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Abstract

We study the hidden symmetries of the fermionic sector of D = 11 supergravity, and the rôle of K(E10) as a generalised ‘R-symmetry’. We
find a consistent model of a massless spinning particle on an E10/K(E10) coset manifold whose dynamics can be mapped onto the fermionic and
bosonic dynamics of D = 11 supergravity in the near space-like singularity limit. This E10-invariant superparticle dynamics might provide the
basis of a new definition of M-theory, and might describe the ‘de-emergence’ of spacetime near a cosmological singularity.
© 2006 Elsevier B.V. All rights reserved.
Eleven-dimensional supergravity (SUGRA11) [1] is believed
to be the low-energy limit of the elusive ‘M-theory’, which
is, hopefully, a unified framework encompassing the vari-
ous known string theories. Understanding the symmetries of
SUGRA11 is therefore important for reaching a satisfactory
formulation of M-theory. Many years ago it was found that
the toroidal dimensional reduction of SUGRA11 to lower di-
mensions leads to the emergence of unexpected (‘hidden’)
symmetry groups, notably E7 in the reduction to four non-
compactified spacetime dimensions [2], E8 in the reduction
to D = 3 [2–5], and the affine Kac–Moody group E9 in the
reduction to D = 2 [6,7]. It was also conjectured [8] that the
hyperbolic Kac–Moody group E10 might appear when reduc-
ing SUGRA11 to only one (time-like) dimension.

Recently, the consideration, à la Belinskii, Khalatnikov and
Lifshitz [9], of the near space-like singularity limit1 of generic
inhomogeneous bosonic eleven-dimensional supergravity so-
lutions has uncovered some striking evidence for the hidden
rôle of E10 [10,11]. Ref. [11] related the gradient expansion
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1 This limit can also be viewed as a small tension limit, α′ → ∞.
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(∂x � ∂t ), which organises the near space-like singularity limit
[12], to an algebraic expansion in the height of positive roots
of E10. A main conjecture of [11] was the existence of a
correspondence between the time evolution, around any given
spatial point x, of the supergravity bosonic fields g

(11)
MN(t,x),

A
(11)
MNP (t,x), together with their infinite towers of spatial gra-

dients, on the one hand, and the dynamics of a structure-
less massless particle on the infinite-dimensional coset space
E10/K(E10) on the other hand. Here, K(E10) is the maxi-
mal compact subgroup of E10. Further evidence for the rôle
of the one-dimensional non-linear sigma model E10/K(E10) in
M-theory was provided in [13–16].

An earlier and conceptually different proposal aiming at
capturing hidden symmetries of M-theory, and based on the
very-extended Kac–Moody group E11, was made in [17,18]
and further developed in [19–21]. A proposal combining the
ideas of [18] and [11] was put forward in [22–24].

In this Letter, we extend the bosonic coset construction of
[11] to the full supergravity theory by including fermionic vari-
ables; more specifically, we provide evidence for the existence
of a correspondence between the time evolution of the coupled
supergravity fields g

(11)
MN(t,x), A

(11)
MNP (t,x),ψ

(11)
M (t,x) and the

dynamics of a spinning massless particle on E10/K(E10). Pre-
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vious work on E10 which included fermions can be found in
[13,25].2

To motivate our construction of a fermionic extension of the
bosonic one-dimensional E10/K(E10) coset model we consider
the equation of motion of the gravitino in D = 11 supergrav-
ity [1].3 Projecting all coordinate indices on an elfbein EA

(11) =
E A

(11)M dxM , the equation of motion for ψ
(11)
A = E M

(11)Aψ
(11)
M is

(neglecting quartic fermion terms)

(1)

