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AEI-2005-183Hyperboloidal data and evolutionS. Husa∗Theoretish-Physikalishes Institut, University of Jena,Max-Wien-Platz 1, D-07743 Jena, GermanyC. Shneemann,† T. Vogel,‡ and A. Zengino§lu§Max-Plank-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam, GermanyWe disuss the hyperboloidal evolution problem in general relativity from a numerial per-spetive, and present some new results. Families of initial data whih are the hyperboloidalanalogue of Brill waves are onstruted numerially, and a systemati searh for apparenthorizons is performed. Shwarzshild-Kruskal spaetime is disussed as a �rst appliation ofFriedrih's general onformal �eld equations in spherial symmetry, and the Maxwell equa-tions are disussed on a nontrivial bakground as a toy model for ontinuum instabilities.PACS numbers: 04.25.Dm, 04.20.Ha, 04.30.-wKeywords: Numerial relativity, ontinuum instabilities, initial data, onformal ompati�ationI. INTRODUCTIONIn this paper we onsider algorithms for numerial relativity (NR) based on hyper-boloidal slies � spaelike hypersurfaes haraterized by a mean extrinsi urvature χ thatapproahes a �nite value in the limit r → ∞. Correspondingly suh slies are not asymp-totially eulidean, but rather reah out to null in�nity, and thus provide an alternativeto null surfaes for traking radiation signals to large distanes from their soure, e.g. inorder to predit signals in a gravitational wave detetor (see e.g. [8, 14℄). Being spaelike,hyperboloidal slies are in some sense more �exible than null surfaes, and thus interestingfor onstruting numerial relativity odes aimed at gravitational wave physis. In thispaper we brie�y disuss our general ideas about the design of numerial odes for hyper-boloidal evolution and some preliminary results from two perspetives we believe to be ofkey importane: the need to ontrol ontinuum instabilities and �tness to aurately resolvegravitational wave signals. We also list a few new results.
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2 As is the ase with other disiplines of omputational physis, an essential part of theart of NR is to make the physial ontinuum features manifest in the disrete system that isthen solved by a omputer. In general relativity (GR) di�eomorphism invariane gives riseto a variety of problems not familiar from other theories and whih are not yet understoodin su�ient depth to provide a fully satisfatory basis for numerial simulations. A typialevolution sheme has many more omputational than physial degrees of freedom, the extradegrees of freedom orrespond to gauge hoie and the presene of onstraints � one shouldtherefore not be surprised to �nd a generi tendeny for instabilities in the exess degreesof freedom, and indeed the multitude of formulations of the Einstein equations are typiallyplagued by instabilities whose preise auses have often remained elusive, and we expetmuh further work to be neessary in order to understand the dos and don'ts of NR. As asimple (linear) example for the type of problems that have to be expeted, we will onsiderhyperboloidal evolution of an eletromagneti �eld on Minkowski bakground.At least from an observational point of view it is learly desirable to design numerialodes with aurate GW signal predition in mind. This is di�ult for various reasons.First, in all physially relevant senarios gravitational radiation is only a relatively smalle�et in the energy balane of the system. Seond, in GR suh fundamental quantities asenergy, momentum, or emitted gravitational radiation energy an only be de�ned unam-biguously in terms of asymptoti limits. Consequently, it also beomes partiularly di�ultto formulate physially motivated boundary onditions along the lines of �outgoing radiationboundary onditions� at �nite distane from the soures.Conformal ompati�ation, originally suggested by Penrose [16℄ allows to disussasymptotis in terms of loal di�erential geometry and has provided a very fruitful frame-work to approah many problems in mathematial relativity. Naturally, it also raises hopesfor a onsistent notion and quantitative treatment of GW signals. However, sine the on-formal framework is extremely �exible, it does not by itself determine a strategy for NR,and additional physial intuition and pratial insights are neessary to bring this tehniqueto fruition in numerial simulations. In the following, we will brie�y review the onne-tion between asymptotis, onformal ompati�ation and gravitational wave (GW) signalsbefore skething our strategy to develop odes for the hyperboloidal evolution problem.We then present some new numerial results onerning Friedrih's general onformal �eldequations in spherial symmetry as a simple window into the interplay of spatial and nullin�nity, the Maxwell equations on a nontrivial bakground as a toy model for ontinuuminstabilities, and initial data that generalize Brill waves to the hyperboloidal ontext.II. CONFORMAL COMPACTIFICATION AND RESCALINGA key idea behind onformal resaling is to ompute �order unity� quantities, e.g. for amassless salar �eld Φ a resaling of the type Ψ := r Φ, whih asymptotially just anelsthe known fall-o� of the radiation from an isolated soure. This allows one to work with



