor in the sum, e(p,q; ℓ,n;J + l), is

e(p,q; ℓ,n;J + l) = exp {2πi[p2(ℓ1 + · · · + n2l) + p3(ℓ2 + · · · + n2l) + p4(ℓ3 + · · · + n2l)

+ q1(n1 + · · · + n2l) + · · · + q2ln2l]/J} . (2.13)

Notice that the operator (2.9) contains a total of J + l Z fields. This is necessary in order

to give it the same dimension and U(1) charge as operators with a total of 2l fermionic

impurities (ψ− and/or ψ+) of the type defined in (2.3). The number of Z’s in the operator

is reflected in the power of g2
YM
N/8π2 in the normalisation (2.12).

The string states dual to operators of the form (2.9) are (up to a normalisation factor)

εi1i2i3i4 α
i1
−ℓ1α

i2
−ℓ2α̃

i3
−ℓ1α̃

i4
ℓ2
αj1−n1

α̃j1−n1
αj2−n2

α̃j2−n2
· · ·αjl−nl

α̃jl−nl
|0〉h , (2.14)

where, as in the case of the R⊗R state (2.8), we have restricted the attention to a class of

states that couple to a D-instanton in the plane-wave background: the number of left- and

right-movers in (2.14) is the same and the corresponding mode numbers are equal in pairs.

In order to construct gauge theory operators that can be identified with the string

states (2.8) and (2.14) one needs to consider linear combinations of operators such as those
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defined in (2.3) in (2.9). Since the creation operators in the string states commute, it is

necessary to sum, in the corresponding operators, over all the possible permutations of

the ϕ and ψ± impurities. As in the four impurity case studied in [4] it is also necessary

to (anti-)symmetrise the operators under permutations of the mode numbers so that they

possess the same symmetry properties as the dual string states. This should automatically

impose the constraint that the instanton contribution vanishes unless the mode numbers

in the operator are equal in pairs as in (2.8) and (2.14). We shall not discuss these aspects

here since we shall not analyse the mode number dependence in the gauge theory two-point

functions.

The insertion of ∆ − J = 2 impurities is, in general, necessary to define well-behaved

BMN operators, as observed already in the case of two impurity operators in [12,19]. This

is also the case for operators in the class we are considering. Specifically, the complete

definition of the operators should also involve terms with ψ̄+
αa and ψ̄− α̇a insertions as well

as terms in which pairs of ϕ’s in a singlet are replaced by a ZZ̄ insertion. However, these

terms are not relevant at leading order in the large J and large N limit and only need

to be taken into account when g2 corrections are computed, i.e. beyond the semi-classical

approximation.

3. Gauge theory two-point functions in the one-instanton sector

In this section we briefly review the calculation of one-instanton contributions to two-point

correlation functions in semi-classical approximation and then discuss examples involving

the operators defined in the previous section.

3.1 Semi-classical approximation

The one-instanton contribution to the two-point correlation function of composite operators

O1 and O2 in the semi-classical approximation takes the form

G1−inst(x1, x2) =

∫
dµinst(m b, m f) e−Sinst Ô1(x1; m b, m f) Ô2(x2; m b, m f) , (3.1)

where we have denoted the bosonic and fermionic collective coordinates by m b and m f

respectively. In (3.1) dµinst(m b, m f) is the integration measure on the instanton moduli

space, Sinst is the classical action evaluated on the instanton solution and Ô1 and Ô2

denote the classical expressions for the operators computed in the instanton background.

In the case of gauge-invariant operators the semi-classical expression (3.1) involves the

integration over the position and size of the instanton, x0 and ρ, and over the sixteen

fermion moduli associated with the broken supersymmetries, ηA and ξ̄A. The bosonic

moduli associated with global gauge orientations are integrated out. The corresponding

fermion moduli, νA and ν̄A, appear in gauge-invariant operators in colour-singlet bilinears

and the integration over these moduli is re-expressed in terms of an integration over bosonic

auxiliary variables, ΩAB, parametrising a five-sphere. Instanton contributions to two-point

functions of scalar operators in N =4 SYM have been analysed in [20]. Details of the

calculation of two-point functions of BMN operators were discussed in [4] following the

– 7 –



general analysis of [6]. Comprehensive reviews of instanton calculus in supersymmetric

gauge theories can be found in [21–23]. For a generic two-point function one finds

〈O1(x1)O2(x2)〉 = α(p, q,N) g8+p+q
YM

e2πiτ

∫
dρd4x0 d5Ω

4∏

A=1

d2ηAd2ξ̄A ρp+q−5

×Ô1(x1; ρ, x0,Ω, η, ξ̄) Ô2(x2; ρ, x0,Ω, η, ξ̄) , (3.2)

where the ν̄AνB bilinears in the operator profiles have been re-written in terms of the

auxiliary variables ΩAB. In the large-N limit

α(p, q,N) ∼ N
1
2
(p+1)

πp+q+
1
2

[1 +O(1/N)] , (3.3)

where p and q are the numbers of antisymmetric and symmetric ν̄AνB bilinears respectively.

In all the examples that we shall consider the classical profiles of the operators take

a factorised form. In such expressions the terms which contribute to two-point functions

can be written schematically as

Ô(x;x0, ρ, η, ξ̄,Ω) ∼ f(x;x0, ρ) g(Ω)
4∏

A=1

[
ζA(x)

]2
, (3.4)

where ζA is a combination of the fermion modes, ηA and ξ̄A, associated with the broken

superconformal symmetries,

ζAα (x) =
1√
ρ

[
ρ ηAα − (x− x0)µσ

µ
αα̇ξ̄

α̇A
]
. (3.5)

The generic two-point function thus becomes

〈O1(x1)O2(x2)〉inst ∼ α(p, q,N) g8+p+q
YM

e2πiτ

∫
dρd4x0 ρ

p+q−5 f1(x1;x0, ρ) f2(x2;x0, ρ)

×
∫

d8η d8ξ̄

4∏

A=1

[
ζA(x1)

]2 [
ζA(x2)

]2
∫

d5Ω g1(Ω) g2(Ω) . (3.6)

After this factorisation the bosonic integration over x0 and ρ is logarithmically divergent

and needs to be regularised. This signals a contribution to the matrix of anomalous di-

mensions which is extracted from the coefficient of the logarithmically divergent term.

The integration over the superconformal modes in the second line of (3.6) is straight-

forward,
∫

d8η d8ξ̄
4∏

A=1

[
ζA(x1)

]2 [
ζA(x2)

]2
= (x1 − x2)

8 . (3.7)

Finally, as will be shown in the next section, the five-sphere integrals in all the cases we

are interested in can be reduced to the form

IS5(a, b, c) =

∫
d5Ω

(
Ω14Ω23

)a (
Ω12Ω34

)b (
Ω13Ω24

)c
, (3.8)
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where a, b and c are integers. This integral is a generalisation of those encountered in

the case of two and four impurity operators and can be evaluated using the same method

described in [4]. Defining

Ω = Σ14
i Ωi = Ω1 + iΩ4 , Ω̄ = Σ23

i Ωi = Ω1 − iΩ4 ,

Ω̃ = Σ12
i Ωi = Ω3 + iΩ6 ,

¯̃
Ω = Σ34

i Ωi = Ω3 − iΩ6 ,

Ω̂ = Σ13
i Ωi = Ω2 + iΩ5 ,

¯̂
Ω = Σ24

i Ωi = Ω2 − iΩ5 , (3.9)

the integral (3.8) can be rewritten as

IS5(a, b, c) =

∫
dΩdΩ̄dΩ̃d

¯̃
ΩdΩ̂d

¯̂
Ω δ(ΩΩ̄ + Ω̃

¯̃
Ω + Ω̂

¯̂
Ω − 1)

(
ΩΩ̄

)a (
Ω̃

¯̃
Ω

)b (
Ω̂

¯̂
Ω

)c
. (3.10)

This can be easily computed generalising the calculations of [4]. The result is

IS5(a, b, c) = π3 Γ(a+ 1)Γ(b+ 1)Γ(c + 1)

Γ(a+ b+ c+ 3)
. (3.11)

In the next subsections we shall apply this general analysis to certain classes of two-point

functions of the operators introduced in section 2.

