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AEI-2005-183Hyperboloidal data and evolutionS. Husa∗Theoretis
h-Physikalis
hes Institut, University of Jena,Max-Wien-Platz 1, D-07743 Jena, GermanyC. S
hneemann,† T. Vogel,‡ and A. Zengino§lu§Max-Plan
k-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam, GermanyWe dis
uss the hyperboloidal evolution problem in general relativity from a numeri
al per-spe
tive, and present some new results. Families of initial data whi
h are the hyperboloidalanalogue of Brill waves are 
onstru
ted numeri
ally, and a systemati
 sear
h for apparenthorizons is performed. S
hwarzs
hild-Kruskal spa
etime is dis
ussed as a �rst appli
ation ofFriedri
h's general 
onformal �eld equations in spheri
al symmetry, and the Maxwell equa-tions are dis
ussed on a nontrivial ba
kground as a toy model for 
ontinuum instabilities.PACS numbers: 04.25.Dm, 04.20.Ha, 04.30.-wKeywords: Numeri
al relativity, 
ontinuum instabilities, initial data, 
onformal 
ompa
ti�
ationI. INTRODUCTIONIn this paper we 
onsider algorithms for numeri
al relativity (NR) based on hyper-boloidal sli
es � spa
elike hypersurfa
es 
hara
terized by a mean extrinsi
 
urvature χ thatapproa
hes a �nite value in the limit r → ∞. Correspondingly su
h sli
es are not asymp-toti
ally eu
lidean, but rather rea
h out to null in�nity, and thus provide an alternativeto null surfa
es for tra
king radiation signals to large distan
es from their sour
e, e.g. inorder to predi
t signals in a gravitational wave dete
tor (see e.g. [8, 14℄). Being spa
elike,hyperboloidal sli
es are in some sense more �exible than null surfa
es, and thus interestingfor 
onstru
ting numeri
al relativity 
odes aimed at gravitational wave physi
s. In thispaper we brie�y dis
uss our general ideas about the design of numeri
al 
odes for hyper-boloidal evolution and some preliminary results from two perspe
tives we believe to be ofkey importan
e: the need to 
ontrol 
ontinuum instabilities and �tness to a

urately resolvegravitational wave signals. We also list a few new results.
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2 As is the 
ase with other dis
iplines of 
omputational physi
s, an essential part of theart of NR is to make the physi
al 
ontinuum features manifest in the dis
rete system that isthen solved by a 
omputer. In general relativity (GR) di�eomorphism invarian
e gives riseto a variety of problems not familiar from other theories and whi
h are not yet understoodin su�
ient depth to provide a fully satisfa
tory basis for numeri
al simulations. A typi
alevolution s
heme has many more 
omputational than physi
al degrees of freedom, the extradegrees of freedom 
orrespond to gauge 
hoi
e and the presen
e of 
onstraints � one shouldtherefore not be surprised to �nd a generi
 tenden
y for instabilities in the ex
ess degreesof freedom, and indeed the multitude of formulations of the Einstein equations are typi
allyplagued by instabilities whose pre
ise 
auses have often remained elusive, and we expe
tmu
h further work to be ne
essary in order to understand the dos and don'ts of NR. As asimple (linear) example for the type of problems that have to be expe
ted, we will 
onsiderhyperboloidal evolution of an ele
tromagneti
 �eld on Minkowski ba
kground.At least from an observational point of view it is 
learly desirable to design numeri
al
odes with a