3quantities that are �nite even asymptotially. Suh a proedure an furthermore improvethe numerial onditioning of radiation problems. Generally, it is useful in omputationalwork to fator out what is already known. The idea of onformal ompati�ation is toperform a onformal transformation on the metri gab = Ω2g̃ab and view the physial spae-time M̃ as a submanifold M̃ = {p ∈ M|Ω(p) > 0} of some manifold M ompleted byboundary points ∂M̃ = {p ∈ M|Ω(p) = 0} lying �at in�nity� with respet to g̃ab. Thede�nition of a ertain type of asymptotis, like asymptoti �atness, then proeeds in termsof asymptoti properties of the onformal fator, whih de�ne a desired physial fall-o�behavior (see e.g. [8℄). Note that in a relativisti theory, we need to deal with three typesof diretions toward in�nity: timelike (ı±), spaelike (ı0) and null (I ±), and these limitshave very di�erent physial signi�ane. In partiular, observers situated at �astronomial�distanes (e.g. GW detetors) an be modeled through geometri objets at future nullin�nity [7℄. Clearly, a thorough physial understanding of the problem of onsistentlymodeling GW soures and detetors in a single piture is very desirable.However, writing the Einstein tensor in terms of the resaled metri makes it immediatelylear that taking this onept to the level of the �eld equations an not be straightforward:
G̃ab[Ω

−2g] = Gab[g] − 2

Ω
(∇a∇bΩ − gab∇c∇cΩ) − 3

Ω2
gab (∇cΩ)∇cΩ.In the new variables the equations are formally singular at ∂M̃ whereas multipliation by Ω2leads to a degenerate prinipal part for Ω = 0. A very general presription for regularizingthe resaled Einstein equations has been obtained by Friedrih through the formulation ofthe regular onformal �eld equations [10℄. The fat that this is atually possible for theEinstein equations, is a nontrivial result and may ertainly seem surprising. Unfortunately,it is ahieved at a high prie of introduing a large number of new evolution variables, whihompliates the numerial implementation and inreases the risk of triggering ontinuuminstabilities (for numerial results see [14℄).Compati�ation tehniques have been used in NR for quite some time, but have oftenbeen based on less general regularization tehniques, e.g. through restrition to a spe-ial lass of gauges. Compati�ation in null diretions has been very suessful in theharateristi approah (see e.g. [4℄ and [19℄ for reent results) and is well understood.Compati�ation of spaelike in�nity has not only been used to onstrut initial data (seee.g. [5, 12, 13℄), but enouraging results have also been obtained in the time evolutionproblem [6℄, where blak holes are modeled as �internal asymptoti ends�, often referredto as puntures, and reently also to get rid of the boundary problem in NR [17℄. In theevolution ontext, however, some open questions remain, e.g. beause ompati�ation at

ı0 leads to a �piling up� of waves. At I + this e�et does not appear � waves leave thephysial spaetime through the boundary I +. Also, regularity issues of the equations atspatial in�nity are not yet fully understood, although muh progress has been made withFriedrih's general onformal �eld equations [11℄, for whih we disuss a simple appliationbelow.