3.2 A class of two-point functions in the R⊗R sector

In this section we analyse the one-instanton contribution to two-point functions of the

operators O
k,h
ℓ,n,m and Ō

k′,h′

ℓ′,n′,m′ defined in section 2. The generic two-point function in this

class is

Gk,h;k′,h′

ℓ,n,m;ℓ′,n′,m′(x1, x2) = 〈Ok,h
ℓ,n,m(x1)Ō

k′,h′

ℓ′,n′,m′(x2)〉 , (3.12)

where conformal invariance and conservation of J require k + h = k′ + h′.

The combinatorics involved in the calculation of (3.12) is rather formidable and we

shall not present a detailed computation of the complete two-point functions. However,

our analysis will be sufficient to determine the dependence of the two-point functions in

this class on the parameters g
YM

, N and J , which will be compared with the result of the

dual string amplitude in section 4.

As previously observed, the only non-zero free fermion propagators are 〈ψ− a
α ψ̄− β̇ḃ〉 and

〈ψ+ α̇
ȧ ψ̄+

βb〉. This implies that the two-point functions in the class (3.12) are only non-zero

at tree level if k = k′ and h = h′. We will now show that instanton contributions to

these correlation functions are non-zero, in the leading semi-classical approximation, if the

weaker condition k + h = k′ + h′ imposed by the symmetries is satisfied.

The dependence on the parameters, g
YM

, N and J , in the two-point function (3.12) can

be determined analysing the structure of the fermion zero modes in the classical profiles of

the operators in the instanton background. The combinations of scalar impurities entering

into O
k,h
ℓ,n,m and Ō

k′,h′

ℓ′,n′,m′ are

+ϕ12ϕ13ϕ24ϕ34 , −ϕ12ϕ34ϕ24ϕ13 , +ϕ12ϕ24ϕ34ϕ13 ,

+ϕ12ϕ34ϕ13ϕ24 , −ϕ12ϕ13ϕ34ϕ24 , −ϕ12ϕ24ϕ13ϕ34 , (3.13)
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and cyclic permutations of these. All the terms in (3.13) contain the same combination of

fermion zero modes, (
m

1
f

)2 (
m

2
f

)2 (
m

3
f

)2 (
m

4
f

)2
, (3.14)

where m Af indicates a generic fermion zero mode in the one-instanton sector, i.e. either a

superconformal mode, ηA or ξ̄A, or a mode of type νA or ν̄A.

The zero modes contained in the pairs of fermionic impurities in O
k,h
ℓ,n,m are

εab ψ
−αaψ− b

a ∼ m 1
fm

4
f

εȧḃ ψ+
α̇ȧψ

+ α̇
ḃ

∼
(
m

1
f

)2
m

2
fm

3
f

(
m

4
f

)2
. (3.15)

Similarly the fermionic impurities in Ō
k′,h′

ℓ′,n′,m′ contain

εȧḃ ψ̄
− ȧ
α̇ ψ̄− α̇ḃ ∼ m 1

f

(
m

2
f

)2 (
m

3
f

)2
m

4
f

εab ψ̄+α
a ψ̄+

αb ∼ m 2
f m

3
f . (3.16)

Taking into account the J Z fields in O and the J Z̄ fields in Ō the two operators contain

the following combinations of fermion modes

Ô
k,h
ℓ,n,m →

(
m

1
f

)J+2+k+2h (
m

2
f

)2+h (
m

3
f

)2+h (
m

4
f

)J+2+k+2h

̂̄
O
k′,h′

ℓ′,n′,m′ →
(
m

1
f

)2+k′ (
m

2
f

)J+2+2k′+h′ (
m

3
f

)J+2+2k′+h′ (
m

4
f

)2+k′
. (3.17)

The computation of the two-point function Gk,h;k′,h′

ℓ,n,m;ℓ′,n′,m′(x1, x2) in the semi-classical ap-

proximation involves the integration over the sixteen fermion superconformal modes associ-

ated with the broken Poincaré and special supersymmetries. To saturate these integrations

the two operators must both contain
∏4
A=1

(
ζA

)2
, where ζAα = 1√

ρ [ρη
A
α − (x−x0)µσ

µ
αα̇ξ̄

α̇A].

This requirement combined with (3.17) implies that in the product of the profiles of the

two operators one must select terms containing

Ô
k,h
ℓ,n,m(x1)

̂̄
O
k′,h′

ℓ′,n′,m′(x2) →
[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
]
(x1)

[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
]
(x2)

×
(
ν1 + ν̄1

)J+k+2h+k′ (
ν2 + ν̄2

)J+h+2k′+h′ (
ν3 + ν̄3

)J+h+2k′+h′ (
ν4 + ν̄4

)J+k+2h+k′
, (3.18)

where the ν and ν̄ modes will eventually be paired in colour singlet bilinears.

As discussed in [4] the integration over the five-sphere imposes the condition that ν

and ν̄ modes of each flavour appear with the same multiplicity. From (3.18) we thus get

the condition

J + k + 2h+ k′ = J + h+ 2k′ + h′ ⇒ k + h = k′ + h′ , (3.19)

which is automatically satisfied by all the two-point functions allowed by the symmetries.

Equation (3.18) is the starting point to study the dependence of the two-point func-

tion (3.12) on the parameters g
YM

, N and J . In the profile of the operator O
k,h
ℓ,n,m the

superconformal modes of flavour 2 and 3 can only be taken from the impurities whereas

the modes of flavour 1 and 4 can come either from the impurities or from the Z’s. As in
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the examples discussed in [4] the dominant contributions in the large J limit come from

terms in which all the ζ1’s and ζ4’s are provided the Z’s because in this case a factor of J

is associated with the choice of each Z providing one such mode.

