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Abstract

Quantum spin chains arise naturally from perturbative large-N field
theories and matrix models. The Hamiltonian of such a model is a
long-range deformation of nearest-neighbor type interactions. Here,
we study the most general long-range integrable spin chain with spins
transforming in the fundamental representation of gl(n). We derive the
Hamiltonian and the corresponding asymptotic Bethe ansatz at the
leading four perturbative orders with several free parameters. Further-
more, we propose Bethe equations for all orders and identify the moduli
of the integrable system. We finally apply our results to plane-wave ma-
trix theory and show that the Hamiltonian in a closed sector is not of
this form and therefore not integrable beyond the first perturbative
order. This also implies that the complete model is not integrable.
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1 Introduction

The discovery of integrability in the AdS/CFT correspondence [1] has raised interest in
types of integrable spin chain models which were hitherto considered as somewhat ex-
otic. These do not only involve the usual nearest-neighbor interactions of two spins, but
also interactions of a larger number of nearby spins [2, 3]. Although the construction of
such a system appeared to be virtually impossible when demanding exact integrability,
several interesting models have been found which display convincing signs of perturbative

integrability [2]: In these models one starts with an exactly integrable nearest-neighbor
Hamiltonian and deforms it with local interactions of a longer range. The integrable
structure is only required to close up to the considered perturbative order in the defor-
mation parameter. However, it should in principle be possible to extend the analysis to
an arbitrary order.

In these systems, the range of the interactions grows linearly with the perturbative
order. Hence, if one were to transcend the perturbative regime, one would find a truly
long-ranged spin chain. The only examples of such integrable spin chains where the non-
perturbative part is well-understood are the trigonometric Haldane-Shastry chain [4] and,
as its hyperbolic and elliptic generalization, the Inozemtsev chain [5]. These long-range
models involve only spin-spin interactions, but the spin chain Hamiltonians which are
relevant in the context of the AdS/CFT correspondence appear to be more general.

In a conformal gauge theory, predominantly N = 4 supersymmetric Yang-Mills the-
ory (SYM), these spin chains arise from the eigenvalue problem of the dilatation operator
in the planar limit. The interactions of growing range correspond to higher and higher
perturbative corrections to the dilatation operator at small coupling. This relationship
implies that the energy spectrum of the spin chain system translates into the spectrum
of anomalous dimensions in gauge theory. For an integrable system one can then make
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use of the integrable structure of the spin chain system, in particular the Bethe ansatz,
to determine planar anomalous dimensions in field theory [1,6–10]. This vastly simplifies
the determination of these quantities as compared to direct (higher-loop) computations.

Integrable structures have a long history in string theory, too. Of particular interest
here is IIB string theory on AdS5 × S5 which is dual to N = 4 gauge theory and whose
integrability was established only recently following [11]. Intriguingly, the spectrum of
this quantum string theory can be described by Bethe equations as well. The equa-
tions found in [12] are surprisingly similar to the ones found in gauge theory [8]. They
reproduce accurately results of various direct computations in string theory in various
cases [13] as shown in [12, 9, 14, 15]. In fact, the stringy Bethe ansatz also has a spin
chain realization [16], even if its regime of validity does not coincide with perturbative
quantum strings.

In order to gain further insights into the integrable properties of gauge field theories,
closely related matrix models were studied as toy models for integrability in large-N
theories. In these cases, it is the planar part of the matrix model Hamiltonian which is
interpreted as the Hamiltonian of a spin chain system. Due to the finite number of degrees
of freedom, matrix models are technically easier to handle in explicit calculations than
field theories. For these models one can specifically construct an integrable Hamiltonian
[17]. Even more, in some models integrability originates from an underlying action
principle. A particularly interesting matrix model akin to N = 4 SYM is given by
plane-wave matrix theory (PWMT) [18]. In fact, this theory acts as the microscopic
definition of M-theory on an eleven-dimensional plane-wave [18,19]. However, it was also
shown to be derivable from SYM as a consistent truncation on R×S3 [20]. Through this
connection, the one-loop integrability of PWMT is immediately inherited from SYM [20],
but also higher-loop studies uncovered integrable sectors of PWMT [21,22].

For in-depth reviews of the above mentioned topics we would like to refer the reader
to [23] for gauge theory, to [24] for matrix models and to [25,26] for spinning strings.

Currently there is a small zoo of perturbatively integrable spin chains available which
differ in one or another respect. These, however, might appear to be just a few known is-
lands in otherwise uncharted territory. An underlying general framework or classification,
such as the R-matrix formalism or Bethe ansätze for generic algebras and representa-
tions, is yet unknown, although some patterns begin to surface. Here we make the first
attempt at a systematic approach: We will study the most general perturbatively inte-
grable spin chain with spins in the fundamental representation of gl(n) and long-range
interactions. We construct two fundamental spin chain operators, the Hamiltonian Q2

and one higher charge Q3 from the integrable structure, without reference to some un-
derlying large N gauge theory. As a first approximation to full perturbative integrability,
we merely demand commutation of these two operators

[
Q2(λ),Q3(λ)

]
= O(λk+1) . (1.1)

Here λ is a formally small parameter and k the maximum perturbative order we shall
be interested in. This is a minimum requirement for integrability, but apparently it
is also sufficient for our model (to the given accuracy). In this article, we obtain the
most general spin chain of this kind up to fourth order, i.e. k = 4 in (1.1) (Sec. 2 and
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App. A). For the resulting Hamiltonian we perform the asymptotic coordinate space
Bethe ansatz [27,9] and obtain asymptotic Bethe equations for the model (Sec. 3). This
allows us to find patterns in the set of free parameters of the model which might generalize
to arbitrary perturbative orders. For different values of these moduli we recover various
Bethe equations found in the context of AdS/CFT (Sec. 5).