0 = ÊA := Γ B
[(

DA(ω) +FA

)
ψ

(11)
B − (

DB(ω) +FB

)
ψ

(11)
A

]
,

where DA(ω) = E M
(11)ADM denotes the moving-frame co-

variant derivative DA(ω)ψ
(11)
B = ∂Aψ

(11)
B + ω

(11)
ABCψ(11)C +

1
4ω

(11)
ACDΓ CDψ

(11)
B , and where FA := + 1

144 (ΓA
BCDE

− 8δB
AΓ CDE)F

(11)
BCDE denotes the terms depending on the 4-

form field strength F
(11)
MNPQ = 4∂[MA

(11)
NPQ]. Here ω

(11)
ABC =

−ω
(11)
ACB = E M

(11)Aω
(11)
M BC denotes the moving frame com-

ponents of the spin connection, with ω
(11)
ABC = 1

2 (Ω
(11)
AB C +

Ω
(11)
CAB − Ω

(11)
BC A), where Ω

(11)
AB C = −Ω

(11)
BAC are the coeffi-

cients of anholonomicity. Following [11,15] we use a pseudo-
Gaussian (zero-shift) coordinate system t , xm and we accord-
ingly decompose the elfbein EA

(11) in separate time and space

parts as E0
(11) = N dt , Ea

(11) = e a
(10)m dxm. We note that the

zehnbein Ea
(11) = ea

(10) is related to the non-orthogonal, time-

independent spatial frame θi(x) = θ i
m(x) dxm used in [11] via

ea
(10) = Sa

iθ
i [15].

Using the D = 11 local supersymmetry to impose the rela-
tion ψ

(11)
0 = Γ0Γ

aψ
(11)
a , and defining Ea := Ng1/4Γ 0Êa (with

g1/2 = det(e a
(10)m)), we find that the spatial components of the

gravitino equation of motion (1), when expressed in terms of a
rescaled ψ

(10)
a := g1/4ψ

(11)
a , take the following form

Ea = ∂tψ
(10)
a + ω

(11)
t ab ψ(10)b + 1

4
ω

(11)
t cd Γ cdψ(10)

a

− 1

12
F

(11)
tbcdΓ bcdψ(10)

a − 2

3
F

(11)
tabcΓ

bψ(10)c

+ 1

6
F

(11)
tbcdΓa

bcψ(10)d + N

144
F

(11)
bcdeΓ

0Γ bcdeψ(10)
a

+ N

9
F

(11)
abcdΓ 0Γ bcdeψ(10)

e − N

72
F

(11)
bcdeΓ

0Γabcdef ψ(10)f

+ N
(
ω

(11)
a bc − ω

(11)
b ac

)
Γ 0Γ bψ(10)c + N

2
ω

(11)
a bc Γ 0Γ bcdψ

(10)
d

2 Results similar to some of the ones reported here have been obtained in
[26].

3 We use the mostly plus signature; M,N, . . . = 0, . . . ,10 denote space-
time coordinate (world) indices; m,n,p, . . . = 1, . . . ,10 denote spatial coor-
dinate indices, and the indices i, j, k, l = 1, . . . ,10 label the non-orthonormal
frame components θi

m dxm . Spacetime Lorentz (flat) indices are denoted
A,B,C, . . . ,F = 0, . . . ,10, while a, b, . . . , f = 1, . . . ,10 denote purely spa-
tial Lorentz indices. We use the conventions of [1,2] except for the replacement
Γ M

CJS = +iΓ M
here (linked to the mostly plus signature) which allows us to use

real gamma matrices and real (Majorana) spinors. The definition of the Dirac
conjugate is ψ̄ := ψT Γ 0

here, and thus differs from [1] by a factor of i. The field

strength F here
MNPQ

used in this Letter is equal to +1/2 the one used in [11].
− N

4
ω

(11)
b cd Γ 0Γ bcdψ(10)

a

+ Ng1/4Γ 0Γ b

(
2∂aψ

(11)
b − ∂bψ

(11)
a − 1

2
ω

(11)
c cb ψ(11)

a

(2)− ω
(11)
0 0a ψ

(11)
b + 1

2
ω

(11)
0 0b ψ(11)

a

)
.

