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Abstract
We investigate the dynamics of spatially homogeneous solutions of the
Einstein–Vlasov equations with Bianchi type I symmetry by introducing a
new formulation that allows an efficient use of dynamical systems methods.
We find that all models are forever expanding and that they isotropize towards
the future; towards the past there exists a singularity—we identify and describe
all possible past asymptotic states. In this context, we establish the existence
of a heteroclinic network, which is a new type of feature in general relativity.
The past asymptotic structure illustrates that the dynamics of Vlasov matter
models differs significantly from that of perfect fluid models.

PACS numbers: 04.20.Dw, 98.80.Bp

1. Introduction

In general relativity and cosmology, our knowledge about spatially homogeneous cosmological
models has increased substantially over the years, and we are able to say that, for a large
number of models, the qualitative behaviour of solutions is now well understood, see [1] for
an overview. The majority of results, however, concerns solutions of the Einstein equations
coupled to a perfect fluid, usually with a linear equation of state. It is thus important to note
that these results are in general not robust, i.e., not structurally stable, under a change of the
matter model; significant changes of the qualitative behaviour of solutions occur, for instance,
for collisionless matter.

Several fundamental results on spatially homogeneous diagonal models of Bianchi type
I with collisionless matter have been obtained in [2]. Diagonal locally rotationally symmetric
(LRS) models have been investigated successfully by using dynamical systems methods,
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see [3] for the case of massless particles and [4, 5] for the massive case. In particular,
solutions have been found whose qualitative behaviour is different from that of any perfect
fluid model of the same Bianchi type.

The purpose of this paper is to re-investigate and give a detailed description of diagonal
(non-LRS) Bianchi type I models with collisionless matter. Our analysis is based on a new
formulation of Einstein’s field equations that makes an efficient use of dynamical systems
techniques possible. This formulation enables us to obtain a much more detailed picture of the
global dynamics than the one previously given in [2]; in particular, we are able to determine
the possible dynamical behaviour towards the past. Our analysis also reveals a completely
new dynamical feature in general relativity—a heteroclinic network. Our results illustrate
that there exist significant differences between collisionless matter models and perfect fluid
models.

The outline of the paper is as follows. In section 2, we recast Einstein’s field equations
for the diagonal Bianchi type I case with collisionless matter to a reduced dimensionless
dynamical system on a compact state space. In section 3, we give the fixed points of the
reduced coupled system and list and discuss a hierarchy of invariant subsets of the state space,
which is associated with a hierarchy of monotone functions. In section 4, we first present
the results of the local dynamical systems analysis; subsequently we focus on the global
dynamics and give two theorems and a conjecture. The first theorem states that all models
isotropize asymptotically towards the future; this has been shown before, cf [2], but we give
a new dynamical systems proof in appendix C. The past asymptotic dynamics is much more
complicated since there exist several types of possible past asymptotic behaviour. In our
second global theorem, we give a detailed description of all possible past asymptotic states. In
connection with this theorem, we establish the existence of a so-called heteroclinic network,
a completely new feature in general relativity, and hence the most interesting discovery in this
paper. The conjecture regards details of how this structure affects the past dynamics. After
we have stated the theorems and the conjecture about the past dynamics, we give a fairly
non-technical description of their content and implications. This is followed by the proofs
and our heuristic arguments for the conjecture; the arguments are based on rather technical
methods from global dynamical systems analysis; in particular, we exploit the hierarchy of
monotone functions in conjunction with the monotonicity principle. The reader who is mainly
interested in our results may therefore skip this part and go directly to section 5, where we
conclude with some further remarks and comments about our results and their implications.
Appendix A provides a brief introduction to relevant background material from the theory of
dynamical systems. In appendix B we investigate which conditions on the collisionless matter
ensure compatibility with LRS and FRW symmetry. In appendix D, we discuss the physical
interpretation of one of the most important boundaries of our state space formulation.

