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AdS5 × S5 space-time, find the twisted boundary conditions for bosons and fermions, and
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cuss string zero modes whose dynamics is governed by a fermionic generalization of the
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1. Introduction

It is well-known that a T-duality transformation applied to a circle which could contract to

zero size produces a singular geometry from a regular one. Recently, it was noticed in [1]

that in a situation when the initial geometry contains a two-torus a regular background may

be generated by using a combination of a T-duality transformation on one angle variable,

a shift of another isometry variable, followed by the second T-duality on the first angle.

We will refer to the chain of these transformations producing a one-parameter deformation

of the initial background as a TsT transformation. The observation of [1] can be easily

generalized to construct regular multi-parameter deformations of gravity backgrounds if

they contain a higher-dimensional torus [2] by using a chain of TsT transformations.

A TsT transformation appears to be very useful in a search of new less supersymmetric

examples of the AdS/CFT correspondence [3]. In particular, it was successfully used in [1]

to obtain a deformation of the AdS5 × S5 geometry which was conjectured to be dual to a

supersymmetric marginal deformation of N = 4 SYM sometimes called a β deformation [4]–

[6]. Various aspects of the deformed gauge and string theories, and the conjectured duality

have been studied in [7, 8] by using the ideas and methods developed to test the duality

between the undeformed models [9, 10].
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Strings in the more general three-parameter deformed AdS5 × S5 background [2], and

the dual nonsupersymmetric deformation of N = 4 SYM have been studied in [11]–[13]. It

is unclear, however, if the nonsupersymmetric string background is stable,1 and the double-

trace operators are not generated in the deformed gauge theory, thus, breaking conformal

invariance as it happens for instance in nonsupersymmetric orbifold models [15].

TsT transformations have been also used to deform other interesting string back-

grounds [16]. Further related results can be found in [17, 18].

A nice property of a TsT transformation is that it can be implemented on the string

sigma model level leading to simple relations between string coordinates of the initial and

TsT-transformed background [2]. The relations have been used to show that classical

solutions of string theory equations of motion in a deformed background are in one-to-

one correspondence with those in the initial background with twisted boundary conditions

imposed on the U(1) isometry fields parametrizing the torus. An interesting property of

the twist is that it depends on the conserved U(1) charges of the model.

The consideration in [2] was restricted to the bosonic part of type IIB Green-Schwarz

superstring action on the deformed AdS5×S5. Dealing with the Green-Schwarz superstring

we face a new problem of how to define the TsT transformation for fermionic variables.

The answer is not immediately clear, because the operation of T-duality must include a

change of the fermionic chirality. The TsT transformation involves the angle variables

which transform under the commuting isometries of the five-sphere. Generically, fermions

of the Green-Schwarz superstring on AdS5 × S5 also transform under the same isometries.

A key idea which allows us to solve the problem is to redefine the original fermions in such

a way that they become neutral under the isometries in question. After this redefinition is

found we can perform the TsT-transformations on the angle variables with fermions being

just the spectators. The very existence of such a redefinition is non-trivial and will be

established in section 3.

The aim of the current paper is to extend the discussion in [2] to the most general

case of a fermionic string propagating in an arbitrary background possessing several U(1)

isometries. We analyze a TsT transformation and show that if fermions are neutral under

the isometries then the relations are universal and do not depend on the details of the

background in complete accord with the expectations in [2]. In the case of Green-Schwarz

strings in the deformed AdS5 × S5 background our consideration implies the existence of a

Lax pair representation, and, therefore, classical integrability of the model.

The plan of the paper is as follows. In section 2 we consider a general sigma model ac-

tion for fermionic strings propagating in a curved background. We assume that the action

is invariant under at least two U(1) isometry transformations. Each U(1) transformation

is realized as a shift of an angle variables with all other bosonic and fermionic fields being

neutral under the shift. We then perform a TsT transformation on a torus parametrized

by any two of the angles, and find a TsT-transformed action. We show that the TsT trans-

1It is known that the spectrum of string theory in the TsT-transformed flat space contains tachyons [14].

It does not imply that string theory on the deformed AdS5 × S5 is unstable because the TsT-transformed

flat space is singular at space infinity while the deformed AdS5 ×S5 is regular everywhere. In fact, it seems

that a TsT-transformation produces a nonsingular background only if the two-torus is of a finite size.
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formation preserves the U(1) currents corresponding to the angles, and, moreover, the

TsT-transformed angles are related to the original angles by exactly the same formulas as

the ones derived for the pure bosonic case in [2] leading to the same twisted boundary condi-

tions for the angle variables. This implies that strings in the TsT-transformed background

are described by the Green-Schwarz action for strings in the initial background subject to

the twisted boundary conditions. We point out that if the original Green-Schwarz string

action is classically integrable then the TsT-transformed action is also integrable extending

the consideration of [2] to the general case. Further we discuss the chains of TsT trans-

formations applied to a background containing a d-dimensional torus, and show that the

most general deformation is parametrized by a skew-symmetric d × d-dimensional matrix

which determines twisted boundary conditions for the U(1) isometry variables. The results

obtained in section 2 have a partial intersection with those of [18] where a general bosonic

string background was considered.

In section 3 we apply a sequence of TsT transformations to the Green-Schwarz su-

perstring in AdS5 × S5 [19] to generate the Green-Schwarz action for nonsupersymmetric

strings in the γi-deformed AdS5 × S5 space-time. We explain how to redefine the bosonic

and fermionic fields so that the U(1) isometry transformations would be realized as shifts

of the angle variables. We then use the considerations in section 2 to find the twisted

boundary conditions for bosons and fermions, and conclude that the integrability of super-

strings in AdS5×S5 [20] implies the integrability of the fermionic string in the γi-deformed

AdS5 × S5 space-time. We use the Lax pair for Green-Schwarz superstrings in AdS5 × S5

and the twisted boundary conditions to derive the monodromy matrix for strings in the

γi-deformed AdS5 × S5. The monodromy matrix can be used to analyze the spectrum of

classical strings in the deformed background.

In section 4 we discuss the zero-mode part of the Green-Schwarz action for nonsuper-

symmetric strings in the γi-deformed AdS5 × S5 space-time. It describes a particle with

fermionic degrees of freedom moving in the deformed background. The particle action is

integrable, and generalizes the well-known Neumann model to the fermionic case. The

Lax pair for the model is induced by the Lax pair for strings in the deformed background.

Quantization of the fermionic Neumann model should describe the spectrum of type IIB

supergravity on the nonsupersymmetric γi-deformed background.

In Conclusion we summarize the results obtained and discuss open problems. In ap-

pendices we collect some useful formulae.

2. The γ-deformed action

We start with the following general sigma model action describing propagation of a fermionic

closed string in a background with several U(1) isometries

S = −
√

λ

2

∫
dτ

dσ

2π

[
γαβ∂αφi∂βφj G0

ij − εαβ∂αφi∂βφj B0
ij (2.1)

+2∂αφi
(
γαβU0

β,i − εαβV 0
β,i

)
+ L0

rest

]
.
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Here
√

λ
2π

is the effective string tension which is identified with the ’t Hooft coupling in the

AdS/CFT correspondence, ε01 ≡ ετσ = 1 and γαβ ≡
√
−hhαβ , where hαβ is a world-sheet

metric with Minkowski signature. In the conformal gauge γαβ = diag(−1, 1) although in

the following we will not attempt to fix any gauge. We assume that the action is invariant

under U(1) isometry transformations geometrically realized as shifts of the angle variables

φi, i = 1, 2, . . . , d. That means that the string background contains a d-dimensional torus

T d. We show explicitly the dependence of the action on φi, and their coupling to the

background fields G0
ij , B0

ij and U0
β,i, V

0
β,i which generalizes the usual coupling of bosons to

the target space metric and B-field. These background fields are independent of φi but can

depend on other bosonic and fermionic string coordinates which are neutral under the U(1)

isometry transformations. By L0
rest we denote the part of the Lagrangian which depends

on these other fields of the theory. We will see in the next section that the Green-Schwarz

action for superstrings on AdS5 × S5 [19] can be cast to the form (2.1).