Refs. [11,15] defined a dictionary between the temporal-
gauge bosonic supergravity fields g

(11)
mn (t,x),A

(11)
mnp(t,x) (and

their first spatial gradients: spatial connection and magnetic
4-form) and the four lowest levels hi

a(t), Aijk(t), Ai1...i6(t),
Ai0|i1...i8(t) of the infinite tower of coordinates parametrising
the coset manifold E10/K(E10). Here, we extend this dictio-
nary to fermionic variables by showing that the rescaled, SUSY
gauge-fixed gravitino field ψ

(10)
a can be identified with the

first rung of a ‘vector-spinor-type’ representation of K(E10),
whose Grassmann-valued representation vector will be denoted
by Ψ = (ψa,ψ..., . . .).4 We envisage Ψ to be an infinite-
dimensional representation of K(E10) which is decomposed
into a tower of SO(10) representations, starting with a vector-
spinor one ψa . Our labelling convention is that coset quantities,
such as Aijk or Ψ do not carry sub- or superscripts, whereas
supergravity quantities carry an explicit dimension label.

We shall give several pieces of evidence in favour of this
identification and of the consistency of this K(E10) representa-
tion. As in the bosonic case, the correspondence ψ

(10)
a (t,x) ↔

ψcoset
a (t) ≡ ψa(t) is defined at a fixed, but arbitrary, spatial

point x. A dynamical system governing a ‘massless spinning
particle’ on E10/K(E10) will be presented as an extension of
the coset dynamics of [11] and we will demonstrate the con-
sistency of this dynamical system with the supergravity model
under this correspondence. More precisely, we will first show
how to consistently identify the Rarita–Schwinger equation (2)
with a K(E10)-covariant equation

(3)0 =D
vs

Ψ (t) := (
∂t −Q

vs
(t)

)
Ψ (t).

This equation expresses the parallel propagation of the vector-
spinor-type ‘K(E10) polarisation’ Ψ (t) along the E10/K(E10)

worldline of the coset particle. Our notation here is as fol-
lows. A one-parameter dependent generic group element of
E10 is denoted by V(t). The Lie algebra valued ‘velocity’
of V(t), namely v(t) = ∂tVV−1 ∈ e10 ≡ Lie(E10) is decom-
posed into its ‘symmetric’ and ‘antisymmetric’ parts accord-
ing to P(t) := vsym(t) := 1

2 (v(t) + vT (t)),Q(t) := vanti(t) :=
1
2 (v(t) − vT (t)), where the transposition (·)T is the gener-
alised transpose of an e10 Lie algebra element xT := −ω(x)

defined by the Chevalley involution ω [27]. K(E10) is defined
as the set of ‘orthogonal elements’ k−1 = kT . Its Lie algebra
k10 = Lie(K(E10)) is made of all the antisymmetric elements
of e10, such as Q.

The bosonic coset model of [11] is invariant under a global
E10 right action and a local K(E10) left action V(t) →
k(t)V(t)g0. Under the local K(E10) action, P varies covari-

4 By contrast, [25] considered ‘Dirac-spinor-type’ representations of
K(E10).
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antly as P → kPk−1, while Q varies as a K(E10) connection
Q → kQk−1 + ∂tk k−1, with ∂tk k−1 ∈ k10 following from the
orthogonality condition. The coset equation (3) will therefore
be K(E10) covariant if Ψ varies, under a local K(E10) left ac-
tion, as a certain (‘vector-spinor’) linear representation

(4)Ψ → R
vs

(k) · Ψ
and if Q

vs
in (3) is the value of Q ∈ k10 in the same represen-

tation R
vs

. In order to determine the concrete form of Q
vs

in the
vector-spinor representation we need an explicit parametrisa-
tion of the coset manifold E10/K(E10).