4 A ode that utilizes hyperboloidal slies to ompatify null in�nity an pro�t from allthe �exibility in gauge that a Cauhy approah o�ers. However, following the idea to fatorout what is already known and making the physial ontinuum features also manifest in thenumerial ode leads to the problem of making manifest the rigid struture of null in�nity inaddition to the fall-o� of the �gravitational �eld�. Partiularly important seem the shear-freeproperty of null in�nity and the existene of a natural lass of time oordinates assoiatedwith a�ne parameters of the null geodesi generators of I , known as Bondi time. It isthis time oordinate whih orresponds to the proper time of distant observers [8℄, andwhih thus orresponds to an �undistorted signal�, as in Fig. 1. We suggest to use thegauge freedom to make the rigid struture of I manifest and freeze it to a �xed oordinatesphere as disussed in detail by Andersson [2℄ (in partiular here the onnetion betweenthe 3+1 split and the Bondi gauge is disussed, and essentially the same reommendationto use suh a gauge as starting point for regularization is given). Fixing I + to a oordinatesphere, it is natural to identify it also with the boundary of the omputational domain, andthus to restrit oneself to the physial part of the spaetime. First experiments along theselines with salar �elds on a Shwarzshild bakground have yielded the ringdown results inFig. 1.
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PSfrag replaementsEHnullgeodesisexisedFigure 1: Left: A sketh depiting a situation with I + frozen to a oordinate sphere. Right: Theringdown of a salar �eld with angular momentum number l = 2 on a ompati�ed Shwarzshildbakground with CMC-slies and I + frozen to a oordinate sphere.As an example for the type of oordinates we have in mind, onsider omputing justthe domain of dependene of a piee of Minkowski spae with initial data given on a ball.Appropriate oordinates are those whih are also adapted to self-similarity:
ds2 =

e−2τ

R2

[

−(R2 − r2)dτ2 − 2rdrdτ + dr2 + r2
(

dθ2 + sin θ2dϕ2
)]

.Using the same type of oordinates in the ompati�ed spaetime with R identi�ed withthe initial loation of I yields the piture in �g. 1. Freezing I to a oordinate sphere
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d/M210300ingoingoutgoingr = onstsingularityhorizonFigure 2: Shwarzshild-Kruskal spaetime in a onformal Gauss gauge.essentially orresponds to a hoie of the shift vetor on I , whih leads to two problems:First, the presription of shift needs to be ompatible with a well�posed evolution system,and seond, one also needs to hoose well for the shift vetor away from I , in order not todistort the geometry in the interior of the spaetime.Our strategy to develop odes for the hyperboloidal initial value problem has thus beenthreefold: First, we have developed a omputational infrastruture that allows us to onfrontequations as omplex as the onformal �eld equations without tying us down to a partiularform of the equations. To this end, the Kran ode generation and tensor manipulationpakage [15℄ has been developed. Seond, it has proven very fruitful to learn as muh aspossible from the harateristi approah, whih is less general, but works well. Third, wehave started a number of smaller projets that allow us test what works and what does notin simpli�ed situations, and atually start a mathematial analysis of the properties of ouralgorithms. We present some preliminary results below.III. GENERAL CONFORMAL FIELD EQUATIONSThe approah suggested above and skethed in Fig. (1) is well adapted to omputinggravitational wave signals, but an not reprodue a global representation of the spaetime,whih inludes spaelike in�nity ı0. From the point of view of an observer at I +, ı0represents the in�nite past, whih is learly relevant for ertain questions, e.g. a quasi-stationary solution may have persisted for a very long time, before violent dynamis setsin. Friedrih's general onformal �eld equations [11℄, whih rely on the onformal Gaussgauge, allow for a global treatment, in whih di�erent asymptoti regions an be handled