In the second half of these notes, we focus our attention back to gauge theories
and matrix models which have been the starting point for these kinds of perturbatively
integrable models. Our main observation is that for gl(n ≥ 3) the obtained spin chain
operators at subleading orders cannot arise from a large-N gauge theory with at most
four-valent interaction vertices (Sec. 4). Conversely, as the determined spin chain is the
most general integrable one, any spin chain Hamiltonian that is derived from a large-N
gauge theory with at most four-valent interaction vertices and fields in the fundamental
representation of gl(n ≥ 3) cannot be integrable beyond first order. This result has a
severe consequence for PWMT. When determining all closed subsectors of this theory,
we indeed find a closed fundamental su(3) sector (Sec. 6), which is non-integrable by
this general argument. Hence, we have shown that PWMT is—despite the integrable
properties within some sectors at low perturbative orders—certainly not fully integrable!
In contrast, the analog fundamental su(3) sector of N = 4 SYM is not closed beyond
leading order and thus there is no obstruction to integrability. The difference between
both models is that in the full gauge theory the corresponding fields mix with fermions;
these fermions have been projected out in PWMT, along with, sadly, integrability.

2 Perturbatively integrable gl(n) spin chain

In the following we focus on spin chains with spins transforming in the fundamental
representation of gl(n).1 The integrability of a spin chain system is expressed through
the existence of an infinite set of hermitian spin chain charges Qr with r ∈ {2, 3, . . .}, all
commuting with each other

[Qr,Qs] = 0 . (2.1)

Here Q2 represents the spin chain Hamiltonian and Qr≥3 are called higher charges. It is
reasonable to define a total momentum operator Q1 such that exp(iQ1) shifts all spins
by one lattice site. Note however that only the operator exp(iQ1) is well-defined while
its logarithm Q1 is ambiguous.

We also introduce the operator L which counts the number of spins within a spin
chain state, i.e. which measures the spin chain length L. Since in the models under
consideration L commutes with all charges, the full space of states is divided into super-
selection sectors characterized by the spin chain length. Such a sector contains a finite
number of nL states. Therefore the Hamiltonian Q2, restricted to a specific sector, is
nothing but a nL × nL hermitian matrix. It can always be diagonalized by a similar-
ity transformation and the existence of nL − 1 further mutually commuting matrices is
trivial. The distinguishing feature of (most) integrable models is that there exist L local

1We expect the analysis to be equivalent if the symmetry algebra is the superalgebra gl(n|m). For
simplicity of notation we shall nevertheless restrict to gl(n).
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commuting charges Qr which take a generic form independently of the value of L. The
notion of locality will be rendered more precisely in the following. Furthermore, the
charges should also be invariant under the symmetry group of the model.

The construction principle for perturbatively integrable spin chain systems is the
requirement that the spin chain charges can be expanded according to their interaction
range. We write

Qr(λ) =

∞∑

k=0

λkQ(k)
r , (2.2)

where by definition the maximal range of Q(k)
r is r + k, i.e. Q(k)

r acts locally on r + k
adjacent spins. The constant λ is used as a formal expansion parameter. With regard
to gauge theory, λ should be viewed as (’t Hooft) coupling constant and (2.2) as a
perturbation expansion. If the perturbation expansion is truncated at some order in λ,
then the commutation (2.1) is no longer exact, except for the case λ = 0. Therefore
the starting point of the perturbative expansion is an exactly integrable spin chain with
charges Q(0)

r . It is easy to convince oneself that this is a common nearest-neighbor spin
chain. Conversely, the charges Qr(λ) only commute exactly when all terms Q(k)

r are
taken into account. The range of the charges becomes formally infinite at finite λ and
the spin chain should thus be considered a long-range system [2].

Note that the above definition of charges assumes a spin chain of infinite length.
When the range r + k of the interaction exceeds the length of a periodic state of length
L, we need to specify alternative rules for the application of Qr. Unfortunately, the
notion of locality breaks down at this point because the interaction already extends over
the whole state. Therefore our main construction principle disappears and any invariant,
commuting deformation of the charges might be considered integrable. In order to avoid
this complication, we restrict the validity of Qr to O(λL−r).2 Put differently, when
considering the system up to order O(λk), then we assume the spin chains to have length
L ≥ k + r and call this the asymptotic regime.

Now let us introduce a basis for the operators Qr. We will use products of nearest-
neighbor permutations Pi,i+1 to represent gl(n)-invariant interactions of the spins [2].3,4

We abbreviate a sequence of these permutations as

{a1, a2, . . . , al} :=

L∑

i=1

Pi+a1,i+a1+1Pi+a2,i+a2+1 · · ·Pi+al,i+al+1 , {} := L . (2.3)

For details and some useful identities we refer to App. A. The range of a permutation
(2.3) is given by R = max{ai} − min{ai} + 2. We list the permutations of a small

2In gauge theories and matrix models, there are so-called wrapping interactions [3] which set in at
this order. If the model contains double-trace vertices, cf. [28], we should further restrict the validity to
O(λL−r−1) due to interactions involving these vertices [29].

3Any gl(n)-invariant endomorphism of a tensor product of fundamental modules can be written as a
sum of permutations of the modules. Furthermore, any permutation can be decomposed as a product
of permutations of nearest neighbors.

4For the superalgebra gl(n|m) we should replace ordinary permutations by graded ones. Note,
however, that this does not include any of the supersymmetric sectors of matrix models or spin chains,
cf. Sec. 6: There the states do not transform in tensor products of the fundamental representations away
from λ = 0; the representation depends on λ.

4



R Permutations
1 {}
2 {0}
3 {0, 1}, {1, 0}, {0, 1, 0}
4 {0, 2}, {0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {2, 1, 0}, {0, 1, 0, 2}, {0, 1, 2, 1}, {0, 2, 1, 0},

{1, 0, 2, 1}, {1, 2, 1, 0}, {0, 1, 0, 2, 1}, {0, 1, 2, 1, 0}, {1, 0, 2, 1, 0}, {0, 1, 0, 2, 1, 0}
#5 + #9 = #14

5 #15 + #63 = #78
6 #50 + #454 = #504
7 #175 + #3545 = #3720

Table 1: Permutation operators of range R. (The occurrence of operators printed in grey
is restricted when the spin chain originates from gauge theories or matrix models as we will
discuss in Sec. 4.)

range in Tab. 1. The number of all permutations up to range R is given by the formula
R!− (R− 1)!+ 1.5 The first few elements of this sequence are 1, 2, 5, 19, 97, 601, 4321, . . .
which agrees with our findings in Tab. 1.