2. The reflection-symmetric Bianchi type I Einstein–Vlasov system

In a spacetime with Bianchi type I symmetry, the spacetime metric can be written as

ds2 = −dt2 + gij (t) dxi dxj , i, j = 1, 2, 3, (1)

where gij is the induced Riemannian metric on the spatially homogeneous surfaces t = const.
Since the metric is constant on t = const, it follows that the Ricci tensor of gij vanishes.
Einstein’s equations, in units c = 1 = G, decompose into the evolution equations,

∂tgij = −2kij , ∂tk
i
j = trk ki

j − 8πT i
j + 4πδi

j

(
T k

k − ρ
) − �δi

j , (2a)

and the Hamiltonian and momentum constraints

(tr k)2 − ki
j k

j

i − 16πρ − 2� = 0, jk = 0, (2b)
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where kij denotes the second fundamental form of the surfaces t = const; see, e.g.,
[6]. The matter variables are defined as components of the energy–momentum tensor Tµν

(µ = 0, 1, 2, 3), according to ρ = T00, jk = T0k; Tij denotes the spatial components. The
cosmological constant � is set to zero in the following; the treatment of the case � > 0 is
straightforward once the case � = 0 has been solved, cf the remarks in the conclusions.

In this paper, we consider collisionless matter (Vlasov matter), i.e., an ensemble of freely
moving particles described by a non-negative distribution function f defined on the mass shell
PM ⊆ T M of the spacetime; for simplicity, we consider particles with equal mass m. The
spacetime coordinates (t, xi) and the spatial components vi of the 4-momentum vµ (measured
w.r.t. ∂/∂xµ) provide local coordinates on PM , since vµvµ = −m2. We thus find that f is a
function f = f (t, xi, vj ). Compatibility with Bianchi type I symmetry forces the distribution
function f to be homogeneous, i.e., f = f (t, vj ). The evolution equation for f is the Vlasov
equation (the Liouville equation)

∂tf +
vj

v0
∂xj f − 1

v0
�j

µνv
µvν∂vj f = ∂tf + 2k

j

lv
l∂vj f = 0, (2c)

see, e.g., [9] or [10]. The energy–momentum tensor associated with the distribution function
f is given by

T µν =
∫

f vµvνvolPM,

where volPM = (det g)1/2v−1
0 dv1 dv2 dv3 is the induced volume form on the mass shell; v0 is

understood as a function of the spatial components, i.e., v2
0 = m2 + gij v

ivj . The components
ρ, jk and Tij , which enter in (2a) and (2b), can thus be written as

ρ =
∫

f (m2 + gij vivj )
1/2(det g)−1/2 dv1 dv2 dv3, (2d)

jk =
∫

f vk(det g)−1/2 dv1 dv2 dv3, (2e)

Tij =
∫

f vivj (m
2 + gklvkvl)

−1/2(det g)−1/2 dv1 dv2 dv3. (2f )

The Einstein–Vlasov system (2) is usually considered for particles of mass m > 0, however,
the system also describes massless particles if we set m = 0. (For a detailed introduction
to the Einstein–Vlasov system we refer to [9] and [10].)

The general spatially homogeneous solution of the Vlasov equation (2c) in Bianchi
type I is

f (t, vi) = f0(vi), (3)

where vi are the covariant components of the momenta and f0 is an arbitrary non-negative
function, see [11]. (By inserting (3) into (2c) and using that vi = gij (t)v

j it is easy to check
that f0(vi) is a solution.) The momentum constraint in (2b) then reads∫

f0(vi)vk dv1 dv2 dv3 = 0. (4)

Henceforth, for simplicity, f0 is assumed to be compactly supported, which ensures finiteness
in (2d)–(2f ).

There exists a subclass of Bianchi type I Einstein–Vlasov models that is naturally
associated with the constraint (4): the class of ‘reflection-symmetric’ (or ‘diagonal’) models.
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The following symmetry conditions are imposed on the initial data:

f0(v1, v2, v3) = f0(−v1,−v2, v3) = f0(−v1, v2,−v3) = f0(v1,−v2,−v3), (5a)

gij (t0), kij (t0) diagonal. (5b)

These conditions automatically ensure that jk = 0; furthermore, Tij (t0) is diagonal, cf (2f );
hence gij , kij and Tij are diagonal for all times by the evolution equations. In the present
paper, we will be concerned with this class of reflection-symmetric models.

