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1. Introduction

Recently it was discovered that the planar one-loop dilatation operator of supersymmetric

N = 4 gauge theory is completely integrable [1, 2]. This means that its spectrum may

be exactly determined in the form of a set of non-linear Bethe equations. Evidence was

found that this integrability is preserved beyond the one-loop approximation, and it was

conjectured that the dilatation operator might be integrable to all orders in perturbation

theory [3]. Given the usually benign, analytic nature of planar perturbation theory, one

may then even hope for the theory’s complete large N integrability at all values of the

Yang-Mills coupling constant.
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Deriving the dilatation operator from the field theory, and subsequently demonstrating

its integrability, is not easy. The three-loop planar dilatation operator in the maximally

compact su(2|3) sector was found by Beisert, up to two unknown constants, by algebraic

means in [4]. These constants could later be unequivocally fixed from the results of a solid

field theory calculation of Eden, Jarczak and Sokatchev [5]. This basically completely deter-

mines the planar dilatation operator in this large sector up to three loops. Its restriction to

su(2) agrees with the original conjecture of [3]. Three-loop integrability in su(2) was then

demonstrated in [6] by embedding the dilatation operator into an integrable long-range

spin chain due to Inozemtsev, and a three-loop Bethe ansatz was derived.

The Inozemtsev spin chain exhibited a four-loop breakdown of BMN scaling [8]. This

scaling behavior seemed, and still seems, to be a desirable, albeit unproven, property of

perturbative gauge theory. Mainly for that reason an alternative long-range spin chain,

differing from the Inozemtsev model at and beyond four loops, was conjectured to exist

in [7]. Its construction principles were an extension of the ones already laid out in [3]:

(1) Structural consistency with general features of Yang-Mills perturbation theory, (2)

perturbative integrability and (3) qualitative BMN scaling. The model’s Hamiltonian is

only known up to five loops, and increases exponentially in complexity with the loop order.

In striking contrast, a very compact Bethe ansatz may be conjectured for the model and

shown to diagonalize the Hamiltonian to the known, fifth, order. The conjecture reads

eipkL =

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M , (1.1)

where the rapidities uk = u(pk) are related to the momenta pk through the expression

u(pk) =
1

2
cot

pk

2

√

1 + 8g2 sin2 pk

2
, (1.2)

and the energy should be given by

E(g) = −M

g2
+

1

g2

M
∑

k=1

√

1 + 8g2 sin2 pk

2
. (1.3)

This Bethe ansatz should yield the anomalous dimensions ∆ of su(2) operators of the form

Tr XMZL−M + · · · , where ∆(g) = L + g2 E(g) with g2 =
g2

YMN

8π2
=

λ

8π2
. (1.4)

The dots indicate all possible orderings of the partons Z and X inside the trace. This

mixing problem is diagonalized by the spin chain Hamiltonian, where we interpret Z as an

up-spin ↑ and X as a down spin ↓. L is the length of the spin chain, and M the number

of magnons ↓. These are the elementary excitations on the ferromagnetic vacuum state

| ↑↑ . . . ↑↑〉 which should be identified with the gauge theory’s BPS state Tr ZL. To leading

one-loop order the spin chain Hamiltonian coincides with the famous isotropic nearest-

neighbor Heisenberg XXX spin chain [1], and the corresponding Bethe ansatz is obtained

by taking the g → 0 limit of (1.1), (1.2), (1.3). See also [9] for a detailed explanation of

the long-range spin chain approach to gauge theory.
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The higher-loop Bethe ansatz (1.1), (1.2), (1.3) has many intriguing properties [7], and

it is suspicious that it should not have already appeared before in condensed matter theory.

It is equally curious that the Hamiltonian should be so complicated, see [7], to the point

that it is unknown how to write it down in closed form. Finally, and most importantly,

the Bethe ansatz is expected to break down at wrapping order, i.e. it is not believed to

yield the correct anomalous dimensions ∆ starting from O(g2L). This suggests that the

asymptotic Bethe ansatz (1.1), (1.2), (1.3) is actually not fully self-consistent at finite L

and g 6= 0.

Nearly all work in solid state theory on the Heisenberg magnet has focused on the

antiferromagnetic vacuum and its “physical” elementary excitations, the spinons. The only

notable exceptions seem to be two articles of Sutherland and of Dhar and Shastry [10],

where it was noticed that the dynamics of magnons in the ferromagnetic vacuum is far

from trivial. This was later independently rediscovered and extended in the N = 4 context

in [1, 11]. In gauge theory the BPS vacuum is very natural, but it should be stressed that

all states are important. In particular, it is interesting to ask what is the state of highest

possible anomalous dimension. This is precisely the antiferromagnetic vacuum state, where

M = L/2 and E(g) in (1.3) should be maximized. Contrary to the BPS state | ↑↑ . . . ↑↑〉
this state is highly nontrivial, as the Néel state | ↑↓↑↓ . . . ↑↓〉 is not an eigenstate of the

Heisenberg Hamiltonian. This problem was solved for g = 0 in the thermodynamic limit

L → ∞ in 1938 by Hulthén [12] using Bethe’s ansatz.

Like the BPS state, the antiferromagnetic vacuum state is of very high symmetry.

It should therefore also be of great interest in gauge theory. Let us then use the BDS

Bethe ansatz (1.1), (1.2), (1.3) and compute the higher-loop corrections to Hulthén’s so-

lution. As the computation is done in the thermodynamic limit the BDS equations are

perfectly reliable. The one-loop solution may be found in many textbooks. It is particularly

well described in the lectures [14]. Adapting it to the deformed BDS case is completely

straightforward. We will therefore mostly skip the derivation, referring to [14] for details,

and immediately state the result for the energy of the antiferromagnetic vacuum:

E(0) = L

∫ ∞

−∞
du

ρ(u)

u2 + 1
4

→ E(g) = L

∫ ∞

−∞
du ρ(u)

(

i

x+(u)
− i

x−(u)

)

, (1.5)

where the auxiliary spectral parameter x [7] is given by

x(u) =
u

2

(

1 +

√

1 − 2g2

u2

)

, with x±(u) = x

(

u ± i

2

)

. (1.6)

Here ρ(u) is the thermodynamic density of (magnon) excitations. It is found from solving

the Bethe equations, which turn at L → ∞ into a single non-singular integral equation for

ρ(u):

−dp(u)

du
= 2π ρ(u) + 2

∫ ∞

−∞
du′ ρ(u′)

(u − u′)2 + 1
, (1.7)

where the derivative of the momentum density is, with u± = u ± i
2 , given by

−dp(u)

du

∣

∣

∣

∣

∣

g=0

=
1

u2 + 1
4

→ i
d

du
log

x+(u)

x−(u)
=

i
√

u2
+ − 2g2

− i
√

u2
− − 2g2

. (1.8)
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We notice that the r.h.s. of Hulthén’s equation (1.7) does not depend explicitly on the cou-

pling constant g (since the S-matrix of the BDS Bethe equation, i.e. the r.h.s. of (1.1) does

not look different, in the u-variables, from the one of the Heisenberg model). Furthermore,

the kernel of the integral equation is of difference form and the integration range is infinite.

The equation may therefore immediately solved for ρ(u), for all g, by Fourier transform:

ρ(u)

∣

∣

∣

∣

∣

g=0

=
1

2 cosh πu
→ ρ(u) =

∫ ∞

0

dt

2π

cos (tu) J0(
√

2gt)

cosh
(

t
2

) . (1.9)

Plugging this result into the energy expression (1.5) one finds

E(0) = L 2 log 2 → E(g) = L
4√
2g

∫ ∞

0

dt

t

J0(
√

2gt)J1(
√

2gt)

1 + et
, (1.10)

where J0(t), J1(t) are standard Bessel functions.

Now, it so turns out that the expressions for ρ(u) in (1.9) and E(g) in (1.10) are very

famous results in the history of condensed matter theory. The latter is, up to an overall

minus sign, identical to the ground state energy of the one-dimensional Hubbard model at

half filling. It was shown to be integrable and solved by Bethe Ansatz in 1968 by Lieb and

Wu [15]. Since then a very large literature on the subject has developed. For some good

re- and overviews, see [16, 17]. The Hubbard model is not quite a spin chain, but rather a

model of N0 itinerant electrons on a lattice of length L. The electrons are spin-1
2 particles.

Due to Pauli’s principle the possible states at a given lattice site are thus four-fold: (1)

no electron, (2) one spin-up electron ↑, (3) one spin-down electron ↓, (4) two electrons of

opposite spin l:=↑↓. Hubbard’s Hamiltonian reads, in one dimension

HHubbard = −t

L
∑

i=1

∑

σ=↑,↓

(

c†i,σci+1,σ + c†i+1,σci,σ

)

+ t U

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ . (1.11)

The operators c†i,σ and ci,σ are canonical Fermi operators satisfying the anticommutation

relations

{ci,σ, cj,τ} = {c†i,σ, c†j,τ} = 0 , (1.12)

{ci,σ, c†j,τ} = δij δστ .

We see that the Hamiltonian consists of two terms, a kinetic nearest-neighbor hopping

term with strength t, and an ultralocal interaction potential with coupling constant U .

Depending on the sign of U , it leads to on-site attraction or repulsion if two electrons

occupy the same site.

Comparing the BDS result (1.10) with the result of Lieb and Wu for the ground state

energy of the half-filled band, where the number of electrons equals the number of lattice

sites, i.e. N0 = L, we see that the two energies coincide exactly under the identification

t = − 1√
2 g

U =

√
2

g
. (1.13)

– 4 –



J
H
E
P
0
3
(
2
0
0
6
)
0
1
8

This leads us to the conjecture that the BDS long-range spin chain, where, by construction,

g is assumed to be small, is nothing but the strong coupling limit of the Hubbard model

under the identification (1.13). In the following we will show that this is indeed the case,

even away from the antiferromagnetic ground state. In fact, we shall demonstrate that it

is exactly true at finite L up to O(g2L) where the BDS long-range chain looses its meaning.

