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Abstract
The relation between an isotropic model and an anisotropic model in loop
quantum cosmology is discussed in detail, comparing the strict symmetry
reduction with a perturbative implementation of symmetry. While the latter
cannot be done in a canonical manner, it allows one to consider the dynamics
including the role of small non-symmetric degrees of freedom for the symmetric
evolution. This serves as a model for the general situation of perturbative
degrees of freedom in a background-independent quantization such as loop
quantum gravity, and for the more complicated addition of perturbative
inhomogeneities. While being crucial for cosmological phenomenology, it
is shown that perturbative non-symmetric degrees of freedom do not allow
definitive conclusions for the singularity issue and in such a situation could
even lead to wrong claims.

PACS numbers: 04.60.Pp, 04.60.Kz

1. Introduction

By far the most common and extended studies in cosmological models are those admitting
only finitely many or even one gravitational degree of freedom, the scale factor or radius
of the universe a(t) and maybe anisotropy parameters. This is justified in a homogeneous
or isotropic model, symmetries present in our universe at large scales. This is also mainly
implemented in models of quantum gravity, such as in Wheeler–DeWitt quantum cosmology
[1, 2] and loop quantum cosmology [3–5]. That degree of symmetry does not only allow
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insights into phenomenological aspects of the early universe but, in anisotropic models, also
displays the most crucial features of classical singularities.

More realistic models can then be obtained by breaking some of the symmetries imposed
as before. After isotropy the first step is anisotropy, which can often be implemented exactly,
and then inhomogeneity as the crucial one. In the first case (anisotropy), there is still a finite
number of degrees of freedom and usually they do not pose much new technical difficulty.
Conceptually, however, they are essential in particular for a general understanding of the issue
of singularities (see, e.g., [6] for a recent discussion in the context of quantum cosmology).
It is then of interest to discuss anisotropic models at different levels and to see what the
implications for singularities are. Complete quantizations have been done in [7–9] with the
result that their loop quantizations are free of singularities as in isotropic cases [10–12].

Alternatively, one can try to implement anisotropies as perturbations to a quantized
isotropic model and see how correction terms change the dynamical behaviour. In this work,
we develop such a point of view both to shed light on the singularity issue and as a model for
perturbative inhomogeneities. Following [7] where anisotropic models have been quantized in
the loop framework, we introduce suitable anisotropy parameters in that model and implement
conditions for them to be small. (As a first step we take only one anisotropy parameter
of two possible ones which means that there is still a single rotational symmetry axis, a
so-called locally rotationally symmetric (LRS) situation.) This will be discussed in detail
at the kinematical and dynamical levels and results in an evolution equation describing an
anisotropic model perturbatively around an isotropic one. The formulation can also be used
for comparing background-independent theories with theories formulated on a background,
because the isotropic model can be seen as a background for the perturbative anisotropy.

In section 2, we describe the classical models, to be quantized in section 3 both exactly
and in a perturbative manner. This illustrates how symmetric models can be related to a less
symmetric theory at the quantum level. In section 4, we discuss the evolution equation in terms
of the perturbation and its new features compared to the isotropic model. In section 5, we look
at the singularity issue from the perturbative point of view and show that conclusions drawn
in such a situation must be used much more carefully than in a non-perturbative quantization.

2. Classical models

For simplicity, we consider the two simplest models, which are the flat isotropic model and the
Bianchi I model with one additional rotational symmetry (LRS). Since loop quantizations are
based on Ashtekar variables [13, 14] given by a connection Ai

a and a densitized triad Ea
i , we

first introduce these variables. In models, they take special forms corresponding to the fact that
they are required to be preserved by a symmetry transformation up to a gauge transformation.

An isotropic connection and densitized triad for a flat model can always be written as

Aa
i dxa = c̄ dxi (1)

Ei
a ∂

∂xa
= p̄

∂

∂xi
, (2)

in Cartesian coordinates, where the only two remaining components are conjugate to each
other,

{c̄, p̄} = 8π

3
γG (3)

with the Barbero–Immirzi parameter γ [14, 15] and the gravitational constant G. The variable
p̄ contains information about spatial geometry such as the volume

Viso = |p̄|3/2 (4)
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while c̄ is proportional to extrinsic curvature. Both variables are related dynamically as
dictated by the Hamiltonian constraint

Hiso = − 3

8πGγ 2
c̄2
√

|p̄| + Hmatter(p̄) = 0. (5)

Similarly, in the LRS Bianchi I model we have

Ai
a dxaτi = Aτ 1 dx + Aτ 2 dy + cτ 3 dz (6)

Ea
i

∂

∂xa
τ i = pAτ 1∂x + pAτ 2∂y + pcτ

3∂z (7)

with a symplectic structure

{A,pA} = 4πγG, {c, pc} = 8πγG. (8)

There is a residual gauge transformation pA �→ −pA which can be fixed by requiring pA � 0
(see [7, 9] for more details). The volume is now given by

Vaniso =
√

p2
A|pc| (9)

and the Hamiltonian constraint by

Haniso = −(8πG)−1γ −2
(
A2√pA + 2Ac

√
|pc|

)
+ Hmatter(pA, pc) = 0. (10)

To identify the anisotropy as a perturbation it is convenient to introduce new variables

(A, c) = (c̄ + ε, c̄ − 2ε) (11)

(pA, pc) = (p̄ + pε, p̄ − 2pε) (12)

together with the inverse transformation

(c̄, p̄) = (
1
3 (2A + c), 1

3 (2pA + pC)
)

(13)

(ε, pε) = (
1
3 (A − c), 1

3 (pA − pC)
)

(14)

as well as the symplectic structure

{c̄, p̄} = 8π

3
γG, {ε, pε} = 4π

3
γG. (15)

The volume, in this manner, is given by p̄ up to terms of at least second order in pε, which is
the motivation for choosing our particular set of anisotropy variables:

Vaniso =
√∣∣p̄3 − 3p2

ε p̄ − 2p3
ε

∣∣ = |p̄|3/2

(
1 − 3

2

p2
ε

p̄2
+ O

(
p3

ε

/
p̄3)) . (16)

This shows that we have to assume pε � p̄ for perturbations, i.e. the approximation will
break down close to classical singularities of the isotropic type where p̄ = 0. Later, we will
also have to assume ε � 1. For the Hamiltonian constraint we obtain

Haniso = − 3

8πGγ 2
|p̄|−3/2

(
c̄2p̄2 − ε2p̄2 − c̄2p2

ε + 2c̄p̄εpε + O
(
p3

ε

/
p̄3
))

+ Hmatter(p̄, pε)

(17)

up to terms of third order in the perturbation.
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In the vacuum case, we have Hamiltonian equations of motion

˙̄c = {c̄, Haniso} ∝ −c̄2p̄ + ε2p̄ − c̄εpε (18)

˙̄p = {p̄, Haniso} ∝ c̄p̄2 − c̄p2
ε + p̄εpε (19)

ε̇ = {ε,Haniso} ∝ 1
2 c̄2pε − 1

2 c̄p̄ε (20)

ṗε = {pε,Haniso} ∝ − 1
2 p̄2ε + 1

2 c̄p̄pε. (21)

Thus, the isotropic variables receive corrections in their equations of motion only at second
order. Ignoring those corrections, we recover the classical solution c̄ = 0 and p̄ = const for
flat Minkowski space. With this approximate solution for the anisotropic system, the equations
for anisotropies simplify to ε̇ ≈ 0 and ṗε ≈ − 1

2 p̄2ε. The anisotropy in the connection will
thus remain constant while that in the triad grows linearly in time until the approximations
break down. Since the constraint is quadratic in connection components, a feature shared by
the full constraint, we are not required at this point to assume ε � 1. However, the equations
of motion show that ṗε would be large if ε is not small, and we are led to this condition if the
perturbative evolution is to be valid for some time.

We will later, at the quantum level, mainly consider an asymptotic approximation of
very large p̄ where all corrections of higher order in pε/p̄ are ignored. This also simplifies
the classical equations because the Hamiltonian constraint is then simply proportional to
−(c̄2 − ε2)

√|p̄|. Note that the quadratic nature of the constraint in connection variables
makes this approximation reasonable as we do not need to expand in ε. The solution ε = c̄

to the constraint is thus consistent even though the anisotropy ε in the connection is not small
compared to c̄ (unlike pε which must be small compared to p̄). As already mentioned, and
used later, it is only necessary that ε is small compared to one, which is usually the case also
for c̄ in semiclassical regimes.

Using the large-p̄ constraint we have equations of motion

˙̄c = − c̄2

2
√|p̄| +

ε2

2
√|p̄| ≈ 0

˙̄p = 2c̄
√

|p̄|
ε̇ = 0

ṗε = −ε
√

|p̄|.
With ε = c̄ = const we have p̄ = (

εt +
√|p̄0|

)2
and pε = p0

ε − 1
2ε2t2 − ε

√|p̄0|t with
constants of integration p̄0 and p0

ε . Eliminating t, we have the internal time evolution

pε(p̄) = p0
ε − 1

2 (p̄ − p̄0) (22)

of pε with respect to p̄. Note that this evolution, unlike the coordinate time evolution, does
not depend on the value of ε. We will use this fact later as a test of the perturbative quantum
evolution.