urate GW signal predi
tion in mind. This is di�
ult for various reasons.First, in all physi
ally relevant s
enarios gravitational radiation is only a relatively smalle�e
t in the energy balan
e of the system. Se
ond, in GR su
h fundamental quantities asenergy, momentum, or emitted gravitational radiation energy 
an only be de�ned unam-biguously in terms of asymptoti
 limits. Consequently, it also be
omes parti
ularly di�
ultto formulate physi
ally motivated boundary 
onditions along the lines of �outgoing radiationboundary 
onditions� at �nite distan
e from the sour
es.Conformal 
ompa
ti�
ation, originally suggested by Penrose [16℄ allows to dis
ussasymptoti
s in terms of lo
al di�erential geometry and has provided a very fruitful frame-work to approa
h many problems in mathemati
al relativity. Naturally, it also raises hopesfor a 
onsistent notion and quantitative treatment of GW signals. However, sin
e the 
on-formal framework is extremely �exible, it does not by itself determine a strategy for NR,and additional physi
al intuition and pra
ti
al insights are ne
essary to bring this te
hniqueto fruition in numeri
al simulations. In the following, we will brie�y review the 
onne
-tion between asymptoti
s, 
onformal 
ompa
ti�
ation and gravitational wave (GW) signalsbefore sket
hing our strategy to develop 
odes for the hyperboloidal evolution problem.We then present some new numeri
al results 
on
erning Friedri
h's general 
onformal �eldequations in spheri
al symmetry as a simple window into the interplay of spatial and nullin�nity, the Maxwell equations on a nontrivial ba
kground as a toy model for 
ontinuuminstabilities, and initial data that generalize Brill waves to the hyperboloidal 
ontext.II. CONFORMAL COMPACTIFICATION AND RESCALINGA key idea behind 
onformal res
aling is to 
ompute �order unity� quantities, e.g. for amassless s
alar �eld Φ a res
aling of the type Ψ := r Φ, whi
h asymptoti
ally just 
an
elsthe known fall-o� of the radiation from an isolated sour
e. This allows one to work with



3quantities that are �nite even asymptoti
ally. Su
h a pro
edure 
an furthermore improvethe numeri
al 
onditioning of radiation problems. Generally, it is useful in 
omputationalwork to fa
tor out what is already known. The idea of 
onformal 
ompa
ti�
ation is toperform a 
onformal transformation on the metri
 gab = Ω2g̃ab and view the physi
al spa
e-time M̃ as a submanifold M̃ = {p ∈ M|Ω(p) > 0} of some manifold M 
ompleted byboundary points ∂M̃ = {p ∈ M|Ω(p) = 0} lying �at in�nity� with respe
t to g̃ab. Thede�nition of a 
ertain type of asymptoti
s, like asymptoti
 �atness, then pro
eeds in termsof asymptoti
 properties of the 
onformal fa
tor, whi
h de�ne a desired physi
al fall-o�behavior (see e.g. [8℄). Note that in a relativisti
 theory, we need to deal with three typesof dire
tions toward in�nity: timelike (ı±), spa
elike (ı0) and null (I ±), and these limitshave very di�erent physi
al signi�
an
e. In parti
ular, observers situated at �astronomi
al�distan
es (e.g. GW dete
tors) 
an be modeled through geometri
 obje
ts at future nullin�nity [7℄. Clearly, a thorough physi
al understanding of the problem of 
onsistentlymodeling GW sour
es and dete
tors in a single pi
ture is very desirable.However, writing the Einstein tensor in terms of the res
aled metri
 makes it immediately
lear that taking this 
on
ept to the level of the �eld equations 
an not be straightforward:
G̃ab[Ω

−2g] = Gab[g] − 2

Ω
(∇a∇bΩ − gab∇c∇cΩ) − 3

Ω2
gab (∇cΩ)∇cΩ.In the new variables the equations are formally singular at ∂M̃ whereas multipli
ation by Ω2leads to a degenerate prin
ipal part for Ω = 0. A very general pres
ription for regularizingthe res
aled Einstein equations has been obtained by Friedri
h through the formulation ofthe regular 
onformal �eld equations [10℄. The fa
t that this is a
tually possible for theEinstein equations, is a nontrivial result and may 
ertainly seem surprising. Unfortunately,it is a
hieved at a high pri
e of introdu
ing a large number of new evolution variables, whi
h
ompli
ates the numeri
al implementation and in
reases the risk of triggering 
ontinuuminstabilities (for numeri
al results see [14℄).Compa
ti�
ation te
hniques have been used in NR for quite some time, but have oftenbeen based on less general regularization te
hniques, e.g. through restri
tion to a spe-
ial 
lass of gauges. Compa
ti�
ation in null dire
tions has been very su