6with one system of equations. Using this method an provide initial data for a hyperboloidalode that is atually determined from a Cauhy surfae. Also, numerial experiments withthis system might give rise to a better understanding of the regularity issues around spatialin�nity.As a �rst step we have used the general onformal �eld equations to onstrut theShwarzshild-Kruskal solution with initial data spei�ed on a Cauhy surfae. Using theonformal Gauss gauge, in whih by spherial symmetry all equations beome ordinarydi�erential equations, it was possible for the �rst time to over the entire Shwarzshild-Kruskal spaetime inluding spaelike, null and timelike in�nity and the domain lose to thesingularity (Fig. 2). These results an also be seen as a feasibility study of the onformalGauss gauge. Current work is direted to the numerial solution of the general onformal�eld equations for non-spherially symmetri initial data.IV. MINKOWSKI SPACEA natural �rst exerise when entering unharted territory in NR is to onsider Minkowskispae. A omparison of evolutions of Minkowski spae in various gauges with the fullonformal �eld equations has been reported in [14℄, a partiularly interesting ase is, when
I + is identi�ed with a �xed oordinate sphere and the onformal geometry is hosenstationary. In this ase a onstraint violating ontinuum instability is found. Inspetion ofthe equations suggests the instability to be due to the type of e�et desribed in this setion.Reently, the mathematial tools to larify this have been disussed by Frauendiener andVogel [9℄.As a simple exerise for this type of problem, we have analyzed the ase of a Maxwell�eld (Ea, Ba) on Minkowski spae slied by non-trivial hypersurfaes:

∂tE
a − βb∂bE

a − α ǫabchcd∂bB
d = α(ǫabchcdχbB

d − χEa + ǫabchcdΓ
d
ebB

e) − Eb∂bβ
a ,

∂tB
a − βb∂bB

a + α ǫabchcd∂bE
d = −α(ǫabchcdχbE

d + χBa + ǫabchcdΓ
d
ebE

e) − Bb∂bβ
aThe onstraints and onstraint propagation equations then are

0 = E := ∂bE
b + Γb

cbE
c, ∂tE − βa∂aE = −αχE ,

0 = B := ∂bB
b + Γb

cbB
c, ∂tB − βa∂aB = −αχB .Here, hab, χ, χa, Γa

bc, α and βa are 3-metri, mean extrinsi urvature, aeleration, Christof-fel symbol of hab, lapse and shift respetively. From the onstraint propagation equationsone diretly reads o� a stability prognosis in the spirit of Frauendiener and Vogel [9℄: if
χ < 0, a onstraint violating ontinuum instability has to be expeted, whereas χ > 0should result in onstraint damping. Both e�ets will be demonstrated below for a simplelass of slies in Minkowski spae with a �xed sign of χ. Note that densitizing the evolved�elds an hange the sign of the χ fators. This example thus demonstrates that one needs
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Figure 3: (a) The eletri �eld on�guration and energy density. (b) Evolution in standardMinkowski oordinates; behaves niely, energy onserved, linear drift away from exat solution(error energy norm depends linearly on time). Osillations in the onstraints due to lowered au-ray of onstraint alulation at the boundary (stenil limitation).to be aware of a subtle interplay between the evolution system, hoie of variables andgauge. Continuum instabilities of this type are essentially an ODE e�et in the sense thatthey are determined by lower order soure terms rather than spatial derivatives. Conse-quently, it is important to realize that for numerial purposes, analyzing the prinipal partis only a starting point. In general, lower order terms have to be arefully analyzed and aformulation of the theory has to be hosen that avoids instabilities. Clearly, this proessbene�ts from avoiding exess baggage when formulating the equations one starts with.
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8 In nonlinear situations, the deay of the �elds is delayed by nonlinear interations,and the ODE e�ets have an even stronger in�uene than in linear situations. In orderto monitor these e�ets over a onsiderable amount of time, we onsider a �nite box withideally onduting walls, i.e. a avity in whih the �eld exitation is re�eted bak and forth.We foliate Minkowski spae with simple hyperboloids that are bent only in x-diretion andare �at in yz-diretions: {t = onst}-surfaes with t(T,X, Y, Z) = T −κ(
√