3. Quantization

Loop quantizations are based on holonomies, and also in models one uses exponentials of
connection components as basic expressions in addition to densitized triad components. In
the isotropic case, this leads to a basic algebra given by p and exp(iµc̄/2) for all µ ∈ R,
represented on a non-separable Hilbert space

Hiso ∼= L2(R̄Bohr, dµH) (23)
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of square-integrable functions on the Bohr compactification of the real line [12], with
orthonormal basis

〈c̄|µ〉 = exp(iµc̄/2), µ ∈ R (24)

and basic operators acting as

̂exp(iµ′c̄/2)|µ〉 = |µ + µ′〉 (25)

ˆ̄p|µ〉 = 1
6γ �2

Pµ|µ〉 (26)

using the Planck length �P = √
8πGh̄. Similarly, for our anisotropic model we have the

Hilbert space

Haniso ∼= Hiso ⊗ Hiso (27)

with orthonormal basis

〈A, c|µ, ν〉 = exp(i(µc + νA)/2), µ, ν ∈ R (28)

holonomy operators as before and

p̂A|µ, ν〉 = 1
4γ �2

Pµ|µ, ν〉, p̂c|µ, ν〉 = 1
2γ �2

Pν|µ, ν〉. (29)

These states are not completely gauge invariant in view of the residual gauge transformation
µ �→ −µ, which however will not be relevant for our purposes. One can always ensure gauge
invariance by working only with states

∑
µ,ν ψµ,ν |µ, ν〉, where ψµ,ν is symmetric in µ. The

triad operators then give us directly the volume operators for both models by inserting them
into the classical expressions.

For mathematical constructions, one often makes use of dense subspaces Cyliso and
Cylaniso of the two Hilbert spaces given by the so-called cylindrical functions which are finite
linear combinations of the basis states |µ〉 or |µ, ν〉, respectively. With their algebraic duals
of distributional states (linear functionals on the cylindrical subspaces), one has two Gel’fand
triples Cyliso ⊂ Hiso ⊂ Cyl	iso and Cylaniso ⊂ Haniso ⊂ Cyl	aniso (see also [16]).

3.1. Symmetry reduction

Since we are interested in the relation between a symmetric model and a less symmetric one
we first use the opportunity to demonstrate how a reduced model can be obtained within
quantum theory (see also [5, 17, 18]). We start with the anisotropic model and, following
general constructions [17], define an isotropic state as a distribution which is supported only
on isotropic connections, i.e. ε = 0. To fulfil the definition, we must find an antilinear map

σ : Cyliso → Cyl	aniso, |µ〉 �→ (µ| (30)

embedding the space of isotropic cylindrical functions into the distributional dual of the
anisotropic one such that

σ(|µ〉)[|ρ, τ 〉] = 〈µ|ρ, τ 〉|A=c for all |ρ, τ 〉.
On the right-hand side, we use the restriction of a state |ρ, τ 〉 to the subspace A = c upon
which it can be interpreted as an isotropic state. Expanding σ(|µ〉) =:

∑
κ,λ σκ,λ(µ)〈κ, λ|, we

have

σρ,τ (µ) =
∑
κ,λ

σκ,λ(µ)δκ,ρδλ,τ = σ(|µ〉)[|ρ, τ 〉] =
∫

e−iµc/2 ei(ρ+τ)c/2 dµH(c) = δµ,ρ+τ
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and thus

(µ| = σ(|µ〉) =
∑
κ,λ

δµ,κ+λ〈κ, λ| =
∑

κ

〈κ, µ − κ|. (31)

The summation is done over all real numbers, which is well defined as a distribution in Cyl	aniso.
In fact, in this case the definition simply amounts to multiplying an isotropic state in the

connection representation with a δ distribution supported at ε = 0,

σ(|µ〉)|A, c〉 =
∑

κ

ei(κA+(µ−κ)c)/2 = eiµc/2
∑

κ

eiκ(A−c)/2 = eiµc/2δ(A − c)

but this would be more complicated in more general systems and the full theory where the
definitions of [17] still apply.

Indeed, this gives (µ|ρ, τ 〉 = δµ,ρ+τ , i.e. the evaluation of the distribution is nonzero only
if the averaged label equals the isotropic one,

1
2γ �2

P(ρ + τ) = 2(p̂A)ρ + (p̂c)τ = 3( ˆ̄p)ρ+τ

and (µ|h(ρ)

A h
(ρ)−1
c = (µ|, i.e. exp(iρε) acts trivially with its dual action on symmetric

distributions which are thus supported only on isotropic connections ε = 0.
Here, we already used the dual action of anisotropic operators on isotropic distributional

states, which in this example mapped a symmetric state to a symmetric one. This is not the
case for arbitrary operators, and one cannot simply define all operators for the reduced model
by the dual action of anisotropic operators [18]. However, one can do this for special operators
which suffice to define the basic operators of the model. For flux operators, one can easily see
that 2p̂A + p̂c = 3 ˆ̄p is the only one which maps an isotropic state (µ| to an isotropic state:

p̂σ (|µ〉) = 1
3 (µ|(2p̂A + p̂c) = 1

6γ �2
Pµ(µ| = σ( ˆ̄p|µ〉). (32)

Moreover, it agrees with the isotropic flux operator (26) defined in the isotropic model. For
holonomies, one can act with arbitrary products of hA and hc on isotropic states since we
already know that hAh−1

c acts as the identity and the remaining factor simply amounts to an
isotropic holonomy operator. Also, all holonomy operators form a closed algebra with the
isotropic flux operator ˆ̄p = 1

3 (2p̂A + p̂c):[
h

(ρ)

A h(τ)
c , ˆ̄p

]|µ, ν〉 = − 1
6γ �2

P(ρ + τ)|µ + ρ, ν + τ 〉 = − 1
6γ �2

P(ρ + τ)h
(ρ)

A h(τ)
c |µ, ν〉. (33)

This is similar for the anisotropy operator which we can define by p̂ε := 1
3 (p̂A − p̂c). Here,

we have the commutator[
h

(ρ)

A h(τ)
c , p̂ε

] = − 1
6γ �2

P

(
1
2ρ − τ

)
h

(ρ)

A h(τ)
c . (34)

However, p̂ε does not map an isotropic distribution to another such distribution.
If we are looking for a reduction of the operator algebra to implement isotropy, we

need to find distinguished dual actions making use of the form of symmetric states. One
clearly distinguished operator is ˆ̄p because it is the only flux operator mapping an isotropic
distributional state to another such state. For holonomies, hAh−1

c is distinguished because
it fixes any isotropic distributional state. Beyond that, no other operators are intrinsically
distinguished, but we do not yet have a useful algebra of operators for an isotropic model:
while p̄ is available, our distinguished holonomy corresponds to the anisotropy ε rather than
the conjugate of p̄. Nevertheless, by acting with the distinguished ˆ̄p as well as all holonomy
operators, we can generate the isotropic representation. More precisely, we define

Stab(σ ) := {Ô ∈ Aaniso|Ôσ (Cyliso) ⊂ σ(Cyliso)} (35)

and

Fix(σ ) := {Ô ∈ Aaniso|Ôσ (ψ) = σ(ψ) for all ψ ∈ Cyliso}. (36)
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The isotropic algebra is then

Aiso := Stab(σ )/Fix(σ ) (37)

understood in the following manner: Fix(σ ) contains only holonomy operators besides
the identity, and thus forms a normal subgroup of the Abelian group obtained from the
multiplicative operation in the holonomy algebra. We can thus take the factor group of
holonomy operators modulo Fix(σ ) which thanks to the distributive law can also be equipped
with the usual additive structure to form an algebra. Due to the relation (33), also the flux
operators in Stab(σ ) commute with Fix(σ ) and thus descend to the factor group, defining Aiso.
Using that Stab(σ ) is generated as an algebra by ˆ̄p and all h

(ρ)

A h(τ)
c and Fix(σ ) by hAh−1

c , a
general element of Aiso is

∑
n∈N0

ˆ̄pnπn(hc)


 · Fix(σ )

with Laurent polynomials πn, allowing also inverse powers of hc, for each n, which are nonzero
only for finitely many n (we can order p̂ to the left using (33) and factor out a power of hAh−1

c

into Fix(σ ) such that only the holonomy hc appears explicitly). Through this construction we
derive an algebra isomorphic to the isotropic one.

As the presence of factor spaces indicates, there is no canonical isotropic subalgebra of the
anisotropic algebra without additional input. This is analogous to the classical situation where
the splitting of anisotropic variables A and c into an isotropic average c̄ and an anisotropy is
not unique. Classically, a given p̄, as we have distinguished it at the quantum level, determines
a form of ε as a linear combination of A and c by requiring {p̄, ε} = 0. Indeed, also the
quantum analogue of ε, given by hAh−1

c , is distinguished as it commutes with ˆ̄p. However, a
unique form for c̄ and pε then follows only after an additional choice, which for us was the
fact that the volume should receive corrections only to second order. We use this here to define
p̂ε = 1

3 (p̂A − p̂c) as above and then require that (34) vanish, analogously to {c̄, pε} = 0. This
distinguishes h2

Ahc as the isotropic holonomy operator in addition to the flux ˆ̄p which indeed
forms a subalgebra of the anisotropic operator algebra mapping isotropic states to isotropic
states in a way isomorphic to the isotropic model.