We now construct the charges Q(k)
2 and Q(k)

3 as a linear combination of the building
blocks of range R ≤ r + k in Tab. 1. We also demand that the charges are hermitian,
Q†

r = Qr, cf. (A.6). This leads to (k + 2)! − (k + 1)! + 1 and (k + 3)! − (k + 2)! + 1

free real coefficients for Q(k)
2 and Q(k)

3 , respectively. We keep track of the number of
free coefficients of the ansatz at a certain perturbative order in Tab. 2. To obtain an
integrable system, we demand that the two charges commute, i.e. at order λk we solve
the equation

k∑

ℓ=0

[
Q(ℓ)

2 ,Q(k−ℓ)
3

]
= 0 . (2.4)

Taking into account the commutation with yet higher charges Qr apparently does not
lead to further restrictions for Q2 or Q3 similar to the observations in [30, 2, 8, 16].6

We have performed the computation up to and including fourth order. Since the
expressions are rather lengthy we present the spin chain operators at the end of the
paper (Tab. 4,5) and only up to second order. At every loop order we are left with some
free parameters, which are not determined by (2.4). These correspond to various kinds
of degrees of freedom of the system: The parameters αℓ(λ), βr,s(λ) are moduli which
govern the propagation and scattering of spin flips induced by the application of Q2 onto
the spin chain. These will be explained further in the next section. The parameters
γr,s(λ) correspond to taking linear combinations of commuting charges which still obey
the integrability relation (2.1). Finally, ǫk,ℓ(λ) are a set of parameters which affect the

5The formula is explained as follows: There are R! local permutations with a maximum range R.
However, the interactions of the form {a1, . . . , al}−{a1 +1, . . . , al +1} lead to telescoping sums in (2.3);
they do not act on periodic states and we discard them. These are constructed from interactions of
range R − 1 except for the trivial {}. Therefore we drop (R − 1)! − 1 interactions from the original R!.

6For more rigorous statements, one might consider Yangian structures [31].
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± λ0 λ1 λ2 λ3 λ4

ansatz for Hamiltonian Q2 2 5 19 97 601
ansatz for third charge Q3 + 5 19 97 601 4321
constraint from commutation − 2 16 102 666 4807
undetermined coefficients = 5 8 14 32 115
αℓ (rapidity map) − 0 1 2 3 4
βr,s (dressing factor) − 0 0 1 3 6
γ2,s (eigenvalue Hamiltonian) − 2 3 4 5 6
γ3,s (eigenvalue third charge) − 3 4 5 6 7
ǫk,l (similarity transformations) = 0 0 2 15 92
trivial similarity transformations + 1 2 3 4 5
all similarity transformations = 1 2 5 19 97

Table 2: Number of free parameters. The parameters αk, βr,s characterize different spin chain
systems while γr,s fixes linear combinations of the charges. The parameters ǫk,l correspond to
similarity transformations of a given spin chain system and do not influence the spectrum.

eigenvectors of the charges, but not their spectrum. Hence they correspond to similarity
transformations of the spin chain operators. The number of the various parameters are
listed in Tab. 2. by adding up the lines. Note that the number of parameters ǫk,ℓ corre-
sponding to similarity transformations matches up with our expectations: At order λk

we may use any permutation of range R ≤ k, cf. Tab. 1, to generate a similarity trans-
formation. Note, however, that the transformations generated by the algebra of charges
L,Q2,Q3, . . . are trivial by (2.1). Hence there is one parameter for each permutation
structure less one for each commuting charge of suitable range.

3 Bethe Ansatz

We now perform the nested asymptotic coordinate space Bethe ansatz [27] as outlined
in [9,10]. Here, we will merely state the results of this analysis in a form which highlights
the different types of free parameters of the system.

A state is described by a set of Bethe roots uℓ,k. The label ℓ = 1, . . . , n−1 indicates the
flavor of the Bethe root, i.e. its level in the nested Bethe ansatz. The label k = 1, . . . , Kℓ

indexes the set of Bethe roots of flavor ℓ, where Kℓ is the total number of Bethe roots
of that kind.

Let us first of all present the Bethe equations and then describe all the various required
definitions. The main Bethe equation at level ℓ = 1 reads

1 =

(
x(u1,k − i

2
)

x(u1,k + i
2
)

)L K1∏

j=1
j 6=k

(
u1,k − u1,j + i

u1,k − u1,j − i
exp

(
2iθ(u1,k, u1,j)

)) K2∏

j=1

u1,k − u2,j − i
2

u1,k − u2,j + i
2

.

(3.1)
This equation is similar in form to the equation proposed in [8,12]. The remaining aux-
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iliary Bethe equations are as usual for the algebra gl(n).7 This follows straightforwardly
from the fact that the level-2 spin chain is of nearest-neighbor type and has manifest
gl(n − 1) invariance.8 For levels ℓ = 2, . . . , n − 2 the Bethe equations are given by [32]

1 =

Kℓ−1∏

j=1

uℓ,k − uℓ−1,j − i
2

uℓ,k − uℓ−1,j + i
2

Kℓ∏

j=1
j 6=k

uℓ,k − uℓ,j + i

uℓ,k − uℓ,j − i

Kℓ+1∏

j=1

uℓ,k − uℓ+1,j − i
2

uℓ,k − uℓ+1,j + i
2

(3.2)

and for the final level ℓ = n − 1 by

1 =

Kn−2∏

j=1

un−1,k − un−2,j − i
2

un−1,k − un−2,j + i
2

Kn−1∏

j=1
j 6=k

un−1,k − un−1,j + i

un−1,k − un−1,j − i
. (3.3)

We now explain the rapidity map x(u) and the dressing phase θ(u1,k, u1,j).
The rapidity map x(u) shall be defined implicitly through its inverse

u(x) = x +
∞∑

ℓ=0

αℓ(λ)

xℓ+1
. (3.4)

This is the first place where some of the undetermined coefficients within the spin chain
Hamiltonian derived in the previous section enter the Bethe ansatz. The freedom is such
that one may choose for the αℓ(λ) arbitrary series starting at order O(λℓ+1):

αℓ(λ) =
∞∑

k=ℓ+1

λkα
(k)
ℓ . (3.5)

If, however, the Hamiltonian Q2 is to conserve parity as defined in (A.7), then one must
set αℓ = 0 for all odd ℓ. The inverse map from the u-plane to the x-plane has the
following form

x(u) =
u

2
+

u

2

√√√√1 − 4
∞∑

ℓ=0

α̃ℓ(λ)

uℓ+2
. (3.6)

The parameters α̃ℓ(λ) are fixed uniquely by the components of αk(λ) in (3.5). Here
α̃0(λ) starts at order O(λ) and α̃ℓ≥1(λ) at O(λ[ℓ/2]+2). The coefficients αℓ(λ) govern the
propagation of spin flips in the ferromagnetic vacuum.

