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Abstract. Using Virasoro algebra approach, black hole entropy formula for a general class of
higher curvature Lagrangians with arbitrary dependence on Riemann tensor can be obtained
from properties of stationary Killing horizons. The properties used are a consequence of
regularity of invariants of Riemann tensor on the horizon. As suggested by an example
Lagrangian, eventual generalisation of these results to Lagrangians with derivatives of Riemann
tensor, would require assuming regularity of invariants involving derivatives of Riemann tensor
and that would lead to additional restrictions on metric functions near horizon.

1. Introduction
The entropy of a black hole, in Einstein gravity, is given by the well known Bekenstein–Hawking
formula

SBH =
A

4
. (1)

For general diffeomorphism invariant Lagrangians

L = L(gab, Rabcd,∇Rabcd, ψ,∇ψ, ...), (2)

the generalisation [1] of Bekenstein–Hawking formula is given by

S = −2π
∫

H
ε̂

δL

δRabcd
ηabηcd, (3)

where ηab is binormal to the horizon normalised so that ηabη
ab = −2.

There are many independent approaches for counting the quantum microscopic states that
generate the entropy of black holes. All of these approaches give results consistent with
Bekenstein–Hawking formula for entropy. A possible explanation for this universality, due to
Carlip [2], is that the density of microscopic states is determined by a conformal symmetry which
is a consequence of Virasoro algebra of particular class of diffeomorphisms on the horizon. This
approach was discussed and generalised in [3, 4, 5, 6, 7].

Here we shall describe the application [8, 9] of this approach to 4D black holes for Lagrangians
of the type:

L = L(gab, Rabcd), (4)
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i.e. Lagrangians that depend arbitrarily on metric and Riemann tensors and do not contain
derivatives of Riemann tensors, and Lagrangians of the type:

L =
1

16π
R+ α(∇R)2, (5)

i.e. Einstein gravity with additional term containing derivatives of Ricci scalar.
First we shall briefly review Carlip’s conformal approach [2] (in section 2), then describe

additional ingredients used in calculation (in section 3), and then describe results (in section 4).

2. Conformal approach
In approach [2] one treats horizon as boundary and fixes the following boundary conditions on
the horizon

χaχb

χ2
δgab → 0, χatbδgab → 0 as χ2 → 0, (6)

where χa is Killing vector that is null on the horizon (and satisfies ∇aχ
2 = −2κχa on the

horizon), and ρa is defined with ∇aχ
2 = −2κρa (so that ρa = χa on the horizon) and ta is any

unit spacelike vector tangent to the horizon.
Diffeomorphisms compatible with boundary conditions are generated by vector fields of the

form:

ξa = Tχa +
1
κ

χ2

ρ2
∇χTρ

a. (7)

If ρa∇aT = 0 then the Lie bracket algebra of diffeomorphisms closes:

{ξ1, ξ2}a = (T1∇χT2 − T2∇χT1)χa +
1
κ

χ2

ρ2
∇χ(T1∇χT2 − T2∇χT1)ρa. (8)

For Einstein gravity, Dirac bracket algebra of Hamiltonian generators of these
diffeomorphisms turns out to be (after some additional technical assumptions, for details see
[2]) Virasoro algebra:

i {Jm, Jn}∗ = (m− n)Jm+n +
A

8π
m3δm+n,0, (9)

with central charge:
c

12
=

A

8π
. (10)

In a conformal field theory Virasoro algebra determines asymptotic density of states and hence
the entropy (Cardy formula):

SC = 2π
√( c

6
− 4∆g

)(
∆ − c

24

)
, (11)

where ∆ is the eigenvalue of Virasoro generator L0 for the state we calculate the entropy and
∆g is the smallest eigenvalue. Now, using (10), identifying ∆ with J0 = A/8π, and assuming
that ∆g = 0 one obtains Bekenstein–Hawking entropy (1).

3. Near horizon metric
One would like to see what happens with algebra (9) and central charge (10) for Lagrangians
of the form (4) and (5), then to use Cardy formula to obtain entropy, and then to see whether
or not this conformal entropy agrees with formula (3). One way to proceed [5, 6, 7] is to use
assumptions such as those of Appendix A of Ref. [2]. The alternative approach of [8, 9] is to use
the general near horizon metric [10], as we shall describe below.
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Consider stationary axially symmetric spacetime containing black hole, and pick coordinates
t, φ, n, z such that t is associated with timelike stationary Killing vector, φ is associated with
Killing vector that corresponds to axial symmetry, n is Gauss normal coordinate that corresponds
to the distance from the horizon on the equal time hypersurface and the remaining coordinate
z is chosen such that the metric has the form:

ds2 = −N(n, z)2dt2 + gφφ(n, z) (dφ− ω(n, z)dt)2 (12)

+dn2 + gzz(n, z)dz2.