essful in the
hara
teristi
 approa
h (see e.g. [4℄ and [19℄ for re
ent results) and is well understood.Compa
ti�
ation of spa
elike in�nity has not only been used to 
onstru
t initial data (seee.g. [5, 12, 13℄), but en
ouraging results have also been obtained in the time evolutionproblem [6℄, where bla
k holes are modeled as �internal asymptoti
 ends�, often referredto as pun
tures, and re
ently also to get rid of the boundary problem in NR [17℄. In theevolution 
ontext, however, some open questions remain, e.g. be
ause 
ompa
ti�
ation at

ı0 leads to a �piling up� of waves. At I + this e�e
t does not appear � waves leave thephysi
al spa
etime through the boundary I +. Also, regularity issues of the equations atspatial in�nity are not yet fully understood, although mu
h progress has been made withFriedri
h's general 
onformal �eld equations [11℄, for whi
h we dis
uss a simple appli
ationbelow.



4 A 
ode that utilizes hyperboloidal sli
es to 
ompa
tify null in�nity 
an pro�t from allthe �exibility in gauge that a Cau
hy approa
h o�ers. However, following the idea to fa
torout what is already known and making the physi
al 
ontinuum features also manifest in thenumeri
al 
ode leads to the problem of making manifest the rigid stru
ture of null in�nity inaddition to the fall-o� of the �gravitational �eld�. Parti
ularly important seem the shear-freeproperty of null in�nity and the existen
e of a natural 
lass of time 
oordinates asso
iatedwith a�ne parameters of the null geodesi
 generators of I , known as Bondi time. It isthis time 
oordinate whi
h 
orresponds to the proper time of distant observers [8℄, andwhi
h thus 
orresponds to an �undistorted signal�, as in Fig. 1. We suggest to use thegauge freedom to make the rigid stru
ture of I manifest and freeze it to a �xed 
oordinatesphere as dis
ussed in detail by Andersson [2℄ (in parti
ular here the 
onne
tion betweenthe 3+1 split and the Bondi gauge is dis
ussed, and essentially the same re
ommendationto use su
h a gauge as starting point for regularization is given). Fixing I + to a 
oordinatesphere, it is natural to identify it also with the boundary of the 
omputational domain, andthus to restri
t oneself to the physi
al part of the spa
etime. First experiments along theselines with s
alar �elds on a S
hwarzs
hild ba
kground have yielded the ringdown results inFig. 1.
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PSfrag repla
ementsEHnullgeodesi
sex
isedFigure 1: Left: A sket
h depi
ting a situation with I + frozen to a 
oordinate sphere. Right: Theringdown of a s
alar �eld with angular momentum number l = 2 on a 
ompa
ti�ed S
hwarzs
hildba
kground with CMC-sli
es and I + frozen to a 
oordinate sphere.As an example for the type of 
oordinates we have in mind, 
onsider 
omputing justthe domain of dependen
e of a pie
e of Minkowski spa
e with initial data given on a ball.Appropriate 
oordinates are those whi
h are also adapted to self-similarity:
ds2 =

e−2τ

R2

[

−(R2 − r2)dτ2 − 2rdrdτ + dr2 + r2
(

dθ2 + sin θ2dϕ2
)]

.Using the same type of 
oordinates in the 
ompa
ti�ed spa
etime with R identi�ed withthe initial lo
ation of I yields the pi
ture in �g. 1. Freezing I to a 
oordinate sphere