Next we present the dressing phase

θ(u1, u2) =
∞∑

r=2

∞∑

s=r+1

βr,s(λ)
(
qr(u1) qs(u2) − qs(u1) qr(u2)

)
. (3.7)

This is a generalization of the phase proposed in [12,24] to the case of a parity-violating
Hamiltonian. It is the second place where some other free coefficients of the spin chain

7This might also work for gl(n|m) with fundamental spins by substituting the usual auxiliary Bethe
equations for this superalgebra.

8We thank M. Staudacher for discussions of this point.
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Hamiltonian enter the Bethe ansatz. They are in one-to-one correspondence with the
functions βr,s(λ) which start at order O(λs−1):

βr,s(λ) =

∞∑

k=s−1

λkβ(k)
r,s . (3.8)

These functions govern the scattering of two spin flips. Here parity conservation demands
βr,s = 0 for all even r + s. For (3.7) we also define the elementary magnon charges as

qr(u) =
1

r − 1

(
i

x(u + i
2
)r−1

− i

x(u − i
2
)r−1

)
. (3.9)

The solutions to the above Bethe equations define the set of periodic eigenstates of
the system. Finally, we have to specify the eigenvalues of the Hamiltonian and higher
charges in terms of the rapidities uℓ,k. First, we consider the eigenvalue of the shift
operator exp(iQ1) which is given by

exp(iQ1) =

K1∏

k=1

x(u1,k + i
2
)

x(u1,k − i
2
)

. (3.10)

In particular, cyclic states obey the zero-momentum condition exp(iQ1) = 1. The eigen-
values of the spin chain charges are determined by the formula

Qr = γr,0(λ) L +

∞∑

s=2

γr,s(λ) Q̄s , Q̄s =

K1∑

k=1

qs(u1,k). (3.11)

The functions γr,s(λ) represent a normalization matrix of the charges Qr in terms of the
normalized charges Q̄s and the length L. Again, this freedom is reflected by undetermined
coefficients in the spin chain operators which we determined in the previous section by
commutation. They allow for arbitrary functions γr,s(λ) starting at order O(λmax(s−r,0)):

γr,s(λ) =

∞∑

k=max(s−r,0)

λkγ(k)
r,s . (3.12)

Note that for a system with parity conservation we must set γr,s(λ) = 0 whenever r + s
is odd.

This concludes our presentation of the Bethe ansatz. The system with arbitrary
parameters α, β, γ describes the same spectra as the commuting Hamiltonians we have
found in Sec. 2 up to fourth order O(λ4). The parameters ǫ merely influence the eigen-
vectors and therefore do not appear in the Bethe equations. We believe that at higher
orders and for higher charges the conjectured form of the equations and the implied
number of free parameters remains correct although we certainly do not claim to have a
proof for our conjecture.
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Figure 1: Three planar Feynman diagrams of range R = 4. The left interaction contains at
least 3 four-vertices and appear at three loops, i.e. O(λ2). The middle one contains at least 4
four-vertices and can appear only at four loops, i.e. O(λ3). The right one may (in principle)
represent a fermionic loop and could also arise at four loops.

4 Constraints from matrix and gauge theories

Our motivation to study long-range spin chain lies in the fact that they naturally arise in
the large-N limit of U(N) matrix models and gauge theories [2,20]. Single-trace states9

are in one-to-one correspondence with cyclic states of a closed quantum spin chain. A
matrix or a field inside the trace corresponds to a site of the spin chain; its flavor becomes
the orientation of the spin. In the large-N limit, the sector of single-trace states is closed
and symmetry generators acting on states can be identified with spin chain operators.
In particular, the Hamiltonian of matrix quantum mechanics becomes the spin chain
Hamiltonian. Likewise, for a conformal gauge theory we can identify the dilatation
generator with the spin chain Hamiltonian.10 For a review of this correspondence, see
[23, 26, 24].

The spin chain Hamiltonians which correspond to perturbative matrix models and
gauge theories have a somewhat restricted form with respect to the general construction
in the previous section. This is because the matrix model Hamiltonian and the gauge
theory dilatation generator receive perturbative corrections which can be computed from
Feynman diagrams. We illustrate the below arguments in Fig. 1. First of all, it is
straightforward to see that a connected planar Feynman diagram at order λk can attach
to k + 1 nearest neighbors only: The diagram contains j four-valent and 2k − 2j three-
valent vertices and therefore has no more than 2k + 2 external legs. These are split into
ingoing legs, which connect to the state, and outgoing legs, which become fields of the
new state. Here we focus on sectors where the number of spins in the state is preserved,
hence an interaction at O(λk) acts on k+1 adjacent spin sites at a time. This is precisely
the same constraint as for λQ2(λ), see Sec. 2. Note that the additional power of λ was
introduced because the interactions at O(λ0) are trivial: they do not contain vertices. A
contribution at O(λk+1) to the planar gauge theory dilatation operator D or the planar
matrix model Hamiltonian H is equivalent to a O(λk) contribution in the spin chain
Hamiltonian Q2. Explicitly, the spin chain Hamiltonian is defined, respectively, as

D(λ) = D0 + λQ2(λ) or H(λ) = H0 + λQ2(λ) . (4.1)
9In gauge theory, the term ‘state’ shall refer to a gauge-invariant local operator.