Satisfying the condition (3.19) is not sufficient to ensure that the two-point function

(3.12) receives a non zero instanton contribution in the BMN limit. In order to cancel the

inverse powers of N coming from the normalisation of the operators it is necessary to com-

bine all the ν and ν̄ modes in antisymmetric bilinears, (ν̄ν)6. In the two and four impurity

cases studied in [4] this requirement was always satisfied. In the case of the operators

under consideration the requirement is non-trivial and has important consequences. The

traces in the definition of the operators can be explicitly evaluated using the form of the

instanton solution for the elementary fields. In particular, the solution for the anti-chiral

fermions λ̄α̇A, whose components ψ+ and ψ̄− enter O
k,h
ℓ,n,m and Ō

k′,h′

ℓ′,n′,m′ respectively, was

given in [22]. Selecting in such traces the terms which contain the correct combinations of

superconformal modes shows that if any Z’s are inserted between two contracted ψ+’s it

is not possible to antisymmetrise all the ν̄ν bilinears, because necessarily colour contrac-

tions between a ν and a ν̄ of the same flavour occur. Such contributions are suppressed at

large N (see equation (3.3)) and vanish in the BMN limit. This means that non-vanishing

contributions in the BMN limit come only from the terms with v2i = 0, i = 1, . . . , h in the

sums in (2.3), effectively reducing the number of sums involved in the calculation of the

operator profile. Analogously in the operator Ō
k′,h′

ℓ′,n′,m′ no Z̄’s can be inserted between two

contracted ψ̄−’s implying the constraint u′2i = 0, i = 1, . . . , k′. This observation is crucial

in determining the J dependence of the two-point functions we are considering, notably in

proving that they obey BMN scaling.

In all the relevant contributions to the profile of the operators (2.3) the traces are

independent of the way the Z’s are grouped and only depend on the relative order of the

impurities, i.e. they do not depend on the summation indices p, q, r, u1, . . . , v2h. All the

traces in Ô
k,h
ℓ,n,m that contribute in the BMN limit can be reduced to the form

Ô
k,h
ℓ,n,m → ρ8+2k−2h (x− x0)

2h

[(x− x0)2 + ρ2]J+3k+3h+8

[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
] (
ν̄ [1ν4]

)J+k+h

×
[
c1

(
ν̄ [1ν2]

) (
ν̄ [3ν4]

)
+ c2

(
ν̄ [1ν3]

) (
ν̄ [2ν4]

)]h
. (3.20)

Similarly all the relevant traces in the profile of the conjugate operator reduce to

̂̄
O
k′,h′

ℓ′,n′,m′ → ρ8−2k′+2h′ (x− x0)
2k′

[(x− x0)2 + ρ2]J+3k′+3h′+8

[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
] (
ν̄ [2ν3]

)J+k′+h′

×
[
c′1

(
ν̄ [1ν3]

) (
ν̄ [2ν4]

)
+ c′2

(
ν̄ [1ν2]

)(
ν̄ [3ν4]

)]k′
. (3.21)

In (3.20) and (3.21) c1, c2, c
′
1 and c′2 denote numerical coefficients. As in the cases studied in

[4] the dependence on the summation indices is thus only in the phases and in combinatorial

factors associated with the multiplicity of each contribution. The traces (3.20) and (3.21)

can be factored out of the sums. This simplifies the calculation and especially the analysis

of the J dependence.
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The definition of O
k,h
ℓ,n,m involves a sum over 3+2k+2h indices. However, as observed

above, the number of sums is reduced by the requirement that all the ν̄ν bilinears be

antisymmetrised, which implies that no Z’s can be inserted between two contracted ψ+

fermions. Hence effectively the classical profile of the operator O
k,h
ℓ,n,m contains only 3 +

2k+ h sums. Similarly the profile of Ō
k′,h′

ℓ′,n′,m′ contains only 3 + k′ + 2h′ sums. Taking into

account the multiplicity factors associated with the choice of the four Z’s and the four Z̄’s

which provide respectively the superconformal modes of flavour 1 and 4 in O
k,h
ℓ,n,m and those

of flavour 2 and 3 in Ō
k′,h′

ℓ′,n′,m′ , the sums in O
k,h
ℓ,n,m contribute to the two-point function a

factor of J7+2k+h and those in Ō
k′,h′

ℓ′,n′,m′ a factor of J7+k′+2h′ . For instance choosing all the

four Z’s from the second group of p2 Z’s in the trace in (2.3) leads to the sum

J∑

p2,p3,p4,u1,...,v2h−1=0

p2+p3+p4+u1+···+v2h−1≤J

p1=J−(p2+p3+p4+u1+···+v2h−1)

e(p,u,v; ℓ,n,m;J)
1

4!
p2(p2−1)(p2−2)(p2−3) ∼ J7+2k+h , (3.22)

where only the vi’s with odd index are summed over. The combinatorics associated with

these sums becomes increasingly involved as the number of impurities grows. In the case

of the four impurity operators of [4] there were 35 independent traces to compute. In the

general case of the operator (2.3) for a fixed relative order of the impurities the number of

independent traces associated with the choice of the four Z’s which soak up superconformal

modes is
(2k + h+ 7)!

4!(2k + h+ 3)!
(3.23)

and moreover one has to sum the contributions corresponding to the different relative

orderings of the impurities, since the operators considered here, unlike those of [4], involve

impurities of different types, bosonic and fermionic ones. The sums such as (3.22) also

encode the dependence of the operator profiles on the integers in ℓ, n and m, corresponding

to the mode numbers of the dual string states. Each of the sums contributing to any

operator in this class gives rise to a very complicated dependence on the mode numbers.

We shall see, however, that the string theory analysis predicts a very simple dependence,

requiring dramatic simplifications on the gauge theory side.

As in the cases considered in [4], the other elements which determine the dependence

on the parameters gYM , N and J are, apart from the normalisation of the operators, the

number of (ν̄ν)6 bilinears, the bosonic integrals over x0 and ρ and the five-sphere integrals.

Equations (3.20) and (3.21) show that the profiles of the two operators contain a total

of 2J+k+3h+3k′+h′ (ν̄ν)6 bilinears, each producing a factor of g
YM

√
N , so that the total

contribution to the two-point function of the (ν̄ν)6 bilinears is (g
YM

√
N)2J+k+3h+3k′+h′ .

The integrations over x0 and ρ are logarithmically divergent and need to be regularised,

e.g. by dimensional regularisation of the x0 integral. They can then be evaluated using

standard techniques and are found to behave as 1/J2 in the large J limit.

Finally, additional powers of J arise from the five-sphere integration after re-expressing

the (ν̄ν)6 bilinears in terms of ΩAB’s [4]. The combinations of ν̄ [AνB] bilinears to consider
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are those in (3.20) and (3.21). The resulting five sphere integrals are all of the form

IS5(k, h; k′, h′) =

∫
d5Ω

(
Ω14

)J+k+h (
Ω23

)J+k′+h′ [(
Ω12

) (
Ω34

)
+

(
Ω13

) (
Ω24

)]h+k′
.