The Einstein–Vlasov system (2) thus reduces to a system for six unknowns, the diagonal
components of the metric gii(t) and the second fundamental form ki

i(t) (no summation).
The equations are (2a) and the Hamiltonian constraint in (2b). The initial data consist of
gii(t0), k

i
i(t0); in addition we prescribe a distribution function f0(vi) that provides the source

terms in the equations via (2d) and (2f ).
In the following, we reformulate the Einstein–Vlasov system as a dimensionless system on

a compact state space. To that end we introduce new variables and modified matter quantities.
Let

H := − tr k

3
, x := g11 + g22 + g33, (6)

and define the dimensionless variables

si := gii

x
, �i := −ki

i

H
− 1, z := m2

m2 + x
, (7a)

where

s1 + s2 + s3 = 1, �1 + �2 + �3 = 0. (7b)

The transformation from the variables
(
gii, k

i
i

)
to (si, �i, x,H), where (si, �i) are subject to

the above constraints, is one-to-one. (Note that x can be obtained from z when m > 0.) By
distinguishing one direction (1, 2 or 3), one can decompose si and simultaneously introduce
a trace-free adaption of the shear to new �± variables as is done in, e.g., [1]; however, since
Bianchi type I does not have a preferred direction we will refrain from doing so here.

Next, we replace the matter quantities ρ, T i
i (no summation) by the dimensionless

quantities

	 := 8πρ

3H 2
, wi := T i

i

ρ
, w := 1

3

∑
i

wi = 1

3

∑
i T

i
i

ρ
. (8)

Expressed in the new variables, wi can be written as

wi = (1 − z)si

∫
f0v

2
i

[
z + (1 − z)

∑
k skv

2
k

]−1/2
dv1 dv2 dv3∫

f0
[
z + (1 − z)

∑
k skv

2
k

]1/2
dv1 dv2 dv3

. (9)

Finally, let us introduce a new dimensionless time variable τ defined by

∂τ = H−1∂t , (10)

henceforth a prime denotes differentiation w.r.t. τ .
We now rewrite the Einstein–Vlasov equations as a set of dimensional equations that

decouple for dimensional reasons and a reduced system of dimensionless coupled equations
on a compact state space. The decoupled dimensional equations are

H ′ = −3H

[
1 − 	

2
(1 − w)

]
(11a)
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x ′ = −2x

(
1 +

∑
k

sk�k

)
. (11b)

The reduced dimensionless system consists of the Hamiltonian constraint, cf (2b),

1 − �2 − 	 = 0, where �2 := 1
6

(
�2

1 + �2
2 + �2

3

)
, (12)

and a coupled system of evolution equations

�′
i = −3	

[
1

2
(1 − w)�i − (wi − w)

]
(13a)

s ′
i = −2si

[
�i −

∑
k

sk�k

]
(13b)

z′ = 2z(1 − z)

(
1 +

∑
k

sk�k

)
. (13c)

In the system (13), 	 is regarded as 	 = 1 − � because of (12), and w = w(z, sj ), wi =
wi(z, sj ) from (8) and (9). Note that the functional dependence of w and wi on z and (s1, s2, s3)

involves the (arbitrary) distribution function f0 through an integration; this makes the system
(13) non-standard and numerical investigations non-trivial.

In the massive case m > 0, the decoupled equation for x is redundant since the equation
for z is equivalent. In the massless case m = 0 we have z = 0; hence, x is needed in order
to reconstruct the spatial metric from the new variables, although the equation for x does not
contribute to the dynamics.

The dimensionless dynamical system (13) together with the constraint (12) describes the
full dynamics of the Einstein–Vlasov system of Bianchi type I. In the massive case, the state
space associated with this system is the space of the variables {(�i, si, z)}, i.e.,

X := {(�i, si, z) | (�2 < 1) ∧ (si > 0) ∧ (0 < z < 1)}, (14)

where si and �i are subject to the constraints s1 + s2 + s3 = 1, �1 + �2 + �3 = 0, cf (7b). (The
inequalities for si and �i follow from the definition (7a) and the constraint (12), respectively.)
The state space X is thus five dimensional.

It will turn out eventually that all solutions asymptotically approach the boundaries of X :
z = 0, z = 1, si = 0, 	 = 0 (⇔�2 = 1). This suggests the inclusion of these sets in the
analysis, whereby we obtain a compact state space X̄ .

The equations on the invariant subset z = 0 of X̄ are identical to the coupled dimensionless
system in the case of massless particles m = 0. We will therefore refer to the subset z = 0 as
the massless subset; it represents the four-dimensional state space for the massless case.