5PSfrag repla
ements
d/M210300ingoingoutgoingr = 
onstsingularityhorizonFigure 2: S
hwarzs
hild-Kruskal spa
etime in a 
onformal Gauss gauge.essentially 
orresponds to a 
hoi
e of the shift ve
tor on I , whi
h leads to two problems:First, the pres
ription of shift needs to be 
ompatible with a well�posed evolution system,and se
ond, one also needs to 
hoose well for the shift ve
tor away from I , in order not todistort the geometry in the interior of the spa
etime.Our strategy to develop 
odes for the hyperboloidal initial value problem has thus beenthreefold: First, we have developed a 
omputational infrastru
ture that allows us to 
onfrontequations as 
omplex as the 
onformal �eld equations without tying us down to a parti
ularform of the equations. To this end, the Kran
 
ode generation and tensor manipulationpa
kage [15℄ has been developed. Se
ond, it has proven very fruitful to learn as mu
h aspossible from the 
hara
teristi
 approa
h, whi
h is less general, but works well. Third, wehave started a number of smaller proje
ts that allow us test what works and what does notin simpli�ed situations, and a
tually start a mathemati
al analysis of the properties of ouralgorithms. We present some preliminary results below.III. GENERAL CONFORMAL FIELD EQUATIONSThe approa
h suggested above and sket
hed in Fig. (1) is well adapted to 
omputinggravitational wave signals, but 
an not reprodu
e a global representation of the spa
etime,whi
h in
ludes spa
elike in�nity ı0. From the point of view of an observer at I +, ı0represents the in�nite past, whi
h is 
learly relevant for 
ertain questions, e.g. a quasi-stationary solution may have persisted for a very long time, before violent dynami
s setsin. Friedri
h's general 
onformal �eld equations [11℄, whi
h rely on the 
onformal Gaussgauge, allow for a global treatment, in whi
h di�erent asymptoti
 regions 
an be handled



6with one system of equations. Using this method 
an provide initial data for a hyperboloidal
ode that is a
tually determined from a Cau
hy surfa
e. Also, numeri
al experiments withthis system might give rise to a better understanding of the regularity issues around spatialin�nity.As a �rst step we have used the general 
onformal �eld equations to 
onstru
t theS
hwarzs
hild-Kruskal solution with initial data spe
i�ed on a Cau
hy surfa
e. Using the
onformal Gauss gauge, in whi
h by spheri
al symmetry all equations be
ome ordinarydi�erential equations, it was possible for the �rst time to 
over the entire S
hwarzs
hild-Kruskal spa
etime in
luding spa
elike, null and timelike in�nity and the domain 
lose to thesingularity (Fig. 2). These results 
an also be seen as a feasibility study of the 
onformalGauss gauge. Current work is dire
ted to the numeri
al solution of the general 
onformal�eld equations for non-spheri
ally symmetri
 initial data.IV. MINKOWSKI SPACEA natural �rst exer
ise when entering un
harted territory in NR is to 
onsider Minkowskispa
e. A 
omparison of evolutions of Minkowski spa
e in various gauges with the full
onformal �eld equations has been reported in [14℄, a parti
ularly interesting 
ase is, when
I + is identi�ed with a �xed 
oordinate sphere and the 
onformal geometry is 
hosenstationary. In this 
ase a 
onstraint violating 
ontinuum instability is found. Inspe
tion ofthe equations suggests the instability to be due to the type of e�e
t des
ribed in this se
tion.Re
ently, the mathemati
al tools to 
larify this have been dis
ussed by Frauendiener andVogel [9℄.As a simple exer
ise for this type of problem, we have analyzed the 
ase of a Maxwell�eld (Ea, Ba) on Minkowski spa
e sli
ed by non-trivial hypersurfa
es:

∂tE
a − βb∂bE

a − α ǫabchcd∂bB
d = α(ǫabchcdχbB

d − χEa + ǫabchcdΓ
d
ebB

e) − Eb∂bβ
a ,

∂tB
a − βb∂bB

a + α ǫabchcd∂bE
d = −α(ǫabchcdχbE

d + χBa + ǫabchcdΓ
d
ebE

e) − Bb∂bβ
aThe 
onstraints and 
onstraint propagation equations then are

0 = E := ∂bE
b + Γb

cbE
c, ∂tE − βa∂aE = −αχE ,

0 = B := ∂bB
b + Γb

cbB
c, ∂tB − βa∂aB = −αχB .Here, hab, χ, χa, Γa

bc, α and βa are 3-metri
, mean extrinsi
 
urvature, a

eleration, Christof-fel symbol of hab, lapse and shift respe
tively. From the 
onstraint propagation equationsone dire
tly reads o� a stability prognosis in the spirit of Frauendiener and Vogel [9℄: if
χ < 0, a 
onstraint violating 
ontinuum instability has to be expe
ted, whereas χ > 0should result in 
onstraint damping. Both e�e
ts will be demonstrated below for a simple
lass of sli
es in Minkowski spa
e with a �xed sign of χ. Note that densitizing the evolved�elds 
an 
hange the sign of the χ fa
tors. This example thus demonstrates that one needs
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Figure 3: (a) The ele
tri
 �eld 
on�guration and energy density. (b) Evolution in standardMinkowski 
oordinates; behaves ni
ely, energy 
onserved, linear drift away from exa
t solution(error energy norm depends linearly on time). Os
illations in the 
onstraints due to lowered a

u-ra
y of 
onstraint 
al
ulation at the boundary (sten
il limitation).to be aware of a subtle interplay between the evolution system, 
hoi
e of variables andgauge. Continuum instabilities of this type are essentially an ODE e�e
t in the sense thatthey are determined by lower order sour
e terms rather than spatial derivatives. Conse-quently, it is important to realize that for numeri
al purposes, analyzing the prin
ipal partis only a starting point. In general, lower order terms have to be 
arefully analyzed and aformulation of the theory has to be 
hosen that avoids instabilities. Clearly, this pro
essbene�ts from avoiding ex
ess baggage when formulating the equations one starts with.
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ely, energy 
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onstraints, exponential deviation from exa
t solution, �nallytriggers exponential growth of the energy.



8 In nonlinear situations, the de
ay of the �elds is delayed by nonlinear intera
tions,and the ODE e�e
ts have an even stronger in�uen
e than in linear situations. In orderto monitor these e�e
ts over a 
onsiderable amount of time, we 
onsider a �nite box withideally 
ondu
ting walls, i.e. a 
avity in whi
h the �eld ex
itation is re�e
ted ba
k and forth.We foliate Minkowski spa
e with simple hyperboloids that are bent only in x-dire
tion andare �at in yz-dire
tions: {t = 
onst}-surfa
es with t(T,X, Y, Z) = T −κ(
√

1 + X2−1). Forinitial data we use analyti
ally known eigenmodes of the 
avity, transformed appropriatelyfrom standard Minkowski to the 
urved 
oordinates. The results of our experiments arepresented in �gs. 3 and 4.V. SOLUTION OF THE CONSTRAINTSSolving the 
onstraints is interesting from two perspe
tives: �rst it is a ne
essary prereq-uisite for evolutions, and se
ond, sin
e a general pro
edure for solving the regular 
onformal
onstraints is not known, it provides an interesting example of a more ad-ho
 regulariza-tion pro
edure for the Einstein equations. We 
onsider an isotropi
 initial hypersurfa
e,i.e. χ̃ab = χ̃h̃ab/3 with χ̃ = 
onst. This ansatz solves the momentum 
onstraint and is insome sense analogous to time symmetry for asymptoti
ally eu
lidean sli
es. By applyingthe Li
hnerowi
z-York pro
edure to the res
aled metri
 Ω2h̃µν = φ4hµν , the Hamiltonian
onstraint is 
onverted into the Yamabe equation
4Ω2DµDµφ − 4Ω DµΩ Dµφ −

