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Abstract. We discuss the hyperboloidal evolution problem in general relativity from a numerical
perspective, and present some new results. Families of initial data which are the hyperboloidal
analogue of Brill waves are constructed numerically, and a systematic search for apparent horizons
is performed. Schwarzschild-Kruskal spacetime is discussed as a first application of Friedrich’s
general conformal field equations in spherical symmetry, and the Maxwell equations are discussed
on a nontrivial background as a toy model for continuum instabilities.
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INTRODUCTION

In this paper we consider algorithms for numerical relativity (NR) based on hyper-
boloidal slices – spacelike hypersurfaces characterized by a mean extrinsic curvature
χ that approaches a finite value in the limit r → ∞. Correspondingly such slices are not
asymptotically euclidean, but rather reach out to null infinity, and thus provide an alter-
native to null surfaces for tracking radiation signals to large distances from their source,
e.g. in order to predict signals in a gravitational wave detector (see e.g. [1, 2]). Being
spacelike, hyperboloidal slices are in some sense more flexible than null surfaces, and
thus interesting for constructing numerical relativity codes aimed at gravitational wave
physics. In this paper we briefly discuss our general ideas about the design of numerical
codes for hyperboloidal evolution and some preliminary results from two perspectives
we believe to be of key importance: the need to control continuum instabilities and fit-
ness to accurately resolve gravitational wave signals. We also list a few new results.

As is the case with other disciplines of computational physics, an essential part of the
art of NR is to make the physical continuum features manifest in the discrete system
that is then solved by a computer. In general relativity (GR) diffeomorphism invariance
gives rise to a variety of problems not familiar from other theories and which are not
yet understood in sufficient depth to provide a fully satisfactory basis for numerical
simulations. A typical evolution scheme has many more computational than physical
degrees of freedom, the extra degrees of freedom correspond to gauge choice and
the presence of constraints – one should therefore not be surprised to find a generic
tendency for instabilities in the excess degrees of freedom, and indeed the multitude
of formulations of the Einstein equations are typically plagued by instabilities whose
precise causes have often remained elusive, and we expect much further work to be
necessary in order to understand the dos and don’ts of NR. As a simple (linear) example
for the type of problems that have to be expected, we will consider hyperboloidal
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evolution of an electromagnetic field on Minkowski background.
At least from an observational point of view it is clearly desirable to design numerical

codes with accurate GW signal prediction in mind. This is difficult for various reasons.
First, in all physically relevant scenarios gravitational radiation is only a relatively
small effect in the energy balance of the system. Second, in GR such fundamental
quantities as energy, momentum, or emitted gravitational radiation energy can only be
defined unambiguously in terms of asymptotic limits. Consequently, it also becomes
particularly difficult to formulate physically motivated boundary conditions along the
lines of “outgoing radiation boundary conditions” at finite distance from the sources.

Conformal compactification, originally suggested by Penrose [3] allows to discuss
asymptotics in terms of local differential geometry and has provided a very fruitful
framework to approach many problems in mathematical relativity. Naturally, it also
raises hopes for a consistent notion and quantitative treatment of GW signals. However,
since the conformal framework is extremely flexible, it does not by itself determine a
strategy for NR, and additional physical intuition and practical insights are necessary
to bring this technique to fruition in numerical simulations. In the following, we will
briefly review the connection between asymptotics, conformal compactification and
gravitational wave (GW) signals before sketching our strategy to develop codes for
the hyperboloidal evolution problem. We then present some new numerical results
concerning Friedrich’s general conformal field equations in spherical symmetry as a
simple window into the interplay of spatial and null infinity, the Maxwell equations on
a nontrivial background as a toy model for continuum instabilities, and initial data that
generalize Brill waves to the hyperboloidal context.

CONFORMAL COMPACTIFICATION AND RESCALING

A key idea behind conformal rescaling is to compute “order unity” quantities, e.g. for
a massless scalar field Φ a rescaling of the type Ψ := rΦ, which asymptotically just
cancels the known fall-off of the radiation from an isolated source. This allows one to
work with quantities that are finite even asymptotically. Such a procedure can further-
more improve the numerical conditioning of radiation problems. Generally, it is useful
in computational work to factor out what is already known. The idea of conformal com-
pactification is to perform a conformal transformation on the metric gab = Ω2g̃ab and
view the physical space-time M̃ as a submanifold M̃ = {p ∈M|Ω(p) > 0} of some
manifold M completed by boundary points ∂M̃ = {p ∈M|Ω(p) = 0} lying “at infin-
ity” with respect to g̃ab. The definition of a certain type of asymptotics, like asymptotic
flatness, then proceeds in terms of asymptotic properties of the conformal factor, which
define a desired physical fall-off behavior (see e.g. [1]). Note that in a relativistic theory,
we need to deal with three types of directions toward infinity: timelike (ı±), spacelike
(ı0) and null (I ±), and these limits have very different physical significance. In partic-
ular, observers situated at “astronomical” distances (e.g. GW detectors) can be modeled
through geometric objects at future null infinity [4]. Clearly, a thorough physical under-
standing of the problem of consistently modeling GW sources and detectors in a single
picture is very desirable.
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However, writing the Einstein tensor in terms of the rescaled metric makes it im-
mediately clear that taking this concept to the level of the field equations can not be
straightforward:

G̃ab[Ω−2g] = Gab[g]− 2
Ω

(∇a∇bΩ−gab∇c∇cΩ)− 3
Ω2 gab (∇cΩ)∇cΩ.

In the new variables the equations are formally singular at ∂M̃ whereas multiplication
by Ω2 leads to a degenerate principal part for Ω = 0. A very general prescription for
regularizing the rescaled Einstein equations has been obtained by Friedrich through the
formulation of the regular conformal field equations [5]. The fact that this is actually
possible for the Einstein equations, is a nontrivial result and may certainly seem surpris-
ing. Unfortunately, it is achieved at a high price of introducing a large number of new
evolution variables, which complicates the numerical implementation and increases the
risk of triggering continuum instabilities (for numerical results see [2]).

Compactification techniques have been used in NR for quite some time, but have
often been based on less general regularization techniques, e.g. through restriction to a
special class of gauges. Compactification in null directions has been very successful in
the characteristic approach (see e.g. [6] and [7] for recent results) and is well understood.
Compactification of spacelike infinity has not only been used to construct initial data (see
e.g. [8, 9, 10]), but encouraging results have also been obtained in the time evolution
problem [11], where black holes are modeled as “internal asymptotic ends”, often
referred to as punctures, and recently also to get rid of the boundary problem in NR
[12]. In the evolution context, however, some open questions remain, e.g. because
compactification at ı0 leads to a “piling up” of waves. At I + this effect does not appear
– waves leave the physical spacetime through the boundary I +. Also, regularity issues
of the equations at spatial infinity are not yet fully understood, although much progress
has been made with Friedrich’s general conformal field equations [13], for which we
discuss a simple application below.

A code that utilizes hyperboloidal slices to compactify null infinity can profit from
all the flexibility in gauge that a Cauchy approach offers. However, following the idea
to factor out what is already known and making the physical continuum features also
manifest in the numerical code leads to the problem of making manifest the rigid
structure of null infinity in addition to the fall-off of the “gravitational field”. Particularly
important seem the shear-free property of null infinity and the existence of a natural class
of time coordinates associated with affine parameters of the null geodesic generators of
I , known as Bondi time. It is this time coordinate which corresponds to the proper
time of distant observers [1], and which thus corresponds to an “undistorted signal”,
as in Fig. 1. We suggest to use the gauge freedom to make the rigid structure of I
manifest and freeze it to a fixed coordinate sphere as discussed in detail by Andersson
[14] (in particular here the connection between the 3+1 split and the Bondi gauge is
discussed, and essentially the same recommendation to use such a gauge as starting point
for regularization is given). Fixing I + to a coordinate sphere, it is natural to identify it
also with the boundary of the computational domain, and thus to restrict oneself to the
physical part of the spacetime. First experiments along these lines with scalar fields on
a Schwarzschild background have yielded the ringdown results in Fig. 1.
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As an example for the type of coordinates we have in mind, consider computing just
the domain of dependence of a piece of Minkowski space with initial data given on a
ball. Appropriate coordinates are those which are also adapted to self-similarity:

ds2 =
e−2τ

R2

[−(R2 − r2)dτ2 −2rdrdτ+dr2 + r2 (dθ 2 + sinθ 2dϕ2)] .

Using the same type of coordinates in the compactified spacetime with R identified
with the initial location of I yields the picture in Fig. 1. Freezing I to a coordinate
sphere essentially corresponds to a choice of the shift vector on I , which leads to
two problems: First, the prescription of shift needs to be compatible with a well–posed
evolution system, and second, one also needs to choose well for the shift vector away
from I , in order not to distort the geometry in the interior of the spacetime.
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FIGURE 1. Left: A sketch depicting a situation with I + frozen to a coordinate sphere. Right: The
ringdown of a scalar field with angular momentum number l = 2 on a compactified Schwarzschild
background with CMC-slices and I + frozen to a coordinate sphere.

Our strategy to develop codes for the hyperboloidal initial value problem has thus
been threefold: First, we have developed a computational infrastructure that allows us to
confront equations as complex as the conformal field equations without tying us down
to a particular form of the equations. To this end, the Kranc code generation and tensor
manipulation package [15] has been developed. Second, it has proven very fruitful to
learn as much as possible from the characteristic approach, which is less general, but
works well. Third, we have started a number of smaller projects that allow us test
what works and what does not in simplified situations, and actually start a mathematical
analysis of the properties of our algorithms. We present some preliminary results below.