We conclude this section by looking at some variables in more detail. The inequality
�2 � 1 together with the constraint �1 + �2 + �3 = 0 results in |�i | � 2 for all i. Note that
equality is achieved when (�1, �2, �3) = (±2,∓1,∓1) and permutations thereof, cf figure 1.
The matter quantities satisfy

0 � w � 1
3 , 0 � wi � 3w � 1. (15)

The equalities hold at the boundaries of the state space: wi = 0 = wi iff z = 1; w = 1
3 iff

z = 0; wi = 0 iff si = 0; wi = 3w when z < 1 iff si = 1.
There exist a number of useful auxiliary equations that complement the system (13):

	′ = 	

[
3(1 − w)�2 −

∑
k

wk�k

]
, (16)
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−
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= 1

Σ
3 = 1

Figure 1. The disc �2 � 1 and the Kasner circle KC0
i .

Table 1. The fixed point sets. The range of the index i is always i = 1, . . . , 3. The superscript
denotes the value of z; the first kernel letter describes the type of fixed point set; if there is no
second kernel letter, the fixed point set is just a point; if there is a second kernel letter, this letter
denotes the dimensionality and character of the set—S refers to surface, L stands for line and C
for circle.

Fixed point set Defined by Interpretation

FS1 z = 1, �j = 0 ∀j FRW dust
KC1

i z = 1, �2 = 1, si = 1, sj = 0 ∀j �= i Kasner

TSi 0 � z � 1, �i = 2, �j = −1 ∀j �= i, si = 0 Taub

KC0
i z = 0, �2 = 1, si = 1, sj = 0 ∀j �= i Kasner

QL0
i z = 0, �i = −2, �j = 1 ∀j �= i, si = 0 Non-flat LRS Kasner

F0 z = 0, �j = 0 ∀j, wj = 1/3 ∀j FRW radiation
D0

i z = 0, si = 0, �i = −1, �j = 1/2 = wj ∀j �= i Distributional LRS

ρ ′ = −ρ

[
3(1 + w) +

∑
k

wk�k

]
� −2ρ. (17)

The inequality in (17) follows by using �i � −2 ∀i and (15). This shows that ρ increases
monotonically towards the past which yields a matter singularity, i.e., ρ → ∞ for τ → −∞.
It is often beneficial to consider the equations of the original variables as auxiliary equations,
e.g., (gii)′ = −2gii(1 + �i).

3. Fixed points, invariant subsets and monotone functions

3.1. Fixed points

The dynamical system (13) possesses a number of fixed points, all residing on the boundaries
of the state space; see table 1.

• FS1 is a surface of fixed points that correspond to the flat isotropic Friedmann–Robertson–
Walker (FRW) dust solution.
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T0
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23

T0
12

T0
13

Q0
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T0
32

T0
33

Q0
31
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KC0
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←
−

s 1
=

0
−→

←−
s2

= 0 −→

←−
s
3 = 0 −→

Figure 2. A schematic depiction of the fixed points on z = 0. The underlying structure is the three
sides of the si -triangle s1 + s2 + s3 = 1: each point represents a disc �2 � 1; the vertices contain
the Kasner circles KC0

i . Bold lines denote the lines of fixed points TL0
i , QL0

i and KC0
i .

• The circles KC1,0
i consist of fixed points that correspond to Kasner solutions, see figure 1.

• The fixed points on TSi are associated with the Taub representation of Minkowski
spacetime, see, e.g., [1]. The intersection of TSi with (z = 0) yields a line of fixed
points which we denote by TL0

i .
• The fixed points on QL0

i correspond to the non-flat LRS Kasner solution; note that each
fixed point on one line QL0

i represents the same LRS Kasner solution.
• F0 is a fixed point that corresponds to the flat isotropic FRW radiation solution.

The location of F0 depends on the chosen distribution function since the equations
w1 = w2 = w3 = 1/3, which are to be solved for (s1, s2, s3), involve f0; see appendix B
for details.

• The fixed points D0
i are associated with a self-similar LRS solution connected with a

distributional f0; see appendix D for details. Their location depends on f0, and is
determined by wj = 1/2 (∀ j �= i).