Absence of curvature singularities on the horizon, more precisely the finiteness of R, RabR
ab,

RabcdR
abcd on the horizon, implies that metric coefficients have the following Taylor expansions

on the horizon [10]:

N(n, z) = κn+
1
3!
κ2(z)n3 +O(n4) (13)

gφφ(n, z) = gHφφ(z) +
1
2
g2φφ(z)n2 +O(n3)

gzz(n, z) = gHzz(z) +
1
2
g2zz(z)n2 +O(n3)

ω(n, z) = ΩH +
1
2
ω2(z)n2 +O(n3).

Note the absence of quadratic term in expansion of N(n, z), and the absence of linear terms in
other three expansions.

4. Results
It can be shown [8] that the conformal approach will reproduce the generalised Bekenstein–
Hawking formula (3) if

lim
n→0

{
δL

δRabcd
[ξe

1ηae∇dδ2gbc − (1 ↔ 2)]
}

(14)

= lim
n→0

{
−1

4
ηabηcd

δL

δRabcd

[
(
1
κ
T1

...
T 2 −2κT1Ṫ2) − (1 ↔ 2)

]}
,

lim
n→0

{
[ξe

1ηaeδ2gbc − (1 ↔ 2)]∇d
δL

δRabcd

}
= 0. (15)

The first condition (14) can be shown to be satisfied [7] using the symmetries of δL
δRabcd

(which
are those of Riemann tensor).

The second (15) is more complicated due to the divergence term. For explicit form of a
Lagrangian such as (4) or (5) it can be shown to be satisfied by performing explicit calculations
(e.g. using Mathematica) as was done in [8] and [9]. For the whole class of Lagrangians of the
form (4), it also can be shown by counting the powers of n in Taylor expansions of quantities
that appear in (15) near horizon. For that purpose [9] it is convenient to use the basis χa, ρa,(

∂
∂φ

)a
,

(
∂
∂z

)a
. From explicit form of basis vectors and metric it is possible to obtain Taylor

expansions of scalar products and derivatives of basis vectors and Taylor expansions of Riemann
tensor in this basis, and from these it is possible to find out the properties of δL

δRabcd
and of

∇d
δL

δRabcd
for general L, and finally to conclude that the contraction in (15) has to be zero on

the horizon.
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The assumptions used along the way were the regularity of scalar curvature invariants In
(one can take e.g. I0 = R, I1 = RabR

ab, I2 = RabcdR
abcd, . . . ), the regularity of Lagrangian L

which is a function of In, and also the regularity of its partial derivatives ∂L
∂In

on the horizon.
Note that all of the assumptions used were assumptions on scalars.

A long but straightforward calculation shows that for special case (5) usual results can be
obtained provided we restrict the class of metric functions. The restrictions are

ω3 = 0 (16)

and
3g3zz

gHzz
+

8κ3

κ
+

3g3φφ

gHφφ
= 0 (17)

where g3zz(z), g3φφ(z) and ω3(z) are coefficients of n3 , and κ3(z) of n4 in Taylor expansions
(13).

These restrictions can be understood also by terms of regularity of scalar curvature invariants
on horizon. Namely, if we require regularity of

(∇aRbc)2 and ∇2R (18)

we obtain relations (16) and (17).
From (16) it follows that all polynomial invariants involving Riemann tensor and its first

derivatives will be regular on the horizon. This is in fact generalisation of results from [10] that
regularity of invariants of Riemann tensor has implications on metric functions near horizon.
Here, we see that regularity of invariants involving derivatives of Riemann tensor has additional
consequences on metric functions.

5. Conclusion
We have extended Carlip’s procedure for Einstein gravity to Lagrangians with arbitrary
dependence on Riemann tensor (with no derivatives).

As a tool for calculation explicit form of metric near 4D stationary horizon has been used.
That form of metric follows from regularity of curvature invariants near horizon [10] and implies
restrictive power series for quantities needed to calculate central charge.

We also applied the procedure to a Lagrangian containing (∇R)2 and in this case one needs
regularity of (∇aRbc)2 and ∇2R on the horizon.

The compatibility of the procedure with higher order Lagrangians supports the idea that
conformal field theory interpretation of entropy is a consequence only of properties of the horizon
and independent of the type of interaction.
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