(3.24)

Using the constraint k + h = k′ + h′ these integrals can be put in the form (3.8) with

a = J + k + h = J + k′ + h′ and b+ c = h+ k′. Therefore (3.11) immediately gives

IS5(k, h; k′, h′)
∣∣
k+h=k′+h′

∼ 1

J2+h+k′
. (3.25)

Combining the various contributions described above with the normalisation factors

and the moduli space measure, we can summarise the dependence on g
YM

, N and J in

Gk,h;k′,h′

ℓ,n,m;ℓ′,n′,m′(x1, x2) as follows

1√
J3+2k+2h(g2

YM
N)J+4+2k+2h

1√
J3+2k′+2h′(g2

YM
N)J+4+2k′+2h′

︸ ︷︷ ︸
normalised op. profiles

e2πiτg8
YM

√
N

︸ ︷︷ ︸
measure

(
g

YM

√
N

)2J+k+3h+3k′+h′

︸ ︷︷ ︸
ν, ν̄ bilinears

1

J2︸︷︷︸
x0, ρ integrals

1

J2+h+k′︸ ︷︷ ︸
S5 integral

J7+2k+hJ7+k′+2h′

︸ ︷︷ ︸
sums

= J7+k−h−k′+h′ g−k+h+k′−h′
YM

N− 7
2
+ 1

2
(−k+h+k′−h′) e2πiτ

=

(
J2

N

)7/2 (
J2

g2
YM
N

) 1
2
(k−h−k′+h′)

e2πiτ , (3.26)

so that the behaviour of the generic two-point functions in this class is

Gk,h;k′,h′

ℓ,n,m;ℓ′,n′,m′(x1, x2) ∼
(g2)

7/2

(λ′)
1
2
(k−h−k′+h′)

e
− 8π2

g2λ′ +iθ . (3.27)

The first thing to notice is that (3.27) shows that the two-point functions respect BMN

scaling. The leading instanton contribution can be re-expressed in terms of the parameters

λ′ and g2. The arguments given in [4] to illustrate how the subleading corrections can

give rise to a double series in λ′ and g2 can be repeated in the present case. Therefore

one can argue that the BMN scaling property of (3.12) extends beyond the semi-classical

approximation.

It is interesting to consider special cases of (3.27). If k, h, k′ and h′ are chosen in such

a way that the two-point function is non-zero at tree level, i.e. k = k′ and h = h′, the

leading instanton contribution has no powers of λ′. This is the same behaviour found for

the four impurity singlet operators.

In general instanton corrections to two-point functions which vanish at tree level start

with a non-zero power of λ′. Interestingly, among these there is a class of two-point

functions for which the leading non-zero contribution contains negative powers of λ′. The

simplest examples of this type involve the operators Ok,0, with only ψ− insertions, and

Ō0,h′ , with only ψ̄+ insertions. Notice, however, that although two-point functions of this

type can have arbitrarily large powers of λ′ in the denominator, they are not singular in

the λ′ → 0 limit because of the exponential factor exp(−8π2/λ′g2).
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3.3 A class of mixed R⊗R–NS⊗NS two-point functions

We now study another class of correlation functions which vanish at tree level but receive

instanton contributions, namely two-point functions corresponding to string amplitudes

mixing R⊗R and NS⊗NS states. The general two-point function we consider is

Gk,h;l
ℓ,n,m;ℓ′,n′(x1, x2) = 〈Ok,h

ℓ,n,m(x1) Ō
l
ℓ′,n′(x2)〉 , (3.28)

where O
k,h
ℓ,n,m is an operator with fermionic impurities of the form (2.3) and Ō l

ℓ′,n′ is the

conjugate of the operator defined in (2.9). Conformal invariance and the U(1) symmetry

impose in this case the constraint l = k + h.

Much of the analysis in the previous subsection can be applied to (3.28). The contri-

bution of the profile of O
k,h
ℓ,n,m is the same and we only need to discuss the NS⊗NS operator

Ō l
ℓ′,n′ . The classical expression for O

k,h
ℓ,n,m contains the combination of fermion modes in

the first line of (3.17),

(
m

1
f

)J+2+k+2h (
m

2
f

)2+h (
m

3
f

)2+h (
m

4
f

)J+2+k+2h
. (3.29)

In order to get a non-zero contribution to the two-point function (3.28) we need to select

terms in Ō l
ℓ′,n′ in which the impurities contain fermion modes of each flavour with the same

multiplicity. This means that in ̂̄
O
l

ℓ′,n′ we keep terms containing

(
m

1
f

)l+2 (
m

2
f

)J+2+l (
m

3
f

)J+2+l (
m

4
f

)l+2
. (3.30)

The double scaling limit, N → ∞, J → ∞, with J2/N finite, requires that once the fermion

superconformal modes are soaked up, all the modes of type ν and ν̄ be combined in (ν̄ν)6
bilinears. All the relevant terms in the profiles of the operators O

k,h
ℓ,n,m and Ō l

ℓ′,n′ can then

be reduced to the form

Ô
k,h
ℓ,n,m → ρ8+2k−2h (x− x0)

2h

[(x− x0)2 + ρ2]J+3k+3h+8

[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
] (
ν̄ [1ν4]

)J+k+h

×
[
c1

(
ν̄ [1ν2]

) (
ν̄ [3ν4]

)
+ c2

(
ν̄ [1ν3]

) (
ν̄ [2ν4]

)]h
, (3.31)

̂̄
O
l

ℓ′,n′ → ρ8

[(x− x0)2 + ρ2]J+3l+8

[(
ζ1

)2 (
ζ2

)2 (
ζ3

)2 (
ζ4

)2
] (
ν̄ [2ν3]

)J+l

×
[
c′1

(
ν̄ [1ν2]

) (
ν̄ [3ν4]

)
+ c′2

(
ν̄ [1ν3]

) (
ν̄ [2ν4]

)]l
, (3.32)

where c1, c2, c
′
1 and c′2 are numerical coefficients.

We can now repeat the analysis of the previous subsection to determine the dependence

of (3.28) on g
YM

, N an J . As in the case of the R⊗R two-point function the terms of the

form (3.31) in Ô
k,h
ℓ,n,m, which contribute in the BMN limit, involve only 3 + 2k + h sums,

so the resulting contribution is a factor of J7+2k+h. In the operator Ō l
ℓ′,n′ there is no

restriction on the sums, which therefore contribute a factor of J7+2l.

The total number of (ν̄ν)6 bilinears in the two-point function is 2J + k + 3h + 3l, so

that the resulting contribution is (g
YM

√
N)2J+k+3h+3l.
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The x0 and ρ integrals are logarithmically divergent and after regularisation can be

shown to behave as 1/J2 in the BMN limit.

The five-sphere integrals are again of the form (3.8). From (3.31) and (3.32) we get
∫

d5Ω
(
Ω14

)J+k+h (
Ω23

)J+l [(
Ω12

) (
Ω34

)
+

(
Ω13

) (
Ω24

)]h+l
, (3.33)

which according to the general formula (3.11) behaves as 1/J2+h+l.

Combining all these contributions we can determine the behaviour of the two-point

function (3.28) in the BMN limit,

1√
J3+2k+2h(g2

YM
N)J+4+2k+2h

1√
J3+2l(g2

YM
N)J+4+3l

︸ ︷︷ ︸
normalised op. profiles

e2πiτg8
YM

√
N

︸ ︷︷ ︸
measure

(
g

YM

√
N

)2J+k+3h+3l

︸ ︷︷ ︸
ν, ν̄ bilinears

1

J2︸︷︷︸
x0, ρ integrals

1

J2+h+l︸ ︷︷ ︸
S5 integral

J7+2k+hJ7+2l
︸ ︷︷ ︸

sums

= J7+k−h g−k+h
YM

N− 7
2
− 1

2
(k−h) e2πiτ

=

(
J2

N

)7/2 (
J2

g2
YM
N

) 1
2
(k−h)

e2πiτ . (3.34)

The result for the generic two-point function in this class is thus

Gk,h;l
ℓ,n,m;ℓ′,n′(x1, x2) ∼

(g2)
7/2 e

− 8π2

g2λ′ +iθ

(λ′)
1
2
(k−h)

. (3.35)

This shows that mixed R⊗R–NS⊗NS correlation functions of this type receive a non-

zero contribution in the one-instanton sector in the BMN limit, if the condition l = k + h

required by the symmetries is satisfied. The result (3.35) respects BMN scaling. As in

the case considered in the previous subsection, depending on the number of ψ− and ψ+

impurities, the leading contribution can start with a positive of negative (half integer)

power of λ′.