The LRS points on KC0
i play a particularly important role in the following, which motivates

that they are given individual names:

• The three Taub points on KC0
i defined by �j = 2 (and thus �l = −1 ∀l �= j ) are denoted

by T0
ij .

• The three non-flat LRS points on KC0
i given by �j = −2 (and thus �l = 1 ∀l �= j ) are

denoted by Q0
ij .

The Kasner circles KC0
j and KC0

k are connected by the lines TL0
i and QL0

i ; the end points
of the line TL0

i are the Taub points T0
ji and T0

ki ; analogously, the end points of QL0
i are the

points Q0
ji and Q0

ki , where (i, j, k) is an arbitrary permutation of (1, 2, 3). The remaining
points T0

ll and Q0
ll (l = 1, . . . , 3) do not lie on any of the fixed point sets TL0

i or QL0
i . This

fixed point structure is depicted in figure 2.
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3.2. Invariant subsets and monotone functions

The dynamical system (13) possesses a hierarchy of invariant subsets and monotone functions.
Since this feature of the dynamical system will turn out to be of crucial importance in the
analysis of the global dynamics, we give a detailed discussion.

X : on the full (interior) state space X , we define

M(1) = (s1s2s3)
−1/3 z

1 − z
. (18a)

A straightforward computation shows

M ′
(1) = 2M(1), (18b)

i.e., M(1) is strictly monotonically increasing along orbits in X . Note that M(1) is intimately
related to the spatial volume density since M(1) = m2 det(gij )

1/3.

Z1: this subset is characterized by z = 1. Since wi = w = 0, the equations for si decouple,
and the essential dynamics is described by the equations �′

i = −(3/2)(1 − �2)�i . (Note that
these equations are identical to the Bianchi type I equations for dust—it is therefore natural
to refer to Z1 as the dust subset.) Explicit solutions for these equations can be obtained by
noting that �1 ∝ �2 ∝ �3 for all solutions or by using that 	′ = 3�2	.

Z0: this subset is the massless boundary set z = 0. Since w = 1/3, the dynamical system
(13) reduces to

�′
i = −	[1 + �i − 3wi], s ′

i = −2si

[
�i −

∑
k

sk�k

]
. (19)

Consider the function

M(2) = (1 − �2)−1(s1s2s3)
−1/6

∫
f0

[∑
k

skv
2
k

]1/2

dv1 dv2 dv3. (20a)

The derivative is

M ′
(2) = −2�2M(2), (20b)

which yields monotonicity when �2 �= 0. If �2 = 0, then

M ′
(2) = 0, M ′′

(2) = 0, M ′′′
(2) = −6M(2)

∑
i

(
wi − 1

3

)2

. (20c)

Hence, M(2) is strictly monotonically decreasing everywhere on z = 0, except at the fixed
point F0 (for which �2 = 0 and w1 = w2 = w3 = 1/3), where M(2) attains a positive
minimum. The latter follows from the fact that (1 − �2)−1 is minimal at the point �i = 0 ∀i

and that ∂M(2)/∂si = (2si)
−1[wi − 1/3]M(2).

Si (i = 1, 2, 3): these invariant boundary subsets are defined by si = 0 (which yields wi = 0).
There exists a monotone function on S1,

M(3) = (s2s3)
−1/2 z

1 − z
, M ′

(3) = (2 − �1)M(3), (21)

analogous functions can be obtained on S2 and S3 through permutations. In appendix D,
we show that the sets Si are associated with the Einstein–Vlasov equations stemming from
distributional distribution functions; hence, we will refer to these subsets as distributional
subsets.
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K: this boundary subset is the vacuum subset defined by 	 = 0 (or equivalently �2 = 1).
�i are constant on this subset, which completely determines the dynamics of the si variables
(via (13b) or via the auxiliary equation for gii). The Bianchi type I vacuum solution is the
familiar Kasner solution and we thus refer to K as the Kasner subset.

Intersections of the above boundary subsets yield boundary subsets of lower dimensions;
those that are relevant for the global dynamics are discussed in the following.