GENERAL CONFORMAL FIELD EQUATIONS

The approach suggested above and sketched in Fig. (1) is well adapted to computing
gravitational wave signals, but can not reproduce a global representation of the space-
time, which includes spacelike infinity ı0. From the point of view of an observer at I +,
ı0 represents the infinite past, which is clearly relevant for certain questions, e.g. a quasi-
stationary solution may have persisted for a very long time, before violent dynamics
sets in. Friedrich’s general conformal field equations [13], which rely on the conformal
Gauss gauge, allow for a global treatment, in which different asymptotic regions can be
handled with one system of equations. Using this method can provide initial data for a

309

Downloaded 11 Jan 2007 to 194.94.224.254. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



hyperboloidal code that is actually determined from a Cauchy surface. Also, numerical
experiments with this system might give rise to a better understanding of the regularity
issues around spatial infinity.

As a first step we have used the general conformal field equations to construct the
Schwarzschild-Kruskal solution with initial data specified on a Cauchy surface. Using
the conformal Gauss gauge, in which by spherical symmetry all equations become
ordinary differential equations, it was possible for the first time to cover the entire
Schwarzschild-Kruskal spacetime including spacelike, null and timelike infinity and the
domain close to the singularity (Fig. 2). These results can also be seen as a feasibility
study of the conformal Gauss gauge. Current work is directed to the numerical solution
of the general conformal field equations for non-spherically symmetric initial data.

τ ı+

I +

I
d/M2 10 300

ingoing

outgoing

r = const

singularity

horizon

FIGURE 2. Schwarzschild-Kruskal spacetime in a conformal Gauss gauge.

MINKOWSKI SPACE

A natural first exercise when entering uncharted territory in NR is to consider Minkowski
space. A comparison of evolutions of Minkowski space in various gauges with the full
conformal field equations has been reported in [2], a particularly interesting case is,
when I + is identified with a fixed coordinate sphere and the conformal geometry is
chosen stationary. In this case a constraint violating continuum instability is found.
Inspection of the equations suggests the instability to be due to the type of effect
described in this section. Recently, the mathematical tools to clarify this have been
discussed by Frauendiener and Vogel [16].

As a simple exercise for this type of problem, we have analyzed the case of a Maxwell
field (Ea, Ba) on Minkowski space sliced by non-trivial hypersurfaces:

∂tE
a−β b∂bEa−α εabchcd∂bBd = α(εabchcdχbBd −χEa + εabchcdΓd

ebBe)−Eb∂bβ a ,

∂tB
a−β b∂bBa +α εabchcd∂bEd = −α(εabchcdχbEd +χBa + εabchcdΓd

ebEe)−Bb∂bβ a

The constraints and constraint propagation equations then are

0 = E := ∂bEb +Γb
cbEc, ∂tE −β a∂aE = −α χE ,

0 = B := ∂bBb +Γb
cbBc, ∂tB−β a∂aB = −α χB .

Here, hab, χ , χa, Γa
bc, α and β a are 3-metric, mean extrinsic curvature, acceleration,

Christoffel symbol of hab, lapse and shift respectively. From the constraint propagation
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equations one directly reads off a stability prognosis in the spirit of Frauendiener and
Vogel [16]: if χ < 0, a constraint violating continuum instability has to be expected,
whereas χ > 0 should result in constraint damping. Both effects will be demonstrated
below for a simple class of slices in Minkowski space with a fixed sign of χ . Note
that densitizing the evolved fields can change the sign of the χ factors. This example
thus demonstrates that one needs to be aware of a subtle interplay between the evolution
system, choice of variables and gauge. Continuum instabilities of this type are essentially
an ODE effect in the sense that they are determined by lower order source terms
rather than spatial derivatives. Consequently, it is important to realize that for numerical
purposes, analyzing the principal part is only a starting point. In general, lower order
terms have to be carefully analyzed and a formulation of the theory has to be chosen that
avoids instabilities. Clearly, this process benefits from avoiding excess baggage when
formulating the equations one starts with.