Before considering the dual string calculation, we conclude this section with a small

digression. The previous analysis allows to easily determine the behaviour of the leading

instanton contribution to two-point functions of singlet operators with an arbitrary number

of scalar impurities. In [4] it was shown that for two impurity operators the leading

instanton contribution to the anomalous dimension is

γ2−impur ∼ (g2)
7/2 (

λ′
)2

e2πiτ , (3.36)

whereas four impurity operators receive a leading contribution of order

γ4−impur ∼ (g2)
7/2 e2πiτ . (3.37)

Repeating step by step the calculations in this section shows that the two-point function

Gl(x1, x2) = 〈O l(x1) Ō
l(x2)〉 , (3.38)
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where O l is of the form (2.9), behaves as (g2)
7/2 e2πiτ . Therefore in general operators with

only scalar impurities, at least in the class of singlets we are considering, are expected to

have an instanton induced anomalous dimension

γ(1−inst) ∼ (g2)
7/2 e2πiτ , (3.39)

irrespective of the number of impurities.

In the next section we will show that the dual string amplitudes precisely reproduce

all the features of the gauge theory two-point functions discussed here and in section 3.2.

We will also see that string theory predicts a very simple result for the mode number

dependence, which is extremely complicated to extract from a gauge theory calculation.

4. Plane-wave string two-point amplitudes

4.1 D-instanton induced two-point amplitudes

The two-point functions discussed in the previous section are dual to D-instanton induced

plane-wave string scattering amplitudes between external states of the form (2.8) and

(2.14). D-instanton contributions to such amplitudes are computed using the boundary

state constructed in [24] and the formalism of [3].

The leading D-instanton contribution to two-point amplitudes comes from diagrams

in which the external states are coupled to two separate disks,

Ar,s = g7/2
s e2πiτ

1〈χr| ⊗ 2〈χs‖V2〉〉 , (4.1)

where the prefactor, g
7/2
s e2πiτ , is (up to a numerical constant) the measure on the single

D-instanton moduli space and τ = C(0) + ie−φ, where C(0) is the R⊗R scalar and φ the

dilaton. In (4.1) |χr〉1 and |χs〉2 denote the incoming and outgoing states respectively

and r and s collectively indicate the corresponding quantum numbers, including the mode

numbers. ‖V2〉〉 is the dressed two-boundary state [3], which contains the dependence on

the bosonic and fermionic moduli and couples to any pair of physical states,

‖V2〉〉 = δ4(θ̄2L + θ̄1L) δ4(θ̄2R + θ̄1R)

∫
d8η

[
η(Q−

1 +Q−
2 )

]8 ‖V̂ (0)
2 〉〉 , (4.2)

where

‖V̂ (0)
2 〉〉 = (2π)8 exp

[ ∞∑

k=1

1

ωk
α

(1)I
−k α̃

(1)I
−k − iS

(1)
−kMkS̃

(1)
−k

+
1

ωk
α

(2)I
−k α̃

(2)I
−k − iS

(2)
−kMkS̃

(2)
−k

]
e−a

†
1·a

†
2 |0〉1⊗ |0〉2 . (4.3)

In (4.2) Q−
1 and Q−

2 denote the broken dynamical supersymmetries on the two disks and

in (4.3) e−a
†
1·a

†
2|0〉1⊗ |0〉2 is the zero-mode part of the two-boundary state after integration

over the transverse position moduli. The δ-functions in (4.2) arise after integration over

the fermion moduli associated with the broken kinematical supersymmetries.
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The relations (1.3) between the string and gauge theory parameters imply that in order

to make contact with the semi-classical calculations of the previous section in the double

scaling limit, J → ∞, N → ∞, with J2/N fixed, we need to study the relevant string

amplitudes (4.1) in the small gs and large m limit.

In computing amplitudes such as (4.1) one expands the dressed two-boundary state,

‖V2〉〉, retaining only the terms which, commuted through the eight dynamical supercharges,

give a non-zero result acting to the left as annihilation operators on the external states.

The large m limit, relevant for the comparison with the gauge theory, selects very specific

contributions in this expansion.

4.2 Amplitudes in the R⊗R sector

To make contact with the calculation of the two-point functions in section 3.2 we are

interested in amplitudes such as (4.1), where the external states are of the form (2.8). So

we consider

1〈χk,hℓ,n,m| ⊗ 2〈χk
′,h′

ℓ′,n′,m′ | = εi1i2i3i4 εj1j2j3j4
1

ωℓ1ωℓ2ωℓ′1ωℓ′2
(4.4)

× h〈0|α(1)i1
ℓ1

α
(1)i2
ℓ2

α̃
(1)i3
ℓ1

α̃
(1)i4
ℓ2

k∏

r=1

[
S(1)−
nr

S̃(1)−
nr

] h∏

s=1

[
S(1)+
ms

S̃(1)+
ms

]

⊗ h〈0|α(2)j1
ℓ′1

α
(2)j2
ℓ′2

α̃
(2)j3
ℓ′1

α̃
(2)j4
ℓ′2

k′∏

r=1

[
S

(2)−
n′

r
S̃

(2)−
n′

r

] h′∏

s=1

[
S

(2)+
m′

s
S̃

(2)+
m′

s

]
,

where the square brackets indicate contraction of the spinor indices in the two SO(4) factors

via ε tensors and we have used the same vector notation for the indices as in section 2.

Equation (4.4) includes the normalisation factors for the states which had been omitted in

(2.8).

In order to compare the results with the gauge theory semi-classical approximation we

consider the large m limit in the amplitude

A
k,h;k′,h′

ℓ,n,m;ℓ′,n′,m′ = g7/2
s e2πiτ

1〈χk,hℓ,n,m| ⊗ 2〈χk
′,h′

ℓ′,n′,m′‖V2〉〉 . (4.5)

The analysis of the leading contributions in this limit follows closely the one presented in [3]

for two and four impurity operators. We first consider the bosonic oscillators in (4.4) which

act to the right as annihilation operators on the boundary state. These are compensated, as

in the four impurity case of [3], by lowering from the exponent in (4.3) two SMS̃ bilinears

for each disk and commuting them through the broken dynamical supersymmetries (four of

which are distributed on each disk in (4.2)) to obtain bosonic creation operators. Recalling

that in the large m limit

S−rMrS̃−r ≈
2m

r
S−
−rS̃

−
−r +

r

2m
S+
−rS̃

+
−r (4.6)

and using the commutation relations in the plane-wave background [17], the annihilation

of the bosonic oscillators contributes to the amplitude a factor

m12

ℓ1ℓ2ℓ
′
1ℓ

′
2

. (4.7)
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The analysis of the contribution of the fermionic oscillators is then straightforward. The

only subtlety is related to the sign of m. In our conventions the momenta of incoming

states are positive and those of outgoing states are negative, therefore m = µα′p− > 0 on

disk 1 and m < 0 on disk 2. We need to expand the boundary state retaining only the

terms with k+h fermionic bilinears on the first disk and k′ +h′ on the second disk in order

to annihilate the factors in the last two lines of (4.4). The expansion (4.6), valid for m > 0,

shows that on the first disk a [S−
−rS̃

−
−r] bilinear contributes a factor of 2m/r, whereas a

[S+
−rS̃

+
−r] bilinear contributes a factor of r/2m. The situation is reversed on the second

disk. The parameter m is negative and as a result the coefficients of the two terms in the

expansion (4.6) are interchanged. We get a factor of r′/2m for each [S−
−r′S̃

−
−r′ ] bilinear and

a factor of 2m/r′ for each [S+
−r′S̃

+
−r′ ] bilinear in the outgoing state |χk′,h′ℓ′,n′,m′〉2 .