The action has d global symmetries corresponding to constant shifts of φ′s. The

corresponding Noether currents are

Jα
i (φ) = −

√
λ
(
γαβ∂βφj G0

ij − εαβ∂βφj B0
ij + γαβU0

β,i − εαβV 0
β,i

)
, (2.2)

and they are conserved, ∂αJα
i = 0, as the consequence of the dynamical equations.

Now we perform a TsT transformation of the angle variables. To this end we pick

up a two-torus, for instance, the one, generated by φ1 and φ2. The TsT transformation

consists in dualizing the variable φ1 with the further shift φ2 → φ2 + γ̂φ1 and dualizing φ1

back. Application of the TsT transformation can be symbolically expressed as the change

of variables

(φ1, φ2)
TsT→ (φ̃1, φ̃2) . (2.3)

The procedure to construct the TsT-transformed action is explained in appendices A and

B. The corresponding action can be written in the same fashion as the original one

S = −
√

λ

2

∫
dτ

dσ

2π

[
γαβ∂αφ̃i∂β φ̃j Gij − εαβ∂αφ̃i∂β φ̃j Bij (2.4)

+2∂αφ̃i
(
γαβUβ,i − εαβVβ,i

)
+ Lrest

]

with the new fields Gij , etc given in terms of the original ones. The explicit relations are

listed in appendix B. Clearly, the new action also has the same number of symmetries

related to the constant shifts of the variables φ̃i. The conserved Noether currents have now

the form

J̃α
i (φ̃) = −

√
λ
(
γαβ∂βφ̃j Gij − εαβ∂β φ̃j Bij + γαβUβ,i − εαβVβ,i

)
. (2.5)

The relation between the dual variables φ̃ and the original ones φ can be found by using

the formulas from appendices A and B, and is given by

∂αφ̃1 = ∂αφ1 − γ̂εαβγββ̃∂
β̃
φiGi2 + γ̂∂αφiBi2 − γ̂εαβγββ̃U

β̃2 − γ̂Vα2
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∂αφ̃2 = ∂αφ2 + γ̂εαβγββ̃∂
β̃
φiGi1 − γ̂∂αφiBi1 + γ̂εαβγββ̃U

β̃1 + γ̂Vα1

∂αφ̃i = ∂αφi , i ≥ 3 (2.6)

Using these transformation rules, one can check that the following relation holds

J̃α
i (φ̃) = Jα

i (φ) . (2.7)

It shows that independently of the form of the action (2.1) and the presence of fermions the

TsT transformation preserves the U(1) isometry currents corresponding to the angles φi,

thus, generalizing and proving the considerations in [2] (see, also [18] where an arbitrary

bosonic background was analyzed).

The equality (2.7) of the original and the TsT-transformed currents also shows that

the TsT-transformation is a particular example of the Bäcklund transformations. Indeed,

in full generality the Bäcklund transformation is defined as follows [21]

J̃α − Jα = εαβ∂βχ (2.8)

for some function χ. Here Jα and J̃α correspond to the global Noether currents com-

puted on the original and on the Bäcklund transformed solutions respectively. Eq. (2.8)

states that the difference between two currents conserved dynamically, the original and the

Bäcklund transformed, is proportional to the trivially conserved topological current. The

TsT-transformation simply corresponds to taking χ = 0. However, in our present situa-

tion we do not require that the Bäcklund transformations should preserve the boundary

conditions for the fundamental fields of the theory.2

The relation (2.7) allows one to find a relation between the σ-derivatives of the original

and transformed angles

φ̃′
1 − φ′

1 = −γJτ
2 , γ̂ =

√
λγ (2.9)

φ̃′
2 − φ′

2 = γJτ
1 ,

φ̃′
i − φ′

i = 0 , i ≥ 3 .

Here Jτ means the τ -component of the conserved current. This is the same relation as was

found in the bosonic case [2].

Since we consider the closed strings on the γ-deformed background the angles φ̃i have

the following periodicity conditions

φ̃i(2π) − φ̃i(0) = 2πni , ni ∈ Z . (2.10)

Then integrating eqs. (2.9) we obtain the twisted boundary conditions for the original

angles φ1 and φ2, and the usual periodicity conditions (2.10) for the other d − 2 angles

φ1(2π) − φ1(0) = 2π(n1 + γJ2) , (2.11)

2It would be interesting to study the general Bäcklund transformation with a non-trivial function χ but

without imposing the same boundary conditions on the original and transformed fields. This should lead

to an alternative proof of integrability of strings in the γ-deformed background, in the spirit of [22, 21].
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φ2(2π) − φ2(0) = 2π(n2 − γJ1) ,

where

Ji =

∫ 2π

0

dσ

2π
Jτ

i

is the corresponding Noether charge. We see that the twisted boundary conditions are

universal and do not depend on the details of the background and the presence of fermions.

They depend only on the angles involved in the TsT transformation, and the total U(1)

charges.

To understand better the meaning of the relations (2.7) and (2.9) we notice that the

time components of the U(1) currents coincide with the momenta canonically conjugated

to the angles φi: Jτ
i = pi = δS/δφ̇i. Therefore, (2.7) and (2.9) can be written in the form

p̃i = pi , φ̃′
i = φ′

i − γijpj , i, j = 1, 2, . . . , d , (2.12)

where we take summation over j, and γij is skew-symmetric, γij = −γji, with just one

nonvanishing component equal to the deformation parameter: γ12 = γ.

It is obvious from the relations (2.12) that up to the twisted boundary conditions a TsT

transformation is just a simple linear canonical transformation of the U(1) isometry vari-

ables. It is the twist that makes the original and TsT-transformed theories inequivalent. It

is also clear that the most general multi-parameter TsT-transformed background obtained

by applying TsT transformations successively, many times, each time picking up a new

torus and a new deformation parameter, is completely characterized by the relations (2.12)

with an arbitrary skew-symmetric matrix γij. Therefore, a background containing a d-

dimensional torus admits a d(d−1)/2-parameter TsT deformation. In particular, the most

general TsT-transformed AdS5 × S5 background with TsT transformations applied only to

the five-sphere S5 (to preserve the isometry group of AdS5) has three independent param-

eters, and, therefore, is the one found in [2].3 The twisted boundary conditions for the

original angles φi in the case of the most general deformation take the form

φi(2π) − φi(0) = 2π (ni − νi) , νi = −γik Jk . (2.13)

Notice, that the twists νi always satisfy the restriction νi Ji = 0.

In the next section we will discuss the most general three-parameter deformation of

the AdS5 × S5 background. For reader’s convenience below we specialize our formulae to

this case.