In this manner, we obtain a unique subalgebra of the basic anisotropic operator algebra
which is isomorphic to the basic isotropic algebra. This also presents an alternative way to
define a symmetric model without referring to symmetric distributional states at all: we use the
classical relations between symmetric and non-symmetric variables to define a distinguished
algebra derived from the non-symmetric holonomy-flux algebra. Using the fact that the non-
symmetric representation is cyclic on |0, 0〉, i.e. the subspace Aaniso|0, 0〉 is dense in Haniso,
we generate the representation of the reduced model by acting only with the subalgebra on
the cyclic state. This defines the reduced state space, which is equipped with an inner product
by requiring holonomy operators to be unitary. Upon completion, this inner product space
defines the Hilbert space of the isotropic model and its quantum representation in agreement
with the loop quantization of the classically reduced model. Characteristic properties of the
representation are then clearly inherited from that of the less symmetric system, which in some
cases is also visible for the reduction from the full theory [5, 18].

3.2. Perturbations

Dynamical information is obtained by quantizing the Hamiltonian constraints and asking
physical states to be annihilated by the resulting operators. Because the constraints contain
connection components, and connections are represented via holonomies which shift the labels
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of states as in (25), quantum constraint equations become difference equations [7, 10, 19] for
states |ψ〉 = ∑

µ ψµ|µ〉 or |ψ〉 = ∑
µ,ν ψµ,ν |µ, ν〉 in the triad representation. For large

scales, e.g. µ � 1 in the isotropic case, the difference equation is well approximated by the
Wheeler–DeWitt equation [20] while for small µ there are crucial differences implying the
absence of singularities at the quantum level [11]. In order to see the relation to the Wheeler–
DeWitt equation, one has to assume that the wavefunction does not vary rapidly on small
scales, i.e. changes in µ of the order one, which allows one to Taylor expand the difference
operators into differential ones. This limit, however, does not exist for arbitrary states because
there is no operator for c̄ on Hiso [12]. Indeed, the Wheeler–DeWitt quantization is based on a
representation on the usual Schrödinger Hilbert space HS = L2(R, dc̄) which is inequivalent
to the representation on the Bohr Hilbert space used for the loop quantization.

In this paper, we analyse the case of an anisotropic model where, however, difference
operators are not expanded for both triad components but only for that corresponding to the
anisotropy pε. We thus assume that the wavefunction does not vary rapidly when pε changes
and that in an approximate sense an operator for ε exists. Although we need to assume pε to
be small, this will not push us into the regime where discreteness is relevant provided that p̄

is large. The key additional assumption is that ε is not too big which now becomes important
at the quantum level, and indeed both anisotropy parameters, pε and ε, have to be small.
(The situation is different from pure isotropy where small p̄ usually implies large c̄.) When
only small ε are allowed, we do not probe the whole configuration space and do not see its
compactness which underlies the Bohr Hilbert space used in homogeneous loop quantizations.
As in the large volume limit, we therefore introduce the Schrödinger Hilbert space HS for
anisotropies, which we do by defining the perturbative Hilbert space

Hpert := Hiso ⊗ HS (38)

and realizing its dense subset Cyliso⊗CylS as a subspace of the dual Cyl	aniso. In the Schrödinger
Hilbert space we have to choose a suitable dense set CylS, which for our purposes will be the
set of all functions which are products of a polynomial and a Gaussian. Indeed, Schrödinger
states in CylS can be interpreted as distributions on the Bohr Hilbert space [21] using the
antilinear map

π : CylS → Cyl	Bohr, π(ψ)[|ρ〉] :=
∫

eiρεψ(ε) dε.

Dual actions of basic operators on those states are given by

(p̂επ(ψ))[|ρ〉] = π(ψ)
[
p̂†

ε|ρ〉] = 1

6
γ �2

P

∫
ρ eiρεψ(ε) dε = 1

6
γ �2

P

∫
eiρε · i

d

dε
ψ(ε) dε

= π

(
−1

6
iγ �2

P dψ/dε

)
[|ρ〉] (39)

and

(eiτεπ(ψ))[|ρ〉] = ψ[e−iτε|ρ〉] =
∫

ei(ρ−τ)εψ(ε) dε =
∫

eiρε eiτεψ(ε) dε = π(eiτεψ)[|ρ〉].
(40)

The first equation shows that the momentum operator is just the derivative operator, as also
on the Bohr Hilbert space, while the second shows that (eiτεπ(ψ))(ε) = eiτεψ(ε) where on
the Schrödinger Hilbert space we can now take the derivative with respect to ν. By going to
the dual action on the image of π , we thus obtain a simple multiplication operator for ε well
defined with domain π(CylS).

In addition, if we choose an appropriate state � ∈ CylS we have an embedding
id ⊗ �: Cyliso → Cylpert of isotropic cylindrical states to perturbative cylindrical states where
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anisotropies are small in mean value, but not eliminated exactly. Moreover, since we have to
choose a state �, which in the above notation is identified with the map C → CylS, 1 �→ �,
there is no unique canonical embedding. (Coherent states are natural candidates, but unlikely
to be preserved dynamically.) In addition to the strict implementation of symmetries σ we
then have the perturbative implementation π� := (	 ⊗ π) ◦ (id ⊗ �) which are both maps
from Cyliso to Cyl	aniso:

We have the two Gel’fand triples of the exact models on the left and right, with the canonical
embedding σ of the reduced model through distributions implementing symmetries precisely.
In between, we have the perturbative cylindrical space which is connected to the anisotropic
side through the antilinear map π from CylS, combined with the antilinear dualization 	 of
isotropic states.

In the perturbative sector, non-symmetric degrees of freedom are present but can be
arranged to be unexcited at least for initial states of the evolution. In this sense, the situation
is similar to the field theory example studied in [22] where non-symmetric field modes are
included in their vacuum or other coherent states. In this case, the field theory vacuum is a
natural candidate for the analogue of �. Perturbative states can then be thought of as states
where only the symmetric modes have been excited but non-symmetric ones have been left in
their vacua. This is technically similar to our construction of strictly symmetric states at the
end of the preceding subsection where we used only symmetric operators in order to generate
all states of the symmetric model out of the non-symmetric cyclic state |0, 0〉. Indeed, for
background-independent systems in loop quantum gravity the analogue of a ground state is
the cyclic state where no geometry at all is excited. Thus, although physically the construction
in [22] is closer to the perturbative situation here, technically it is analogous to the situation
of the strict model. This illustrates crucial differences in the context of symmetries between
quantum field theory on a background and a background-independent quantization of gravity.

We have already discussed the relation between anisotropic operators and isotropic ones
for the exact implementation of symmetry. For the perturbative implementation, the same
relation exists for operators which do not depend on anisotropies, but we can now also act with
other operators as we already saw for ε̂ and p̂ε in (40) and (39). In general, an anisotropic
operator Ô acting on Haniso has a dual action on 	 ⊗ π(Cylpert), but does not necessarily fix
this subspace of Cyl	aniso. However, it does so perturbatively when we expand it as a sum of
operators in the perturbative sector. Choosing, for definiteness, a Gaussian for � we have
perturbative states of the form

ψ(A, c) = eiν̄c̄/2 e−(ε−ε0)
2/4σ 2

e6iεp0
ε /γ �2

P

where c̄ = 1
3 (2A + c) and ε = 1

3 (A − c) are understood as functions of A and c. By the chain
rule, we then have flux operators

p̂Aψ = − i

2
γ �2

P
∂

∂A
ψ = − i

6
γ �2

P

(
2

∂

∂c̄
+

∂

∂ε

)
ψ =

(
1

6
γ �2

Pν̄ + p̂ε

)
ψ
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and

p̂cψ = −iγ �2
P

∂

∂c
ψ = − i

3
γ �2

P

(
∂

∂c̄
− ∂

∂ε

)
ψ =

(
1

6
γ �2

Pν̄ − 2p̂ε

)
ψ.

In composite expressions such as the volume operator one can then expand functions of
flux operators in pε when they are expressed in the flux representation, and analogously for
holonomy operators in the connection representation.

This is most easily done if eigenvalues are already known. For instance, if an operator Ô

has eigenstates |µ, ν〉, we take the eigenvalues Oµ,ν and insert

µ = 2
3 ν̄ + 4γ −1�−2

P pε = 2
3 ν̄ + P, ν = 1

3 ν̄ − 4γ −1�−2
P pε = 1

3 ν̄ − P (41)

with dimensionless P := 4pε

/
γ �2

P, which follows from the classical relation (12) or the
calculation above. This yields a function O(ν̄, P ) which we expand in the perturbation P,

O(ν̄, P ) =
∑

k

O(k)
iso (ν̄)P k. (42)

Note that P itself need not be small by our assumptions, which would mean pε � �2
P. We have,

however, P � ν̄ such that each O(k)
iso (ν̄) must drop off at least as ν̄−k . For any fixed k, the values

O(k)
iso (ν̄), interpreted as eigenvalues, define an isotropic operator Ô(k)

iso = ∑
ν̄ O(k)

iso (ν̄)|ν̄〉〈ν̄| such
that Ô(k)

iso |ν̄〉 := O(k)
iso (ν̄)|ν̄〉. Thus, we obtain the expansion

Ô ∼
∑

k

Ô(k)
iso ⊗ P̂ k (43)

where the right-hand side acts on Hpert. This approximation of operators on a selected class
of states implementing small anisotropy is discussed in more detail in appendix A, which can
be applied to any Hilbert space |ν̄〉 ⊗ HS for fixed ν̄. We understand here always a finite
truncation to a given order in k, and do not discuss convergence of the expansion in whatever
sense. We will later use states � of the above form, assuming σ < ε0 � 1 in order to expand
also in ε. This results in similar expansions for operators containing holonomies, such as the
Hamiltonian constraint.