Following [11,15] we decompose the E10 group w.r.t. its
GL(10) subgroup. Then the � = 0 generators of e10 are gl(10)

generators Ka
b satisfying the standard commutation relations

[Ka
b,K

c
d ] = δc

bK
a
d −δa

dKc
b. The e10 generators at levels � =

1,2,3 as GL(10) tensors are, respectively, Ea1a2a3 = E[a1a2a3],
Ea1...a6 = E[a1...a6], and Ea0|a1...a8 = Ea0|[a1...a8], where the
� = 3 generator is also subject to E[a0|a1...a8] = 0. In a suitable
(Borel) gauge, a generic coset element V ∈ E10/K(E10) can be
written as V = exp(Xh) exp(XA) with

Xh = hb
aK

a
b,

(5)

XA = 1

3!Aa1a2a3E
a1a2a3 + 1

6!Aa1...a6E
a1...a6

+ 1

9!Aa0|a1...a8E
a0|a1...a8 + · · · .

Defining ei
a := (exph)ia = δi

a + hi
a + 1

2!h
i
sh

s
a + · · · and

ēa
i := (e−1)ai one finds that the velocity v ∈ e10 reads, ex-

panded up to � = 3,

v = ēb
i∂t e

i
aK

a
b + 1

3!e
i1

a1e
i2

a2e
i3

a3DAi1i2i3E
a1a2a3

+ 1

6!e
i1

a1 · · · ei6
a6DAi1...i6E

a1...a6

(6)+ 1

9!e
i0

a0 · · · ei8
a8DAi0|i1...i8Ea0|a1...a8 .

Here, DAi1i2i3 = ∂tAi1i2i3 , and the more complicated expres-
sions for DAi1...i6 and DAi0|i1...i8 were given in [11]. In the
expansion (6) of v one can think of the indices on the gen-
erators Ka

b , etc., as flat (Euclidean) indices. As for the in-
dices on DAi1i2i3 , etc., the dictionary of [11,15] shows that
they correspond to a time-independent non-orthonormal frame
θi = θi

m dxm. The object ei
a = (exph)ia (which is the ‘square

root’ of the contravariant ‘coset metric’ gij = ∑
a ei

ae
j
a) re-

lates the two types of indices, and corresponds to the inverse of
the matrix Sa

i mentioned above. The parametrisation (5) corre-
sponds to a special choice of coordinates on the coset manifold
E10/K(E10).

We introduce the k10 generators through

J ab = Ka
b − Kb

a,

J a1a2a3 = Ea1a2a3 − Fa1a2a3 ,

J a1...a6 = Ea1...a6 − Fa1...a6 ,

(7)J a0|a1...a8 = Ea0|a1...a8 − Fa0|a1...a8 ,
where Fa1a2a3 = (Ea1a2a3)T , etc., that is, with the general
normalisation J = E − F . Henceforth, we shall refer to
J ab, J a1a2a3 , J a1...a6 , and J a0|a1...a8 as being of ‘levels’ � =
0,1,2,3, respectively. However, this ‘level’ is not a grading
of k10; rather one finds for commutators that [k(�), k(�′)] ⊂
k(�+�′) ⊕ k(|�−�′|) (in fact, k10 is neither a graded nor a Kac–
Moody algebra). Computing the antisymmetric piece Q of the
velocity v we conclude that the explicit form of the fermionic
equation of motion (3) is

(
∂t − 1

2
ēb

i∂t e
i
aJ

vs
ab − 1

2

1

3!e
i1

a1 · · · ei3
a3DAi1...i3J

vs
a1a2a3

− 1

2

1

6!e
i1

a1 · · · ei6
a6DAi1...i6J

vs
a1...a6

(8)− 1

2

1

9!e
i0

a0 · · · ei8
a8DAi0|i1...i8J

vs
a0|a1...a8 + · · ·

)
Ψ = 0.