In nonlinear situations, the decay of the fields is delayed by nonlinear interactions,
and the ODE effects have an even stronger influence than in linear situations. In order
to monitor these effects over a considerable amount of time, we consider a finite box
with ideally conducting walls, i.e. a cavity in which the field excitation is reflected back
and forth. We foliate Minkowski space with simple hyperboloids that are bent only
in x-direction and are flat in yz-directions: {t = const}-surfaces with t(T,X ,Y,Z) =
T − κ(

√
1+X2 − 1). For initial data we use analytically known eigenmodes of the

cavity, transformed appropriately from standard Minkowski to the curved coordinates.
The results of our experiments are presented in fig. 3.
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FIGURE 3. (a) Evolution in standard Minkowski coordinates; behaves nicely, energy conserved, linear
drift away from exact solution (error energy norm depends linearly on time). Oscillations in the constraints
due to lowered accuracy of constraint calculation at the boundary (stencil limitation). (b) Evolution in
stable foliation (κ = +1); behaves nicely, energy conserved, drift away from exact solution better than
linear. (c) Evolution in unstable foliation (κ = −1), behaves very badly, exponential growth of both
constraints, exponential deviation from exact solution, finally triggers exponential growth of the energy.

SOLUTION OF THE CONSTRAINTS

Solving the constraints is interesting from two perspectives: first it is a necessary prereq-
uisite for evolutions, and second, since a general procedure for solving the regular con-
formal constraints is not known, it provides an interesting example of a more ad-hoc reg-
ularization procedure for the Einstein equations. We consider an isotropic initial hyper-
surface, i.e. χ̃ab = χ̃ h̃ab/3 with χ̃ = const. This ansatz solves the momentum constraint
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and is in some sense analogous to time symmetry for asymptotically euclidean slices.
By applying the Lichnerowicz-York procedure to the rescaled metric Ω2h̃µν = φ4hµν ,
the Hamiltonian constraint is converted into the Yamabe equation

4Ω2DµDµφ −4ΩDµΩDµφ −
(

R
2
Ω2 +2ΩDµDµΩ−3 DµΩDµΩ

)
φ =

1
3
χ̃2φ5 ,

where Dµ denotes the spatial covariant derivative and R its Ricci scalar. For Ω �= 0 this is
a semilinear elliptic equation, but its principal part vanishes on the conformal boundary
and standard elliptic theory cannot be applied. The existence of smooth solutions φ
has been proven in [17] under the condition that the extrinsic 2-curvature induced on
the initial cut of I by the free metric is pure trace. The Yamabe equation then also
determines the boundary values to be φ 2 = 3|χ̃|−1

√
DµΩDµΩ on I .

As an example, we consider the simple axisymmetric Brill ansatz

dσ2 = eaq(ρ,z) (dρ2 +dz2)+ρ2dϕ2, q(ρ,z) = ρ2e−(ρ2+z2).

Such data are well studied in the asymptotically euclidean regime where it is known that
for small amplitudes a the waves eventually disperse, leaving flat space behind, whereas
for large values of a the waves collapse and form trapped surfaces (in particular we have
used such data to test our code against known results [18]). In the hyperboloidal case,
the problem becomes nonlinear due to the non-vanishing of χ̃ , which we set to unity
without restricting generality. Choosing the conformal gauge as Ω = 1− r2 puts I to
r = 1 and makes the regularity condition on the extrinsic 2-curvature of I be identically
satisfied. The resulting nonlinear boundary value problem can be simply discretized with
2nd order finite differences and solved through a preconditioned GMRES method [19].

For the physical interpretation of the data it is interesting to search for marginally
trapped surfaces, i.e. surfaces on which the null expansion Θ+ vanishes. Note that since
I + is a “surface at infinity”, the expansions take the unique values Θ+ = 4

3 χ̃ , Θ− = 0
there. Since the geometry is euclidean in the vicinity of the axis, the expansions have
their flat space behavior Θ± → ±∞ for r → 0. Marginal surfaces can now develop if
there exist values of the amplitude a for which Θ+ becomes non-positive in between.
Surprisingly, while in the asymptotically euclidean case this happens generically, for the
classes of data, we have studied, Θ+ remains strictly positive and no trapped surfaces
exist even for extremely high amplitudes.
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FIGURE 4. Left: Polar radii of equiexpansion surfaces for different amplitudes. Right: Shape of the
surface Θ+ = 1.4 for a = 0 (innermost), 3,6, . . . ,24 (outermost).
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CONCLUSIONS

The prime motivation to study evolutions based on hyperboloidal slicings is that they
enable us to reach null infinity with the flexibility of Cauchy codes. Using the example
of the Maxwell equations we have also discussed that hyperboloidal hypersurfaces
may tend to create either strong constraint damping or growth, which makes them
interesting both as a model for what can go wrong and as a potential remedy. The
general conformal field equations allow us to treat null and spacelike infinity in a unified
picture, which we hope to help understand the physical significance of the idealizations
one makes when using the compactified picture. In order to develop hyperboloidal
codes that can handle physically interesting situations involving dynamical black holes
and gravitational radiation, we believe it will be fruitful to obtain a fresh perspective
on the compactification problem and consider adapted gauges as a starting point for
regularizing equations rather than proceeding in the opposite direction.
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