3.3. Hamiltonian constraint

The Hamiltonian constraint operator for the anisotropic model results from the expression
given in [7] after using A = c1 = c2 and c = c3 (as in [7], we ignore an ambiguity parameter
µ0 [12] which is of the order one and multiplies connection components in the constraint):

Ĥ = 4π−1iγ −3G−1�−2
P

{
sin2 ( 1

2A
)

cos2 ( 1
2A
)
Ôc

+ 2 sin
(

1
2c
)

cos
(

1
2c
)

sin
(

1
2A
)

cos
(

1
2A
)
ÔA

}
Ôc := sin

(
1
2c
)
V̂ cos

(
1
2c
)− cos

(
1
2c
)
V̂ sin

(
1
2c
) (44)

and similarly ÔA by replacing c by A, where V̂ is the anisotropic volume. Making use of the
change of variables (13) one gets

Ĥ = 4π−1iγ −3G−1�−2
P

{
sin2

(
1
2 c̄ + 1

2ε
)

cos2
(

1
2 c̄ + 1

2ε
)
Ôc

+ 2 sin
(

1
2 c̄ − ε

)
cos

(
1
2 c̄ − ε

)
sin
(

1
2 c̄ + 1

2ε
)

cos
(

1
2 c̄ + 1

2ε)ÔA

}
. (45)
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Here Ôc and ÔA are more conveniently dealt with by using their action on the |µ, ν〉
basis, namely,

ÔA|µ, ν〉 = i

2
(Vµ+1,ν − Vµ−1,ν)|µ, ν〉 (46)

Ôc|µ, ν〉 = i

2
(Vµ,ν+1 − Vµ,ν−1)|µ, ν〉. (47)

Now following (43) we expand ÔA and Ôc up to second order in pε, using from the exact
analysis [7] that

Vµ,ν = 1
2

(
1
2γ �2

P

) 3
2
√

µ2|ν| = 1
2

(
1
2γ �2

P

) 3
2 |µ|

√
|ν|. (48)

Inserting (41), we obtain the eigenvalues

(OA)µ(ν̄,P ),ν(ν̄,P ) = 1
4 i
(

1
2γ �2

P

)3/2(∣∣ 2
3 ν̄ + 1 + P

∣∣− ∣∣ 2
3 ν̄ − 1 + P

∣∣)√∣∣ 1
3 ν̄ − P

∣∣
(Oc)µ(ν̄,P ),ν(ν̄,P ) = 1

4 i
(

1
2γ �2

P

)3/2∣∣ 2
3 ν̄ + P

∣∣(√∣∣ 1
3 ν̄ + 1 − P

∣∣−√∣∣ 1
3 ν̄ − 1 − P

∣∣).
For P � ν̄, the absolute values can be evaluated as∣∣ 2

3 ν̄ + 1 + P
∣∣− ∣∣ 2

3 ν̄ − 1 + P
∣∣ = ∣∣ 2

3 ν̄ + 1
∣∣(1 +

(
2
3 ν̄ + 1

)−1
P
)− ∣∣ 2

3 ν̄ − 1
∣∣(1 +

(
2
3 ν̄ − 1

)−1
P
)

= ∣∣ 2
3 ν̄ + 1

∣∣− ∣∣ 2
3 ν̄ − 1

∣∣ +
(
sgn

(
2
3 ν̄ + 1

)− sgn
(

2
3 ν̄ − 1

))
P

= 2sgn3/2(ν̄) − 3χ3/2(ν̄)P ,

introducing

χδ(ν̄) := − 1

2δ
(sgn(ν̄ + δ) − sgn(ν̄ − δ)) =

{
0 for |ν̄| � δ

δ−1 for |ν̄| < δ
(49)

sgnδ(ν̄) := 1

2δ
(|ν̄ + δ| − |ν̄ − δ|) =




1 for ν̄ � δ

δ−1ν̄ for |ν̄| < δ

−1 for ν̄ � δ,

(50)

and ∣∣ 2
3 ν̄ + P

∣∣ = ∣∣ 2
3 ν̄
∣∣(1 + 3P/2ν̄)

while the other expressions are expanded as√∣∣ 1
3 ν̄ − P

∣∣ =
√

1
3 ν̄
(
1 − 3

2P/ν̄ − 9
8P 2/ν̄2 + O(P 3/ν̄3)

)
and∣∣ 1

3 ν̄ + 1 − P
∣∣1/2 − ∣∣ 1

3 ν̄ − 1 − P
∣∣1/2

= ∣∣ 1
3 ν̄ + 1

∣∣1/2
√

1 − (
1
3 ν̄ + 1

)−1
P − ∣∣ 1

3 ν̄ − 1
∣∣1/2

√
1 − (

1
3 ν̄ − 1

)−1
P

= ∣∣ 1
3 ν̄ + 1

∣∣1/2(
1 − 1

2

(
1
3 ν̄ + 1

)−1
P − 1

8

(
1
3 ν̄ + 1

)−2
P 2
)

− ∣∣ 1
3 ν̄ − 1

∣∣1/2(
1 − 1

2

(
1
3 ν̄ − 1

)−1
P − 1

8

(
1
3 ν̄ − 1

)−2
P 2
)

+ O(P 3/ν̄3)

= ∣∣ 1
3 ν̄ + 1

∣∣1/2− ∣∣ 1
3 ν̄ − 1

∣∣1/2− 1
2

(∣∣ 1
3 ν̄ + 1

∣∣−1/2
sgn

(
1
3 ν̄ + 1

)− ∣∣ 1
3 ν̄ − 1

∣∣−1/2

× sgn
(

1
3 ν̄ − 1

))
P − 1

8

(∣∣ 1
3 ν̄ + 1

∣∣−3/2 − ∣∣ 1
3 ν̄ − 1

∣∣−1/2)
P 2 + O(P 3/ν̄3)

= 2
√

3�3

√
|ν̄| − 3

√
3P�3

sgn(ν̄)√|ν̄| − 9
4

√
3P 2�3|ν̄|−3/2 + O(P 3/ν̄3)
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introducing, more generally than before,

�δf (ν̄) := 1

2δ
(f (ν̄ + δ) − f (ν̄ − δ)) (51)

for any function f which for functions differentiable at large ν̄ gives �δf (ν̄) ∼ f ′(ν̄) for
ν̄ � δ.

This results in

ÔA = 1
4
√

3
i
(

1
2γ �2

P

)3/2
√

| ˆ̄ν|(2 sgn3/2( ˆ̄ν) ⊗ id − 3(χ3/2( ˆ̄ν) + ˆ̄ν−1 sgn3/2( ˆ̄ν)) ⊗ P̂

+ 9
2

ˆ̄ν−1(
χ3/2( ˆ̄ν) − 1

2
ˆ̄ν−1 sgn3/2( ˆ̄ν)

)⊗ P̂ 2 + O(P 3/ν̄3)
)

(52)

and

Ôc = 1
2
√

3
i
(

1
2γ �2

P

)3/2| ˆ̄ν|(2�3| ˆ̄ν|1/2 ⊗ id + 3( ˆ̄ν−1
�3| ˆ̄ν|1/2 − �3(| ˆ̄ν|−1/2 sgn( ˆ̄ν))) ⊗ P̂

− 9
2 ( ˆ̄ν−1

�3(| ˆ̄ν|−1/2 sgn( ˆ̄ν)) + 1
2�3| ˆ̄ν|−3/2) ⊗ P̂ 2 + O(P 3/ν̄3)

)
. (53)

where ˆ̄ν = 6 ˆ̄p
/(

γ �2
P

)
and P̂ = 4p̂ε

/(
γ �2

P

)
. From these expressions we can read off the first

coefficients O
(k)
A,iso and O(k)

c,iso.
Note that, while the expressions χδ, sgnδ and �δ can be directly extended to be applied

to operators, the expansions are not densely defined on Hpert because of inverse powers of
ˆ̄ν. In fundamental expressions where the classical analogue has inverse powers of ˆ̄p, such as
matter Hamiltonians, one can still define densely defined operators [23, 24]. Here, however,
we started with densely defined operators and obtained inverse powers only after expanding
in the perturbative sector. We thus cannot change those terms and make them densely defined.
For what follows we can mostly ignore this issue, disregarding states at small ν̄ on which
the operators cannot be applied. We will come back to it in the discussion of singularities in
section 5.