Here, J
vs

ab := R
vs

(J ab), etc., are the form the k10 generators take
in the sought-for vector-spinor representation Ψ . The crucial
consistency condition for Ψ to be a linear representation is that

the generators J
vs

ab , etc. (to be deduced below) should satisfy
the abstract k10 commutation relations

[
J ab, J cd

] = δbcJ ad + δadJ bc − δacJ bd − δbdJ ac ≡ 4δbcJ ad,[
J a1a2a3, J b1b2b3

] = J a1a2a3b1b2b3 − 18δa1b1δa2b2J a3b3 ,[
J a1a2a3, J b1...b6

] = J [a1|a2a3]b1...b6 − 5!δa1b1δa2b2δa3b3J b4b5b6 ,[
J a1...a6 , J b1...b6

] = −6 · 6!δa1b1 · · · δa5b5J a6b6 + · · · ,[
J a1a2a3, J b0|b1...b8

]
= −336

(
δb0b1b2
a1a2a3

J b3...b8 − δb1b2b3
a1a2a3

J b4...b8b0
) + · · · ,[

J a1...a6 , J b0|b1...b8
]

= −8!(δb0b1...b5
a1...a6

J b6b7b8 − δb1...b6
a1...a6

J b7b8b0
) + · · · ,[

J a0|a1...a8 , J b0|b1...b8
]

= −8 · 8!(δa1...a8
b1...b8

J a0b0 − δ
a1...a8
b0b1...b7

J a0b8 − δ
a0a1...a7
b1...b8

J a8b0

(9)+ 8δ
a0
b0

δ
a1...a7
b1...b7

J a8b8 + 7δ
a1
b0

δ
a0a2...a7
b1...b7

J a8b8
) + · · ·

computed up to � = 3 in the basis for e10 used in [15]. We use
the flat Euclidean δab of SO(10) to raise and lower indices.
As SO(10) representation the generator J a0|a1...a8 is reducible
with irreducible components J̄ and Ĵ defined by J̄ a1|a2...a9 =
J a1|a2...a9 − 8

3δa1[a2 Ĵ a3...a9] and Ĵ a3...a9 = δa1a2J
a1|a2a3...a9 . Ne-

glecting J̄ a0|a1...a8 , the corresponding commutators for K(E11)

were already computed in [21]. In Eq. (9) we have used a short-
hand notation where the terms on the r.h.s. should be antisym-
metrised (with weight one) according to the antisymmetries on
the l.h.s., as written out for the SO(10) generators J ab in the
first line. For the mixed symmetry generator J a0|a1...a8 this in-
cludes only antisymmetrisation over [a1 · · ·a8]. Under SO(10)

the tensors on the higher levels rotate in the standard fashion.
To compare Eqs. (2) and (8) we now use the bosonic dictio-

nary obtained in [11,15]. In terms of our present conventions,
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and in terms of ‘flat’ indices on both sides5 this dictionary con-
sists of asserting the correspondences

ei
a ↔ θi

me m
(10)a,

DAa1a2a3 ↔ 2F
(11)
ta1a2a3

= 2NF
(11)
0a1a2a3

,

DAa1...a6 ↔ − 2

4!Nεa1...a6b1...b4F
(11)
b1...b4

,

(10)DAa0|a1...a8 ↔ 3

2
Nεa1...a8b1b2Ω̃

(10)
b1b2a0

.

Here, as in [15], Ω̃
(10)
ab c = Ω

(10)
ab c − 2

9δc[aΩ
(10)
b]d d denotes the

tracefree part of the spatial anholonomy coefficient Ω
(10)
ab c =

2e m

(10)[ae
n

(10)b]∂m
e c

(10)n
.