The general three-parameter γ-deformed background is obtained by applying the TsT

transformation three times. We express the corresponding procedure as

(φ1, φ2, φ3)
γ3→ (φ̃1, φ̃2, φ̃3)

γ1→ ( ˜̃φ1,
˜̃φ2,

˜̃φ3)
γ2→ (φ̌1, φ̌2, φ̌3) . (2.14)

3Let us note that a Ts. . . sT transformation discussed in [18] is just a sequence of TsT transformations

applied to the tori (φ1, φi). The two-parameter deformation of AdS5 × S5 they considered is, therefore, a

particular case of the general three-parameter deformation.
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Since under every step the corresponding Noether currents remain the same we can sum-

marize relation between the angles in the following table

φ̃′
1 − φ′

1 = −γ3J
τ
2

˜̃
φ′

1 − φ̃′
1 = 0 φ̌1 − ˜̃

φ′
1 = γ2J

τ
3

φ̃′
2 − φ′

2 = γ3J
τ
1

˜̃φ′
2 − φ̃′

2 = −γ1J
τ
3 φ̌′

2 − ˜̃φ′
2 = 0

φ̃′
3 − φ′

3 = 0
˜̃
φ′

3 − φ̃′
3 = γ1J

τ
2 φ̌′

3 − ˜̃
φ′

3 = −γ2J
τ
1

(2.15)

From here we straightforwardly find the relation between the derivatives of the angles φi and

the derivatives of φ̌i, the latter being attributed to string on the γ-deformed background:

φ̌′
i − φ′

i = εijkγjJ
τ
k . (2.16)

We see from the formula that γik = −εijkγj . Integrating eq. (2.16) and taking into account

that φ̌i(2π) − φ̌i(0) = 2πni , ni ∈ Z, we obtain the twisted boundary conditions for the

original angles

φi(2π) − φi(0) = 2π(ni − νi) , νi = εijkγjJk . (2.17)

3. Green-Schwarz strings in γi-deformed AdS5 × S5

In this section we apply TsT transformations to the Green-Schwarz superstring in AdS5 ×
S5 [19] to generate nonsupersymmetric Green-Schwarz action for strings in the γi-deformed

AdS5 × S5 space-time. To this end we need to redefine the bosonic and fermionic fields so

that the U(1) isometry transformations would be realized as shifts of the angle variables.

We then use the considerations in section 2 to find the twisted boundary conditions for

bosons and fermions, and conclude that the integrability of superstrings in AdS5 × S5 [20]

implies the integrability of the fermionic string in the γi-deformed AdS5 × S5 space-time.

We use the Lax pair for Green-Schwarz superstrings in AdS5×S5 and the twisted boundary

conditions to derive the monodromy matrix for strings in the γi-deformed AdS5 × S5.

3.1 Superstring on AdS5 × S5 as the coset sigma-model

The Green-Schwarz superstring on AdS5 × S5 can be described as the sigma model whose

target-space is the coset [19]
PSU(2, 2|4)

SO(4, 1) × SO(5)
,

where PSU(2, 2|4) is supergroup of the superconformal algebra psu(2, 2|4). In what follows

we will use the convention of [23].4

Consider a group element g belonging to PSU(2, 2|4) and construct the following cur-

rent

A = −g−1dg = A(0) + A(2)
︸ ︷︷ ︸

even

+A(1) + A(3)
︸ ︷︷ ︸

odd

. (3.1)

4See also [24] and [23] for the introduction into the theory of the superalgebra psu(2, 2|4).
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We recall that psu(2, 2|4) admits a Z4-grading automorphism with respect to which it

decomposes as the vector space into the direct sum of four components: two of them are

even (bosons) and two are odd (fermions). In eq. (3.1) A(0,2) are bosonic elements, and

A(1,3) are the fermionic ones. By construction the current A is flat, i.e. it has the vanishing

curvature. Then the Lagrangian density for superstring on AdS5 × S5 can be written in

the form [19, 25]

L = −1

2

√
λ str

(
γαβA(2)

α A
(2)
β + κεαβA(1)

α A
(3)
β

)
, (3.2)

which is the sum of the kinetic and the Wess-Zumino terms, and κ-symmetry requires

κ = ±1.

The next step is related to an explicit choice of the coset representative g. As was

shown in [23] a convenient parametrization is provided by choosing

g = g(θ)g(z). (3.3)

Here g(θ) ≡ exp(θ), where θ is an odd element of psu(2, 2|4) which comprises 32 fermionic

degrees of freedom. The element g(z) belongs to SU(2,2)× SU(4). The coordinates z ≡
(xa, ya) with a = 1, . . . , 5 parametrize the five-sphere and AdS5 respectively.

With parametrization (3.3) we get for the flat current the following representation

A = −g−1dg = −g−1(z)g−1(θ)dg(θ)g(z) − g−1(z)dg(z) . (3.4)

Since

g(θ) = cosh θ + sinh θ , g−1(θ) = cosh θ − sinh θ

we see that

g−1(θ)dg(θ) = F + B , (3.5)

where

B ≡ cosh θ d cosh θ − sinh θ d sinh θ ,

F ≡ cosh θ d sinh θ − sinh θ d cosh θ (3.6)

are the even (boson) and odd (fermion) elements respectively. Thus, the even component

of A is

Aeven = −g−1(z)Bg(z) − g−1(z)dg(z) , (3.7)

while the odd component is

Aodd = −g−1(z)Fg(z) . (3.8)

It is interesting to note that for such a parametrization of the coset the even component

of the flat current is a gauge transform of the even element B, while the odd component is

conjugate to F with the bosonic matrix g(z).

– 8 –
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To write down the final Lagrangian we have to find the projections A(i). This can be

easily done by using an explicit representation for the action of the Z4-grading automor-

phism and we refer the reader to [23] for the corresponding discussion. To present further

results we introduce two 8 × 8 matrices

K8 =

(
K 0

0 K

)
, K̃8 =

(
K 0

0 −K

)
,

where K is a 4 × 4 matrix obeying the condition K2 = −I. These matrices are used to

define

G = g(z)K8g(z)t ≡
(

ga 0

0 gs

)
, G̃ = g(z)K̃8g(z)t ≡

(
ga 0

0 −gs

)
.

As was discussed in [23], the 4 × 4 matrices ga ∈ SU(2, 2) and gs ∈ SU(4) provide an-

other parametrization of the five-sphere and the AdS space. On coordinates z the global

symmetry algebra psu(2, 2|4) is realized non-linearly. In opposite, ga and gs carry a linear

representation of the superconformal algebra. Such realization of symmetries makes an

identification of string states with operators of the dual gauge theory more transparent.

We further find

2A(0) = Aeven + K8A
t
evenK8 = −2g−1dg − g−1

(
B − GBtG−1 − dGG−1

)
g ,

2A(2) = Aeven − K8A
t
evenK8 = −g−1

(
B + GBtG−1 + dGG−1

)
g ,

2A(1) = Aodd + iK̃8A
t
oddK8 = −g−1

(
F − iG̃FtG−1

)
g ,

2A(3) = Aodd − iK̃8A
t
oddK8 = −g−1

(
F + iG̃FtG−1

)
g . (3.9)

Substituting these projections into the string Lagrangian (3.2) we obtain5

L = − 1

2

√
λ str

[
γαβ(Bα + GBt

αG−1 + ∂αGG−1)(Bβ + GBt
βG−1 + ∂βGG−1)

+ κεαβ(Fα − iG̃Ft
αG−1)(Fβ + iG̃Ft

βG−1)
]

.