This will, however, require the resolution of certain subtleties concerning the boundary

conditions of the Hamiltonian (1.11). As it stands, it will only properly diagonalize the

BDS chain if the length L is odd. It the length is even, we have to subject the fermions

to an Aharonov-Bohm type magnetic flux φ. The Hamiltonian in the presence of this flux

remains integrable and reads

H =
1√
2 g

L
∑

i=1

∑

σ=↑,↓

(

eiφσ c†i,σci+1,σ + e−iφσ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ , (1.14)

where the twist is given by1

φσ = φ , σ =↑, ↓ , (1.15)

φ = 0 for L = odd and φ =
π

2L
for L = even.

An alternative way to introduce the Aharonov-Bohm flux is to perform a suitable gauge

transformation and to thereby concentrate the magnetic potential on a single link, say the

one connecting the L’th and the first site. It is then clear that considering a non-zero flux

amounts to considering twisted boundary conditions for the fermions.

The vacuum of the Hamiltonian (1.11) is the empty lattice of length L. Here the

elementary excitations are up (↑) and down (↓) spins. Two electrons per site (l) are

considered a bound state of elementary excitations. These constituents of the bound states

are repulsive (as g > 0). For our purposes it is perhaps more natural to consider the BPS

vacuum:

|ZL〉 = | ↑↑ . . . ↑↑〉 = c†1↑c
†
2↑ . . . c†L−1↑c

†
L↑ |0〉 (1.16)

We may then perform a particle-hole transformation on the up-spin electrons.

◦ ⇐⇒ ↑ (1.17)

↓ ⇐⇒ l (1.18)

Now single up-spins (↑) are considered to be empty sites, while the elementary excitations

are holes (◦) and two electrons states (l). In the condensed matter literature, such a

transformation is often called a Shiba transformation and it is known to reverse the sign

of the interaction. The standard Shiba transformation contains an alternating sign in the

definition of the new creation/annihilation operators, designed to recover the hopping term,

at least in the periodic case. The price to pay is that for odd lengths the sign of the hole

1For odd L the twist φσ could alternatively be chosen as any integer multiple of π

L
, while for even L any

odd-integer multiple of π

2L
is possible. A compact notation which does not distinguish the cases L odd or

even is φ = π(L+1)
2L

.
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hopping term will change on the link connecting the last (L’th) and the first site. In other

words, the particle/hole transformation introduces an extra flux of π L seen by holes. Since

we prefer to distribute this twist uniformly along the chain, we remove the signs in the

definition of the hole operators2 and put

ci,◦ = c†i,↑ , c†i,◦ = ci,↑ , (1.19)

ci,l = ci,↓ , c†i,l = c†i,↓ . (1.20)

Under the particle/hole transformation, the charge changes sign and the corresponding

hopping terms get complex conjugated. An extra minus sign comes from the reordering of

the hole operators. Therefore we may write the Hamiltonian in its dual form

H =
1√
2g

L
∑

i=1

∑

σ=◦,l

(

eiφσ c†i,σci+1,σ + e−iφσ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

(1 − c†i,◦ci,◦)c
†
i,lci,l . (1.21)

where φl = φ↓, while φ◦ = π − φ↑. Comparing the two expressions (1.14) and (1.21) we

conclude that under the duality transformation, the Hamiltonian (1.14) transforms as

H(g;φ, φ) → −H(−g;π − φ, φ) − M

g2
(1.22)

As predicted, the sign of the interaction changes upon dualization. The effect is that holes

◦ and states with two electrons per site l attract each other and form bound states ↓, the

magnons.

2. Effective three-loop spin Hamiltonian

In this section we will explicitly demonstrate that the Hubbard Hamiltonian (1.11) gen-

erates at small g the three-loop dilatation operator of N = 4 gauge theory in the su(2)

sector [3]. The BDS long-range spin Hamiltonian [7] is thus seen to emerge as an effective

Hamiltonian from the underlying short-range system. Note that the small g limit, relevant

to perturbative gauge theory, corresponds, via (1.13), to the strong coupling limit U → ∞
of the Hubbard model in condensed matter parlance.

Our claim may be verified immediately to two-loop order, using well-known results in

the literature. Klein and Seitz [18] proposed the strong-coupling expansion of the half-

filled Hubbard model to O(g7). The two-loop result O(g4) was later confirmed by Taka-

hashi [19]. In fact, eq. (2.15) of his paper3 precisely agrees with the two-loop piece of

the BDS Hamiltonian (and therefore with two-loop gauge theory [3]) under the parameter

identification (1.13). Eq. (2.15) of [19] also contains certain four-spin terms which only

couple, since our system is one-dimensional, to a length L = 4 ring. These are a first man-

ifestation of certain unwanted terms which we need to eliminate by appropriate boundary

conditions and twisting, see (1.14), (1.15), to be discussed in more detail below.

2This amounts to a gauge transformation.
3Incidentally, this is the famous paper where the next-nearest neighbor correlation function of the Heisen-

berg antiferromagnet was first obtained. We took this as a hint that the half-filled Hubbard model “knows”

something about long-range deformations of the Heisenberg model.
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When one now turns to the three-loop O(g6) result of Klein and Seitz [18] as obtained

in 1972, one unfortunately finds that their effective Hamiltonian disagrees with the BDS

Hamiltonian at this order. We have been unable to find a later paper in the vast condensed

matter literature on the subject which confirms or corrects their 33 year old calculation.

We have therefore decided to check their computation in detail. And indeed we found

a mistake, see below. Correcting it, we reproduce the planar three-loop su(2) dilatation

operator [3 – 5], see (2.7), (2.8) below.

For the remainder of this section it is convenient to use (1.11) and rewrite it (see

appendix A.3 for a discussion about the relevance of the twist factors in computing the

effective Hamiltonian) in the form:

HHubbard = −
L

∑

i<j

tij(Xij + Xji) + t U

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ . (2.1)

where Xij =
∑

σ=↑,↓ c†i,σcj,σ and tij = t δi+1,j .

2.1 Generalities

The Hamiltonian (2.1) consists of two parts: A hopping term involving the coefficients

tij , and the atomic part. The latter is diagonalized by eigenstates describing localized

electrons at sites xi. The ground-state subspace E0 of the atomic part is spanned by

c†1τ1
c†2τ2

. . . c†L−1,τL−1
c†LτL

|0〉. Here we are interested in the limit of large U , with t staying

relatively small. The atomic part tends to localize the electrons, while some hopping may

still occur. At low temperatures this corresponds to small fluctuations around E0 states,

since each hopping of the electron from one site to another is suppressed by a factor of

order of 1/U . One can now pose the question whether it is possible, for large U and low

temperature, to find an effective operator h acting in E0 whose eigenvalues

h|φ〉 = E|φ〉 (2.2)

are the same as for the one of the Hamiltonian (1.11):

H|ψ〉 = E|ψ〉 . (2.3)

The answer is to the positive and has a long history [20]. A formal and rigorous treatment

of this subject is presented in appendix A.

It is however instructive to discuss (2.2) in a more heuristic way. It is obvious that the

effective Hamiltonian h must properly include the hopping effects. On the other hand it acts

only in a subspace of the full state space, where configurations with double occupancies are

projected out. This means that (2.2) should describe processes with virtual intermediate

states, corresponding to electrons hopping from site i to site j and subsequently hopping

back. Since every nearest-neighbor hopping is suppressed by 1/U it is clear that the 1/U

expansion of h will result in increasingly long-range interactions. What kind of terms may

appear in h? A first guess leads to products of hopping operators Xij with the condition

that they will not move states out of the space E0. Since Xij annihilates an electron at

– 7 –
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site j and creates a new one at i, we see that only such products of Xij operators are

allowed which result in the same number of creation and annihilation operators at a given

lattice site. Since each product of creation and annihilation operators may be represented

in terms of su(2) spin operators, we conclude that the effective Hamiltonian (2.2) must be

of spin-chain form!

2.2 Three-loop result

We have used perturbation theory for degenerate systems (see appendix A.1, where also

some details of the computation scheme are explained) to derive the effective Hamiltonian

to three loops. The result up to sixth order (i.e. three loops) for the formal perturbation

theory expansion is found in (A.20) in appendix A.2. It may be shown to be completely

equivalent to the expansion obtained by Klein and Seitz in [18].

The formal expansion is then converted into a diagrammatic expansion, see again

appendix A.2. We agree with Klein and Seitz with all perturbation theory diagrams up to

sixth order as presented in their paper, except that we find that they missed a few diagrams

(of type ’a’ as in figure 5 of their paper). These are the following diagrams (summation

over i is understood):

}{

}{

{ }

}{

i i+1 i+2 i+3

...++

i i+1 i+2 i+3

where . . . means arrow-reversed diagrams.

We have confirmed all diagram evaluations performed in [18], except for the contribu-

tion of the diagrams of type f in equation (C3) of the mentioned paper, where there is an

overall factor of 16 missing. We believe this to be a typographical error. There is however

also an additional contribution from the mentioned four diagrams which were not included

in their computations. Explicit calculation shows, that the missing terms yield

−
(

1

U

)6

Ut(16A1 − 4A2 + 2B3 − 2B1 − 2B2) , (2.4)

where

As =

L
∑

i=1

(1 − Pi,i+s) , B1 =

L
∑

i=1

(1 − Pi,i+1Pi+2,i+3) ,

B2 =

L
∑

i=1

(1 − Pi,i+2Pi+1,i+3) , B3 =

L
∑

i=1

(1 − Pi,i+3Pi+1,i+2) , (2.5)

and P is a spin permutation operator. Correcting the result of Klein and Seitz we find

h =

[

− 2

(

1

U

)2

+ 8

(

1

U

)4

− 56

(

1

U

)6]

tUA1 +

[

− 2

(

1

U

)4

+ 16

(

1

U

)6]

tUA2

– 8 –
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+4

(

1

U

)6

tU(B2 − B3) . (2.6)

Upon putting U =
√

2
g , t = − 1√

2g
and after some simple algebra one rewrites (2.6) in the

form

h =
L

∑

i=1

(h2 + g2h4 + g4h6 + · · · ) , (2.7)

with

h2 =
1

2
(1 − ~σi ~σi+1) ,

h4 = −(1 − ~σi ~σi+1) +
1

4
(1 − ~σi ~σi+2) ,

h6 =
15

4
(1 − ~σi~σi+1) −

3

2
(1 − ~σi~σi+2) +

1

4
(1 − ~σi~σi+3)

−1

8
(1 − ~σi~σi+3)(1 − ~σi+1~σi+2)

+
1

8
(1 − ~σi~σi+2)(1 − ~σi+1~σi+3) . (2.8)

This is indeed the correct planar three-loop dilatation operator in the su(2) sector of N = 4

gauge theory [3]. It is fascinating to see its emergence from an important and well-studied

integrable model of condensed matter theory.