Combining all the contributions and taking into account the normalisation of the ex-

ternal states we find that the leading D-instanton contribution to the amplitude (4.5) is

A
k,h;k′,h′

ℓ,n,m;ℓ′,n′,m′ ∼ g7/2
s e2πiτ m8+(k−h)+(h′−k′) 1

ℓ1ℓ2ℓ
′
1ℓ

′
2

∏k′

i=1 n
′
i

∏h
j=1mj

∏k
i=1 ni

∏h′

j=1m
′
j

. (4.8)

As in the cases studied in [3] the D-instanton induced amplitude is non-zero only if the

mode numbers in both external states are pairwise equal. Integration over the modulus

corresponding to the position of the D-instanton in the x+ direction imposes energy con-

servation in the amplitude. This further constrains the mode numbers imposing that they

be equal in pairs between the incoming and outgoing state. However, in the large m limit

this condition reduces to the requirement that the external states contain the same number

of oscillators.

The amplitude (4.8) induces a correction to the string mass matrix which, expressed

in terms of Yang–Mills parameters and rescaled by a factor of µ, becomes

1

µ
δM ∼ g

7/2
2 e

− 8π2

g2λ′ +iθ 1

(λ′)
1
2
(k−h+h′−k′)

1

ℓ1ℓ2ℓ′1ℓ
′
2

∏k′

i=1 n
′
i

∏h
j=1mj

∏k
i=1 ni

∏h′

j=1m
′
j

. (4.9)

The dependence on the parameters, g2 and λ′, in this result is in agreement with what we

found in the dual Yang–Mills correlation functions in section 3, equation (3.27). Moreover

the string result shows a very simple dependence on the mode numbers of the external

states. On the other hand, as already observed, the computation of the mode number

dependence in the gauge theory is very complicated. They enter in the dual operators

as integers in the phase factors (2.6) and the dependence of the two-point functions on

these integers is determined by sums of the type (3.22). The associated combinatorics is

extremely involved even for the simplest operators in this class containing only one fermion

bilinear. We shall therefore leave this part of the result (4.9) as a string theory prediction

for the instanton contribution to the dual two-point functions in the gauge theory.

4.3 Mixed R⊗R–NS⊗NS amplitudes

The instanton contributions to mixed R⊗R–NS⊗NS two-point functions of section 3.3 are
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dual to amplitudes of the form

A
k,h;l
ℓ,n,m;ℓ′,n′ = g7/2

s e2πiτ
1〈χk,hℓ,n,m| ⊗ 2〈χlℓ′,n′‖V2〉〉 , (4.10)

where as external states we take

1〈χk,hℓ,n,m| ⊗ 2〈χlℓ′,n′ | = εi1i2i3i4 εi′1i′2i′3i′4
1

ωℓ1ωℓ2ωℓ′1ωℓ′2ωn′
1
· · ·ωn′

l

(4.11)

× h〈0|α(1)i1
ℓ1

α
(1)i2
ℓ2

α̃
(1)i3
ℓ1

α̃
(1)i4
ℓ2

k∏

r=1

[
S(1)−
nr

S̃(1)−
nr

] h∏

s=1

[
S(1)+
ms

S̃(1)+
ms

]

⊗ h〈0|α(2)i′1
ℓ′1

α
(2)i′2
ℓ′2

α̃
(2)i′3
ℓ′1

α̃
(2)i′4
ℓ′2

l∏

u=1

[
α

(2)ju
n′

u
α̃

(2)ju
n′

u

]
.

The calculation of the amplitude (4.10) is very similar to that of the previous subsection.

One should distribute four broken dynamical supersymmetries on each disk. The contri-

bution of the first disk is then exactly as in the previous R⊗R case. On the second disk

one should lower from the exponent two S−rMrS̃−r bilinears which after going through

the supercharges annihilate the two α’s and the two α̃’s in the external state which are

contracted via the ε tensor. Hence the contribution of these oscillators to the amplitude is

again the same as in the previous case. The remaining pairs of bosonic oscillators in the

external state require that l factors of 1
ωr
αj−rα̃

j
−r be lowered from the exponent in ‖V2〉〉.

In the large m limit

ωr ∼ m, [αr, α−r] ∼ m, [α̃r, α̃−r] ∼ m, ∀r , (4.12)

so that the contribution of the l remaining pairs of bosonic oscillators simply cancels l

factors of m in the normalisation in (4.11). Notice that the only non-zero contribution is

the one just described. In particular, it is not possible to use the two S−rMrS̃−r bilinears

to annihilate pairs of external oscillators with contracted SO(4)R indices. In this case
1
ωr
αj−rα̃

j
−r factors lowered from the exponent would have to be commuted with the α’s and

α̃’s contracted into the ε, but these commutators vanish for symmetry reasons.

In conclusion the result for the amplitude (4.10) in the large m limit is

A
k,h;l
ℓ,n,m;ℓ′,n′ ∼ g7/2

s e2πiτ m8+(k−h) 1

ℓ1ℓ2ℓ
′
1ℓ

′
2

∏h
j=1mj

∏k
i=1 ni

. (4.13)

The rescaled contribution to the mass matrix is thus

1

µ
δM ∼ g

7/2
2 e

− 8π2

g2λ′ +iθ 1

(λ′)
1
2
(k−h)

1

ℓ1ℓ2ℓ′1ℓ
′
2

∏h
j=1mj

∏k
i=1 ni

(4.14)

in agreement with the Yang–Mills result (3.35). As in the R⊗R example of the previous

subsection, we also find a very simple dependence on the mode numbers of the external

states. Notably, the result only depends on the mode numbers, ℓ′1 and ℓ′2, of the four

oscillators contracted via the ε tensor in the NS⊗NS state and it is independent of the

mode numbers, n′u, u = 1, . . . , l, of the remaining oscillators.
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From the calculation of the amplitude (4.10) we can immediately deduce the result for

amplitudes of the form

A
l
ℓ,n;ℓ′,n′ = g7/2

s e2πiτ εi1i2i3i4 εi′1i′2i′3i′4
1

ωℓ1ωℓ2ωℓ′1ωℓ′2ωn1 · · ·ωnl
ωn′

1
· · ·ωn′

l

(4.15)

h〈0|α(1)i1
ℓ1

α
(1)i2
ℓ2

α̃
(1)i3
ℓ1

α̃
(1)i4
ℓ2

l∏

r=1

[
α(1)jr
nr

α̃(1)jr
nr

]
⊗h〈0|α(2)i′1

ℓ′1
α

(2)i′2
ℓ′2

α̃
(2)i′3
ℓ′1

α̃
(2)i′4
ℓ′2

l∏

s=1

[
α

(2)j′s
n′

s
α̃

(2)j′s
n′

s

]
‖V2〉〉.