By using the cyclic property of the supertrace the Wess-Zumino term can be further sim-

plified and we get

L = − 1

2

√
λ str

[
γαβ(Bα + GBt

αG−1 + ∂αGG−1)(Bβ + GBt
βG−1 + ∂βGG−1)

+ 2iκεαβFαG̃Ft
βG−1

]
. (3.10)

The nice feature of this Lagrangian is that it depends only on fields which carry linear rep-

resentation of the superconformal group. In particular, we have three linearly realized U(1)

isometries which are used to construct the Green-Schwarz superstring on the γ-deformed

background.

5For convenience we rescaled the whole Lagrangian by the factor of 4.
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With a certain choice of the matrix K the matrix gs parametrizing S5 can be written

as follows (see, e.g. [26]):

gs =




0 u3 u1 u2

−u3 0 u∗
2 −u∗

1

−u1 −u∗
2 0 u∗

3

−u2 u∗
1 −u∗

3 0


 , (3.11)

This is the unitary matrix g†sgs = I provided the three complex coordinates ui obey the

constraint |u1|2 + |u2|2 + |u3|2 = 1. A similar parametrization of the AdS5 space is given

by

ga =




0 v3 v1 v2

−v3 0 −v∗2 v∗1
−v1 v∗2 0 v∗3
−v2 −v∗1 −v∗3 0


 . (3.12)

Here ga ∈ SU(2, 2), i.e. it obeys g†aEga = E with E = diag(1, 1,−1,−1) provided the

complex numbers vi satisfy the constraint: |v1|2 + |v2|2 − |v3|2 = −1.

3.2 Fermions twisting

The original fermions appearing in the Lagrangian (3.10) transform under the commuting

isometries of the five-sphere. To apply the consideration in section 2 to Green-Schwarz

superstrings in AdS5×S5 we need to redefine these fermions in such a way that they become

neutral under the isometries in question. After this redefinition is found we can perform

the TsT-transformations on the angle variables with fermions being just the spectators,

and use the general formulas derived in section 2. The twisted boundary conditions (2.17)

for the original angles of AdS5×S5 then induce twisted boundary conditions for the original

charged fermions of AdS5 × S5.

Let us explore in more detail the invariance of the Lagrangian under the abelian sub-

algebra of the superconformal group. In full generality the bosonic symmetry algebra

SO(4, 2) × SO(6) has six Cartan generators: three for SO(4, 2) and three for SO(6). If we

introduce the polar representation

ui = ri e
i φi , vi = ρi e

i ψi ,

with ri, ρi being real, then the six commuting isometries are realized as constant shifts of

the angle variables

φ → φ + ε , ψ → ψ + ε .

Remarkably, it turns out that the matrices gs and ga enjoy the following factorization

property [2] (see also [26])

gs(r, φ) = M(φ) ĝs(r)M(φ) , (3.13)

ga(ρ, ψ) = M(ψ) ĝa(ρ)M(ψ) , (3.14)
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where

ĝs(r) =




0 r3 r1 r2

−r3 0 r2 −r1

−r1 −r2 0 −r3

−r2 r1 r3 0


 , ĝa(ρ) =




0 ρ3 ρ1 ρ2

−ρ3 0 ρ2 −ρ1

−ρ1 −ρ2 0 ρ3

−ρ2 ρ1 −ρ3 0


 . (3.15)

Here also M(φ) = e
i

2
Φ(φ), where Φ(φ) = diag(Φ1, . . . ,Φ4) with

Φ1 = φ1 + φ2 + φ3

Φ2 = −φ1 − φ2 + φ3

Φ3 = φ1 − φ2 − φ3

Φ4 = −φ1 + φ2 − φ3 (3.16)

The simplest way to see that all fermions are charged under the six commuting isometries

is to notice that any fermionic term in the Lagrangian (3.10) explicitly depends on all the

angle variable φi and ψi. To find the fermion redefinition that makes them neutral we

represent the odd matrix θ as

θ =

(
0 X

Y 0

)
(3.17)

Then it is clear that to uncharge the fermions under all U(1)’s we have to make the following

rescaling

X = M(ψi)X̂M(φi)
−1 (3.18)

Y = M(φi)Ŷ M(ψi)
−1 (3.19)

This leads to the following transformation formula

g(θ) =

(
M(ψi) 0

0 M(φi)

)
g(θ̂)

(
M(ψi)

−1 0

0 M(φi)
−1

)
, (3.20)

where the fermions θ̂ are uncharged under all U(1)s.

In what follows we restrict our attention to TsT transformations applied to the five-

sphere, and, therefore, we do not need to make fermions neutral under the isometries of

AdS5. The corresponding redefinition of fermions simplifies and takes the following form

X = X̂M(φi)
−1 , Y = M(φi)Ŷ (3.21)

g(θ) =

(
1 0

0 M(φi)

)
g(θ̂)

(
1 0

0 M(φi)
−1

)
. (3.22)

Let us mention, however, that the fermions do have to be neutral under some isometries

of AdS5, in particular, shifts of the global AdS time t ≡ ψ3, if one wants to impose the

uniform light-cone gauge that was recently used to solve the su(1|1) sector of superstrings

in AdS5 × S5 [27].
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Now, to determine the twisted boundary conditions for fermions we just need to take

into account that the redefined neutral fermions do not transform under the TsT transfor-

mations. Therefore, the original charged fermions in AdS5 × S5 satisfy twisted boundary

conditions which can be easily found by using (3.21), and the twisted boundary condi-

tions (2.17) for the angles φi:

X(2π) = X(0)eiπΛ , Y (2π) = e−iπΛY (0) , (3.23)

g(θ)(2π) =

(
1 0

0 e−iπΛ

)
g(θ)(0)

(
1 0

0 eiπΛ

)
, (3.24)

where Λ is the following diagonal matrix Λ = diag(Λ1, . . . ,Λ4) with

Λ1 = γ1(J2 − J3) + γ2(J3 − J1) + γ3(J1 − J2) = ν1 + ν2 + ν3

Λ2 = γ1(J2 + J3) − γ2(J1 + J3) − γ3(J1 − J2) = −ν1 − ν2 + ν3

Λ3 = −γ1(J2 − J3) + γ2(J1 + J3) − γ3(J1 + J2) = ν1 − ν2 − ν3

Λ4 = −γ1(J2 + J3) − γ2(J3 − J1) + γ3(J1 + J2) = −ν1 + ν2 − ν3 (3.25)

Obviously, the four variables Λk depend on three νi’s precisely in the same fashion as Φk

depend on φi’s, c.f. eqs. (3.16). The formulas (2.17) and (3.23) allow us to analyze strings

in the deformed background by using twisted strings in AdS5 × S5.

3.3 Lax pair and monodromy matrix

As was discussed in detail in [2], the relations (2.6) can be used to find a local periodic

Lax pair for strings in a TsT-transformed background if an isometry invariant Lax pair

for strings in the initial background is known. The twisted boundary conditions (2.17)

then can be used to get a simple expression for the TsT-transformed monodromy matrix

in terms of the initial monodromy matrix and the twist matrix.

We begin by recalling the structure of the Lax pair found in [20]. It is based on the

two-dimensional Lax connection L with components

Lα = `0A
(0)
α + `1A

(2)
α + `2γαβεβρA(2)

ρ + `3Q
+
α + `4Q

−
α , (3.26)

where `i are functions of a spectral parameter, and Q± = A(1) ±A(3). The zero curvature

condition for the connection L ,

∂αLβ − ∂βLα − [Lα,Lβ ] = 0 , (3.27)

follows from the dynamical equations and the flatness of Aα if `i are chosen in the form

`0 = 1, `1 =
1 + x2

1 − x2
, `2 = s1

2x

1 − x2
, `3 = s2

1√
1 − x2

, `4 = s3
x√

1 − x2
,

where x is the spectral parameter, and the constants si satisfy

s2
2 = s2

3 = 1
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s1 + κs2s3 = 0 .