3. Lieb-Wu equations

The Hamiltonian (1.11) was shown to be integrable and diagonalized by coordinate Bethe

ansatz in [15]. For a pedagogical treatment see [17]. This required finding the dispersion

relation of the elementary excitations ↑ and ↓ and working out their two-body S-matrix.

It is indeed a matrix since there are two types of excitations, hence their ordering matters.

The scattering of two up- or two down-spins is absent, as identical fermions behave like free

particles. The scattering of different types of fermions is non-trivial due to their on-site

interaction. After working out the S-matrix one needs to diagonalize the multi-particle

system by a nested Bethe ansatz. The result of this procedure, generalized to the case with

magnetic flux, yields the Lieb-Wu equations:

eiq̃nL =
M
∏

j=1

uj −
√

2g sin(q̃n + φ) − i/2

uj −
√

2g sin(q̃n + φ) + i/2
, n = 1, . . . , L (3.1)

L
∏

n=1

uk −
√

2g sin(q̃n + φ) + i/2

uk −
√

2g sin(q̃n + φ) − i/2
=

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M (3.2)

where the twist is given4 in (1.15) and the energy is

E =

√
2

g

L
∑

n=1

cos(q̃n + φ) . (3.3)

4The Lieb-Wu equations for arbitrary twist are given in appendix C.
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Here we have already specialized to the half-filled case with N0 = L fermions and M ≤ L/2

down-spin fermions (there are thus L − M up-spin fermions in the system).

This form of the Hubbard model’s Bethe equations if very convenient for demonstrating

rather quickly that the g → 0 limit yields the spectrum of the Heisenberg magnet. In fact,

the Lieb-Wu equations decouple at leading order and become

eiq̃nL =

M
∏

j=1

uj − i/2

uj + i/2

(

1 + O(g)
)

, n = 1, . . . , L (3.4)

(

uk + i/2

uk − i/2

)L

=
M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M (3.5)

Eqs. (3.5) are already identical to the ones of the Heisenberg magnet (see e.g. [1, 14]).

The r.h.s. of (3.4) is, to leading order O(g0), the eigenvalue of the shift operator of the

chain (again, [1, 14]). In gauge theory we project onto cyclic states, so we may take the

eigenvalue to be one, and solve immediately for the L momenta q̃n to leading order:

eiq̃nL = 1 =⇒ q̃n =
2π

L
(n − 1) + O(g), n = 1, . . . , L . (3.6)

But now we have to find the energy. Plugging the result (3.6) into the expression (3.3)

conveniently eliminates the spurious O(1/g) term in the energy. We therefore need to find

the O(g) corrections to the momenta in (3.6) from (3.1). Luckily, this is a linear problem;

solving it one computes the O(g0) term of (3.3) as

E =

M
∑

k=1

1

u2
k + 1

4

+ O(g) , (3.7)

which is the correct expression for the energy of the Heisenberg magnet.

The starting point for the small g expansion of the Lieb-Wu equations are therefore

Bethe’s original equations (3.5), (3.7) in conjunction with the free particle momentum

condition (3.6). It is interesting that all non-linearities are residing in the one-loop Bethe

equations (3.5). Once these are solved for a given state, the perturbative expansion is

obtained from a linear, recursive procedure. It allows for efficient and fast numerical

computation of the loop corrections to any state once the one-loop solution is known. A

simple tool for doing this with e.g. Mathematica may be found in appendix B, along with

a similar tool for the perturbative evaluation of the BDS equations.

We have applied this perturbative procedure to all5 (cyclic) states of the BDS chain as

recorded, up to five loops, in table 1, p.30 of [7]. The (twisted) Lieb-Wu equations (3.1),

(3.2), (3.3) perfectly reproduce the energies of this table.

We found that that our version of the Hubbard model precisely agrees in all investigated

cases with the results of the BDS ansatz up to and including the (L−1)-th loop order. On

the other hand, invariably, at and beyond L’th order of perturbation theory (corresponding

5The only exception are certain singular three-magnon states which require a special treatment.
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to the O(g2L−2) terms in the energy E) the predictions of the two ansätze differ. See

section 5 for some concrete examples.

It is also interesting to record the effects of the twists on the perturbative spectrum. A

first guess might be that they should only influence the spectrum at and beyond wrapping

order O(g2L−2), when the order of the effective interactions reaches the size of the ring, and

the system should become sensitive to the boundary conditions. In actual fact, however, one

finds that the twists generically influence the spectrum starting at already O(gL−2). This is

the phenomenon of demi-wrappings. The Hubbard model at small g behaves effectively as

a long-range spin chain due to the virtual “off-shell” decomposition of the magnon bound

states ↓ (which are sites occupied by a down-spin but no up-spin) into holes ◦ (empty sites)

and double-occupied sites l. The power of the coupling constant g counts the number of

steps a hole ◦ or l-particle is exercising during its virtual excursion, see also the discussion

in section 2.1. We now observe that starting from at O(gL−2) the excitations ◦,l can

(virtually) travel around the ring, and the amplitudes start to depend on the boundary

conditions! A similar distinction between wrappings and demi-wrappings was qualitatively

discussed in a recent paper on this subject [22]. Our procedure of twisting eliminates

the demi-wrappings. Interestingly, this seems to leave no further freedom at and beyond

wrapping order, at least in the context of our current construction.

The Lieb-Wu equations in the form (3.1), (3.2), (3.3) are very useful for the analysis of

chains of small length. They are far less convenient in or near thermodynamic situations,

i.e. when L → ∞. The reason is the large number of momenta q̃n one has to deal with.

In (1.21) we have written a dual form of the Hamiltonian (1.14). Accordingly, we may

write down the corresponding set of dual Lieb-Wu equations:

eiqnL =

M
∏

j=1

uj −
√

2g sin(qn − φ) − i/2

uj −
√

2g sin(qn − φ) + i/2
, n = 1, . . . , 2M (3.8)

2M
∏

n=1

uk −
√

2g sin(qn − φ) + i/2

uk −
√

2g sin(qn − φ) − i/2
= −

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M (3.9)

where the energy is now given by

E = −M

g2
−

√
2

g

2M
∑

n=1

cos(qn − φ) . (3.10)

Again, we have specialized to the case of half-filling. A particular feature of the dual

Hamiltonian (1.21) is that the twist is different for the two components. We are therefore

led to use the Lieb-Wu equations for generic twist which are written down in appendix C.

This explains the minus sign in the right hand of (3.9), ei(φl−φ◦) = ei(2φ−π)L = −1. Note

that φ → −φ is a symmetry of the equations (but not of the solutions), as we may change

u → −u and q → −q. Note also that therefore the set of L + 2M momenta (q̃n,−qn)

corresponds to the L + 2M solutions of the first Lieb-Wu equation (3.1).
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4. Magnons from fermions

In section 2 we proved, to three-loop order, that the Hamiltonian of the BDS long-range

spin chain emerges at weak coupling g from the twisted Hubbard Hamiltonian as an effective

theory. Pushing this proof to higher orders would be possible but rather tedious. Note,

however, that the BDS Hamiltonian is, at any rate, only known to five-loop order [7].

What we are really interested in is whether the Bethe ansatz (1.1), (1.2), (1.3), which

was conjectured in [7], may be derived from the Bethe equations of the Hubbard model,

i.e. from the Lieb-Wu equations of the previous section. We will now show that this is

indeed the case. The derivation will first focus on a single magnon (section 4.1), where it

will be shown that the magnons ↓ of the long-range spin chain are bound states of holes ◦
and double-occupations l, as is already suggested by the perturbative picture of section 2.

It will culminate in 4.3, where we demonstrate that the bound states alias magnons indeed

scatter according to the r.h.s. of (1.1). An alternative proof may be found in appendix E.

Unlike the BDS long-range spin chain, the twisted Hubbard model is well-defined

away from weak coupling, and actually for arbitrary values of g. An important question

is whether the twisted Hubbard model allows to explain the vexing discrepancies between

gauge and string theory [23, 6]. Unfortunately this does not seem to be the case. We have

carefully studied the spectrum of two magnons in section 4.2, and find that their is no

order of limits problem as the coupling g and the length L tend to infinity while g/L stays

finite. The scattering phase shift indeed always equals the one predicted by the BDS chain.

The Hubbard model contains also many states which are separated at weak coupling

by a large negative energy gap O(−1/g2) from the magnons. This may be seen from the

expression (3.10). For solutions with real momenta qn the cosine is bounded in magnitude

by one, and the constant part −M/g2 cannot be compensated. These states are composed

of, or contain, holes ◦ and double-occupations l which are unconfined, i.e. which do not

form bound states. Their meaning will need to be understood if it turns out that the N = 4

gauge theory’s dilatation operator can indeed be described by a Hubbard model beyond

the perturbative three-loop approximation. In fact, it is clear from the expression for the

anomalous dimension ∆ = L + g2 E(g) in (1.4) that each unconfined pair (◦, l) shifts the

classical dimension and thus the length down by one: L → L−1. Is this a first hint that the

perturbative su(2) sector of N = 4 gauge theory does not stay closed at strong coupling,

as was argued in [24]?