which correspond to the two point functions with scalar impurities (3.38) briefly discussed

at the end of section 3.3. Both disks in this case are treated as the second disk in the

calculation of the mixed R⊗R–NS⊗NS amplitude (4.10). The only non trivial dependence

on m and on the mode numbers comes from the eight oscillators contracted via the two

ε tensors, all the other oscillators and the associated normalisation factors are simply

cancelled by terms in the expansion of the boundary state. The resulting contribution to

the string mass matrix is

1

µ
δM ∼ g

7/2
2 e

− 8π2

g2λ′ +iθ 1

ℓ1ℓ2ℓ
′
1ℓ

′
2

, (4.16)

for any number, l, of oscillators in the external states. The dependence on the parameters

is again in agreement with the gauge theory result (3.39). The mode number dependence

in (4.16) is very surprising from the Yang–Mills point of view. The fact that the mass

corrections, and thus the corresponding anomalous dimensions, only depend on the first

four mode numbers in each state requires dramatic cancellations in the dual gauge theory

calculation and it would be interesting to verify this explicitly at least for the simplest

operators in this class corresponding to l = 1.

5. Perturbative mixing of the NS⊗NS and R⊗R sectors

In the previous sections we discussed two-point correlation functions in N =4 SYM, as well

as the corresponding plane-wave string amplitudes, which vanish at tree level but receive

non-zero (D-)instanton contributions. We will now see whether the same processes might

also receive perturbative contributions. In this section we present a qualitative analysis

of perturbative corrections to NS⊗NS –R⊗R mixing processes of the type discussed in

sections 3.3 and 4.3. A similar analysis can be repeated for the correlation functions and

string amplitudes of sections 3.2 and 4.2.

We first consider string loop corrections to a two-point amplitude mixing NS⊗NS and

R⊗R states, focusing on the simplest process of the type (4.10), in which the incoming and

outgoing states are SO(4)C×SO(4)R singlets containing respectively two massive fermionic

oscillators and two massive bosonic oscillators. The analysis of the one-loop string ampli-

tude provides non-trivial predictions for the dual Yang–Mills two-point function which will

be addressed in the following subsection.

5.1 String perturbation theory

As an example of a string amplitude with mixing of the NS⊗NS and R⊗R sectors we

consider a two-point function coupling two impurity states. Since we do not have to worry
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about fermionic zero modes as in the (D-)instanton induced amplitudes, there is no need

to include additional bosonic oscillators in the external states. The states we consider are

SO(4)C×SO(4)R singlets in the R⊗R sector,

|χn〉1(R⊗R) = εab
(
S−
−n

)αa(
S̃−
−n

)b
α
|0〉h , (5.1)

and in the NS⊗NS sector,

|χn〉2(NS⊗NS) =
1

ωn
δij α

i
−nα̃

j
−n |0〉h . (5.2)

The quadratic string theory hamiltonian is diagonal in the bosonic and fermionic oscillators

so there is no tree level amplitude coupling the states (5.1) and (5.2). We will argue,

however, that a non-zero two-point amplitude between these states can arise at one loop

in the plane-wave background, whereas it is absent in flat space. We will only indicate the

origin of this mixing since a complete evaluation of the one-loop amplitude is beyond the

scope of this paper.

The one-loop string mass matrix between the two string states (5.1) and (5.2) is given

by

M12 = (R⊗R)
1〈χn|

[
H3(E

(0)
n −H2)

−1H3 +H4

]
|χn〉2(NS⊗NS) , (5.3)

where the first term represents gluing two cubic vertices with propagators and summing over

intermediate states, while the second term represents a contact term whose form is dictated

by supersymmetry. The first term is schematically represented in figure 1. The eigenvalues

of the complete mass matrix in this sector should be compared with the eigenvalues of the

dilation operator in the corresponding sector of the N =4 Yang–Mills theory. Figure 1

Figure 1: String one-loop contribution.

indicates a sum over intermediate states that couple to the external states via the cubic

vertex. In principle this sum includes states with an arbitrary number of oscillators. The

form of the plane-wave string cubic vertex [8] leads to potentially non-zero contributions

to (5.3) in impurity non-preserving channels. An example of such a contribution involves

the intermediate states

|φr〉 ∼
(
αS̃

)
|0〉h

|φs〉 ∼
(
α̃S

)
|0〉h . (5.4)
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The structure of the string cubic vertex allows the coupling of these states to the external

states (5.1) and (5.2). The process is permitted because the string cubic hamiltonian in

the plane-wave background does not factorise into left- and right-moving parts. This is

a feature which distinguishes the string theory interactions in the plane-wave background

from those in flat space. In flat space, where mixing of NS⊗NS and R⊗R states does

not take place, the process just described is not possible because of the factorisation of the

interaction vertex.

The above example illustrates a mechanism which makes the perturbative mixing of

the NS⊗NS and R⊗R sectors possible in the plane-wave background. The cancellation

of all the contributions of the type described here appears extremely unlikely, although a

detailed one loop analysis would be necessary to prove that matrix elements such as (5.3)

are really non-zero.

5.2 N =4 SYM perturbation theory

The arguments in the previous subsection strongly indicate that string two-point ampli-

tudes mixing the NS⊗NS and R⊗R sectors receive non-zero perturbative contributions in

the maximally supersymmetric plane-wave background, unlike the corresponding processes

in flat space. This observation, combined with the vanishing of the same amplitudes at

tree level, has non-trivial implications for the two-point functions of the dual operators

in the BMN limit of the N =4 Yang–Mills theory. In the BMN correspondence the tree

level result for a string amplitude encompasses the whole planar perturbative expansion of

the gauge theory, i.e. it is exact to all orders in the λ′ expansion. String loop corrections

correspond to non-planar corrections in the gauge theory, with both sides being reorganised

in a series in powers of g2. Therefore the results of the previous subsection predict that

Yang–Mills correlation functions dual to mixed NS⊗NS -R⊗R string amplitudes should be

zero at all orders in the planar approximation, but should receive non-zero perturbative

corrections at the non-planar level. In this section we show that this is indeed the case, at

the leading non-trivial order, for the two-point function dual to the amplitude considered

in the previous subsection.

The operators dual to the string states (5.1) and (5.2) are respectively of the form

O1 =
εab√

J
(
g2
YM

N

8π2

)J+2

J∑

p=0

e2πipn/J Tr
(
ZJ−pψ−αaZpψ− b

α

)
(5.5)

and

Ō2 =
1√

J
(
g2
YM

N

8π2

)J+3

J+1∑

q=0

e−2πiqn/J Tr
(
Z̄J+1−qϕiZ̄qϕi

)
. (5.6)

The operator Ō2 contains J+1 Z̄ fields so that it has the same bare dimension as O1. This

is reflected in the power of g2
YM
N in the normalisation. Notice that in this section we are

using the same conventions adopted in the rest of the paper, which are not the standard

ones used in perturbative calculations. In our normalisations the Yang–Mills coupling
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appears in the action only as an overall factor of 1/g2
YM

. Hence all the interaction vertices

are proportional to 1/g2
YM

and all the propagators are proportional to g2
YM

. With these

conventions the normalisations of the operators O1 and Ō2 are such that the two-point

functions 〈O1 Ō1〉 and 〈O2 Ō2〉 are of order 1 at tree level.