Using the correspondences (10), as well as their conse-
quence − 1

2 (ēb
i∂t e

i
a − ēa

i∂t e
i
b) ↔ +ω

(11)
t ab = Nω

(11)
0ab , we can

tentatively reinterpret most terms in the supergravity equa-
tion (2) as terms in the putatively K(E10) covariant equa-
tion (8). Using, as is always locally possible, a spatial frame
such that the trace ω

(11)
b bc = 0 (and therefore Ω̃

(10)
ab c = Ω

(10)
ab c ), and

neglecting, as in the bosonic case [11], the frame spatial deriv-
atives ∂aψ

(10)
b and ∂aN = −Nω

(11)
0 0a , we can identify Eq. (2)

with Eq. (8) if we define the action of K(E10) generators in the
vector-spinor representation by

(
J
vs(0)

Λ Ψ
)
a

:= Λabψ
b + 1

4
ΛbcΓ

bcψa,

(
J
vs(1)

Λ Ψ
)
a

:= 1

12
ΛbcdΓ bcdψa + 2

3
ΛabcΓ

bψc − 1

6
ΛbcdΓabcψ

d,

(
J
vs(2)

Λ Ψ
)
a

:= 1

1440
ΛbcdefgΓ

bcdefgψa + 1

180
ΛbcdefgΓabcdef ψg

− 1

72
Λabcdef Γ bcdeψf ,

(
J
vs(3)

Λ Ψ
)
a

:= 2

3

1

8!
(
Λb|c1...c8Γa

c1...c8ψb + 8Λa|c1...c8Γ
c1...c7ψc8

(11)+ 2Λb|bc1...c7Γ
c1...c7ψa − 28Λb|bc1...c7Γa

c1...c6ψc7
)
.

Here, we have used a shorthand notation for the action of J
vs

by absorbing the transformation parameters into the generators

according to J
vs(0)

Λ ≡ 1
2Λa1a2J

vs
a1a2 , J

vs(1)
Λ ≡ 1

3!Λa1a2a3J
vs

a1a2a3 ,

J
vs(2)

Λ ≡ 1
6!Λa1...a6J

vs
a1...a6 , and J

vs(3)
Λ ≡ 1

9!Λa0|a1...a8J
vs

a0|a1...a8 . The
last parameter Λa0|a1...a8 has two irreducible pieces analogous

to J
vs

(3) and the trace appears explicitly in (11).
Proving the K(E10) covariance of the coset fermionic equa-

tion (8) now reduces to proving that the generators J
vs

(�) defined
by (11) do satisfy the K(E10) commutation relations which
were given in (9). It is easy to see that the commutators of the

5 To convert ‘frame’ indices i, j, k, . . . into ‘flat’ ones a, b, c, . . . , one uses

ei
a on the coset side, and e i

(10)a
:= θi

me m
(10)a

≡ (S−1)i a on the SUGRA side.
level-zero generators J
vs

(0) with themselves, as well as with any

other J
vs

(�) for � > 0, produce the required SO(10) rotations of
(9). The other commutators require some tedious calculations
using the gamma algebra. The result of this computation is

([
J
vs(1)

Λ , J
vs(1)

Λ′
]
Ψ

)
a

= 20
(
J
vs(2)

Σ Ψ
)
a
− (

J
vs(0)

Σ Ψ
)
a
,

(12)
([

J
vs(1)

Λ , J
vs(2)

Λ′
]
Ψ

)
a

= 56
(
J
vs(3)

Σ Ψ
)
a
− 1

6

(
J
vs(1)

Σ Ψ
)
a
,

where the J
vs(�)

Σ are defined as above, but now with new para-

meters given by Σ
(0)
ab = Λd1d2[aΛ

′
b]d1d2 , Σ

(2)
b1...b6

= Λ[b1b2b3
×

Λ′
b4b5b6], Σ

(1)
a1a2a3 = Λb1b2b3Λ′

b1b2b3a1a2a3
, and Σ

(3)

a0|a1...a8
=

Λa0[a1a2
Λ′

a3...a8] − Λ[a1a2a3
Λ′

a4...a8]a0
. One can now check that

the relations (12) are consistent with the K(E10) commutators
(9). All other commutators have to produce terms on the r.h.s.
which have contributions of ‘level’ � > 3 and therefore cannot
be checked fully. However, we have verified, where possible,
that the expected contributions of the lower levels appear with
the correct normalisation required by the structure constants of

(9). Therefore we find that the vector-spinor representation J
vs

(�)

of K(E10) which we deduced from comparing (2) and (8) is a
good linear representation up to the level we have supergravity
data to define it.