4.1 One-magnon problem

Let us then begin by studying the case of M = 1 down spin and L−1 up spins, see [17, 25].

Clearly it is easiest to use the dual form of the Lieb-Wu equations (3.8), (3.9), (3.10).

In the weakly coupled spin chain we have only L states, while in the Hubbard model

we have L2 states. This is because one down spin ↓ is composed of one hole ◦ and one

double-occupation l. If we project to cyclic states, as in gauge theory, only one of the L

states survives, namely the zero-energy BPS state. However, in order to derive the magnon

dispersion law, we will not employ the projection for the moment. This way the magnon

can carry non-zero momentum and energy. In the Hubbard model the magnon should be
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a ◦−l bound state, and we therefore make the ansatz (with β > 0 and q > 0):

q1 − φ =
π

2
+ q + i β , q2 − φ =

π

2
+ q − i β . (4.1)

Here q1 and q2 are the quasimomenta of the ◦ and the l particles. They are complex, where

the imaginary part β describes the binding. Adding the real parts gives the momentum 2q

of the magnon. The dual Lieb-Wu equations for one magnon, where we only have a single

rapidity u, read

eiq1L =
u −

√
2g sin(q1 − φ) − i/2

u −
√

2g sin(q1 − φ) + i/2
, eiq2L =

u −
√

2g sin(q2 − φ) − i/2

u −
√

2g sin(q2 − φ) + i/2
, (4.2)

u −
√

2g sin(q1 − φ) + i/2

u −
√

2g sin(q1 − φ) − i/2

u −
√

2g sin(q2 − φ) + i/2

u −
√

2g sin(q2 − φ) − i/2
= −1 . (4.3)

By multiplying, respectively, the left and right sides of the two equations in (4.2) and

using (4.1), (4.3) we derive

ei 2q L = 1 ⇒ q =
π

L
n (n = 0, 1, . . . , L − 1) . (4.4)

This is just the statement that the magnon is free (there is nothing to scatter from) and its

momentum p := 2q is quantized on the ring of length L. Furthermore we can rewrite (4.2)

as √
2 g sin (q1,2 − φ) − u =

1

2
cot

(

q1,2 L

2

)

. (4.5)

Decomposing into real and imaginary parts we find, using the twist (1.15),

sinh (β) =
1

2
√

2g

1

sin (q)
tanh (β L) , (4.6)

and6

u =
√

2g cos (q) cosh (β) +
(−1)n (−1)

L+1
2

2 cosh (β L)
. (4.7)

By analyzing (4.6) we may now discuss the existence of bound states. We see that for

large L, where tanh (βL) → 1, we have, for given mode number n, exactly one7 solution

with β > 0 for all values of g > 0. We also see that there is only one way to take the

thermodynamic limit, independent of g:

sinh (β) ' 1

2
√

2π

1

ng/L
. (4.8)

But this means that there is also only one way to take the BMN scaling limit, where

g, L → ∞ with g/L kept finite.

6The sign of the second term in (4.7) may be changed by choosing a different gauge for the twist. This

type of gauge dependence should not appear in physical observables such as the energy.
7Actually, if g becomes of the order of L such that g/L is larger than a certain threshold value, the

bound state is lost. An additional real solution, c.f. appendix D, will appear.
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Let us then work out the energy of the magnon with momentum p = 2q. The exponen-

tial terms tanh(βL) ' 1 − 2e−2βL may clearly be neglected at large L for arbitrary values

of g, and we immediately find the dispersion law

E = − 1

g2
+

2
√

2

g
sin

(p

2

)

cosh(β) = − 1

g2
+

1

g2

√

1 + 8g2 sin2 p

2
, (4.9)

which is exactly the BDS result (1.3)! Likewise, again dropping the exponential terms from

the rapidity relation (4.7), we find the BDS result (1.2) for the dependence of the rapidity

u(p) on the momentum pk = p = 2q.

Note that our derivation only assumed the thermodynamic limit; it did not assume

weak coupling. If the coupling g is weak we may in addition deduce from (4.6) that the

binding amplitude β diverges logarithmically as β ' − log g. We may then deduce that

the exponential terms we dropped are

e−2β L ' g2L , (4.10)

and therefore should be interpreted as O(g2L) wrapping corrections.

We just showed that L of the L2 states of the Hubbard model’s M = 1 states can

be interpreted as magnons. The remaining L(L − 1) states should correspond to solutions

where the momenta q1, q2 are real, i.e. these are not bound states. Among these, L − 1

states are cyclic. The unbound states are found as follows. We make the ansatz

q1 − φ =
π

2
+ q + b , q2 − φ =

π

2
+ q − b , (4.11)

which is completely general except for the assumption that q and b are real. The twisted

dual Lieb-Wu equations (4.2), (4.3) still apply, and, using the same multiplication trick as

before we find again (4.4). This is merely the statement that that the total momentum is

quantized on the ring of length L. The Lieb-Wu equations (4.2) now read

√
2 g cos (q ± b) − u =

1

2
cot

(

(

q ± b +
π

2
+ φ

) L

2

)

. (4.12)

Let us first consider the unconfined cyclic states, i.e. the case of mode number n = 0

in (4.4), hence q = 0. We can then immediately find the energy of such states to-be

from (3.10)

E = − 1

g2
, (4.13)

which is seen to not depend on b. But can we really find values for b which satisfy the

Lieb-Wu equations (4.12)? How many solutions of this type do we have? The answer is

easily found from subtracting either side of the two equations in (4.12). This yields the

consistency condition

1

2
cot

(

(π

2
+ φ + b

) L

2

)

=
1

2
cot

(

(π

2
+ φ − b

) L

2

)

. (4.14)

Now it is very easy to show that there are precisely L − 1 solutions of this equation:

b =
π

L
m with m = 1, . . . , L − 1 . (4.15)
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Therefore, the M = 1 cyclic unconfined (L−1-fold degenerate) states resemble zero-energy

“BPS states” with exact scaling dimension ∆ = L − 1. However, see appendix D.

Finally, let us study the number of states and the dispersion law of the unconfined

states carrying non-zero total momentum p = 2q = 2π
L n, cf. (4.4). We find that by

eliminating u from (4.12) that

sin (b) =
1

2
√

2g

1

sin (q)
tan (bL) , (4.16)

which turns out to just be the analytic continuation of (4.6). It is not hard to prove that

there are indeed generically L−1 solutions for each value of the L−1 non-zero values of q.

This yields (L − 1)2 states. Therefore, adding these to the L − 1 cyclic real solutions, and

the L bound states, we have accounted for all of the L2 states of the M = 1 problem. In

appendix D we investigate the energy of the real solutions in the large g and large L limit.

In the limit L → ∞, the solutions of (4.16) become dense on the interval (0, 2π), so for

any value of the magnon momentum p = 2q we have a continuum of states, whose energies

vary continuously. It is not clear how one would interpret these states in the context of

the gauge theory, or, more generally, the AdS/CFT correspondence. It is possible that we

need a model encompassing all the sectors of the gauge theory to be able to draw some

conclusion about the large g limit.

Let us now turn to the mutual scattering of our magnons; first for two, and then for

arbitrarily many. We shall find that the scattering is, up to exponential terms, indeed

given by the r.h.s. of (1.1).

4.2 Two-magnon problem

The result of the previous section does not bode well for the hope expressed in the last

section of [7] that wrapping might explain the discrepancies between gauge and string

theory. This would require an order of limits problem as one takes the coupling g and the

length L large. It is certainly not seen on the level of bound state formation, recall (4.6).

However, one might still hope that the magnons constructed in the last section might

somehow scatter in distinct ways at weak and strong coupling. By considering the M = 2

two-magnon problem we will now show that, unfortunately, this is not the case. It therefore

seems that the AFS string Bethe ansatz [26] cannot be obtained from the twisted Hubbard

model, at least not in the current version.

We proceed much as before, making the appropriate ansatz for two holes and two

double-occupancies (with β > 0 and q > 0) bound into two magnons with momenta p = 2q

and −p = −2q:

q1 − φ =
π

2
+ q + i β , q3 − φ =

π

2
+ q − i β ,

q2 − φ = −π

2
− q + i β , q4 − φ = −π

2
− q − i β . (4.17)

We derive (for simplicity assume L ≡ 1 mod 4, which allows to assume that the two

rapidities obey u1 = −u2) from the dual Lieb-Wu equations

sinh (β) =
cosh (β) cot (q) sinh (β L)

2
√

2g cos (q) cosh (β) (cosh (β L) + sin (qL)) − cos (q L)
. (4.18)
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While looking superficially different, this agrees precisely, up to exponential terms, in the

L → ∞ limit with (4.6). It is crucial to note that, as in the previous M = 1 case, there is

only one way to take the BMN scaling limit, which yields again (4.8). Likewise, we find,

up to exponential corrections, for the rapidity

u2 =
1

4
+ g2 + g2 cos (2q) cosh (2β) = −1

4
+ g2(cos (2q) + cosh (2β)) . (4.19)

Unfortunately one may now derive from (4.18) and (4.19) that the phase shift when the

two magnons scatter at large L is always as in the BDS chain, and thus as in the gauge

theory’s near-BMN limit. The exponential corrections disappear in and near the BMN

limit.

4.3 Many magnons and a proof of the BDS formula

We have seen above that magnons ↓ can arise as bound states of holes ◦ and doubly occupied

sites l. The solutions associated to these bound states are known in the condensed matter

literature as k−Λ strings8 and were first considered by Takahashi9 in [27]. The explicit

solution of the one and two magnon problem allowed us to understand that the deviation

from the “ideal string” configuration vanishes exponentially with the chain length. In other

terms, the string solutions are asymptotic.

In this section we consider the case of solutions with an arbitrary number of magnons.

We are able to show that, in the asymptotic regime L → ∞, the scattering of magnons

associated to the bound states discussed above is described by the BDS ansatz.