Next we must have the action of the several terms to the left of ÔA and Ôc in (45). Up
to order ε3 we have

Ĥ = 4π−1iγ −3G−1�−2
P

[
2
{
sin2 1

2 c̄ cos2 1
2 c̄ ⊗ id + 1

2

(−sin 1
2 c̄ cos3 1

2 c̄ + sin3 1
2 c̄ cos 1

2 c̄
)⊗ ε

+ 1
2

(−3 sin2 1
2 c̄ cos2 1

2 c̄ − cos4 1
2 c̄ − sin4 1

2 c̄
)⊗ ε2

+ 1
12

(
sin 1

2 c̄ cos3 1
2 c̄ − sin3 1

2 c̄ cos 1
2 c̄
)⊗ ε3 + O(ε4)

}
ÔA

+
{
sin2 1

2 c̄ cos2 1
2 c̄ ⊗ id +

(
sin 1

2 c̄ cos3 1
2 c̄ − sin3 1

2 c̄ cos 1
2 c̄
)⊗ ε

+ 1
4

(−6 sin2 1
2 c̄ cos2 1

2 c̄ + cos4 1
2 c̄ + sin4 1

2 c̄
)⊗ ε2

+ 2
3

(−sin 1
2 c̄ cos3 1

2 c̄ + sin3 1
2 c̄ cos 1

2 c̄
)⊗ ε3 + O(ε4)

}
Ôc

]
. (54)

From (25), the relevant combinations of sines and cosines on the isotropic basis above
have the matrix form

〈ν̄| sin2 1
2 c̄ cos2 1

2 c̄|µ̄〉 = −2−4(δν̄,µ̄+4 − 2δν̄,µ̄ + δν̄,µ̄−4),

〈ν̄| sin 1
2 c̄ cos3 1

2 c̄|µ̄〉 = −2−4i(δν̄,µ̄+4 + 2δν̄,µ̄+2 − 2δν̄,µ̄−2 − δν̄,µ̄−4),

〈ν̄| sin3 1
2 c̄ cos 1

2 c̄|µ̄〉 = 2−4i(δν̄,µ̄+4 − 2δν̄,µ̄+2 + 2δν̄,µ̄−2 − δν̄,µ̄−4),

〈ν̄| sin4 1
2 c̄|µ̄〉 = 2−4(δν̄,µ̄+4 − 4δν̄,µ̄+2 + 6δν̄,µ̄ − 4δν̄,µ̄−2 + δν̄,µ̄−4),

〈ν̄| cos4 1
2 c̄|µ̄〉 = 2−4(δν̄,µ̄+4 + 4δν̄,µ̄+2 + 6δν̄,µ̄ + 4δν̄,µ̄−2 + δν̄,µ̄−4).

(55)

So the total action in (54) is given by

〈ν̄|Ĥ |µ̄〉 = 1

4π
iγ −3G−1�−2

P {δν̄,µ̄[(4 − 18ε2)ÔA(ν̄) + 2Ôc(ν̄)]

+ δν̄,µ̄+4[(−2 + 2iε + ε2)ÔA(ν̄) + (−1 − 2iε + 2ε2)Ôc(ν̄)]

+ δν̄,µ̄−4[(−2 − 2iε + ε2)ÔA(ν̄) + (−1 + 2iε + 2ε2)Ôc(ν̄)] + O(ε3)} (56)
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as matrix elements in Hiso taking operator values in HS (for fixed ν̄, ÔA(ν̄) and Ôc(ν̄) are
considered as operators on |ν̄〉 ⊗ HS ∼= HS).

We can act with (56) on a generic state |s〉 = ∑
ν sν(ε)|ν〉 and use (52) and (53). For this

we write the Hamiltonian in the form

〈ν̄, ε|Ĥ |s〉 = − 1

16π

√
3

2
G−1γ −3/2�P{Âν̄+4sν̄+4(ε) + B̂ν̄sν̄(ε) + Ĉν̄−4sν̄−4(ε)}, (57)

where

Ĉν̄ = − 2
3 (|ν̄|1/2 sgn3/2 (ν̄) + |ν̄|�3|ν̄|1/2) + 2

3 (|ν̄|1/2sgn3/2(ν̄) − 2|ν̄|�3|ν̄|1/2) iε

+
(

2
3 |ν̄|1/2(χ3/2(ν̄) + ν̄−1 sgn3/2(ν̄))− sgn ν̄�3|ν̄|1/2 + |ν̄|�3(|ν̄|−1/2 sgn ν̄)

)
P̂

+ 3
2

(−|ν̄|−1/2 sgn ν̄χ3/2(ν̄) + 1
2 |ν̄|−3/2 sgn3/2 (ν̄)

+ sgn ν̄�3(|ν̄|−1/2 sgn ν̄) + 1
2 |ν̄|�3|ν̄|−3/2

)
P̂ 2 − (|ν̄|1/2χ3/2(ν̄)

+ |ν̄|−1/2 sgn ν̄ sgn3/2 (ν̄) + 2 sgn ν̄�3|ν̄|1/2 − 2|ν̄|�3(|ν̄|−1/2 sgn ν̄)
)
iεP̂

+ 1
3

(|ν̄|1/2 sgn3/2 (ν̄) + 4|ν̄|�3|ν̄|1/2
)
ε2 + O(3), (58)

B̂ν̄ = 4
3 (|ν̄|1/2 sgn3/2 (ν̄) + |ν̄|�3|ν̄|1/2) − 2(|ν̄|1/2χ3/2(ν̄) + |ν̄|−1/2 sgn ν̄ sgn3/2 (ν̄)

− sgn ν̄�3|ν̄|1/2 + |ν̄|�3(|ν̄|−1/2 sgn ν̄))P̂ + 3
(|ν̄|−1/2 sgn ν̄χ3/2(ν̄)

− 1
2 |ν̄|−3/2 sgn3/2 (ν̄) − sgn ν̄�3(|ν̄|−1/2 sgn ν̄) − 1

2 |ν̄|�3|ν̄|−3/2
)
P̂ 2

− 6|ν̄|1/2 sgn3/2 (ν̄)ε2 + O(3) (59)

and Âν̄ = Ĉν̄ . Note that this is not the adjoint of Ĉν̄ but the complex conjugate (acting only
on the numerical coefficients, not on possible factors of the imaginary unit in a derivative
representation of P̂ ). Complex conjugation and adjoint are not the same in this case because
of the ε̂P̂ term. Also the whole constraint operator is not self-adjoint since we started with a
non-symmetric ordering with holonomy operators to the left.

4. Evolution

The constraint equation given by the operator (57), i.e. requiring physical states to be
annihilated by the constraint operator, results in a difference-differential equation for sn(ε)

which can be interpreted as an evolution equation in the volume ν̄ as internal time. This
equation is difference-differential because we keep the underlying discreteness from quantum
geometry in the isotropic variable, but treat the anisotropy perturbatively. Also in isotropic
models one can have difference-differential equations if there is a matter degree of freedom
such as a scalar, but the crucial difference here is that there are differential operators at all levels
of the difference equation and in particular the leading ones. This has implications for the
recurrence scheme since those operators have to be inverted in some manner. We perform here
only a basic analysis to check if the scheme has satisfactory properties concerning evolution
and relation to classical behaviour.

We focus on the stability issue for which in our context three different notions occur. First,
in the perturbative setting stability is already relevant at the classical level where one needs to
make sure that anisotropies stay small enough for sufficiently long time. As can be seen from
the discussion leading to (22), this can be ensured for some range of evolution at least in the
vacuum case for our situation. The second notion is stability at the quantum level in the sense
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of [25], requiring that there are no exponentially growing solutions to the difference equation.
This will be the focus in the following sections. Finally, also numerical stability issues can
arise when difference or difference-differential equations are solved numerically.

We consider the evolution equation (57) without matter for large ν̄, for which the constraint
equation reduces to

−√
3�P

23/2κγ 3/2

[(
−4

3
+

4

3
iε +

2

3
ε2 − 6

ν̄
iεP̂ +

3

2ν̄2
P̂ 2

)
sν̄+4(ε)

+

(
−4

3
− 4

3
iε +

2

3
ε2 +

6

ν̄
iεP̂ +

3

2ν̄2
P̂ 2

)
sν̄−4(ε)

+

(
8

3
− 2

ν̄
P̂ − 12ε2 − 3

ν̄2
P̂ 2

)
sν̄(ε)

]
= 0. (60)

Now we propose a restricted function space for the solutions of the form

sν̄(ε) = p
(k)
ν̄ (ε) e−(ε−ε0)

2/4σ 2
, (61)

where p
(k)
ν̄ are complex-valued polynomials of order k. Since we expanded the Hamiltonian

constraint to second order, we also should disregard terms of higher order in the solutions and
work with k = 2. Then,

p
(2)
ν̄ (ε) = A0(ν̄) + A1(ν̄)ε + A2(ν̄)ε2 (62)

where A0, A1 and A2 are complex-valued functions of the discrete time ν̄ only, to be determined
from initial values through the difference equation. This class of functions is general enough
for our purposes because, even though ε0 and σ are fixed, the Gaussian can be deformed
and spread if A1 and A2 grow as functions of ν̄. Moreover, to the given order of expansion
also nonzero expectation values for p̂ε are allowed through complex-valued A1 and A2. For
a Gaussian state peaked at anisotropy p0

ε we need a phase factor e6iεp0
ε /γ �2

P which for small
enough p0

ε can be expanded, only contributing imaginary parts to A1 and A2. For this, we
need to assume p0

ε � �2
P which is possible but not guaranteed by our general perturbation

assumptions. Still, for the tests we are going to perform such small values are sufficient. For
more detailed aspects one has to generalize the allowed class of functions.