10Here the logarithm of the radial coordinate can be viewed as a time coordinate. In this picture the
gauge theory can be viewed as a matrix quantum mechanics of infinitely many matrices which represent
the modes of the fields in the transverse space.
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Furthermore, we focus on matrix models or gauge theories with at most four-valent
elementary vertices. This has a subtle effect on the set of allowed interactions with
maximum range, c.f. Fig. 1: Any interaction should be thought of as composed from the
elementary vertices. If there are conserved flavors, then the charges can only flow between
the spin chain sites at the vertices. However, in the planar limit, a vertex can at most
permute the flavors of two nearest neighbors. Therefore a contribution at order λk in
the matrix model can be composed from no more than k nearest-neighbor permutations.
This means that terms at O(λk) in Q2 should be built out of symbols {a1, . . . , al} with
no more than k + 1 entries. In other words, the symbols in grey font in line R = 2 + k
of Tab. 1 are not permitted in Q(k)

2 . Note however, that this argument is rigorous only
for interactions with maximum range at each order. Interactions of subleading range
may contain internal loops, which could, in principle, induce arbitrary flavor flow within
the interaction. Nevertheless, the restriction appears to apply also for interactions with
non-maximal range.

The first term for which the latter restriction applies is {0, 1, 0} at O(λ). This term

has maximum allowed range R = 3 for Q(1)
2 . It however consists of three elementary

permutations, which is incommensurate with four-valent matrix models. This is some-
what disappointing, as this terms does appear in Q2 in Tab. 4 for almost all values of
the parameters. This would seem to imply that a Hamiltonian from a four-valent matrix
model cannot be integrable.

One immediate way of avoiding this no-go theorem is to set α0(λ) = O(λ2) instead
of α0(λ) = O(λ) as it would be allowed in general. Then the term {0, 1, 0} would arise
only at O(λ2) where it is indeed permitted. Unfortunately, this makes the contribution
at O(λ) trivial which is not what is expected.

The only suitable evasion of the no-go theorem is to restrict to gl(2) symmetry.
Then there is an epsilon identity which expresses {0, 1, 0} as a linear combination of
{0, 1}, {1, 0}, {0}, {}, see (A.5), all of which are allowed. Remarkably, this works even at
higher orders, we merely need to postpone the appearance of βr,s(λ) to

βr,s(λ) = O(λr+s−2) (4.2)

instead of βr,s(λ) = O(λs−1). The reason is that the structure coupling to βr,s appears
to be composed from r + s − 1 elementary permutations.

Finally, the matrix models usually preserve a U(N) charge conjugation symmetry.
This corresponds to parity conjugation for spin chains and hence we need to set parity-
violating parameters to zero

αℓ(λ) = 0 for ℓ odd,

βr,s(λ) = 0 for r + s even,

γr,s(λ) = 0 for r + s odd. (4.3)

Parity conjugation sends all uℓ,k to −uℓ,k. It is then easy to see that the Bethe equations
(3.1,3.2,3.3) remain valid and the charges (3.11) are not modified if the above parameters
are removed.
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5 Coefficients for specific models

Here we list the coefficients for some specific models studied in the literature. The Bethe
ansatz for the su(2) sector of N = 4 superconformal Yang-Mill theory [2] was found
in [7, 8]. Setting λ = g2

YM
N/16π2, we have

αℓ(λ) = α̃ℓ(λ) = λ δℓ,0 , βr,s(λ) = 0 , γ2,r(λ) = 2, δ2,r . (5.1)

This result is rigorous at O(λ2) corresponding to three loops in gauge theory [3, 33].
Beyond that, there may or may not arise corrections.

A corresponding Bethe ansatz for the su(2) sector of quantum strings on AdS5 × S5

was conjectured in [12]. Here λ = R4/16π2α′2 is the AdS/CFT dual parameter and we
have

αℓ(λ) = α̃ℓ(λ) = λ δℓ,0 , βr,s(λ) = λrδr+1,s , γ2,r(λ) = 2 δ2,r . (5.2)

The coefficients βr,s(λ) are known to receive corrections at subleading orders in 1/
√

λ [15].
Note that this Bethe ansatz is not based on a spin chain. Nevertheless, the structures
in this Bethe ansatz are compatible with the form we have derived here. Thus, when we
extrapolate (5.2) naively to small λ we do obtain a spin chain as observed in [16]. The
Hamiltonian of this ‘string’ chain agrees with the one given in Tab. 4.

For the su(2) sector of plane-wave matrix theory, see Sec. 6, the Hamiltonian was
computed up to fourth order in λ = 2N/M3 [22]. The non-zero coefficients of the
corresponding spin chain system are

α0(λ) = α̃0(λ) = λ − 7
2
λ2 + 71

2
λ3 + O(λ4) ,

β2,3(λ) = 13
16

λ3 + O(λ4) ,

γ2,2(λ) = 2 − 7λ + 71λ2 − 7767
8

λ3 + O(λ4) . (5.3)

A similar four-valent matrix theory with so(6) symmetry has an su(2) sector whose
Hamiltonian is integrable only up to order O(λ3) [34]. The coefficients to describe the
spectrum at this order are given by

α0(λ) = α̃0(λ) = λ − 55
2
λ2 ,

βr,s(λ) = 0 ,

γ2,0(λ) = 9 − 615
4

λ + 39123
8

λ2 ,

γ2,2(λ) = 2 − 37λ + 4601
4

λ2 . (5.4)

Finally, let us consider the hyperbolic Inozemtsev spin chain [5]. This model is char-
acterized by a Q2 which consists only of permutations of two (not necessarily adjacent)
spins. The interaction strength is governed by the Weierstrass function with imaginary
period iπ/κ. Up to O(λ3), where λ =

∑∞

n=1 4π2/ sinh2(κn), our coefficients need to be
adjusted as follows [8]:

α0(λ) = α̃0(λ) = λ + O(λ4) ,

α2(λ) = α̃2(λ) = λ3 + O(λ4) ,

βr,s(λ) = 0 ,

γ2,2(λ) = 2 + 6λ − 20λ2 + 120λ3 + O(λ4) ,

γ2,4(λ) = 6λ2 − 30λ3 + O(λ4) . (5.5)
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6 Plane-wave matrix theory not fully integrable

In this section we show that PWMT is not completely integrable because it possesses a
non-integrable su(3) subsector. We give two different arguments to prove this statement.
For the first reasoning we find all closed subsectors of PWMT among which there is a
su(3) subsector with spins in the fundamental representation. As an immediate con-
sequence of the discussion in Sec. 4, this sector cannot be integrable since the PWMT
interactions are indeed at most four-valent. The second reasoning is based on the par-
ity invariance of PWMT and demonstrates that there does not exist any parity-odd
commuting charge in the considered su(3) subsector and hence no integrability.