We are interested in perturbative corrections to the two-point function

G(x1, x2) = 〈O1(x1) Ō2(x2)〉 , (5.7)

which vanishes at tree level.

Let us first analyse the planar contributions. These correspond to tree level amplitudes

in string theory and thus are expected to vanish. The leading perturbative contributions

in the planar approximation correspond to diagrams with the two distinct topologies rep-

resented in figure 2.

Figure 2: Topologies of leading planar contributions.

The couplings in the N =4 lagrangian which are relevant for these diagrams are

Lint =
1

g2
YM

Tr
(
Z

[
ψ̄− 2
α̇ , ψ̄− α̇3

]
+

[
Z,ϕi

] [
Z̄, ϕi

])
. (5.8)

We shall not compute explicitly the diagrams in figure 2. The sum of the two types

of contributions is logarithmically divergent. For simplicity, in the following we shall only

discuss the combinatorics associated with diagrams of the topology (a) in figure 2. Our

considerations apply to the diagrams of type (b) as well and it is understood that the two

types of contributions are included in the calculation of the two-point function.

The planar diagrams in figure 2 require p = 0 in the operator O1 (i.e. no Z lines can

be present between the two fermions) and q = 0 or q = 1 in the operator Ō2 (there can

be at most one Z̄ between the two scalars in the trace). Indicating with dashed lines the

〈ZZ̄〉 propagators, with dotted lines the 〈ϕϕ〉 propagators and with plain lines the fermion

propagators, the relevant diagrams are those in figure 3. The first two diagrams involve

the q = 0 term in the operator Ō2, whereas the third diagram involves the q = 1 term.

Taking into account the normalisation of the operators the sum of the diagrams in
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Figure 3: Planar diagrams of type (a).

figure 3 and the analogous ones obtained from (b) in figure 2 gives

1√
J

(
g2
YM

N

8π2

)J+2

1√
J

(
g2
YM

N

8π2

)J+3

1

g4
YM

g2(J+6)
YM

NJ+4
(
1 − e−2πin/J

)
f(x1, x2)

∼
(2πin) g3

YM
N3/2

J2
f(x1, x2) =

1

J1/2
(2πin)

(
λ′

)3/2
f(x1, x2) , (5.9)

where the logarithmically divergent function f(x1, x2) is determined integrating over the

position of the interaction points. In (5.9) the power of g
YM

results from the combination

of two interaction vertices, J + 6 propagators and the normalisation of the operators. The

power of N in the numerator in the first line comes from the colour contractions. The

factor (
1 − e−2πin/J

)
(5.10)

comes from the sum of the three diagrams in figure 3. The first two diagrams give the

1 (no exponential because they correspond to q = 0 in Ō2) and the third diagram gives

the exponential term. It has weight 2 and a relative minus sign with respect to the first

two diagrams. Expanding (5.10) for large J gives the result in (5.9), which vanishes in the

BMN limit. Therefore the leading planar perturbative contributions vanish as expected.

Let us now consider the leading non-planar corrections to the two-point function (5.7).

These correspond to string loop corrections to the dual amplitude which are expected to be

non-zero in the plane-wave background. The leading non-planar corrections in the gauge

theory are suppressed by a factor of 1/N2 with respect to the planar contributions. In

order for the non-planar corrections to survive in the BMN limit additional powers of J

should arise. There are two sources of powers of J in Feynman diagrams: the sums in

the definitions of the operators and the number of diagrams at each genus. The operators

(5.5)-(5.6) involve one sum each, so that potentially the sums can give a factor of J2.

This, however, requires that the sums be independent and the exponential factors in the

operators be cancelled. It is easy to verify that this is never the case. For operators

containing J elementary fields the number of diagrams at genus g grows as J2g, so that

again at the level of the leading non-planar corrections one can potentially get a factor of

J2 adding diagrams which give an equal contribution. This is what happens in the case of

the two-point function (5.7). The relevant set of non-planar diagrams is depicted in figure

4. A similar set of diagrams is obtained from (b) in figure 2. The number of diagrams in

these series grows as J2.

There are three sets of diagrams with the topologies in figure 4. The three sets can

be obtained as non-planar deformations of the three diagrams in figure 3. Corresponding
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Figure 4: Non-planar contributions surviving in the BMN limit.

diagrams in the three series differ in the number of Z̄ lines between the two ϕi impurities

in the operator Ō2, i.e. they involve different terms in the sum in (5.6). This implies that

adding up the three sets does not generate a factor such as (5.10) which would give a 1/J

suppression as in (5.9).

In the case of the series obtained deforming the second diagram in figure 3 all the

diagrams correspond to q = 0 in the operator Ō2, whereas in the other two series the

diagrams have Z̄ lines originating between the two ϕi lines and thus correspond to different

values of q. The leading large-N contribution from the sum of the three series corresponding

to the diagrams in figure 4 and the analogous ones obtained from (b) in figure 2 is

1√
J

(
g2
YM

N

8π2

)J+2

1√
J

(
g2
YM

N

8π2

)J+3

1

g4
YM

g2(J+6)
YM

NJ+2

×
J∑

k=0

(J − k)
(
1 − 2 e−2πi(k+1)n/J + e−2πikn/J

)
f(x1, x2)

∼
g3

YM
J

N1/2

(
1

2
+

i

2nπ

)
f(x1, x2) =

(
1

2
+

i

2nπ

)
(g2)

2 (
λ′

)3/2
f(x1, x2) , (5.11)

where we have used

J∑

k=0

(J − k)
(
1 − 2 e−2πi(k+1)n/J + e−2πikn/J

)
∼ J2

(
1

2
+

i

2nπ

)
(5.12)

in the large J limit.

Therefore the two-point function (5.7) receives a non-vanishing contribution at the

leading non-planar level in the BMN limit. The induced contribution to the matrix of

anomalous dimensions is of order (g2)
2 (λ′)3/2.

Elements of the matrix of anomalous dimensions corresponding to non-real operators,

such as those that we have considered, are in general complex. This is the case for the

contribution extracted from the coefficient in (5.11) as well as for the vanishing planar

contribution (5.9). The matrix element corresponding to the conjugate operators is the
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complex conjugate of the one computed here, so that the resulting matrix is hermitian

and has real eigenvalues corresponding to the physical scaling dimensions of the operators.

Notice also that, although half-integer powers of λ′ appear in two-point functions mix-

ing operators with fermionic and bosonic impurities, the anomalous dimensions obtained

resolving the mixing have an expansion in integer powers of λ′.

In this section we have presented a qualitative analysis of the leading perturbative

contributions to a two-point function with mixing of the NS⊗NS and R⊗R sectors. Similar

considerations can be repeated for the string amplitudes of the type described in section

4.2 and the dual gauge theory correlation functions of section 3.2. String amplitudes of

the form (4.4)-(4.5) with k 6= k′ and h 6= h′ vanish at tree level, but are expected to

receive a non-zero contribution at one loop. Therefore the dual two-point functions (3.12)

should have the same behaviour as the mixed ones, i.e. they should vanish in the planar

approximation at all orders in λ′, but they should receive non-vanishing corrections beyond

the zeroth order in g2.
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