Thus, for every choice of κ we have four different solutions for `i specified by the choice

of s2 = ±1 and s3 = ±1. By using eqs. (3.4) for Aα, the Lax connection (3.26) can be

explicitly realized in terms of 8×8 supermatrices from the Lie algebra su(2, 2|4). However,

as was explained in [24], in the algebra su(2, 2|4) the curvature (3.27) of Lα is not exactly

zero, rather it is proportional to the identity matrix (anomaly) with a coefficient depending

on fermionic variables. However, since psu(2, 2|4) is the factor-algebra of su(2, 2|4) over

its central element proportional to the identity matrix, the curvature is regarded to be

zero [24, 28] in the algebra psu(2, 2|4).
The Lax connection (3.26) cannot be used to derive a Lax pair for strings in the

deformed background because Aα explicitly depends on φi, and, therefore, Lα is not

isometry invariant. To get a proper Lax connection we need to make a gauge transformation

of Lα similar to the one used in [2] for the bosonic case.

The necessary gauge transformation can be found in two steps. First, we use the

group element g and formulas (3.9) to derive a Lax connection L̃α which depends only on

the coset element G. The transformed Lax connection still has an explicit dependence on

the angles φi, but it can be easily gauged away by using the factorization property (3.13)

of G, and making the fermions neutral under the U(1) isometries of S5 by using (3.21).

The resulting gauge transformation that converts the Lax connection (3.26) to an isometry

invariant form, therefore, is

h = M−1g , ∂α − Lα → ∂a − L̂α = M−1
(
∂α − L̃α

)
M = h (∂α − Lα)h−1 , (3.28)

where L̃α = gLαg−1 + ∂αgg−1 can be easily found by using (3.9) and (3.26), and the 8 by

8 matrix M is

M =

(
1 0

0 M(φi)

)
.

The Lax connection L̂α depends only on the derivatives of φi, and, as was explained in [2],

to get a Lax connection for strings in the deformed AdS5 × S5 all one needs to do is to

express ∂αφi in terms of ∂αφ̃i by using the relations (2.6). The resulting expression for the

Lax connection L̂α is rather complicated, and it is difficult to write down its explicit form.

The gauged transformed Lax connection L̂α is, obviously, flat, and is invariant under

the U(1) isometries, and is periodic in σ. It can be used to compute the monodromy matrix

T(x) which is defined as the path-ordered exponential of the spatial component L̂σ(x) of

the Lax connection [29]

T(x) = P exp

∫ 2π

0
dσ L̂σ(x) , (3.29)

The key property of the monodromy matrix is the time conservation of all its spectral

invariants. In particular, any eigenvalue of T(x), exp(ipk(x)) where pk(x) is called a quasi-

momentum, generates an infinite set of integrals of motion.

In the context of the AdS/CFT correspondence the monodromy matrix of the Lax

connection Lα of superstrings in AdS5×S5 was used in [30, 28] to derive finite-gap integral
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equations which describe the spectrum of classical spinning strings in the scaling limit

of [10].

The derivation of the equations requires a careful analysis of various asymptotic prop-

erties of the monodromy matrix T(x) and the quasi-momenta p(x) at small and large values

of the spectral parameter x. An important distinction of L̂α from Lα is that it does not

vanish at large values of x, and that makes more difficult to study the large x asymptotic

properties of the monodromy matrix.

To analyze the asymptotics it is more convenient to use the nonlocal and nonperiodic

Lax connection L̃α explicitly depending on the angles φi which satisfy the twisted boundary

conditions (2.17). In terms of the Lax connection the monodromy matrix T(x) takes the

form

T(x) = M−1(2π) · P exp

∫ 2π

0
dσ L̃σ(x) · M(0) . (3.30)

It is clear that the monodromy matrix is not similar to the path-ordered exponential of the

Lax connection L̃α because the matrix M is not periodic.

The quasi-momenta pk can be expressed through eigenvalues of

T̃(x) = M(0)M−1(2π) · P exp

∫ 2π

0
dσ L̃σ(x) . (3.31)

It is not difficult to check that

M(0)M−1(2π) =

(
1 0

0 eiπΛ

)
,

where Λ is given in (3.25).

It would be interesting to analyze the properties of the monodromy matrix and derive

finite-gap integral equations for the deformed model analogous to those derived for strings

in AdS5 × S5 in [30, 28]. It was done for the simplest su(2) sector in [7].

4. Spinning particle and Neumann model

In section 3 we established equivalence between strings on the γi-deformed background and

strings on AdS5 × S5 with twisted boundary conditions. This equivalence allows one to

construct an action for the “γi-deformed” spinning particle. Further quantization of this

action should lead to determination of the spectrum of IIB supergravity compactified on

the corresponding (generically non-supersymmetric) background.

A spinning particle is the string zero mode. To obtain the spinning particle in the

γ-deformed background we have to assume that all the embedding fields describing this

background depend on the world-sheet time τ only. Correspondingly, from the point of

view of the string on AdS5 × S5, this means that the embedding bosonic fields must have

the following τ, σ-dependence

ui = ri(τ)eiφi(τ)−iσνi , vi = ρi(τ)eiψi(τ) . (4.1)
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Here φi(τ) and ψi(τ) are the time-dependent phases and the σ-dependence of ui reflects

the twisted boundary conditions. For the matrix G (and similar for G̃) this implies the

following structure

G(τ, σ) =

(
1 0

0 e−
i

2
Λσ

)
G(τ)

(
1 0

0 e−
i

2
Λσ

)
. (4.2)

The zero modes of the fermionic fields are described in an analogous manner

X(τ, σ) = X(τ)e
i

2
Λσ , Y (τ, σ) = e−

i

2
ΛσY (τ) , (4.3)

which is equivalent to

θ(τ, σ) =

(
1 0

0 e−
i

2
Λσ

)
θ(τ)

(
1 0

0 e
i

2
Λσ

)
. (4.4)

Upon substituting these formulae into the general string action (3.10) one can see that the

σ-dependence cancels out leaving behind the dependence on the deformation parameters γi.

As the result we obtain an action for the spinning particle in the γ-deformed background.

Since the corresponding bosonic action is known [12] to be the same as the action for the

so-called Neumann-Rosochatius (NR) integrable model, we therefore obtain the fermionic

generalization of the NR model.

If we restrict for the moment our attention to the purely bosonic case and introduce

the diagonal metric η = diag(1, 1,−1) we find the following action

Lbos = −2
√

λγττ

(
3∑

i=1

ṙ2
i + r2

i φ̇
2 +

3∑

ij

ηij ρ̇iρ̇j + ηijρ
2
i ψ̇

2
j

)
+

2
√

λ

γττ

3∑

i=1

ν2
i r2

i

−2
√

λ
γτσ

γττ

3∑

i=1

νir
2
i (νiγ

τσ − 2γττ φ̇i) . (4.5)

As usual components of the world-sheet metric are non-dynamical and play the role of

the Lagrangian multipliers. In particular, equation of motion for γτσ is equivalent to the

following Virasoro constraint

3∑

i=1

νir
2
i (γ

τσνi − γττ φ̇i) = 0 . (4.6)

Assume now that our particle rotates both in five-sphere with angular momenta Ji

and also in AdS5 with spins Si.
6 Fixing Ji and Si we can integrate all the time-dependent

phases φi(τ), ψi(τ) out by using their equations of motion. Indeed, we have

ψ̇i = − ηijSj

4
√

λγττρ2
i

, φ̇i = − Ji

4
√

λγττr2
i

+ νi
γτσ

γττ
.