The finite size corrections may be evaluated, similarly to the one-magnon case, to be

of the order e−2βL where β is the typical strength of the binding sinhβ ∼ 1/g. At weak

coupling, or in the perturbative regime, these corrections are of order g2L, as expected.

For reasons of simplicity, we are concentrating first on magnons with real momentum,

that is strings containing only one u. In this situation, the momenta qn appear in complex

conjugate pairs. Let us choose the labels such that the first M momenta have a positive

imaginary part βn, while the last M momenta have a negative imaginary part. With the

experience gained from the one- and two-magnon case we denote

qn − φ = sn
π

2
+

pn

2
+ iβn , (4.20)

qn+M − φ = sn
π

2
+

pn

2
− iβn , βn > 0 , n = 1, . . . ,M .

where pn will be the magnon momentum, and sn = sign pn
10. If L is large, the left hand

side of (3.8) vanishes exponentially for n = 1, . . . ,M and diverges for n = M + 1, . . . , 2M .

8In our notation, they should be called q−u strings.
9In the repulsive case considered by Takahashi, the energy of such a bound state is greater that the

energy of its constituents, but the wave function is localized in space, so they can still be called bound

states.
10We assume that pn ∈ (−π, π), meaning that the real part of qn − φ ranges from π/2 to 3π/2. It is

interesting to note that there is no consistent solution with qn − φ ∈ (−π/2, π/2). Such a solution would

imply a negative energy for the corresponding magnon, which is unphysical.
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Therefore, for L infinite and for any n = 1, . . . ,M there exist one u, which will be called

un, such that

un − i/2 =
√

2g sin(qn − φ) , un + i/2 =
√

2g sin(qn+M − φ) , (4.21)

or, equivalently,

un ± i/2 =
√

2g sn cos
(pn

2
∓ iβn

)

. (4.22)

In particular, equation (4.22) allows to determine the inverse size of the bound state, βn,

in terms of the magnon momentum pn

sinhβn =
1

2
√

2g sn sin pn

2

=
1

2
√

2g | sin pn

2 |
(4.23)

and to find the relation between un and pn

un =
√

2g sn cos
pn

2
cosh βn =

1

2
cot

pn

2

√

1 + 8g2 sin2 pn

2
, (4.24)

which is nothing else that the relation (1.2) of the BDS Bethe ansatz. The next step is to

eliminate the fermion momenta qn from the dual Lieb-Wu equations and replace them by

the magnon rapidities un. In order to perform this task, we multiply the equations number

n and n + M in (3.8), so that the real parts in the exponential mutually cancel

ei(pn+2φ+snπ)L = −
M
∏

j=1
j 6=n

un − uj + i

un − uj − i
. (4.25)

Under the condition e2iφL = (−1)L+1, which is satisfied due to our choice of the twist (1.15),

equation (4.25) is identical to the BDS Bethe ansatz equation (1.1). The second dual Lieb-

Wu equation (3.9) is automatically satisfied, while the energy becomes

E = −
√

2

g

M
∑

n=1

(cos(qn − φ) + cos(qn+M − φ)) − M

g2
(4.26)

=
2
√

2

g

M
∑

n=1

∣

∣

∣
sin

pn

2

∣

∣

∣
cosh βn − M

g2
=

M
∑

n=1

1

g2

(
√

1 + 8g2 sin2 pn

2
− 1

)

.

which is, again, the BDS result (1.3).

This proof can be easily extended to the situation when the magnon momenta pn are

not all real. This may be the case for strings containing more than a single u. We can

think of such a string as being composed of several one- magnon strings, each centered to

a complex momentum pn. The above equations are still valid, under the provision that sn

is defined as the sign of the real part of pn, sn = sign Re pn. Let us note that sn is well

defined if un is finite. Of course, βn are not real any more but they are defined by the first

equality in (4.23).
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5. Four-loop Konishi and the wrapping problem

The Hubbard model is capable of naturally dealing with the “wrapping problem” [7]. The

latter is a fundamental difficulty for a long-range spin chain, where one has to decide how

to interpret the Hamiltonian when the interaction range reaches the size of the system11.

Let us state the prediction of the Hubbard model for the anomalous dimension of the

lowest non-trivial state, the Konishi field, with L = 4 and M = 2, to e.g. eight-loop order12.

It is easily obtained using e.g. the tool in appendix B:

EHubbard = 6−12g2+42g4−318g6+4524g8−63786g10+783924g12−8728086g14 +· · · (5.1)

The four-loop prediction, −318 g6, is the first order where wrapping occurs. The result

should be contrasted to the BDS Bethe ansatz, which, when we “illegally” apply it beyond

wrapping order, yields (again, we used the program described in appendix B)

EBDS = 6−12g2 +42g4− 705

4
g6+

6627

8
g8− 67287

16
g10+

359655

16
g12− 7964283

64
g14+· · · (5.2)

We can now see explicitly that the perturbative results for the energy differs in the two

ansätze at O(g6), i.e. four loop order. The exact result for Konishi is given by a rather

intricate algebraic curve. Note that the two rapidities u1,u2 are not related by the symmetry

u1 = −u2.

Let us likewise contrast the results for the lowest non-BPS state with an odd length,

namely L = 5,M = 2. The Hubbard model gives

EHubbard = 4 − 6g2 + 17g4 − 115

2
g6 +

833

4
g8 − 6147

8
g10 +

44561

16
g12 − 303667

32
g14 (5.3)

while the BDS ansatz yields

EBDS = 4 − 6g2 + 17g4 − 115

2
g6 +

849

4
g8 − 6627

8
g10 +

53857

16
g12 − 451507

32
g14 + · · · (5.4)

In line with expectation this confirms that the perturbative results for the energy differ

between Hubbard and BDS at O(g8), i.e. five loop order. This is precisely where wrapping

first occurs for a length five ring. The exact result is again given by an intricate algebraic

curve.

6. Conclusions

The main result of this paper is the identification of the long-range BDS spin chain of [7]

as an asymptotic approximation to a short-range model of itinerant fermions, the Hubbard

11If there are only two-body long-range interactions, as e.g. in the Inozemtsev long-range spin chain [13],

the problem may be circumvented by periodizing the two-body interaction potential. If there are also

multi-body interactions, as occurs in the long-range spin chains appearing in perturbative gauge theory, it

is just not clear how to deal with this problem in a natural fashion. See [28] for a very recent discussion of

these problems.
12It is interesting that the coefficients seem to be all integer, at least to the order we checked.
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model. The latter yields a rigorous microscopic definition of the former. It furthermore pro-

vides the Hamiltonian, which was only known, in an “effective” form, to five-loop order [7].

We have explicitly derived the emergence of this effective description to three-loop order by

correcting a previously performed strong-coupling expansion of the one-dimensional Hub-

bard model [18]. This establishes and proves that the planar three-loop dilatation operator

of N = 4 gauge theory is, in the su(2) sector, generated by a twisted Hubbard model.

We have also derived the asymptotic Bethe equations of the BDS chain from the Lieb-Wu

equations of the Hubbard model.

Our identification allows to resolve the wrapping problem of the BDS chain in a, as far

as we can currently see, unique fashion. It also gives a rigorous definition of integrability

beyond wrapping order and therefore for a system of finite extent. Recall that the notion

of “perturbative” integrability implemented in [7] requires, strictly speaking, an infinite

system. This renders the BDS ansatz (1.1), (1.2), (1.3) only asymptotically and thus

approximately valid. The, admittedly more complicated, Lieb-Wu equations (3.1), (3.2),

(3.3) or (3.8), (3.9), (3.10) are the generalization of the BDS equations to strictly finite

systems and to arbitrary values of the coupling constant g. Their firm base is an underlying

S-matrix satisfying the Yang-Baxter equation [15]. What is more, the Hubbard model may

be included into the rigorous framework of the quantum inverse scattering method. In fact,

Shastry discovered its R-matrix [30], and Ramos and Martins [31] diagonalized the model

by algebraic Bethe ansatz. These results therefore also embed the BDS spin chain into the

systematic inverse scattering formalism.

We have not been able to find the “effective” ansatz (1.1), (1.2), (1.3), which signifi-

cantly simplifies the nested Lieb-Wu equations at half-filling up to wrapping terms, in the

(vast) literature on the Hubbard model [17]. This striking simplification seems to be a

discrete and generic generalization of the decoupling phenomenon of the system of ther-

modynamic integral equations for the antiferromagnetic ground state energy, as originally

observed by Lieb and Wu [15].

Our results strongly indicate that, sadly, wrapping interactions are not able to explain

the three-loop discrepancies [23, 6] between gauge and string theory, as was originally

hoped for in a proposal in [7]. As discussed in section 4, the Hubbard model simply does

not seem to allow for two distinct ways to form the small BMN parameter λ′ ∼ g2/L2. Put

differently, in the Hubbard model there is no order of limits problem, and wrappings just

lead to O(g2L) effects which disappear in the BMN limit. This negative result seems to be

in agreement with the complementary findings in [22].

Actually, we cannot currently exclude that there might be other, similar (modified,

generalized Hubbard?) models which also agree with BDS up to wrapping order, but differ

from our current proposal in the wrapping terms. However, even if these exist, we find it

hard to believe that they will allow for a new way to form the BMN parameter λ′ at strong

coupling.

These questions should be distinguished from the related, but distinct (since the

AdS/CFT discrepancy appears at three loops) issue whether the BDS-Hubbard system

is actually describing the gauge theory’s su(2) dilatation operator at and beyond four-loop

order. It is of course logically possible that the latter is not asymptotically given by the
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BDS chain at some loop order larger than three. Assuming integrability, we would then

conclude that BMN scaling should break down at, or beyond, four-loop order, cf. [7]. Then

the BMN proposal [8] along with the arguments of [32] would be invalid for the gauge side.

