日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Quantum Spin Dynamics VIII. The Master Constraint

MPS-Authors
/persons/resource/persons20719

Thiemann,  Thomas
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

cqg6_7_003.pdf
(出版社版), 216KB

付随資料 (公開)
There is no public supplementary material available
引用

Thiemann, T. (2006). Quantum Spin Dynamics VIII. The Master Constraint. Classical and Quantum Gravity, 23(7), 2249-2265.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-4B4E-7
要旨
Recently the master constraint programme (MCP) for loop quantum gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single master constraint. The MCP is designed to overcome the complications associated with the non-Lie-algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the master constraint operator was derived. In this paper, we close this gap and prove that the quadratic form is closable and thus stems from a unique self-adjoint master constraint operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.