Let us recall some basic properties of PWMT. Its global symmetry algebra is su(4|2).
The elementary matrix excitations M †

AB transform under the seventeen-dimensional anti-
symmetric two-tensor representation of this algebra. The fundamental su(4|2) index
A = 1, 2, 3, 4| 5, 6 = (a|α) splits into a commuting su(4) index a and an anti-commuting
su(2) index α. A generic single-trace state is given by

Tr
(
M †

A1B1
M †

A2B2
. . .M †

ALBL

)
|0〉 . (6.1)

It corresponds to a cyclic state of an su(4|2) spin chain of length L with spins transforming
in the representation with Dynkin labels [0, 1, 0| 0| 0].

A subsector of the theory is spanned by the states which are built from only a subset
of all elementary excitations. A subsector is called closed, if the states of this subsector
do not mix with other states under the application of the Hamiltonian. E.g. the closed
subsector su(2) discussed in Sec. 2 is obtained from the two bosonic excitations

{Z† ≡ M †
12 , W † ≡ M †

13} . (6.2)

In order to find a closed subsector, we need to look for conserved ‘quantum numbers’
that can be used to define the subsector. These quantum numbers are provided by the
eigenvalues of the Cartan generators of su(4|2):

A1 = n1 − n2 , A2 = n2 − n3 , A3 = n3 − n4 , A4 = n4 + n5 , A5 = n5 − n6 , (6.3)

where ni is the number of indices in a state which assume the value i. These are appro-
priate quantum numbers because the free PWMT Hamiltonian is actually an element of
the Cartan subalgebra and thus preserves these values.

Now, any linear combination A of these Cartan generators which is a positive semi-
definite operator on the elementary excitations defines a closed subsector [35, 23]. The
excitations of this subsector are the ones which lie in the kernel of A.

As an example we may take A = 2A4 − A5 = 2n4 + n5 + n6. Then we have A = 0
for

{Z† ≡ M †
12 , W † ≡ M †

13 , Ȳ † ≡ M †
23} . (6.4)

and A > 0 for all other excitations. Hence any state with A = 0 can only be built from
these three special oscillators, as any other excitation has a strictly positive eigenvalue
of A. In fact these three oscillators transform according to the fundamental represen-
tation of the su(3) subalgebra which commutes with A. In this way, A defines a closed
fundamental su(3) subsector.
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sector Dynkin labels excitations A
light boson M †

12 1|0|0 −A1 + 2A3 + 5A4 − 2A5

fermion M †
16 0|1|0 −A1 + A2 + 3A3 + 5A4 − A5

heavy boson M †
66 0|0|1 A1 + 2A2 + 3A3 + 4A4

su(2) [1] 2|0|0 −A1 + A3 + 4A4 − 2A5

su(1|1)− (light) [1] 1|1|0 −A1 + 2A3 + 4A4 − A5

su(1|1)+ (heavy) [2] 0|1|1 A2 + 2A3 + 3A4

su(2|1)− (light) [1| 0] 2|1|0 −A1 + A3 + 3A4 − A5

su(2|1)+ (heavy) [0| 1] 1|2|1 A3 + 2A4

su(3) [0, 1] 3|0|0 2A4 − A5

su(3|1) [0, 1| 0] 3|3|1 A4

su(3|2) [1, 0| 0| 0] 3|2|0 −A1 + A3 + 2A4 − A5

su(4|2) [0, 1, 0| 0| 0] 6|8|3 0

Table 3: Closed sectors of PWMT with residual symmetry algebra, representation of spins,
excitation content in terms of light bosons, fermions and heavy bosons, and a choice for the
Cartan generator A whose kernel describes the sector.

su(4|2)
@R su(3|2)

-

-
su(3|1)
@R su(2|1)−

-

-
su(2|1)+
@R su(1|1)−

-

-
su(1|1)+
@R M16

- M66

?

?
?su(3)

@R su(2)
- M12

Figure 2: Structure of closed sectors of PWMT. When moving along a vertical/horizontal line,
the index range of α/a is reduced by one, i.e. one index value is deactivated. When moving
along a diagonal line, one index a is fixed to a particular value.

PWMT possesses a number of closed subsectors with fields in different representa-
tions; we list all of them in Tab. 3 and show their relations in Fig. 2. According to the
general discussion in Sec. 4, it is the presence of the fundamental su(3) subsector that
spoils the full integrability of the model beyond leading order.

Now, we also verify the non-integrability of this sector by an explicit calculation. As
the PWMT Hamiltonian is parity invariant, we may work with states of definite parity
P = ±. The parity-odd charges then have the property to pair up multiplets of opposite
parity (or annihilate the multiplets in case there is no suitable partner multiplet of op-
posite parity in the spectrum). The commutation of these charges with the Hamiltonian
implies a degenerate energy eigenvalue for both states of a parity pair. If this degeneracy
is violated in a parity conserving theory, integrability must be broken [30, 2].

So let us consider multiplets with Dynkin labels [1, 1, 1| 1| 0] of su(4|2). This multiplet
has representatives in the su(3) subsector (6.4). These are not at the same time contained
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in the su(2) subsector (6.2) where degeneracy would be guaranteed by the established
integrability at the considered perturbative order [21]. This multiplet is realized twice
in the model, once with positive parity and su(3) highest weight state

|+〉 =
(
Tr Ȳ †{[W †, Z†], Z†}[W †, Z†]

+ Tr W †{[Z†, Ȳ †], Z†}[W †, Z†]

+ Tr Z†{[Ȳ †, W †], Z†}[W †, Z†]
)
|0〉

(6.5)

and another time with negative parity and highest weight state

|−〉 =
(
−Tr Z†Z†W †W †Z†Ȳ † − Tr Z†Z†W †Z†W †Ȳ † + Tr Z†Z†Ȳ †W †Z†W †

+ Tr Z†Z†Ȳ †Z†W †W † + Tr Z†Z†Z†W †W †Ȳ † − Tr Z†Z†Z†Ȳ †W †W †
)
|0〉 .