Using arguments from the general representation theory of
Lie algebras one can actually show that the checks we have
carried out are sufficient to guarantee the existence of an exten-

sion of the vector-spinor representation J
vs

(�) to ‘levels’ � > 3
on the same components ψa . That is, we can define on ψa

alone an unfaithful, irreducible 320-dimensional representation
of K(E10) on which infinitely many K(E10) generators are re-
alised non-trivially. For this definition it is sufficient to define

the action of J
vs

(0) and J
vs

(1) on ψa and check Serre-type compat-

ibility conditions [28]. We view the fact that the J
vs

(2) and J
vs

(3)

transformations deduced from the supergravity correspondence
above agree with this general construction as strong evidence
for the relevance of the vector-spinor component of the infinite-
dimensional K(E10) spinor Ψ = (ψa, . . .) we have in mind. If
one repeats the same analysis for the Dirac spinor, where the
representation matrices on this 32-dimensional space are given
in terms of antisymmetric Γ -matrices (see (16)), one finds that
one can consistently realise K(E10) on a 32-component spinor
of SO(10). The fact that the antisymmetric Γ -matrices together
with Γ 0 span the fundamental representation of SO(32) has
led a number of authors to propose SO(32) as a ‘generalised
holonomy’ for M-theory [29,30]. That this group, like the larger
group SL(32) proposed in [31] cannot be realised as a bona
fide symmetry was subsequently pointed out in [32] where it
was shown that no suitable spinor (i.e., double valued) rep-
resentation with the correct number of components of these
generalised holonomy groups exist. Our approach is radically
different, since we have an action not of SO(32) but of K(E10),
with infinitely many generators acting in a non-trivial manner,
on a genuine spinor representation of SO(10). We therefore
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evade the conclusions of [32].6 The appearance of an unfaithful
representation for the fermions was already noted and studied
in the affine case for K(E9), which shows very similar fea-
tures consistent with our present findings [34]. One possibility
to construct a faithful representation of K(E10) already pointed
out there might be to consider the tensor product of such un-
faithful representations with a faithful representation, like the
adjoint k10 or the coset e10 � k10.7 More details on these as-
pects will be given in a future publication [35].

A deeper confirmation of the hidden K(E10) symmetry of
SUGRA11 is obtained by writing down a K(E10) invariant
action functional describing a massless spinning particle on
E10/K(E10). We will be brief and defer the details to [35]. The
bosonic part of the action is the one of [11]

(13)Sbos =
∫

dt
1

4n

〈
P(t)

∣∣P(t)
〉
,

where 〈·|·〉 is the standard invariant bilinear form on e10 [27]
and where the coset ‘lapse’ function n can be identified with
the rescaled supergravity lapse Ng−1/2 (denoted Ñ in [12]).

The fermionic term we add to this action reads

(14)Sferm = − i

2

∫
dt

(
Ψ (t)

∣∣Dvs
Ψ (t)

)
vs,

where (·|·)vs is a K(E10) invariant symmetric form on the
vector-spinor representation space. Observe that this symmet-
ric form is actually anti-symmetric when evaluated on anti-
commuting (Grassmann valued) fermionic variables Ψ (t), such
that, e.g., (Ψ (t)|Ψ (t))vs = 0. On the lowest component of
Ψ = (ψa, . . .) it is explicitly given by (Ψ |Φ)vs = ψT

a Γ abφb.

The invariance of this form under the generators J
vs

(�) defined
in (11) is a quite restrictive condition. We have verified that
invariance holds, but only since we are working over a ten-
dimensional Clifford algebra. By using induction arguments we
find that (Ψ |Φ)vs is invariant not only under (11) but under
the (unfaithful) extension to the full K(E10) transformations
mentioned above. We expect that the form (Ψ |Φ)vs will ex-
tend to an invariant symmetric form on a faithful representation
Ψ = (ψa, . . .).