It should be clear from the preceding discussion that we are in dire need of a perturba-

tive four-loop anomalous dimension computation in N = 4 gauge field theory. Of particular

importance would be the four-loop dimension of the Konishi field. If it turns out to agree

with our finding in this paper (−318 g8), our attempts to identify the su(2) sector of the

N = 4 dilatation operator with the Hubbard Hamiltonian will, in our opinion, become

very plausible. If it disagrees, the search for the correct all-loop dilatation operator will

have to be continued.

Strong additional constraints come from considering the integrable structure of the

dilatation operator beyond the su(2) sector. The su(2) three-loop dilatation operator [3]

is naturally embedded in the maximally compact closed sector su(2|3) [4]. The asymptotic

BDS ansatz may also be lifted in a very natural fashion to this larger sector [33, 34]. Here

“natural” means that the ansatz (1) contains BDS as a limit, (2) diagonalizes the three-loop

dilatation operator in the su(2|3) sector, which is firmly established [4, 5], and (3) may be

derived from a factorized S-matrix satisfying the Yang-Baxter algebra [33 – 35]. Actually,

the asymptotic BDS ansatz may even be modified to include non-compact sectors such

as sl(2) [33], and lifted to the complete theory [34], with symmetry psu(2, 2|4). Again,

the construction seems compelling as it may be shown that (1) the Bethe ansatz correctly

diagonalizes to three loops twist-two operators [33] whose dimensions are known form the

work of [37, 38], (2) it also diagonalizes a twist-three operator to two loops which was

confirmed using field theory in [39]. In fact, it may be proved (3) that it diagonalizes to

two loops the dilatation operator in the psu(1, 1|2) sector which has recently been computed

by Zwiebel, using algebraic means in [40], and (4) for sl(2) one may derive the ansatz at two

loops directly from the field theory [41]. Finally, the entire psu(2, 2|4) ansatz may again

be derived from an S-matrix satisfying the Yang-Baxter equation [35]. It is important to

note that the structure of the S-matrix, as well as, as a consequence, the nested asymptotic

Bethe ansatz, are nearly completely constrained by symmetry [35], up to a global scattering

“dressing factor” [26, 33, 34]. This means that e.g. the Inozemtsev model [6] is ruled out [35]

as an all-loop candidate. It also means that a possible breakdown of BMN scaling, confer

the discussion above, could only be caused by the dressing factor, starting at or above four

loops. See also [28]. Incidentally, it would be very interesting to understand whether short-

range formulations also exist for other (or even all) asymptotically integrable long-range

spin chains [36, 28].

From the preceding discussion we conclude that it will be crucial to investigate whether

the twisted Hubbard model may be extended to sectors other than su(2), and eventually

to the full symmetry algebra psu(2, 2|4). A further constraint will be that this extension

asymptotically yields the Bethe equations of [34]. It would be exciting if finding the proper

short-range formulation of the full dilatation operator resulted, when restricting to su(2),

in a model that also asymptotically generates BDS but differed from the specific Hubbard

Hamiltonian we discussed in this paper. At any rate we find it likely, given the results of this

work, that such a short-range formulation of the gauge theory dilatation operator exists. It
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will be interesting to see whether the latter also eliminates the length-changing operations

which appear in the current long-range formulation as a “dynamic” spin chain [4].

An intriguing if puzzling aspect of our formulation is that the Hubbard model has

many more states than the perturbative gauge theory in the su(2) sector. For a length L

operator we have roughly 2L/L cyclic states in the spin chain and in the gauge theory, and

4L/L cyclic states in the Hubbard model, cf. section 4.1. Is this an artifact of the incom-

pleteness, or erroneousness, of our identification, or a first hint at a rich non-perturbative

structure of planar N = 4 gauge theory? Does it possibly tell us that the fields appearing

in the Lagrangian of the N = 4 theory are composites of more fundamental degrees of

freedom (such as the “electrons” of our model)? A description of the dilatation operator in

terms of fermionic and bosonic degrees of freedom, akin to the fermionic degrees of freedom

in the Hubbard model and which works to two loop order, was attempted in [42]. Note

also that the Hubbard model has a second “hidden” su(2) symmetry [17]. Our twisting

procedure actually breaks the symmetry through the boundary conditions. Thermody-

namically, however, i.e. in the large L limit, the symmetry is still present. The mechanism

is reminiscent of the considerations of Minahan [24], but the details appear to be different.

Concerning the proposed AdS/CFT duality [43], our result, for the moment, just

deepens the mystery of the vexing “three-loop discrepancies” of [23, 6]. The dual string

theory is classically integrable [44], which leads to a complete solution of classical string

motions [45] in terms of an algebraic curve [46]. The uncovered integrable structure is

very similar [47] but different [6, 7] from the one of the (thermodynamic limit of) gauge

theory. Much evidence was found that the string theory is also quantum integrable. This

can be established by a spectroscopic analysis of the spectrum of strings in the near-BMN

limit [23, 48], which shows that it may be “phenomenologically” explained by factorized

scattering [26, 33]. Again, the integrable structure is similar but, at the moment, appears to

differ. Some progress has also been made towards deriving quantum integrability directly

from the string sigma model [49].

It would be exciting to find a Hubbard-type short-range model which reproduces the

string theory results. Recently it was demonstrated by Mann and Polchinski [50] that

conformal quantum sigma models can give Bethe equations whose classical limit reproduces

(in the su(2) sector) the bootstrap equations of [46]. There is one structural feature of their

approach which strongly resembles the considerations in this paper: In order to be able to

treat the su(2) case they need to employ a nested Bethe ansatz, which is reminiscent of

the Lieb-Wu equations of the Hubbard model. A difference, however, is that in their case

elementary excitations of the same type are interacting with a non-trivial S-matrix, while

in our model identical fermions are free.
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A. Effective spin Hamiltonian: perturbation theory and computation

schemes

A.1 Perturbation theory for degenerate systems

Consider a system which is described by a Hamiltonian H0. Assume that the spectrum

of H0 is discrete, and that the system is in a stable state with energy E0
a. In general

the subspace Ua corresponding to an eigenvalue E0
a has dimension ga, where ga is the

degeneracy of the level E0
a. Let us denote by |u1〉, . . . , |uga

〉 the vectors spanning Ua.

What happens if we add a small interaction +λV ? In general we have a set of subspaces

E1, . . . , En, for which E1(λ)+ · · ·+En(λ) → Ua when λ → 0 and dim(E1 + · · ·+En) = ga. If λ

is sufficiently small, we may assume that there exists a one-to-one correspondence between

Ua and W = E1(λ) + · · · + En(λ). This correspondence is established by a transformation,

to be found. Let |φ〉 be any state in the Hilbert space generated by H0. Its projection on

Ua is formally realized by:

P0 =
1

2πi

∮

C0

dz

z − H0
, (A.1)

where the contour C0 is enclosing only the eigenvalue E0
a of H0. From this discussion we

conclude that the projector on the subspace W is given by

P =
1

2πi

∮

C

dz

z − H0 − λV
. (A.2)

The contour C encloses the n + 1 points E0
a, E1(λ), . . . , En(λ) (the last n collapse to E0

a

when λ → 0). Using the identity

1

z − H0 − λV
=

1

z − H0
(z − H0 + λV − λV )

1

z − H0 − λV

=
1

z − H0
+

1

z − H0
λV

1

z − H0 − λV
, (A.3)

we immediately get the expansion

P =
1

2πi

∮

C
dz

1

z − H0

∞
∑

n=0

λn

(

V
1

z − H0

)n

. (A.4)

Careful use of the generalized Cauchy integral formula leads to the expansion

P = P0 −
∞
∑

n=1

λn
∑

k1+···+kn+1=n, ki≥0

Sk1V Sk2V . . . V Skn+1 , (A.5)

where one defines

S0 ≡ −P0, Sk =

(

(1 − P0)
1

E0 − H0

)k

for k > 0 . (A.6)
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Naively one would expect that the correspondence between Ua and W is realized by the

projector P , i.e. that any state |ψ〉 ∈ W can be written as

|ψ〉 = P |φ〉 , (A.7)

where |φ〉 is some vector in Ua. This would allow us to bring the eigenvalue problem

H|ψ〉 = E|ψ〉 , (A.8)

with

H = H0 + λV , (A.9)

to the subspace Ua

HP |φ〉 = EP |φ〉 . (A.10)

The disadvantage of this procedure is that EP is not proportional to the identity map.

Furthermore P does not preserve the norm of the states. The problem of this effective

overlap has been solved by Löwdin [21]. One introduces renormalized states (which are

still states from Ua)

|φ̂〉 = (P0PP0)
1/2|φ〉 , (A.11)

and thus one is lead to the introduction of the Ua ↔ W correspondence operator Γ:

Γ = PP0(P0PP0)
−1/2 , (A.12)

where

(P0PP0)
−1/2 ≡ P0 +

∞
∑

n=1

1

4n

(

2n

n

)

[

P0(P0 − P )P0

]n

, (A.13)

plus an analogous formula for (P0PP0)
1/2. One can then prove that Γ†Γ = P0, so

(Γ|φ〉,Γ|φ′〉) = (|φ〉, |φ′〉) , (A.14)

and the transformation preserves the norm. We may now substitute equation (A.8) by an

effective equation

(h − E)|φ′〉 = 0 , (A.15)

where

h ≡ Γ†HΓ . (A.16)

The operator h is the effective Hamiltonian. To find it for the Hubbard model at

half-filling we put

H0 = tU

L
∑

i=1

c†i↑ci↑c
†
i↓ci↓, V =

L
∑

i<j

tij(Xij + Xji), Xij =
∑

σ=↑,↓
c†iτ ciτ , (A.17)

One may show that the odd powers disappear from the expansion of h, as one would expect

from the ’hopping and hopping back’ random walk interpretation:

h = λ2h2 + λ4h4 + λ6h6 + · · · . (A.18)
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A.2 Computation schemes

Performing the computations can be divided into three stages:

Stage 1. This stage consists of evaluating the effective Hamiltonian (A.16) to a given

order. This is a tedious problem beyond the first few orders. One can however use that

E0
a = 0 for the half-filled Hubbard model, whence in order to get h to n-th order, one only

needs to evaluate Γ to (n− 1)-th order. Furthermore it can be proved that any term of the

form

P0V Sk1V Sk2 . . . V Skn−1V P0 , ki ≥ 1 , (A.19)

for odd n vanishes identically. This two observations greatly speed up the calculations. A

program in FORM (see [51]) was written to perform this stage of the calculations.