Computing (60) using P̂ = − 2
3 i d

/
dε and (61), (62) for large ν̄, and collecting terms of

the same order in ε we obtain

A0(ν̄ + 4)
(
2σ 2 − 8ν̄2σ 4 − ε2

0

)− 2A0(ν̄)
(
2σ 2 − 8ν̄2σ 4 − 2iν̄σ 2ε0 − ε2

0

)
+ A0(ν̄ − 4)

(
2σ 2 − 8ν̄2σ 4 − ε2

0

)
+ A1(ν̄ + 4)(−4σ 2ε0)

− 2A1(ν̄)(−4iν̄σ 4 − 4σ 2ε0) + A1(ν̄ − 4)(−4σ 2ε0)

+ A2(ν̄ + 4)(−8σ 4) − 2A2(ν̄)(−8σ 4) + A2(ν̄ − 4)(−8σ 4) = 0 (63)

from leading order in ε,

A0(ν̄ + 4)(8iν̄2σ 4 − 12ν̄σ 2ε0 + 2ε0) − 2A0(ν̄)(−2iν̄σ 2 + 2ε0)

+ A0(ν̄ − 4)(−8iν̄2σ 4 + 12ν̄σ 2ε0 + 2ε0)

+ A1(ν̄ + 4)
(
6σ 2 − 24ν̄σ 4 − 8ν̄2σ 4 − ε2

0

)
− 2A1(ν̄)

(
6σ 2 − 8ν̄2σ 4 − ε2

0 − 2iν̄σ 2ε0
)

+ A1(ν̄ − 4)
(
6σ 2 + 24ν̄σ 4 − 8ν̄2σ 4 − ε2

0

)
+ A2(ν̄ + 4)(−8σ 2ε0) − 2A2(ν̄)(−8iν̄σ 4 − 8σ 2ε0)

+ A2(ν̄ − 4)(−8σ 2ε0) = 0 (64)



Perturbative degrees of freedom in loop quantum gravity 3505

from linear order, and

A0(ν̄ + 4)(−1 + 12ν̄σ 2 + 4ν̄2σ 4) − 2A0(ν̄)(−1 + 36ν̄2σ 4)

+ A0(ν̄ − 4)(−1 − 12ν̄σ 2 + 4ν̄2σ 4)

+ A1(ν̄ + 4)(8iν̄2σ 4 + 2ε0 − 12ν̄σ 2ε0) − 2A1(ν̄)(2iν̄σ 2 + 2ε0)

+ A1(ν̄ − 4)(−8iν̄2σ 4 + 2ε0 + 12ν̄σ 2ε0)

+ A2(ν̄ + 4)
(
10σ 2 − 48ν̄σ 4 − 8ν̄2σ 4 − ε2

0

)
− 2A2(ν̄)

(
10σ 2 − 8ν̄2σ 4 − 2iν̄σ 2ε0 − ε2

0

)
+ A2(ν̄ − 4)

(
10σ 2 + 48ν̄σ 4 − 8ν̄2σ 4 − ε2

0

) = 0 (65)

from quadratic order. As the equations are quite complicated, we discuss here mainly their
approximation for large volume which can already be used to see relations to the classical
behaviour.

4.1. Asymptotic ν̄ solution

While the perturbation scheme does not require a relation between the magnitudes of ν̄ and ε0

or σ ∼ ε0 � 1, for a given choice of ε0 and σ consistent with the perturbation assumptions we
can look at the asymptotic form of the equations where only highest powers of ν̄ are used. For
the second-order equations, this requires ν̄ � σ−2 which is our assumption for the asymptotic
regime. Simplifying the equations then leads to

A0(ν̄ + 4) − 2A0(ν̄) + A0(ν̄ − 4) = 0,

A1(ν̄ + 4) − 2A1(ν̄) + A1(ν̄ − 4) = i[A0(ν̄ + 4) − A0(ν̄ − 4)],
(66)

A2(ν̄ + 4) − 2A2(ν̄) + A2(ν̄ − 4) = 1
2 [A0(ν̄ + 4) − 18A0(ν̄) + A0(ν̄ − 4)]

+ i[A1(ν̄ + 4) − A1(ν̄ − 4)].

We can already observe that, in contrast to (63), these equations are independent of the value of
ε0 in complete analogy to our previous observation for the asymptotic classical solution (22).
Also, the equations have imaginary terms which are necessary for pε to change in internal
time (in the ε representation chosen here, pε enters through the phase of the wavefunction).
Even if p0

ε is initially zero, i.e. A0, A1 and A2 are all real, the wavefunction must become
complex after some steps such that anisotropy also in the triad arises automatically.

Before solving (66) we generalize it to allow dust-like matter (matter Hamiltonian
independent of ν̄) such that the middle coefficients on the left-hand sides of the equations
are 2ρ with a constant ρ � 1, reproducing the vacuum case above for ρ = 1. We then put the
system in a first-order form, considering solutions only on the lattice 4Z which is sufficient to
see the behaviour of long-time evolution. Accordingly, we introduce the vector

v(ν̄ + 4) =




A0(ν̄ + 4)

A1(ν̄ + 4)

A2(ν̄ + 4)

A0(ν̄)

A1(ν̄)

A2(ν̄)




.

With this definition we can cast (66) in a first-order linear matrix equation (of step-size four):

M v(ν̄ + 4) + N v(ν̄) = 0 or v(ν̄ + 4) + Q v(ν̄) = 0, (67)
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where the matrix Q is

Q =




−2ρ 0 0 1 0 0
−2iρ −2ρ 0 2i 1 0
9 + ρ 2iρ −2ρ −2 2i 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




.

It is possible to bring this matrix to its Jordan canonical form (see appendix B) J = S−1QS

where

J =




λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ2 1 0
0 0 0 0 λ2 1
0 0 0 0 0 λ2




.

Here, λ1,2 = ±
√

ρ2 − 1 − ρ are the two eigenvalues of Q with multiplicity three (which
degenerate further in the vacuum case ρ = 1).

From here we can obtain the solution starting from initial conditions in (67):

v(ν̄0 + 4k) = Qk v(ν̄0). (68)

We obtain

Qk = SJ kS−1, (69)

where J is the Jordan form for Q above and each one of its block powers is

J k
i =

2∑
j=0

(
k

j

)
λ

k−j

i Nj . (70)

N is the off-diagonal term in J .
We obtain the transition matrix S by computing the generalized eigenvectors associated

with λ1,2, which we do not write down; however we write the general k power of J above:

J k =




λk
1 kλk−1

1

(
k

2

)
λk−2

1 0 0 0

0 λk
1 kλk−1

1 0 0 0

0 0 λk
1 0 0 0

0 0 0 λk
2 kλk−1

2

(
k

2

)
λk−2

2

0 0 0 0 λk
2 kλk−1

2

0 0 0 0 0 λk
2




.

From this the solution for the A functions is

A0(ν̄0 + 4k) = 1
2 (ρ2 − 1)−1/2

((−λk
1λ2 + λ1λ

k
2

)
A0(ν̄0) +

(
λk

2 − λk
1

)
A0(ν̄0 − 4)

)
, (71)

A1(ν̄0 + 4k) = 1
2 (ρ2 − 1)−1/2

((−λk
1λ2 + λ1λ

k
2

)
A1(ν̄0) − ik

(−λ2
1λ

k−1
2 + λk−1

1 λ2
2

)
A0(ν̄0)

+ i
(
λk

2 − λk
1 − kλk−1

1 λ2 + kλk−1
2 λ1

)
A0(ν̄0 − 4)

(
λk

2 − λk
1

)
A1(ν̄0 − 4)

)
(72)
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and

A2(ν̄0 + 4k) = 1

4

[
9

(ρ2 − 1)3/2

(
λk

1 − λk
2

)

+ kλk−1
1

(
−9 − 2ρ + 18ρ2 + 2ρ3

ρ2 − 1
+

−1 + 18ρ + 2ρ2√
ρ2 − 1

)

+

(
k

2

)
2λk−2

1

ρ2 − 1

(
1 − 5ρ2 + 4ρ4 − 3ρ

√
ρ2 − 1 + 4ρ3

√
ρ2 − 1

)

+ kλk−1
2

(−9 − 2ρ + 18ρ2 + 2ρ3

ρ2 − 1
+

−1 + 18ρ + 3ρ2 + 18ρ3 − 2ρ4

(ρ2 − 1)3/2

)

+

(
k

2

)
λk−2

2

(
2 − 12ρ2 + 18ρ4 − 8ρ6

(ρ2 − 1)2
+

6ρ − 14ρ3 + 8ρ5

(ρ2 − 1)3/2

)]
A0(ν̄0)

− ik

2

(
λk−1

1 λ2
2 − λk−1

2 λ1√
ρ2 − 1

)
A1(ν̄0) +

1

2

(
−λk

1λ2 + λk
2λ1√

ρ2 − 1

)
A2(ν̄0)

+
1

4

[
λk

1
1 − 9ρ + ρ2

(ρ2 − 1)3/2
+ λk

2
1 + 9ρ − ρ2

(ρ2 − 1)3/2

+ 3k

(
−λk−1

1

{
1 +

3ρ

ρ2 − 1
+

3 + ρ√
ρ2 − 1

}
+ λk−1

2

{
−1 − 3ρ

ρ2 − 1
+

3 + ρ√
ρ2 − 1

})

+

(
k

2

)(
λk−2

1

{
4ρ + 2

2ρ2 − 1√
ρ2 − 1

}

+ λk−2
2

{
4ρ

(ρ + 1)2
− 2

2ρ2 − 1

(ρ + 1)3/2
√

ρ − 1

})]
A0(ν̄0 − 4)

+
i

2

(
λk

2 − λk
1

(ρ2 − 1)
3
2

− k
λk−1

1 λ2 − λ1λ
k−1
2√

ρ2 − 1

)
A1(ν̄0 − 4) +

λk
2 − λk

1

2
√

ρ2 − 1
A2(ν̄0 − 4).

(73)

This solution is valid only for |ρ| �= 1, for otherwise the eigenvalues would be completely
degenerate.

So we have obtained the solution to the evolution equation in the asymptotic ν̄ regime.
We should note that the solutions grow as powers of the order k (no larger than second) as a
consequence of degeneracy, although the leading coefficient A0 is bounded.