S0
i and S1

i : the intersection between the subset Si and Z0 and Z1 yields three-dimensional
invariant subsets (si = 0) ∩ (z = 0) and (si = 0) ∩ (z = 1), respectively. On S0

i there exists a
monotonically decreasing function:

M(4) = (1 + �i)
2, M ′

(4) = −2	M(4). (22)

Sij : these subsets are defined by setting si = 0 and sj = 0 (j �= i), i.e., Sij = Si ∩ Sj . On Sij

we have sk = 1 (k �= i, j) and wk = 3w, since wi = wj = 0.

D0
i : the subsetsS0

i admit two-dimensional invariant subsetsD0
i characterized by (z = 0)∩(si =

0) ∩ (�i = −1). On D0
1 consider the function

M(5) = (2 + �2�3)
−1 (s2s3)

−1/4
∫

f0
[
s2v

2
2 + s3v

2
3

]1/2
dv1 dv2 dv3, (23a)

analogous functions can be defined on D0
2 and D0

3. Equations (19) imply

M ′
(5) = − 1

12M(5)[(1 − 2�2)
2 + (1 − 2�3)

2], (23b)

i.e., M(5) is strictly monotonically decreasing unless �2 = 1/2 = �3. In the special case
�2 = 1/2 = �3, we obtain

M ′
(5) = 0, M ′′

(5) = 0, M ′′′
(5) = − 27

8 M(5)

[(
w2 − 1

2

)2
+

(
w3 − 1

2

)2]
. (23c)

Hence, M(5) is strictly monotonically decreasing everywhere on D0
1 except for at the fixed

point D1, for which �2 = �3 = w2 = w3 = 1
2 , cf table 1. The function M(5) possesses a

positive minimum at D1. This is because (2+�2�3)
−1 is minimal at the point �2 = �3 = 1/2

and ∂M(5)/∂si = (2si)
−1[wi − 1/2]M(5) for i = 2, 3.

K0: the intersection of the Kasner subset K = (�2 = 1) with the z = 0 subset yields a
three-dimensional subset, K0. This subset will play a prominent role in the analysis of the
past asymptotic behaviour of solution.

The remaining subsets are located in the interior state space and are associated with
additional spacetime symmetries. They only exist if f0 satisfies certain conditions, which
are less restrictive than requiring that f0 shares the spacetime symmetries; thus, e.g., LRS
symmetry does not necessarily imply that f0 is LRS!

LRSi : a solution of the Einstein–Vlasov equations is locally rotationally symmetric (LRS) if
�j = �k and wj = wk for some j �= k; without loss of generality we set (j, k) = (2, 3).
Accordingly, we define the subset LRS1 of X through the equations �2 = �3, w2 = w3;
LRS2,3 are defined analogously. If the set LRS1 is invariant under the flow of the dynamical
system, LRS initial data remain LRS under the evolution, i.e., the general LRS solution exists.
However, invariance of LRS1 requires that the distribution function f0 satisfies conditions that
ensure compatibility with �2 = �3, w2 = w3; this yields a class of functions, interestingly
enough, that is larger than the proper LRS distribution functions, see appendix B for details.
Let us consider a compatible f0. For an orbit lying on LRS1, equation (13b) entails that
s2(τ ) ∝ s3(τ ) (where the proportionality constant exhibits a dependence on f0, which enters
through the equation w2 = w3), and hence g22 ∝ g33; by rescaling the coordinates one
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Table 2. The key invariant subsets; additional invariant subsets can be formed by further
intersections. The range of the indices i, j, k is 1, 2, 3.

Subset Defined by Comment

Z1 z = 1, wi = w = 0 Dust subset
Z0 z = 0, w = 1/3 Massless subset
Si si = wi = 0 Distributional subsets
K 	 = 0 Vacuum Kasner subset

S1
i z = 1, si = w1 = w2 = w3 = 0

S0
i z = si = wi = 0, wj + wk = 1 (i �= j �= k)

Sij si = sj = wi = wj = 0, sk = 1 (i �= j �= k)

D0
i z = si = wi = �i + 1 = 0, wj + wk = 1 (i �= j �= k)