The result we found up to three-loop reads

h = +λ2(P0V SV P0) + λ4

(

P0V SV SV SV P0 −
1

2
P0V SV P0V SSV P0

−1

2
P0V SSV P0V SV P0

)

+λ6

(

P0V SV SV SV SV SV P0 −
1

2
P0V SV SV SV P0V SSV P0

−1

2
P0V SV SV SSV P0V SV P0 −

1

2
P0V SV SSV SV P0V SV P0

−1

2
P0V SV P0V SV SV SSV P0 −

1

2
P0V SV P0V SV SSV SV P0

+
1

2
P0V SV P0V SV P0V SSSV P0 −

1

2
P0V SV P0V SSV SV SV P0

+
3

8
P0V SV P0V SSV P0V SSV P0 −

1

2
P0V SSV SV SV P0V SV P0

−1

2
P0V SSV P0V SV SV SV P0 +

1

4
P0V SSV P0V SV P0V SSV P0

+
3

8
P0V SSV P0V SSV P0V SV P0 +

1

2
P0V SSSV P0V SV P0V SV P0

)

, (A.20)

It is indeed equivalent to the expansion obtained by Klein and Seitz in [18].

Stage 2. This stage consists of substituting (A.17) into h2n as calculated in stage 1. The

process of substitution can be well visualized by assigning to each Xij an oriented line,

starting at j and ending in i, see figure 1a. Products of the X operators are represented by

an oriented set of arrows, with the understanding that the lowest lying arrow corresponds to

the last operator in the product. A curly bracket around a set of arrows denotes a sum over

different locations of the arrows. One can interpret these diagrams as virtual displacements

of spins. It was proved that the perturbation expansion consists only of linked diagrams

(see [18] for details). Each diagram is multiplied by a suitable factor following from the

structure of the h2n expansion.

– 24 –



J
H
E
P
0
3
(
2
0
0
6
)
0
1
8

Stage 3. This final stage consists of evaluating the diagrams obtained in stage 2. Since

the diagrams are closed, for each lattice site i the number of arrows starting and ending at

i is the same. Keeping in mind the definition of Xij , and using anti-commutation relations

for every diagram connecting r lattice sides, we can assign each diagram linear combinations

of terms of the form

N(i1, τ1, τ2) . . . N(ik, τ2k−1, τ2k) k ≤ r , (A.21)

where

N(i, τ, σ) = c†iτ ciσ . (A.22)

Furthermore one may rewrite each diagram in terms of spin components by means of the

relations

S+
i = c†i↑ci↓ , S−

i = c†i↓ci↑ , (A.23)

and

Sz
i =

1

2
(c†i↑ci↑ − c†i↓ci↓) ' c†i↑ci↑ −

1

2
' 1/2 − c†i↓ci↓ , (A.24)

where the last two equalities are only valid when acting on states with a single electron

per site. This is however our case, after putting the diagrams into the form (A.21). The

whole procedure is carried out in FORM.

X  X ijji=

i j

Xij

ji

b)a)

Figure 1: (a) To each Xij operator we assign an oriented arrow emerging from site j. (b) A product

of operators is represented by an ordered set of arrows. The lowest lying arrow corresponds to the

last operator in the product.

A.3 Twist factors

Equation (1.14) differs from (2.1) by the fact, that each hopping to the right is multiplied by

a factor of eiφ, while hopping to the left gets an extra factor of e−iφ. Since the perturbation

theory consists only of closed diagrams, we conclude that these factors cancel at the end.

This reasoning is generally true for long spin chains. A notable exception is when

the chain is sufficiently short such that a spin can hop around the ring. This happens

for example at two loops and L = 4. There are two diagrams corresponding to this

process. They are related to each other by reversing all arrows in one of them. The

two diagrams have thus weights differing by factors of opposite signature (eiφL = i and

e−iφL = −i, c.f. (1.15)) and they therefore cancel each other. Thus putting the twist results

in eliminating these unwanted demi-wrapping terms.
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B. Mathematica code for the perturbative solution of the Lieb-Wu equa-

tions

In this appendix we will collect some Mathematica routines which allow for the immediate

solution of the BDS equations (1.1), (1.2), (1.3) and the Lieb-Wu equations (3.1), (3.2),

(3.3) for systems of relatively small lengths L once the one-loop solution is known. The

necessary input is thus the collection of one-loop Bethe roots {uk}, i.e. the solution of (3.5)

for the state in question. The one-loop roots for the first few states may be found in

appendix A of [7]. The below routines may therefore be used to check our claims about

the agreement (below wrapping order) and disagreement (at and beyond wrapping order)

between the BDS ansatz and the Lieb-Wu ansatz on various specific states. There is

however one restriction where the program does not directly apply: There are a number of

“singular” states [11, 7] with three special unpaired one-loop roots u1 = − i
2 , u2 = 0, u3 = i

2

which require regularization.

These definitions set up the algorithm:

uu[k_, l_] := Sum[u[k, s]g^s, {s, 0, 2l - 2}];

qq[n_, l_] := Sum[q[n, s]g^s, {s, 0, 2l - 2}];

\[Phi][L_] := If[EvenQ[L] == True, Pi/( 2L), 0];

x[u_] := u/2(1 + Sqrt[1 - 2 g^2/u^2])

BDS[L_, M_, l_] :=

Table[(x[uu[k, l] + I/2]/x[uu[k, l] - I/2])^L +

Product[(uu[k, l] - uu[j, l] + I)/(uu[k, l] - uu[j, l] - I),

{j, 1, M}], {k, 1, M}]

EBDS[M_, l_] := Sum[I/x[uu[k, l] + I/2] - I/x[uu[k, l] - I/2], {k, M}]

LW1[L_, M_, l_] :=Table[Exp[I qq[n, l] L] -Product[

(uu[j, l] - Sqrt[2]g Sin[(qq[n, l] + \[Phi][L])] - I/2)/

(uu[j, l]-Sqrt[2]g Sin[(qq[n, l] + \[Phi][L])] + I/2),{j, M}], {n, L}]

LW2[L_, M_, l_] := Table[Product[

(uu[k, l] - Sqrt[2]g Sin[qq[n, l] + \[Phi][L]] + I/2)/

(uu[k, l] - Sqrt[2]g Sin[qq[n, l] + \[Phi][L]] - I/2),{n, L}] +

Product[(uu[k, l] - uu[j, l] + I)/(uu[k, l] - uu[j, l] - I),

{j, 1, M}], {k,1, M}]

ELW[L_, l_] := Sqrt[2]/g Sum[Cos[(qq[n, l] + \[Phi][L])], {n, L}]
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In order to find the prediction of the BDS chain for e.g. the state with L = 5 and

M = 2, where the two one-loop Bethe roots are u1 = 1
2 and u2 = −1

2 , we then compute,

to e.g. l = 8 loops,

Clear[u]; Clear[q]; L = 5; M = 2; l = 8;

u[1, 0] = 0.5; u[2, 0] = -0.5;

Do[xxx = Chop[Series[BDS[L, M, 2l + 1], {g, 0, ll - 2}]];

yyy = Flatten[Chop[Solve[Coefficient[xxx, g, ll - 2] == 0]]];

Do[u[k, ll - 2] = yyy[[k]][[2]], {k, 1, M}], {ll, 3, 2 l + 1}];

Series[EBDS[M, 2l], {g, 0, 2l - 2}] // Chop // Rationalize

If we are, on the other hand interested in the correct result of the Hubbard model, we

compute instead

Clear[u]; Clear[q]; L = 5; M = 2; l = 8;

u[1, 0] = 0.5; u[2, 0] = -0.5;

Do[q[n, 0] = 2 Pi/L(n - 1), {n, 1, L}];

Do[xxx = Chop[Series[LW2[L, M, 2l + 1], {g, 0, ll - 2}]];

yyy = Flatten[Chop[Solve[Coefficient[xxx, g, ll - 2] == 0]]];

Do[u[k, ll - 2] = yyy[[k]][[2]], {k, 1, M}];

uuu = Chop[Series[LW1[L, M, 2l + 1], {g, 0, ll - 2}]];

vvv = Flatten[Chop[Solve[Coefficient[uuu, g, ll - 2] == 0]]];

Do[q[n, ll - 2] = vvv[[n]][[2]], {n, 1, L}], {ll, 3, 2 l + 1}];

Series[ELW[L, 2l + 1], {g, 0, 2l - 2}] // Chop // Rationalize

C. Generic twists

In this appendix we study all the possible twisted boundary conditions for the Hubbard

model which are compatible with integrability and the way they affect the Lieb-Wu equa-

tions. The results are essentially due to Yue and Deguchi [29], who studied the twisted

boundary conditions associated to a model of two coupled XY models which, upon a

Jordan-Wigner transformation, is equivalent to the twisted Hubbard model. Translating

their results in terms of the Hubbard model, we obtain that the twists depend on six

different constants

φ↑ = a↑ + N b↑ + M c↑ (C.1)

φ↓ = a↓ + N b↓ + M c↓ (C.2)

while the corresponding version of the Lieb-Wu equations is

eiq̃nL =

M
∏

j=1

uj −
√

2g sin(q̃n + φ↑) − i/2

uj −
√

2g sin(q̃n + φ↑) + i/2
, n = 1, . . . , N (C.3)
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N
∏

n=1

uk −
√

2g sin(q̃n + φ↑) + i/2

uk −
√

2g sin(q̃n + φ↑) − i/2
= eiL(φ↓−φ↑)

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
. k = 1, . . . ,M

The energy of the corresponding states is given by

E =

√
2

g

N
∑

n=1

cos(q̃n + φ↑) . (C.4)

After the duality transformation, the fermion number becomes L − N + 2M , g changes

sign and φ↑ → π − φ↑, and φ↓ → φ↓. The dual Lieb-Wu equations are, for generic twist

eiqnL =

M
∏

j=1

uj −
√

2g sin(qn − φ↑) − i/2

uj −
√

2g sin(qn − φ↑) + i/2
, n = 1, . . . , L − N + 2M (C.5)

L−N+2M
∏

n=1

uk −
√

2g sin(qn − φ↑) + i/2

uk −
√

2g sin(qn − φ↑) − i/2
= eiL(φ↓+φ↑−π)

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
. k = 1, . . . ,M

while the energy is

E = −M

g2
−

√
2

g

L−N+2M
∑

n=1

cos(qn − φ↑) . (C.6)

To obtain the BDS ansatz, the following conditions on the twists have to be satisfied

eiL(2φ↑−π) = eiL(φ↓+φ↑−π) = −1 , or φ↑ = φ↓ =
π(L + 1)

2L
mod

π

L
. (C.7)

These are exactly the values we used in (1.15), so we infer that there is no other possibility

to choose the twists compatible with the BDS ansatz.