4.2. Inclusion of matter

One can hope that matter terms remove the degeneracy present for the case for pure gravity,
which similarly happens in the isotropic model (see [11] for an explicit isotropic vacuum
solution which is also unbounded). As the previous discussion shows, however, this is not the
case for dust which has a constant diagonal Hamiltonian, Ĥ = EI.

As the next simple possibility we can consider a cosmological constant term

Ĥ matter = �V̂ . (74)
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Using (48) the evolution equation for large ν̄ (60) modifies to(
−4

3
+

4

3
iε +

2

3
ε2 − 6

ν̄
iεP̂ +

3

2ν̄2
P̂ 2

)
sν̄+4 +

(
−4

3
− 4

3
iε +

2

3
ε2 +

6

ν̄
iεP̂ +

3

2ν̄2
P̂ 2

)
sν̄−4

+

(
8

3
− 2

ν̄
P̂ − 12ε2 − 3

ν̄2
P̂ 2

)
sν̄ = −4

3
πGγ 3�

(
2ν̄3/2

3
− 9

4
√

ν̄
P̂ 2

)
sν̄ .

(75)

With the same ansatz (61), (62) the right-hand side of each equation becomes

ν̄3/2

6

[
A0(ν̄)

(
54σ 2 + 32ν̄2σ 4 − 27ε2

0

)
+ A1(ν̄)(−108σ 2ε0) + A2(ν̄)(−216σ 4)

]
(76)

for (63),

ν̄3/2

6

[
A0(ν̄)(54ε0) + A1(ν̄)

(
162σ 2 + 32ν̄2σ 4 − 27ε2

0

)
+ A2(ν̄)(−216σ 2ε0)

]
for (64) and

ν̄3/2

6

[
A0(ν̄)(−27) + A1(ν̄)(54ε0) + A2(ν̄)

(
270σ 2 + 32ν̄2σ 4 − 27ε2

0

)]
for (65).

It is easier to check the degeneracy in the asymptotic ν̄ regime: in this case the right-
hand sides of (66) acquire an extra term 27

9 πGγ 3�ν̄3/2Ai(ν̄), respectively. Coefficients in
the asymptotic difference equation are thus no longer constant and we do not find explicit
solutions. Still, around any fixed ν̄ eigenvalues remain degenerate.

4.3. Large ν̄ behaviour

Rather than looking at more involved matter choices, we now use only large ν̄ and keep next
order terms in ν̄−1. This gives rise to more complicated correction terms in (63) compared to
the asymptotic equations, changing all coefficients. Rather than trying to solve this second-
order system of difference equations, we perform a local stability analysis around large fixed
ν̄ similar to that in the previous section.

To this end we put the system (60) again in a first-order form (67), where now the matrices
M, N, Q are the functions of (ν̄, ε0, σ ). In this case the stability of the system is obtained
if and only if the module of the eigenvalues of the matrix Q above are less or equal to 1.
However, its characteristic polynomial is of order six and, recalling the form of (63), each one
of its coefficients is a very complex function of (ν̄, ε0, σ ). Therefore, we perform a numerical
analysis to see the behaviour of each one of the coefficient functions Ai(ν̄) in (62).

The characteristic polynomial is of the form

λ6 + h5λ
5 + h4λ

4 + h3λ
3 + h2λ

2 + h1λ + h0 = 0, hj = hj (ν̄, ε0, σ ), j = 0, . . . , 5

(77)

which one can solve numerically to find choices of ε0 and σ where all six roots have an
absolute value less than or equal to 1.

5. Perturbations and the singularity

When perturbing in basic variables, the expansion is valid only for pε � p̄ and thus
breaks down very close to the classical singularity. Indeed, the main aim for studying
perturbations is to understand effects in structure formation where one needs at least
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perturbative inhomogeneities for which anisotropies serve as a model. This is usually
modelled in semiclassical regimes, in an inflationary phase or sometimes through a bounce
at relatively large volume, far away from the Planck scale. It is nevertheless instructive to
discuss implications for the singularity issue itself close to vanishing p̄, as they might appear
in a perturbative setting.

In the asymptotic ν̄ equation (66) we saw that the relevant matrix M in (67) at highest
order of the difference equation is always invertible such that evolution cannot break down
in this regime. But this is not guaranteed at small ν̄ where a breakdown of evolution can
occur even at ν̄ > 0 where one would not expect singularities classically. There are even
divergences in coefficients of the difference equation such as in Ĉν̄ for ν̄ = 3 coming, e.g.,
from �3|ν̄|−3/2. This is certainly a small value for ν̄, but note that pε can be small compared
to p̄ even for ν̄ of the order one which perturbatively is consistent with using the fact that
the perturbative operator pε has a continuous spectrum. As discussed earlier, small pε do
not automatically bring us into discrete regimes, unlike small p̄. One can thus set up the
perturbative evolution such that all assumptions for the perturbation scheme are satisfied, and
yet the evolution breaks down at nonzero volume. (Starting at large volume, the perturbative
approximation is expected to break down much before the classical singularity is reached. But
generically, a breakdown of evolution cannot be ruled out since there are initial conditions for
which the evolution breaks down before the perturbative scheme ceases to make sense.)

There is thus no removal of singularities in the perturbative model. Even worse, the
perturbative equation could make us believe that the non-singular evolution of the isotropic
model is very special and could not extend to less symmetric models, owing to the fact that
for ε = P = 0 all divergent coefficients disappear. In such a situation, it is necessary to use
the full model from which the perturbative equation is derived in order to see whether or not it
breaks down. As it turns out, for loop quantum cosmology the evolution is non-singular even
for anisotropic models, in contrast to the perturbative appearance.

A different source for a breakdown of evolution appears because coefficients of the
difference equation are now differential operators on the perturbative degree of freedom.
These operators must be inverted to proceed with the evolution, which is not generically
possible and may require special boundary conditions. Note that, if a physical inner product
is not known, even generic invertibility would not be enough: one needs to make sure that
any initial state can be evolved without breakdown to conclude singularity freedom. Even if
almost all initial values would lead to non-singular evolution, all of them could be ruled out
by the physical inner product (see also [6]). We do not discuss this in detail here but only
conclude that, while the fully quantized anisotropic model is non-singular, there is no such
statement in the perturbative quantization.

It is interesting to compare this situation with recent results in string theory [26] where
inhomogeneities on a background are seen to prevent the occurrence of a bounce instead
of a singularity (which would otherwise be possible in the corresponding homogeneous
model). This looks similar to our perturbative quantization of anisotropies on an isotropic
background, even though the models and techniques are certainly very different. In contrast,
non-perturbative background-independent models studied so far are non-singular, including
inhomogeneous ones which classically have local physical degrees of freedom [27].

There is a further disadvantage of using perturbative or semiclassical degrees of freedom
in order to discuss the singularity issue, as for instance suggested in [28]. Such a perturbative
treatment is unlikely to remain valid close to a singularity where potentially all degrees of
freedom can be excited strongly. Perturbations certainly allow one to include all degrees
of freedom, which is important for phenomenology, but properties of the singularity can be
extremely blurred as we have seen here. In contrast, symmetric models completely remove
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many degrees of freedom which may have to be reinserted later on when discussing their
effect on evolution. But symmetric models themselves are often classically singular, and
those singularities can be studied by quantizations of models. With the models now available,
the most characteristic types of classical singularities can be studied also at the quantum level.
This can then show how classical singularities can be resolved by quantization, and there is
indeed a general mechanism in loop quantum gravity.

While the fundamental singularity issue concerning the extension of solutions to the
Hamiltonian constraint equation cannot be analysed perturbatively, this is still possible for
phenomenological models of bounces as studied in [29] and used for the construction of
oscillatory universe models in [30]. Such bounces need to happen sufficiently far above
the Planck scale in order to ensure the validity of effective equations [31], and thus avoid
a potential breakdown of the perturbative discrete evolution. This will also be true for
perturbative analyses of inhomogeneities. Also at the inhomogeneous level, one can employ
approximate but non-perturbative methods in the spirit of the BKL picture [32]. In contrast
to perturbative schemes, this can then also be applied to the fundamental singularity issue, as
done in the loop quantum gravity context with preliminary investigations in [33].

6. Conclusions

We have mainly illustrated the reduction procedure to symmetric situations available for loop
quantum gravity, and contrasted it with a new method for perturbative quantum degrees of
freedom in the case of anisotropy. We consider this mainly as a model situation for the
cosmologically more interesting but technically much more complicated case of perturbative
inhomogeneities. This already allowed us to draw some cautionary conclusions for the
singularity problem when discussed in a perturbative setting, as well as for the relation
between symmetric models and perturbative less symmetric ones.

The resulting evolution equations are of a new type compared to other models in loop
quantum gravity. Although not studied in detail here, they are treatable at least by numerical
schemes and provide an interesting setting to understand evolution equations in general and
numerical techniques to solve them. New schemes for an efficient solution still need to
be developed, also taking into account the issue of pre-classicality [34] ignored here. This
condition requires solutions not to vary strongly on the scale of discreteness. It can be
expected for semiclassical behaviour, but is also necessary to ensure the correct behaviour of
wave packets. Techniques to extract pre-classical solutions, such as those based on generating
functions [35], continued fractions [36] or numerical ones using suitable function bases [37],
have been introduced but are not yet available for the equations considered here.