(

R

2
Ω2 + 2Ω DµDµΩ − 3 DµΩ DµΩ

)

φ =
1

3
χ̃2φ5 ,where Dµ denotes the spatial 
ovariant derivative operator and R its Ri

i s
alar. For

Ω 6= 0 this is a semilinear ellipti
 equation, but its prin
ipal part vanishes on the 
onformalboundary and standard ellipti
 theory 
annot be applied. The existen
e of smooth solutions
φ has been proven in [3℄ under the 
ondition that the extrinsi
 2-
urvature indu
ed on theinitial 
ut of I by the free metri
 is pure tra
e. The Yamabe equation then also determinesthe boundary values to be φ2 = 3|χ̃|−1

√

DµΩ DµΩ on I .As an example, we 
onsider the simple axisymmetri
 Brill ansatz
dσ2 = eaq(ρ,z)

(

dρ2 + dz2
)

+ ρ2dϕ2, q(ρ, z) = ρ2e−(ρ2+z2).Su
h data are well studied in the asymptoti
ally eu
lidean regime where it is known thatfor small amplitudes a the waves eventually disperse, leaving �at spa
e behind, whereasfor large values of a the waves 
ollapse and form trapped surfa
es (in parti
ular we haveused su
h data to test our 
ode against known results [1℄). In the hyperboloidal 
ase, theproblem be
omes nonlinear due to the non-vanishing of χ̃, whi
h we set to unity withoutrestri
ting generality. Choosing the 
onformal gauge as Ω = 1 − r2 puts I to r = 1 andmakes the regularity 
ondition on the extrinsi
 2-
urvature of I be identi
ally satis�ed.
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Figure 5: Left: Polar radii of equiexpansion surfa
es for di�erent amplitudes. Right: Shape of thesurfa
e Θ+ = 1.4 for a = 0 (innermost), 3, 6, . . . , 24 (outermost).The resulting nonlinear boundary value problem 
an be simply dis
retized with 2nd order�nite di�eren
es and solved through a pre
onditioned GMRES method [18℄.For the physi
al interpretation of the data it is interesting to sear
h for marginallytrapped surfa
es, i.e. surfa
es on whi
h the null expansion Θ+ vanishes. Note that sin
e
I + is a �surfa
e at in�nity�, the expansions take the unique values Θ+ = 4

3 χ̃, Θ− = 0 there.Sin
e the geometry is eu
lidean in the vi
inity of the axis, the expansions have their �atspa
e behavior Θ± → ±∞ for r → 0. Marginal surfa
es 
an now develop if there exist valuesof the amplitude a for whi
h Θ+ be
omes non-positive in between. Surprisingly, while inthe asymptoti
ally eu
lidean 
ase this happens generi
ally, for the 
lasses of data we havestudied, Θ+ remains stri
tly positive and no trapped surfa
es exist even for extremely highamplitudes. VI. CONCLUSIONSThe prime motivation to study evolutions based on hyperboloidal sli
ings is that theyenable us to rea
h null in�nity with the �exibility of Cau
hy 
odes. Using the example ofthe Maxwell equations we have dis
ussed that hyperboloidal sli
es may tend to 
reate eitherstrong 
onstraint damping or growth, whi
h makes them interesting both as a model forwhat 
an go wrong and as a potential remedy. The general 
onformal �eld equations allowus to treat null and spa
elike in�nity in a uni�ed pi
ture, whi
h we hope to help understandthe physi
al signi�
an
e of the idealizations one makes when using the 
ompa
ti�ed pi
ture.In order to develop hyperboloidal 
odes that 
an handle physi
ally interesting situationsinvolving dynami
al bla
k holes and gravitational radiation, we believe it will be fruitful toobtain a fresh perspe
tive on the 
ompa
ti�
ation problem and 
onsider adapted gauges asa starting point for regularizing equations rather than pro
eeding in the opposite dire
tion.
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