6The spin S3 coincides with the space-time energy of the particle.
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Upon substituting this solution for all six angle variables we obtain the following bosonic

action

Lbos = −2
√

λγττ (ṙ2
1 + ṙ2

2 + ṙ2
3 + ρ̇2

1 + ρ̇2
2 − ρ̇2

3)

− 1

8
√

λγττ

(
J2

1

r2
1

+
J2

2

r2
2

+
J2

3

r2
3

+
S2

1

ρ2
1

+
S2

2

ρ2
2

− S2
3

ρ2
3

− 16λ

3∑

i=1

ν2
i r2

i

)
. (4.7)

This is an action of the integrable NR system written in an arbitrary world-line metric

density γττ . Notice that the second independent component of the metric γτσ cancels out

from the action. On the other hand, the Virasoro constraint (4.6) reduces to

∑

i

νiJi = 0 (4.8)

with the general solution νi = εijkγjJk. Thus, if we would start with arbitrary parameters

νi defining the twisted boundary conditions (4.1), compatibility of the dynamics with the

Virasoro constraints would require that νi = εijkγjJk. This provides a new interesting

interpretation of the equation (4.8).

In the general fermionic case it is also possible to integrate out the angle variables

provided the fermions are redefined to be neutral under all U(1) isometries. This redefi-

nition has been already discussed in the previous section and therefore we will not repeat

it here. Introducing the 16 complex uncharged fermions θ = {θα}α=1,...,16 we integrate

out the angle variables and obtain the fermionic generalization of the NR model. Due to

the complexity of the explicit answer, below we indicate the structure of the quadratic

fermionic action only. It reads

L2ferm =
√

λγττ
(
εijkrj ṙk(θ

∗Υi
rθ̇ − θ̇∗Υi

rθ) + εijkρj ρ̇k(θ
∗Υi

ρθ̇ − θ̇∗Υi
ρθ)

)

+
√

λκ
(
riρjθΩij θ̇ + riρjθ

∗Ωij θ̇∗
)

+

√
λ

γττ
rirjθ

∗Σijθ

+
1

8
√

λγττ
θ∗(T1 + T2)θ . (4.9)

Here the matrices Υi
r,ρ are constant 16×16 anti-symmetric matrices. Matrices Ωij and Σij

are symmetric under i ↔ j and they depend on the deformation parameters νi; they vanish

if νi → 0. The explicit formulas for the matrices T1 and T2 can be found in appendix C.

These matrices depend non-trivially on all the spins as well as on coordinates ri and ρi but

they are independent of νi.

Since we have not attempted to fix the κ-symmetry the action (4.9) still depends on

32 fermionic degrees of freedom and the kinetic term for fermions appears to be degenerate

reflecting thereby the presence of the κ-symmetry. Finally we note that the fermionic NR

model remains classically integrable, because the Lax connection for the string on the γ-

deformed background admits further reduction to zero modes. It would be very interesting

to further investigate the integrable properties of the fermionic NR model and ultimately

to quantize it.
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5. Conclusion

In this paper we have discussed classical strings propagating in a background obtained

from an arbitrary string theory background by a sequence of TsT transformations.

Assuming that the initial background is invariant under d U(1) isometries, we have

described a procedure to derive the most general d(d − 1) parameter deformation of the

background, and the Green-Schwarz action governing the dynamics of the strings.

We have shown that angle variables of a TsT-transformed background are related to

angle variables of the initial background in a universal way independent of the particular

form of the background metric and other fields. This has allowed us to prove that strings

in the TsT-transformed background are described by the Green-Schwarz action for strings

in the initial background with bosonic and fermionic fields subject to twisted boundary

conditions. Due to this relation for many purposes it is not necessary to know the explicit

Green-Schwarz action for strings in a TsT-transformed background. These strings can be

analyze by mapping them to twisted strings in the initial background. We have stressed

that our construction implies that a TsT transformation preserves integrability properties

of string sigma model.

We have discussed in detail type IIB strings propagating in γi-deformed AdS5 × S5

space-time and found the twisted boundary conditions for bosons and fermions. We then

have used a known Lax pair for superstrings in AdS5 × S5, and the relation between the

angles to derive a local and periodic Lax representation for the γi-deformed model. The

existence of the Lax pair implies the integrability of the fermionic string sigma model

on the deformed background generalizing the construction of [2]. The twisted boundary

conditions for string coordinates have been used to write down an explicit expression for

the TsT-transformed monodromy matrix in terms of the AdS5 × S5 monodromy matrix,

and the twist matrix.

It would be interesting to use the Lax representation and the monodromy matrix to

derive finite-gap integral equations for the deformed model analogous to those derived for

strings on AdS5 × S5 in [30]. These equations could be then compared with the thermody-

namic limit of the Bethe equations for the deformed N = 4 SYM theory [5, 6, 11]. It has

been already done for the simplest su(2)γ case in [7].

We have also discussed string zero modes and shown that their dynamics is governed

by a new fermionic generalization of the integrable Neumann-Rosochatius model. Quanti-

zation of the model should give the spectrum of type IIB supergravity on the γi-deformed

AdS5 × S5 space-time. The knowledge of the spectrum is important for checking if the

nonsupersymmetric TsT-transformed background is perturbatively stable.

The twisted boundary conditions for string coordinates may be also used to find 1/J

corrections to the spectrum of strings in near-plane-wave backgrounds generalizing the

computation done in [31] for the undeformed case. The Hamiltonian formulation, and the

uniform gauge of [32] seem to be very useful to handle the problem. It should be also

straightforward to compute the spectrum of fluctuations around simple spinning circular

strings, and analyze 1/J corrections to their energies generalizing the consideration of [33].

In particular, it would be interesting to determine the γi-dependence of the terms nonana-
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lytic in λ recently found in [34], and their influence on the dressing factor of the quantum

string Bethe ansatz [35].
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A. T-duality transformation and rules

In this appendix we present the T-duality transformation [36] for the most general Green-

Schwarz action in the form used in the paper. Our way of deriving a T-dual Green-Schwarz

action is very similar to the one used in [37] where the part of the Green-Schwarz action

quadratic in fermions was also given in an explicit form, and shown that the quadratic

fermionic term couples to background fluxes through generalized covariant derivative.

We start with the following Green-Schwarz action

S = −
√

λ

2

∫
dτ

dσ

2π

[
γαβ∂αφi∂βφj G0

ij − εαβ∂αφi∂βφj B0
ij (A.1)

+2∂αφi
(
γαβU0

β,i − εαβV 0
β,i

)
+ L0

rest

]
.

Here ε01 ≡ ετσ = 1 and γαβ ≡
√
−h hαβ , where hαβ is a world-sheet metric with Minkowski

signature. The action is invariant under U(1) isometries realized as shifts of the angle

variables φi, i = 1, 2, . . . , d. We show explicitly the dependence of the action on φi, and

their coupling to the background fields G0
ij , B0

ij and U0
β,i, V

0
β,i. These background fields are

independent of φi but depend on other bosonic and fermionic string coordinates which are

neutral under the U(1) isometries. By L0
rest we denote the part of the Lagrangian which

depends on these other fields of the model.