D. Further details on the one-magnon problem

In section 4.1 we discussed how to account for all states of the twisted Hamiltonian acting

on L−1 up spins and M = 1 down spin. Recall that in the Hubbard model this corresponds

to a two-body problem, hence there are L2 states. L of these states are bound states, whose

dispersion law (4.9) coincides with the one of the magnons in the BDS chain. This law

turns, using p = 2π n/L, into the BMN square-root formula

g2 E ' −1 +
√

1 + λ′ n2 (D.1)

if we scale λ = 8π2 g2 → ∞, L → ∞ while holding λ′ = λ/L2 fixed. As we showed in

sections 4.2 and 4.3, the scattering of these bound states is as in the near-BMN limit of

the BDS chain. It is therefore, at third order (λ′)3, incompatible with the predictions of

string theory [23].

One potential way out of this trouble would be to find other states in our model which

scatter as in string theory. A prerequisite is that the coupling constant dependence of
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the dispersion law of such candidate states is again as in (D.1), with, possibly, a different

constant part. In particular, among the real solutions we identified in section 4.1, there

were states of exact dimension ∆ = L− 1 which resembled “BPS states”. Let us therefore

work out the dispersion law of the nearby “near-BPS” states. This requires studying the

solutions of (4.16) for small q = π/Ln and large g. Expressing (4.16) through the BMN

coupling λ′, we find

sin (b) =
1√
λ′ n

tan (bL) . (D.2)

Since this equation should hold as λ′ → 0, we recover the L − 1 mode numbers m (4.15):

b =
π

L
m +

δbm

L
. (D.3)

Now, δbm should be at most of order O(1), i.e. it should not be too large so as to move out

of the branch of tan(bm L) defined by (D.3), and should tend to zero if
√

λ′ n → 0. This

yields from (D.2) δbm '
√

λ′ n sin( π
L m). Substitution into the expression for the energy of

the real solutions

E = − 1

g2
+

2
√

2

g
sin (q) cos(b) (D.4)

gives for the dimension ∆

∆ = L − 1 +
√

λ′ n cos
(π

L
m

)

− 1

L
λ′ n2 sin2

(π

L
m

)

+ O(1/L) . (D.5)

We see that we generically lift the L−1 degenerate “BPS-states” with a term non-analytic

in λ′. If we concentrate on mode numbers close to m ' L/2 we can suppress the non-

analytic
√

λ′ term. The next term is then analytic in λ′, but subleading in 1/L. It is

interesting to note that there is a possibility to reproduce a BMN-like dispersion relation,

by choosing m such that

cos
(π

L
m

)

=
1

2

√
λ′n + O(1/L) , (D.6)

so that the conformal dimension would be analytic in λ′ up to terms of order 1/L

∆ = L − 1 +
1

2
λ′n2 + O(1/L) . (D.7)

However, such a choice for m is not continuous in λ′ and cannot be sensibly interpreted

in terms of BMN states. The “BPS-states” we found are thus very different from the

usual ones, and the BMN states may not be expected to hide among the continuum of real

solutions.

Finally note that any one of the L bound states of section 4.1 can disappear13 if g

is very close to L. One may show that in this case a further real solution with mode

number m = 0, which generically does not correspond to a solution of (4.16), appears.

Unfortunately this deconfinement phenomenon is also not suitable for finding the BMN

states of string theory [8], as we are then not allowed to make the parameter λ′ in (D.2)

arbitrarily small.

13This is the so-called “redistribution phenomenon” [25] and is responsible for rendering all the fermion

momenta real in the extreme g limit, g À L, which corresponds to the free fermion limit.
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E. Alternative proof of the BDS equations

In this appendix we give an alternative proof to the BDS ansatz, using the original Lieb-Wu

equation, with a macroscopic number of fermionic excitations. As in the original paper [15],

we suppose that the fermion momenta are all real and they form, in the continuous limit,

a continuous density. This proof is less effective than the one which starts from the dual

Bethe ansatz, in the sense that the finite size corrections are not under control, and the

effect of the boundary conditions (twist) is lost. However, it is interesting to see that the

BDS equations are already contained in the integral equations of Lieb and Wu [15].

At half-filling, the Lieb-Wu equations can be written in the logarithmic form as

qn = φ +
2πn

L
− 2

L

M
∑

j=1

arctan
1

2(uj −
√

2g sin qn)
, n = 1, . . . , L (E.1)

2

L
∑

n=1

arctan
1

2(uk −
√

2g sin qn)
= 2πm + 2

M
∑

j=1
j 6=k

arctan
1

2(uk − uj)
. (E.2)

The choice of the branch of the logarithm in (E.1) is made by continuity, such that at

g = 0 there is exactly one electron per level. For simplicity, we have remove the tilde on

the variables qn and shifted them by φ. Taking the derivative of the first equation with

respect to q and defining the density ρ(q) = (dn/dq)/L we obtain an equation for the

density

2πρ(q) = 1 +
2

L

M
∑

j=1

2
√

2g cos q

4(uj −
√

2g sin q)2 + 1
. (E.3)

Our purpose is to study the case of a finite (arbitrary) number of magnons, so we do not

introduce a density for the magnons. instead, we evaluate the left hand side of the second

equation Lieb-Wu equation (E.2)

I(uj) = 2L

∫ π

−π
dq ρ(q) arctan

1

2(uj −
√

2g sin q)
(E.4)

The second term in the density does not contribute to the integral I(u). To compute the

integral I(u), we first take its derivative with respect to u, so that the cuts of the integrand

disappear

d

du
I(u) =

L

2πi

∫ π

−π
dq

(

1

u + i/2 −
√

2g sin q
− 1

u − i/2 −
√

2g sin q

)

. (E.5)

The integral over q can be traded to a contour integral by a change of variable z =
√

2g sin q

d

du
I(u) =

L

2πi

∮

C

idz
√

z2 − 2g2

(

1

u+ − z
− 1

u− − z

)

, (E.6)

where C is the contour encircling the interval [−
√

2g,
√

2g] clockwise. The contour C cannot

be shrunk to zero because of the obstruction created by the square root in the integrand.
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The integral vanishes on the contour at infinity, so we can deform the contour C into two

contours C+ and C− which encircle the points u+ and u− counterclockwise. We obtain

d

du
I(u) = −iL

(

1
√

u+ − 2g2
− 1

√

u− − 2g2

)

= −iL
d

du
ln

x(u+)

x(u−)
. (E.7)

The constant of integration can be easily seen to be zero, since I(∞) = 0. Finally, the

second Lieb-Wu equation (E.2) takes the form

(

x+(uk)

x−(uk)

)L

=

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
. (E.8)

The magnon energy can be computed by the same means. In this case, only the second

term in the density (E.3) contributes

E =

√
2

g
L

∫ π

−π
dq ρ(q) cos(q) =

√
2

πg

M
∑

j=1

∫ π

−π
dq

2
√

2g cos2 q

4(uj −
√

2g sin q)2 + 1
. (E.9)

Again, the integral can be converted into a contour integral around the same contour C

which encircles the cut [−
√

2g,
√

2g] clockwise

E =
1

g2

M
∑

j=1

∮

C

dz

2πi

√

z2 − 2g2

(z − u+
j )(z − u−

j )
. (E.10)

As such, the integral does not vanish on the contour at infinity, but we can freely add to

it a term which is regular across the cut and which removes the contribution from infinity

E =
1

g2

M
∑

j=1

∮

C

dz

2πi

(
√

z2 − 2g2 − z)

(z − u+
j )(z − u−

j )

= −
M
∑

j=1

∮

C

dz

2πi

x−1(z)

(z − u+
j )(z − u−

j )
= i

M
∑

j=1

(

1

x(u+
j )

− 1

x(u−
j )

)

. (E.11)

Of course, the reader recognizes (E.8) and (E.11) as the equations of BDS ansatz.
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Hubbard model, Cambridge University Press, Cambridge 2005.

[17] B. Sutherland, An introduction to the Bethe ansatz, in Exactly solvable problems in condensed

matter and relativistic field theory, B.S Shastry, S.S. Jha and V. Singh eds., Springer, Berlin

1985, Lecture Notes in Physics 242;

N. Andrei, Integrable models in condensed matter physics, cond-mat/9408101;

B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems,

World Scientific, Singapore 2004.

[18] D.J. Klein and W. Seitz, Perturbation expansion of the linear Hubbard model, Phys. Rev. B 8

(1973) 2236.

[19] M. Takahashi, Half-filled Hubbard model at low temperature, J. Phys. C 10 (1977) 1289.

[20] T. Kato, On the convergence of the perturbation method, I, Prog. Theor. Phys. 4 (1949) 514.
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