(6.6)

When we act with the spin chain Hamiltonian

Q(0)
2 = 2{} − 2{0} , (6.7)

Q(1)
2 = −15{} + 19{0} − 2({0, 1} + {1, 0}) , (6.8)

corresponding to PWMT in the su(3) sector at two loops [21], we find that the zeroth
order degeneracy is lifted by the first order corrections:

(Q(0)
2 + λQ(1)

2 )|+〉 = (10 − 73λ)|+〉 , (6.9)

(Q(0)
2 + λQ(1)

2 )|−〉 = (10 − 65λ)|−〉 . (6.10)

Recalling that PWMT is derived from SYM and therefore, in some sense, contained
in SYM, it is natural to ask why the integrability is not broken in the mother theory,
too. The reason is simply that the su(3) sector containing the fields (6.4) is not closed in
SYM. There occurs mixing with two fermionic fields which make it an integrable su(3|2)
sector [3]. In the derivation of PWMT these fermionic degrees of freedom have been
projected out and integrability has vanished with them.

7 Conclusions and outlook

We have investigated the structure of the Hamiltonian and the Bethe ansatz of the most

general integrable spin chain with the following properties:

• spins transforming in the fundamental representation of gl(n) and

• long-range interactions suppressed by λR−2 where R is their range.

In the current absence of rigorous proofs of integrability for these systems, we have made
the assumption that it is sufficient to ensure the existence of at least one conserved
charge, cf. [30].

The derivation has been carried out explicitly up to fourth order in the formal ex-
pansion parameter λ, i.e. up to interactions of range six. The discovered form of the
Bethe ansatz equations, however, suggests an elegant extension to all orders. According
to this, the moduli of the system are expressed through four sets of analytic functions in
the expansion parameter λ:
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• the rapidity maps αℓ(λ) with ℓ = 0, 1, 2, . . . are of order O(λℓ+1) and describe the
propagation of spins along the spin chain,

• the dressing phases βr,s(λ) with r, s = 2, 3, 4, . . . , r < s are of order O(λs−1) and
describe the interaction of spins,

• the elements of the normalization matrix γr,0(λ), γr,s(λ) with r, s = 2, 3, 4, . . . are of
order O(λmax(s−r,0)) and describe the mixing between the commuting charges, and

• the similarity parameters ǫk,ℓ(λ) with ℓ = 1, . . . , (k+1)!−2k!+(k−1)!−1 are of order
O(λk), describe unitary changes of the basis and consequently have no influence on
the energy spectrum or the Bethe equations.

Supposing that our conjecture is correct, every spin chain with the aforementioned prop-
erties is realized by one particular choice of the moduli. Conversely, for every choice of
moduli there would be a corresponding spin chain Hamiltonian. We have proven the
validity of our conjecture up to fourth order in λ.

We have found that, remarkably, the form of the Hamiltonian and the set of physical
moduli11 is universal; it is independent of the rank n of the symmetry algebra gl(n).
Another observation is that any nearest-neighbor Hamiltonian which is deformed by the
interactions we have described, must have interactions of unbounded range in order to
be exactly integrable [2]; it must be a long-range spin chain.

We furthermore found that the spin chain Hamiltonian derived from PWMT in an
su(3) subsector is not of the general form and therefore not integrable, a fact that we also
demonstrated in an explicit calculation. This also implies that PWMT is not integrable
as a whole. The established data concerning integrability in PWMT are hence:

• one-loop integrability in the complete model [35, 6],

• at least three-loop integrability in the su(3|2) sector [3] and

• at least four-loop integrability in the su(2) sector [21, 22].

Here we have added:

• no integrability in the su(3) sector beyond one-loop and therefore

• no integrability of the full Hamiltonian beyond one-loop.

Note that the perturbative non-integrability of the complete model does not exclude
potential integrability in the su(3|2) and su(2) sectors to all orders.

To gain a better understanding of integrability in PWMT, it would be interesting to
derive and investigate the Hamiltonian in the various non-trivial vacua of the theory [36].
As the elementary representation content in vacua with increasing M5-brane number
approaches that of N = 4 SYM, there is some hope of enhancing or even recovering full
integrability.

As a further development of our results one could consider the generalization to
spins in an arbitrary representation of gl(n). Do these generalizations lead to integrable
systems, what are their moduli and what are the Bethe equations? As a first step, one

11The number of ‘unphysical’ parameters ǫr,s may depend on the rank because of structures which
are identically zero for small values of n.
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might consider totally symmetric and anti-symmetric representations. These have only
one non-vanishing Dynkin label and the nested Bethe ansatz is conceptually simpler than
in the case of general representations.
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A Permutation operators

It is very convenient to represent the spin chain operator by a product of nearest-neighbor
permutation denoted as in (2.3) by

{a1, a2, . . . , al} :=

L∑

i=1

Pi+a1,i+a1+1Pi+a2,i+a2+1 · · · Pi+al,i+al+1 , {} := L , (A.1)

where L measures the spin chain length L. The indices are clearly to be understood
modulo L. In terms of Pauli matrices, we have e.g.

{0} =
L∑

i=1

Pi,i+1 =
L∑

i=1

1

2
(1 + ~σi · ~σi+1) . (A.2)

It is helpful to visualize the sequence of transpositions in such an operator as for ex-
ample in Fig. 3. We call the product of transpositions (i.e. the right hand side of (2.3)
without the sum), a local interaction. The total action of a permutation is given by
applying the local interaction to all different positions along the state and summing
these contributions. The number R := max{ai} −min{ai}+ 2 is called the range of the
permutation {a1, a2, . . . , al}, since this is the number of adjacent fields which are hit by
the local interaction at once. The quantity l is called the length of the permutation and

{2, 1, 0, 2} →

t t t t

0 1 2 3

}
2 =̂ P23��@@

0 =̂ P01,��@@
1 =̂ P12,��@@

2 =̂ P23,��@@
{

= P23P12P01P23.

Figure 3: Graphical representation of the permutation symbol {2, 1, 0, 2}.
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counts the number of elementary transpositions. In the language of Feynman diagrams
l corresponds to the number of four-valent vertices as discussed in Sec. 4.