We perform a T-duality on a circle parametrized by φ1. To find the T-duality rules it

is useful to represent the action (A.1) in the following equivalent form

S = −
√

λ

∫
dτ

dσ

2π

[
pα

(
∂αφ1 +

U0
α,1

G0
11

− γαβεβρ
V 0

ρ,1

G0
11

)
− 1

2G0
11

γαβ pαpβ (A.2)

−1

2
γαβ

U0
α,1U

0
β,1 − V 0

α,1V
0
β,1

G0
11

+
1

2
εαβ

U0
α,1V

0
β,1 − U0

β,1V
0
α,1

G0
11

+ L′
rest

]
,

where L′
rest denotes the part of the Lagrangian (A.1) which does not depends on φ1. Indeed,

varying with respect to pα, one gets the following equation of motion for pα

pα = γαβ∂βφ1G
0
11 + γαβU0

β,1 − εαβV 0
β,1 . (A.3)
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Substituting (A.3) into (A.2) and using the identity εαγγγρε
ρβ = γαβ , we reproduce the

action (A.1). Let us also mention that up to an unessential multiplier pα coincides with

the U(1) current corresponding to shifts of φ1:

pα ∼ Jα
1 .

On the other hand, varying (A.2) with respect to φ1 gives

∂α pα = 0 . (A.4)

The general solution to this equation can be written in the form

pα = εαβ∂β φ̃1 , (A.5)

where φ̃1 is the scalar T-dual to φ1. Substituting (A.5) into the action (A.2), we obtain

the following T-dual action

S = −
√

λ

2

∫
dτ

dσ

2π

[
γαβ∂αφ̃i∂βφ̃j G̃ij − εαβ∂αφ̃i∂βφ̃j B̃ij (A.6)

+2∂αφ̃i
(
γαβŨβ,i − εαβ Ṽβ,i

)
+ L̃rest

]
.

with the new fields G̃ij , etc given in terms of the original ones.

G̃11 =
1

G0
11

, G̃ij = G0
ij −

G0
1iG

0
1j − B0

1iB
0
1j

G0
11

, G̃1i =
B0

1i

G0
11

, (A.7)

B̃ij = B0
ij −

G0
1iB

0
1j − B0

1iG
0
1j

G0
11

, B̃1i =
G0

1i

G0
11

,

Ũα,1 =
V 0

α,1

G0
11

, Ṽα,1 =
U0

α,1

G0
11

,

Ũα,i = U0
α,i −

G0
1iU

0
α,1 − B0

1iV
0
α,1

G0
11

,

Vα,i = V 0
α,i −

G0
1iV

0
α,1 − B0

1iU
0
α,1

G0
11

,

L̃rest = L0
rest − γαβ

U0
α,1U

0
β,1 − V 0

α,1V
0
β,1

G0
11

+ εαβ
U0

α,1V
0
β,1 − V 0

α,1U
0
β,1

G0
11

,

εαβ∂β φ̃1 = γαβ∂βφiG0
1i − εαβ∂βφiB0

1i + γαβU0
β,1 − εαβV 0

β,1 , (A.8)

φ̃i = φi , i ≥ 2 .

In principle these formulas can be used to find the T-duality transformed NS-NS and RR

fields (see e.g. [38]) of the background in which strings propagate.

B. The background after TsT transformation

By using the formulas obtained in appendix A, and performing a TsT transformation one

finds the TsT-transformed background fields Gij , etc

Gij =
G0

ij

D
, Gi3 =

G0
i3

D
+ γ̂

B0
23G

0
1i − B0

13G
0
2i + B0

12G
0
i3

D
(B.1)
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G33 = G0
33 +

γ̂ + γ̂2B0
12

D
2(B0

23G
0
13 − B0

13G
0
23) + (B.2)

γ̂2

D

(
G0

11((B
0
23)

2 − (G0
23)

2) + G0
22((B

0
13)

2 − (G0
13)

2) + 2G0
12(G

0
23G

0
13 − B0

13B
0
23)

)

B12 =
B0

12

D
+

γ̂

D

(
(B0

12)
2 − (G0

12)
2 + G0

11G
0
22

)
(B.3)

Bi3 =
B0

i3

D
+

γ̂

D

(
B0

12B
0
i3 − G0

13G
0
i2 + G0

23G
0
i1

)
(B.4)

Uα,i =
U0

α,i

D
+

γ̂

D

(
B0

12U
0
α,i + G0

1iV
0
α,2 − G0

2iV
0
α,1

)
(B.5)

Vα,i =
V 0

α,i

D
+

γ̂

D

(
B0

12V
0
α,i + G0

1iU
0
α,2 − G0

2iU
0
α,1

)
(B.6)

Uα,3 = U0
α,3 +

(γ̂ + γ̂2B0
12)

D

(
εijG0

i3V
0
α,j − εijB0

i3U
0
α,j

)
+ (B.7)

+
γ̂2

D

(
εijU0

α,i

(
G0

23G
0
1j − G0

13G
0
2j

)
+ εijV 0

α,i

(
−B0

23G
0
1j + B0

13G
0
2j

))

Vα,3 = V 0
α,3 +

(γ̂ + γ̂2B0
12)

D

(
εijG0

i3U
0
α,j − εijB0

i3V
0
α,j

)
+ (B.8)

+
γ̂2

D

(
εijV 0

α,i

(
G0

23G
0
1j − G0

13G
0
2j

)
+ εijU0

α,i

(
−B0

23G
0
1j + B0

13G
0
2j

))

Lrest = L
0
rest +

(γ̂ + γ̂2B0
12)

D

(
2εij(V 0

0,iV
0
1,j − U0

0,iU
0
1,j + γαβU0

α,iV
0
β,j)

)
+ (B.9)

+
γ̂2

D

(
G0

ijε
ĩiεjj̃γαβ

(
V 0

α,̃i
V 0

β,j̃
− U0

α,̃i
U0

β,j̃

)
+ G0

ijε
ĩiεjj̃εαβU0

α,̃i
V 0

β,j̃

)

Here the indices i, j = 1, 2 define the directions of a two-torus, while the index 3 is singled

out (in case we are dealing with more than three indices, 3 should be replaced by a generic

index I different from 1 and 2.) . The element D is given by

D = 1 + 2γ̂B0
12 + γ̂2(G0

11G
0
22 − (G0

12)
2 + (B0

12)
2) , γ̂ =

√
λγ .

C. The matrices

We choose the following parametrization of the fermionic element

g(θ, η) = exp




0 0 0 0 η5 η6 η7 η8

0 0 0 0 η1 η2 η3 η4

0 0 0 0 θ1 θ2 θ3 θ4

0 0 0 0 θ5 θ6 θ7 θ8

η5 η1 −θ1 −θ5 0 0 0 0

η6 η2 −θ2 −θ6 0 0 0 0

η7 η3 −θ3 −θ7 0 0 0 0

η8 η4 −θ4 −θ8 0 0 0 0




. (C.1)

Here θα and ηα are 8 + 8 complex fermions obeying the following conjugation rule θα ∗ =

θα and ηα ∗ = ηα. Under dilatation the fermions ηα and θα have charges 1
2 and −1

2

respectively [23]. This explains the notational distinction we made for the fermions η’s

and θ’s. In what follows it is useful to introduce the unifying notation θα for fermionic

variables. We therefore identify ηα ≡ θα+8 with α = 1, . . . , 8.
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In section 4 to describe the fermionic Neumann-Rosochatius model we have used the

following matrices

Υ1
r = σ3 ⊗ I2 ⊗ (−iσ2) ⊗ σ3 Υ1

ρ = (−iσ2) ⊗ σ1 ⊗ I2 ⊗ I2

Υ2
r = σ3 ⊗ I2 ⊗ (−iσ2) ⊗ σ1 Υ2

ρ = iσ2 ⊗ σ3 ⊗ I2 ⊗ I2

Υ3
r = σ3 ⊗ I2 ⊗ I2 ⊗ (−iσ2) Υ3

ρ = σ3 ⊗ iσ2 ⊗ I2 ⊗ I2

To present the matrices Ωij we introduce the three auxiliary 4 × 4 matrices ∆i:

∆1 =




Λ1

−Λ2

−Λ3

Λ4


 , ∆2 =




Λ1

Λ2

−Λ3

−Λ4


 , ∆3 =




Λ1

−Λ2

Λ3

−Λ4


 .