Further important hints of a hidden K(E10) symmetry come
from considering the local SUSY constraint S(11) = 0 which
is proportional to the time component of the Rarita–Schwinger
equation (1). First, we find that, under the dictionary of [11,
15], S(11) is mapped into a K(E10) covariant constraint of the
form P � Ψ = 0, when neglecting frame gradients ∂aψb as we
have done in the derivation of (11). The product � symbol-
ises a map from the tensor product of e10 � k10 with Ψ onto
a Dirac-spinor-type representation space of k10. The coset con-
straint P � Ψ = 0 suggests to augment the action Sbos + Sferm

6 The transition from SO(10) to SO(32) (or SO(1,10) to SL(32)) requires

Γ abc which is associated with the rank three gauge field. The importance of the
rank three generator in the context of M5-brane dynamics was already stressed
in [33] and also features in [21] where it is seen as part of K(E11). However, it
is an open question whether there exists a vector-spinor-type representation of
K(E11), which would be analogous to (11) and thus also compatible with [32].

7 Let us also note that the 320-dimensional representation of K(E10) is com-
patible with the fermionic representations studied in [13].
by a ‘Noether’ term of the form

(15)SNoether =
∫

dt
(
χ(t)

∣∣P(t) � Ψ (t)
)

s,

with a local Dirac-spinor χ(t) Lagrange multiplier (that is, a
one-dimensional ‘gravitino’). The total action Sbos + Sferm +
SNoether is expected to be not only invariant under K(E10),
but also (disregarding Ψ 4 terms) under time-dependent super-
symmetry transformations which involve a Dirac-spinor-type
K(E10) representation ε(t). In this case the χ = 0 gauge
fixed action will be invariant under residual quasi-rigid su-

persymmetry transformations constrained to satisfy D
s
ε(t) ≡

(∂t−
s
Q)ε = 0. This equation is formally the same as (3) and

(8) but now the generators are found to be (cf. [25])

J
s
ab = 1

2
Γ ab, J

s
a1a2a3 = 1

2
Γ a1a2a3 ,

(16)

J
s
a1...a6 = 1

2
Γ a1...a6 , J

s
a0|a1...a8 = 12δ

a1...a8
a0b1...b7

Γ b1...b7 .

The particular form of the Dirac-spinor representation on � = 3

implies that the irreducible component J̄
s
a0|a1...a8 is mapped to

zero under this correspondence: indeed, there is no way to rep-
resent a non-trivial Young tableau purely in terms of gamma
matrices. This is in contrast to the vector-spinor representation
(11).

In summary, we have given evidence for the following
generalisation of the correspondence conjectured in [11]: The
time evolution of the eleven-dimensional supergravity fields
g

(11)
MN(t,x),A

(11)
MNP (t,x),ψ

(11)
M (t,x) and their spatial gradients

(considered around any given spatial point x, in temporal
gauge and with fixed SUSY gauge) can be mapped onto the
dynamics of a (supersymmetric) spinning massless particle
(V(t),Ψ (t)) on E10/K(E10). The E10-invariant quantum dy-
namics of this superparticle might provide the basis of a new
definition of M-theory. Much work remains to be done to extend
the evidence indicated here, for instance by proving the exis-
tence of irreducible faithful (and hence infinite-dimensional)
‘vector-spinor-type’ and ‘Dirac-spinor-type’ representations of
K(E10).

Let us finally note on the physical side, that we deem it prob-
able that the proposed correspondence between M-theory and
the coset model is such that the two sides do not have a common
range of physical validity: indeed, the coset model description
emerges in the near space-like singularity limit T → 0, where
T denotes the proper time,8 which indicates that the coset de-
scription might be well defined only when T � TPlanck, i.e., in
a strong curvature regime where the spacetime description ‘de-
emerges’.

8 The coordinate and ‘coset time’ t used above is (in the gauge n = 1) roughly
proportional to − logT , and actually goes to +∞ near the space-like singular-
ity.
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