There are some relations between these permutations operators:

{−−, a, a,−−} = {−−,−−} ,

{−−, a, b,−−} = {−−, b, a,−−} , for |a − b| ≥ 2

{−−, a, a + 1, a,−−} = {−−, a + 1, a, a + 1,−−} ,

{a1, a2, . . .} = {a1 + b, a2 + b, . . .} . (A.3)

Furthermore we can use the fact that the anti-symmetrizer of n + 1 spins vanishes for
gl(n) and therefore replace

{−−, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, . . . , n − 1, n − 2, . . . , 1, 0, −−} (A.4)

by a sum of permutations of shorter range. E.g. in gl(2) we have

{−−, 0, 1, 0,−−} = {−−, 0, 1,−−} + {−−, 1, 0,−−}
− {−−, 0,−−} − {−−, 1,−−} + {−−,−−} . (A.5)

Finally, we define hermitian conjugation by

{a1, . . . , al}† = {al, . . . , a1} , (A.6)

and parity conjugation by

{a1, . . . , al}♯ = {−a1, . . . ,−al} . (A.7)
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Q̄2(λ) = ({} − {0})

+ α0(λ) (−3{} + 4{0} − {0, 1, 0})

+ α0(λ)2(20{} − 29{0} + 10{0, 1, 0} − {0, 1, 2} − {2, 1, 0}+ {0, 2, 1} + {1, 0, 2}
− {0, 1, 2, 1, 0})

+ i
2
α1(λ) (−6{0, 1}+ 6{1, 0} + {0, 1, 2, 1} − {1, 2, 1, 0}+ {0, 1, 0, 2} − {0, 2, 1, 0})

+ 1
2
β2,3(λ) (−4{} + 8{0} − 2{0, 1} − 2{1, 0} − 2{0, 2}
− 2{0, 1, 2} − 2{2, 1, 0}+ 2{0, 2, 1}+ 2{1, 0, 2}
+ {0, 1, 2, 1}+ {1, 2, 1, 0}+ {0, 1, 0, 2}+ {0, 2, 1, 0} − 2{1, 0, 2, 1})

+ iǫ2,1(λ) ({1, 0, 2} − {0, 2, 1})
+ iǫ2,2(λ) (−{0, 1, 2, 1}+ {1, 2, 1, 0}+ {0, 1, 0, 2} − {0, 2, 1, 0})

+ O(λ3)

Table 4: Normalized Hamiltonian printed up to second order
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Q̄3(λ) = i
2
({0, 1} − {1, 0})

+ i
2
α0(λ) (6{1, 0} − 6{0, 1} + {0, 1, 2, 1} − {1, 2, 1, 0}+ {0, 1, 0, 2} − {0, 2, 1, 0})

+ i
2
α0(λ)2(46{0, 1} − 46{1, 0} − 12{0, 1, 0, 2} − 12{0, 1, 2, 1}+ 2{0, 1, 2, 3}
− 2{0, 1, 3, 2}+ 12{0, 2, 1, 0} − 2{0, 2, 1, 3}+ 2{0, 3, 2, 1} − 2{1, 0, 2, 3}
+ 2{1, 0, 3, 2}+ 12{1, 2, 1, 0}+ 2{2, 1, 0, 3} − 2{3, 2, 1, 0}+ {0, 1, 0, 2, 3, 2}
+ {0, 1, 2, 1, 0, 3}+ {0, 1, 2, 3, 2, 1} − {0, 1, 3, 2, 1, 0}− {0, 2, 3, 2, 1, 0}
− {1, 2, 3, 2, 1, 0})

+ 1
4
α1(λ) (−20{} + 24{0} − 8{0, 1, 2} + 6{0, 2, 1}+ 6{1, 0, 2} − 8{2, 1, 0}
+ 2{0, 1, 0, 2, 1}+ {0, 1, 0, 2, 3} − {0, 1, 0, 3, 2} − 4{0, 1, 2, 1, 0}
+ 2{0, 1, 2, 1, 3}+ {0, 1, 2, 3, 2} − 2{0, 1, 3, 2, 1} − {0, 2, 1, 0, 3}
− {0, 2, 3, 2, 1}+ {0, 3, 2, 1, 0}+ 2{1, 0, 2, 1, 0} − {1, 0, 2, 3, 2}
− 2{1, 2, 1, 0, 3}+ 2{1, 3, 2, 1, 0}+ {2, 3, 2, 1, 0})

+ i
4
β2,3(λ) (−4{0, 1}+ 4{1, 0} + 4{0, 1, 2}+ 2{0, 1, 3}+ 2{0, 2, 3} − 2{0, 3, 2}
− 2{1, 0, 3} − 4{2, 1, 0} − 2{0, 1, 0, 2} − 2{0, 1, 2, 1}+ 4{0, 1, 2, 3}
− 4{0, 1, 3, 2}+ 2{0, 2, 1, 0} − 4{0, 2, 1, 3}+ 4{0, 3, 2, 1} − 4{1, 0, 2, 3}
+ 4{1, 0, 3, 2}+ 2{1, 2, 1, 0}+ 4{2, 1, 0, 3} − 4{3, 2, 1, 0}+ 2{0, 1, 0, 2, 1}
− {0, 1, 0, 2, 3}+ {0, 1, 0, 3, 2} − 2{0, 1, 2, 1, 3} − {0, 1, 2, 3, 2} − {0, 2, 1, 0, 3}
+ 2{0, 2, 1, 3, 2} − {0, 2, 3, 2, 1}+ {0, 3, 2, 1, 0} − 2{1, 0, 2, 1, 0}
+ 2{1, 0, 2, 1, 3}+ {1, 0, 2, 3, 2} − 2{1, 0, 3, 2, 1}+ 2{1, 3, 2, 1, 0}
− 2{2, 1, 0, 3, 2}+ {2, 3, 2, 1, 0})

+ 1
2
ǫ2,1(λ) ({0, 1, 0, 2} − {0, 1, 2, 1} − {0, 1, 3, 2}+ {0, 2, 1, 0}
+ {0, 3, 2, 1}+ {1, 0, 2, 3} − {1, 2, 1, 0} − {2, 1, 0, 3})

+ 1
2
ǫ2,2(λ) ({0, 1, 0, 2, 3} − {0, 1, 0, 3, 2} − {0, 1, 2, 3, 2} − {0, 2, 1, 0, 3}
+ {0, 2, 3, 2, 1}+ {0, 3, 2, 1, 0}+ {1, 0, 2, 3, 2} − {2, 3, 2, 1, 0})

+ O(λ3)

Table 5: Normalized third charge printed up to second order
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