With this definition the matrices Ωij can be written as

Ωi1 =




−∆i

−∆i

∆i

∆i


 , Ωi2 =




∆i

−∆i

−∆i

∆i


 , Ωi3 =




−∆i

∆i

∆i

−∆i


 .

Next we describe the structure of the matrix Σij which depends on the deformation pa-

rameters γi and is symmetric under i ↔ j. We find that Σ is block-diagonal, Σij =

(−ωij ,−ωij, ωij , ωij), where the symmetric 4 × 4 matrices ωij read as

ω11 = 2ν1




ν1 + ν2 + ν3

ν1 + ν2 − ν3

ν1 − ν2 − ν3

ν1 − ν2 + ν3


 ,

ω22 = 2ν2




ν1 + ν2 + ν3

ν1 + ν2 − ν3

−ν1 + ν2 + ν3

−ν1 + ν2 − ν3


 ,

ω33 = 2ν3




ν1 + ν2 + ν3

−ν1 − ν2 + ν3

−ν1 + ν2 + ν3

ν1 − ν2 + ν3


 ,

ω12 = ν3




ν1 − ν2

ν1 − ν2

−ν1 − ν2

−ν1 − ν2


 ,

ω13 = ν2




ν3 − ν1

ν1 + ν3

ν1 + ν3

ν3 − ν1


 ,

ω23 = ν1




ν2 − ν3

−ν2 − ν3

ν2 − ν3

−ν2 − ν3


 .

Finally we collect the 16 by 16 matrices, T1 and T2:

T1 =

(
−S2

1

ρ2

1

− S2
2

ρ2

2

+
S2

3

ρ2

3

+
J2

1

r2

1

+
J2

2

r2

2

+
J2

3

r2

3

)
M1 ⊗ M0 + S1S3

(
1

ρ2

1

− 1

ρ2

3

)
M3 ⊗ M0

+S1S2

(
1

ρ2

1

+
1

ρ2

2

)
M0 ⊗ M0 + S1J1

(
1

r2

1

− 1

ρ2

1

)
M2 ⊗ M2 + S1J2

(
1

r2

2

− 1

ρ2

1

)
M2 ⊗ M3
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+S1J3

(
1

r2

3

− 1

ρ2

1

)
M2 ⊗ M1 + S2S3

(
1

ρ2

3

− 1

ρ2

2

)
M2 ⊗ M0 + S2J1

(
1

ρ2

2

− 1

r2

1

)
M3 ⊗ M2

+S2J2

(
1

ρ2

2

− 1

r2

2

)
M3 ⊗ M3 + S2J3

(
1

ρ2

2

− 1

r2

3

)
M3 ⊗ M1 + S3J1

(
− 1

ρ2

3

− 1

r2

1

)
M0 ⊗ M2

+S3J2

(
− 1

ρ2
3

− 1

r2
2

)
M0 ⊗ M3 + S3J3

(
− 1

ρ2
3

− 1

r2
3

)
M0 ⊗ M1 − J1J2

(
1

r2
1

+
1

r2
2

)
M1 ⊗ M1

+J1J3

(
1

r2

1

+
1

r2

3

)
M1 ⊗ M3 + J2J3

(
1

r2

2

+
1

r2

3

)
M1 ⊗ M2 , (C.2)

T2 = G0 ⊗ M0 + · · · + G3M3 + M0 ⊗ G̃0 + · · · + M3 ⊗ G̃3 . (C.3)

Here the M ’s are the following diagonal 4 by 4 matrices

M0 = diag(1, 1, 1, 1), M1 = diag(1, 1,−1,−1), (C.4)

M2 = diag(1,−1, 1,−1), M3 = diag(1,−1,−1, 1) (C.5)

and G and G̃ are 4 by 4, symmetric matrices, with zeros in the diagonal. Decomposing

them in terms of the following orthogonal “basis”

O1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


, O2 =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


, O3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

O4 =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


, O5 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, O6 =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 (C.6)

we can show their explicit dependence on the coordinates and the currents

G0 = −S2S3ρ1

ρ2ρ2
3

O1 −
S1S3ρ2

ρ1ρ2
3

O2 +
S2S3ρ1

ρ3ρ2
2

O3 −
S1S2ρ3

ρ1ρ2
2

O4 −
S1S2ρ3

ρ2ρ2
1

O5 −
S1S3ρ2

ρ3ρ2
1

O1

G1 =
S1J3ρ2

ρ1r2
3

O1 +
S2J3ρ1

ρ2r2
3

O2 −
S1J3ρ3

ρ1r2
3

O3 +
S3J3ρ1

ρ3r2
3

O4 +
S3J3ρ2

ρ3r2
3

O5 +
S2J3ρ3

ρ2r2
3

O6

G2 =
S1J1ρ2

ρ1r2
1

O1 +
S2J1ρ1

ρ2r2
1

O2 −
S1J1ρ3

ρ1r2
1

O3 +
S3J1ρ1

ρ3r2
1

O4 +
S3J1ρ2

ρ3r2
1

O5 +
S2J1ρ3

ρ2r2
1

O6

G3 =
S1J2ρ2

ρ1r2
2

O1 +
S2J2ρ1

ρ2r2
2

O2 −
S1J2ρ3

ρ1r2
2

O3 +
S3J2ρ1

ρ3r2
2

O4 +
S3J2ρ2

ρ3r2
2

O5 +
S2J2ρ3

ρ2r2
2

O6

G̃0 = −S3J1r2

r1ρ2
3

O1 +
S3J2r1

r2ρ2
3

O2 −
S3J2r3

r2ρ2
3

O3 +
S3J3r2

r3ρ2
3

O4 −
S3J3r1

r3ρ2
3

O5 +
S3J1r3

r1ρ2
3

O6

G̃1 = −J2J3r1

r2r2
3

O1 +
J1J3r2

r1r2
3

O2 −
J1J3r2

r3r2
1

O3 +
J1J2r3

r2r2
1

O4 −
J1J2r3

r1r2
2

O5 +
J2J3r1

r3r2
2

O6

G̃2 = −S1J1r2

r1ρ2
1

O1 +
S1J2r1

r2ρ2
1

O2 −
S1J2r3

r2ρ2
1

O3 +
S1J3r1

r3ρ2
1

O4 −
S1J3r1

r3ρ2
1

O5 +
S1J1r3

r1ρ2
1

O6

G̃3 =
S2J1r2

r1ρ2
2

O1 −
S2J2r1

r2ρ2
2

O2 +
S2J2r3

r2ρ2
2

O3 −
S2J3r2

r3ρ2
2

O4 +
S2J3r1

r3ρ2
2

O5 −
S2J1r3

r1ρ2
2

O6
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