Also the equations themselves can be generalized in several directions. Within the
same degree of symmetry one can discuss different matter choices and, at the level of the
ansatz (61), more general classes for the functional behaviour of the wavefunction depending
on anisotropy. Moreover, different orderings of the constraint operator, most importantly the
symmetric one, can be tried. The bigger step consists in including inhomogeneous degrees of
freedom perturbatively for which the analysis in this paper serves as preparation. Classically,
the split into symmetric and non-symmetric variables would be given by a mode decomposition
with respect to the symmetric background. A priori, there are no insurmountable difficulties
in repeating the analysis here for this situation, even though technically it would be much
more involved. Inhomogeneities can already be included explicitly by using midi-superspace
models for which the loop framework has been constructed in [18, 38]. These situations
already allow the inclusion of inhomogeneities of cosmological interest.
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Our analysis also shows that the reduced constraint of the more symmetric model still
plays a role for the less symmetric one and is only amended by perturbative correction terms.
Those terms are derived by expanding the less symmetric constraint operator, and not by
quantizing the classically expanded constraint in the fashion of [39]. Indeed, the additional
terms are much more contrived than expected classically. Although more complicated, these
terms are derived from the less symmetric model and are thus well motivated. After a detailed
study of the evolution, such as restrictions from quantum stability, one can draw conclusions
for the form of the less symmetric constraint operator. (Such restrictions indeed arise easily
as the closed isotropic model, [10] compared to [40], and the more detailed analysis in [25]
showed.) Eventually, with a better understanding of the relation between models and the full
theory also at the level of the Hamiltonian constraint, one can then hope to restrict possible
full constraint operators and reduce their ambiguities.
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Appendix A. Approximate action of operators on peaked states

For the perturbative expansion of the Hamiltonian constraint at the quantum level, it is
necessary to define and discuss an appropriate notion of expansions of operators. We are
not interested in expansions valid for any state of the Hilbert space but only in expansions that
can be used for states corresponding to small anisotropy such as those used in (61). Thus, the
expansion parameter is not contained directly in the original operator but introduced through
a restricted class of states considered for the action. We then start by choosing a space Dδ of
states in the original Hilbert space H, or even a subset of a cylindrical space CylS, depending
on the intended perturbation parameter δ (or several such as ε0 and p0

ε in the main part of this
paper), and define

Definition 1. An operator Ôk on H is an approximation of order k to an operator Ô if Ôk�

agrees, with respect to the inner product, with Ô� for all � ∈ Dδ up to order δk+1, i.e.

〈� ′|(Ô − Ôk)�〉 = O(δk+1)

for all � ′ ∈ CylS. Agreement with respect to the inner product in this sense will be denoted
by Ôk� ∼ Ô�.

To show that this is realized for the expansions performed for anisotropies in this paper,
we choose Dq0,p0 to be the span of states of the form �(q) = σ−1/2s(q) exp(−(q −q0)

2/4σ 2)

exp(ip0q) for a given σ < q0 and a polynomial s (we do not normalize states but keep
track of factors of σ ). Expansions performed here always lead to approximations Ôk which
are polynomials in the basic operators q̂ and p̂ of the anisotropy. This implies that any Ôk

considered here maps the space Dδ to itself and can be used to show that the validity of
expansions is preserved by taking products:
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Lemma 1. Let Ô
(1)
k and Ô

(2)
k be approximations of Ô(1) and Ô(2), respectively, such that they

fix the spaces Dδ and CylS. Then Ô
(1)
k Ô

(2)
k is an approximation of Ô(1)Ô(2).

Proof. By assumption we have Ô(1)Ô(2)� ∼ Ô(1)Ô
(2)
k � because we can simply replace � ′

by Ô(1)†� ′ in the definition of agreement. Since Ô
(2)
k � is in Dδ for � ∈ Dδ , we have

Ô(1)Ô(2)� ∼ Ô
(1)
k Ô

(2)
k �

which finishes the proof. �

We can therefore split the expansion into different steps as done in the main calculations
here. This also simplifies the proof that the performed expansion of the Hamiltonian constraint
is an approximation because we only need to show that multiplication operators can be
approximated by simply expanding the multiplying function, which we would apply for our
calculations in both the coordinate and momentum representation. We then only need

Lemma 2. Let Ô�(q) = O(q)�(q) be a multiplication operator on Ĥ = L2(R, dq). Any
partial Taylor sum Ok(q) = ∑k

n=0
1
n!O

(n)(0)qn gives rise to an approximation Ôk�(q) =
Ok(q)�(q) of Ô order k with respect to Dδ as above.

Proof. Let �(q) = σ−1/2s(q) exp(−(q − q0)
2/4σ 2) and � ′ ∈ CylS. We have

|〈� ′|(Ô − Ôk)�〉| = σ−1/2

∣∣∣∣
∫

dq �̄ ′(q)(O(q) − Ok(q))s(q) exp(−(q − q0)
2/4σ 2)

∣∣∣∣
� 2C1σ

−1/2
∫ q0+1

q0

exp(−(q − q0)
2/4σ 2)qk+1 dq

+ 2C2σ
−1/2

∫ ∞

q0+1
exp(−(q − q0)

2/4σ 2)qk+1 dq

with positive constants C1 and C2 depending only on the supremum of the real and imaginary
parts of �̄ ′(q)s(q). The first integral can be estimated by∫ q0+1

q0

exp(−(q − q0)
2/4σ 2)qk+1 dq =

∫ 1

0
exp(−q2/4σ 2)(q + q0)

k+1 dq

= σ k+2
∫ σ−1

0
exp(−q2/4)(q + q0/σ)k+1 dq

� σ k+2
∫ ∞

0
exp(−q2/4)(q + q0/σ)k+1 dq

where the last integral exists and does not depend strongly on q0 and σ since they are assumed
to be of the same order. The whole expression is thus of order σ k+2. For the second integral,
we have∫ ∞

q0+1
exp(−(q − q0)

2/4σ 2)qk+1 dq = e−(2σ)−2
∫ ∞

0
exp(−(q2 + 2q)/4σ 2)(q + q0 + 1)k+1 dq

� e−(2σ)−2
∫ ∞

0
exp(−q2/4σ 2)(q + 2)k+1 dq

where the last integral is a polynomial in σ and the whole expression is thus of the order
e−(2σ)−2

times a polynomial in σ . By our assumptions on the states in Dσ , we have σ of the
order or smaller than q0 which concludes the proof. �
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Appendix B. Jordan canonical form

B.1. Generalized eigenvectors and transition matrix

In this section, we briefly review the Jordan canonical form of a square complex matrix. For
further details and the proofs of the theorems, see for example [41]. We begin by stating the
following

Theorem 1. If a square matrix A of order n has s linearly independent eigenvectors, then it
is similar to a matrix J of the following form, called a Jordan canonical form

J = S−1AS =




J1 0
J2

. . .

0 Js


 , (B.1)

in which each Ji , called the Jordan block, is a triangular matrix of the form

Ji =




λi 1 0
. . .

. . .

. . . 1
0 λi


 , (B.2)

where λi is a single eigenvalue of A. Each Jordan block corresponds to a linearly independent
eigenvector.

This theorem states that we can bring any square matrix to its Jordan form. The usefulness
of this form lies in the fact that it is easier to obtain powers of the matrix A, as can be seen by
taking a look at the form of J in (B.1) and (B.2). The matrix S in (B.1) is called the transition
matrix. Now we state the procedure to obtain both matrices J and S.

The basic elements to obtain the Jordan form are the generalized eigenvectors, replacing
ordinary eigenvectors of a diagonalizable matrix.

Definition 2. A nonzero vector x is said to be a generalized eigenvector of A of rank k
belonging to an eigenvalue λ if

(A − λI)k x = 0 and (A − λI)k−1x �= 0. (B.3)

If k = 1 this is the usual definition of an eigenvector. For a generalized eigenvector x of rank
larger than 1 belonging to the eigenvalue λ define

xk = x,

xk−1 = (A − λI) x = (A − λI) xk,

xk−2 = (A − λI)2 x = (A − λI) xk−1,

...

x2 = (A − λI)k−2 x = (A − λI) x3,

x1 = (A − λI)k−1 x = (A − λI)x2.

(B.4)

One can check that each one of the xj above is a generalized eigenvector of the eigenvalue λ.
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Definition 3. The set of vectors {x1, . . . , xk} is called a chain of generalized eigenvectors
belonging to the eigenvalue λ.

Now the transition matrix S can be constructed from the chains of linearly independent
generalized eigenvectors of A [41].

B.2. Powers of square matrices

The Jordan canonical form of any square matrix A enables us to compute its powers Ak . Let
J be the Jordan canonical form of an arbitrary n × n matrix A such that

S−1AS = J =




J1

. . .

Js


 ,

where S is made of the generalized eigenvectors of A and Js are Jordan blocks.
Since we have

Ak = S−1J kS = S




J k
1

. . .

J k
s


 S−1

for k = 1, 2, . . . , it is enough to compute J k for each Jordan block J . An m×m Jordan block
J belonging to an eigenvalue λ of A may be written as

J =




λ 1 0

0
. . .

. . .

λ 1
0 0 λ


 = λIm×m +




0 1 · · · 0

0
. . .

. . . 0
... 0 1
0 · · · 0 0


 = λI + N,

where I is the identity matrix and N is nilpotent. Clearly we have

J k = (λI + N)k =
k∑

j=0

(
k

j

)
λk−jNj . (B.5)

But Nk = 0 for k � m and thus, by defining
(

k

l

) = 0 if k < l

J k =
m−1∑
j=0

(
k

j

)
λk−jNj = λkI + kλk−1N + · · · +

(
k

m − 1

)
λk−(m−1)Nm−1. (B.6)
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