1 + X2−1). Forinitial data we use analytially known eigenmodes of the avity, transformed appropriatelyfrom standard Minkowski to the urved oordinates. The results of our experiments arepresented in �gs. 3 and 4.V. SOLUTION OF THE CONSTRAINTSSolving the onstraints is interesting from two perspetives: �rst it is a neessary prereq-uisite for evolutions, and seond, sine a general proedure for solving the regular onformalonstraints is not known, it provides an interesting example of a more ad-ho regulariza-tion proedure for the Einstein equations. We onsider an isotropi initial hypersurfae,i.e. χ̃ab = χ̃h̃ab/3 with χ̃ = onst. This ansatz solves the momentum onstraint and is insome sense analogous to time symmetry for asymptotially eulidean slies. By applyingthe Lihnerowiz-York proedure to the resaled metri Ω2h̃µν = φ4hµν , the Hamiltonianonstraint is onverted into the Yamabe equation
4Ω2DµDµφ − 4Ω DµΩ Dµφ −

(

R

2
Ω2 + 2Ω DµDµΩ − 3 DµΩ DµΩ

)

φ =
1

3
χ̃2φ5 ,where Dµ denotes the spatial ovariant derivative operator and R its Rii salar. For

Ω 6= 0 this is a semilinear ellipti equation, but its prinipal part vanishes on the onformalboundary and standard ellipti theory annot be applied. The existene of smooth solutions
φ has been proven in [3℄ under the ondition that the extrinsi 2-urvature indued on theinitial ut of I by the free metri is pure trae. The Yamabe equation then also determinesthe boundary values to be φ2 = 3|χ̃|−1

√

DµΩ DµΩ on I .As an example, we onsider the simple axisymmetri Brill ansatz
dσ2 = eaq(ρ,z)

(

dρ2 + dz2
)

+ ρ2dϕ2, q(ρ, z) = ρ2e−(ρ2+z2).Suh data are well studied in the asymptotially eulidean regime where it is known thatfor small amplitudes a the waves eventually disperse, leaving �at spae behind, whereasfor large values of a the waves ollapse and form trapped surfaes (in partiular we haveused suh data to test our ode against known results [1℄). In the hyperboloidal ase, theproblem beomes nonlinear due to the non-vanishing of χ̃, whih we set to unity withoutrestriting generality. Choosing the onformal gauge as Ω = 1 − r2 puts I to r = 1 andmakes the regularity ondition on the extrinsi 2-urvature of I be identially satis�ed.
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3 χ̃, Θ− = 0 there.Sine the geometry is eulidean in the viinity of the axis, the expansions have their �atspae behavior Θ± → ±∞ for r → 0. Marginal surfaes an now develop if there exist valuesof the amplitude a for whih Θ+ beomes non-positive in between. Surprisingly, while inthe asymptotially eulidean ase this happens generially, for the lasses of data we havestudied, Θ+ remains stritly positive and no trapped surfaes exist even for extremely highamplitudes. VI. CONCLUSIONSThe prime motivation to study evolutions based on hyperboloidal sliings is that theyenable us to reah null in�nity with the �exibility of Cauhy odes. Using the example ofthe Maxwell equations we have disussed that hyperboloidal slies may tend to reate eitherstrong onstraint damping or growth, whih makes them interesting both as a model forwhat an go wrong and as a potential remedy. The general onformal �eld equations allowus to treat null and spaelike in�nity in a uni�ed piture, whih we hope to help understandthe physial signi�ane of the idealizations one makes when using the ompati�ed piture.In order to develop hyperboloidal odes that an handle physially interesting situationsinvolving dynamial blak holes and gravitational radiation, we believe it will be fruitful toobtain a fresh perspetive on the ompati�ation problem and onsider adapted gauges asa starting point for regularizing equations rather than proeeding in the opposite diretion.
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