K0 z = 	 = 0
LRSi �j = �k,wj = wk, sj ∝ sk (i �= j �= k) Requires special f0

FRW �1 = �2 = �3 = 0, si ∝ sj ∝ sk (i �= j �= k) Requires special f0 if m �= 0

can achieve g22 = g33, i.e., a line element in an explicit LRS form. Hence, the LRSi

subsets comprise the solutions with LRS geometry. For distribution functions f0 that are
not LRS-compatible, the LRSi subsets are not invariant under the flow of the dynamical
system; therefore, in general, solutions with LRS geometry do not exist (except for special
solutions).
FRW: FRW models with collisionless matter are described by isotropic solutions of the
Einstein–Vlasov equations. A solution is isotropic if �1 = �2 = �3 = 0 and w1 = w2 =
w3 = w for all times τ . The first condition implies isotropy of the geometry: namely, the
equations �1 = �2 = �3 = 0 yield si(τ ) = const via (13b) (where the constants need not
equal 1/3 in general), whereby we obtain a FRW geometry, since the spatial coordinates can be
rescaled so that gij (t) ∝ δij . The second condition w1 = w2 = w3 = w represents isotropy of
the pressures. If this condition is violated, �1 = �2 = �3 = 0 is impossible, cf (13a), i.e., the
assumption of isotropic pressures is necessary for an isotropic geometry. One might think that,
consistently, the distribution function f0 must be isotropic. Remarkably, this is not the case:
the massless Einstein–Vlasov equations admit a FRW solution independently of the prescribed
distribution function f0—the FRW solution uniquely corresponds to the fixed point F0. (Note
that the position (s1, s2, s3) = (

sF
1, s

F
2, s

F
3

)
of F0 depends on f0, but the fixed point exists for

arbitrary f0.) This solution can be interpreted as the flat isotropic radiation solution. In contrast,
the massive Einstein–Vlasov equations do not admit a FRW solution for an arbitrary f0: the
straight line in X given by �1 = �2 = �3 = 0 and si = sF

i ∀i is in general not a solution of
equations (13). This is because si = sF

i ∀i implies w1 = w2 = w3 for z = 0, but this is not the
case for z > 0 in general. A distribution function f0 such that si = sF

i entails w1 = w2 = w3 for
all z is called compatible with an isotropic geometry; a simple example is f0 = f̃ 0

(
v2

1 +v2
2 +v2

3

)
,

see appendix B for details. In the case of compatibility, the line �1 = �2 = �3 = 0, si = sF
i

(↔ w1 = w2 = w3) is a solution of the dynamical system, the FRW orbit; it can be regarded
as the intersection of the three LRS subsets. In general, f0 is incompatible with a FRW
geometry and there is no FRW solution of the massive Einstein–Vlasov equations. However,
in section 4.2 we will see that there exists one unique solution that isotropizes towards the
past (with an isotropic singularity) and towards the future; it thus possesses FRW asymptotic
states.

A brief summary of the invariant subsets discussed in this section is given in table 2.
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4. Local and global dynamics

4.1. Local dynamics

Let us consider smooth reflection-symmetric Bianchi type I Vlasov solutions that approach
fixed point sets when τ → −∞.

Theorem 4.1. In the massive (massless) case, there exists

(a) a single orbit that approaches (corresponds to) F0,
(b) three equivalent one-parameter sets of orbits (three single orbits) that approach D0

i , i =
1, . . . , 3,

(c) one three-parameter (two-parameter) set of orbits that approaches QL0
1; QL0

2 and QL0
3

yield equivalent sets,
(d) one four-parameter (three-parameter) set of orbits that approaches the part of KC0

1 defined
by 1 < �1 < 2; similarly, KC0

2 and KC0
3 yield equivalent sets.

Proof. The statements of the theorem follow from the local stability analysis of the fixed point
sets F0, D0

i , QL0
i , KC0

i , when combined with the Hartman–Großman and the reduction theorem,
since the fixed points F0, D0

i are hyperbolic and QL0
i , KC0

i are transversally hyperbolic. This
requires the dynamical system to be C1 and this leads to some restrictions on f0. However, it
is possible to obtain an alternative proof that does not require such restrictions. Such a proof
can be obtained from the hierarchical structure of invariant sets and monotone functions; we
will refrain from making the details explicit here, since our analysis of the global dynamics
below contains all essential ingredients implicitly. �

Interpretation of theorem 4.1 (massive case). A three-parameter set of solutions converges
to each individual non-LRS Kasner solution as t → 0. (In the state space description three
equivalent sets of orbits approach three equivalent transversally stable Kasner arcs that cover
all non-LRS Kasner solutions; the equivalence reflects the freedom of permuting the spatial
coordinates.) Furthermore, a three-parameter set of solutions approaches the non-flat LRS
Kasner solution. Hence, in total, a four-parameter set of solutions asymptotically approaches
non-flat Kasner states. There exist special solutions with non-Kasner behaviour towards the
singularity: one solution isotropizes towards the singularity, i.e., only one solution has an
isotropic singularity; a one-parameter set of solutions approaches a non-Kasner LRS solution
of the type (D.6) (three equivalent one-parameter sets of orbits approach three equivalent non-
Kasner LRS fixed points D0

i associated with this solution). For the latter solutions 	 = 3/4;
these solutions cannot be interpreted as perfect fluid solutions since they possess anisotropic
pressures.

In the following, we show that the list of theorem 4.1 is almost complete: there exist no
other attracting sets towards the singularity with one exception, a heteroclinic network.

4.2. Global dynamics

Theorem 4.2. All orbits in the interior of the state space X of massive particles (state space
Z0 of massless particles) converge to FS1 (F0) when τ → +∞.

A proof of theorem 4.2 has been given in [2]; in appendix C, we present an alternative
proof based on dynamical systems techniques.



3474 J M Heinzle and C Uggla

TL0
1 QL 0

1

KC 2

KC0
3 T0

32

T0
23

T0
22

T0
33

Σ1

Σ2

Σ3

Σi

s2

0

Figure 3. Flow on the boundaries and on the invariant subset �1 = −1 on S0
1 . The fixed point on

�1 = −1 is the point D0
1; the heteroclinic cycle H0

1 consists of the fixed points T0
22, T0

32, T0
33, T0

23
and the connecting orbits.

Interpretation of theorem 4.2 (massive case). Since all fixed points on FS1 correspond to
isotropic dust solutions, the theorem states that all smooth reflection-symmetric Bianchi type
I Vlasov solutions behave like infinitely diluted isotropized dust solutions towards the future.
Combining this result with the first result of theorem 4.1, we find that there exists one unique
solution that becomes isotropic towards the past (i.e., possesses an isotropic singularity) and
towards the future. Consequently, although for general f0 there does not exist any isotropic
(FRW) solution of the equations, there exists at least one unique solution with isotropic
asymptotic states (but the intermediate behaviour is anisotropic). If f0 is compatible with
FRW symmetry, the solution is isotropic for all times. In this case, one can interpret the matter
content as a perfect fluid that behaves like a radiation perfect fluid asymptotically towards the
past and like dust towards the future. The FRW solution is special—all other solutions of the
Einstein–Vlasov equation have anisotropic matter that is impossible to interpret as a perfect
fluid. This feature is the reason for the quite different behaviour of Vlasov matter as compared
to perfect fluids, both as regards intermediate and asymptotic past behaviour.

The past asymptotic behaviour of solutions is much more complicated. One structure that
appears in this context is particularly interesting: a heteroclinic network, H0. For the definition
of a heteroclinic network, we refer the reader to [12] and references therein; here, we restrict
ourselves to a discussion of the network H0. The heteroclinic network H0 can be regarded as
a collection of entangled heteroclinic cycles: H0 = H0

1 ∪H0
2 ∪H0

3. The heteroclinic cycle H0
1

consists of four Taub points and the heteroclinic orbits that connect them,

H0
1 : T0

22 → T0
32 → T0

33 → T0
23 → T0

22, (24)

see figure 3; H0
2 and H0

3 are defined analogously. The network H0 hence consists of the nine
Taub points which are joined by heteroclinic orbits to form a connected path, see figure 5 and
the schematic representation of figure 6; details follow in the proof of theorem 4.3.

Our dynamical systems formulation presented in section 2 makes it possible to describe
the global dynamics towards the past:

Theorem 4.3. The α-limit set of an orbit in the interior of the state space is one of the fixed
points of the fixed point sets F0, D0

i , QL0
i , KC0

i , see theorem 4.1, or, possibly, the heteroclinic
network H0.
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Conjecture. In analogy with each individual fixed point on KC0
i (with 1 < �i < 2) and with

the lines QL0
i , the heteroclinic network H0 attracts a three-parameter (two-parameter) set of

solutions in the massive (massless) case.

The proof of theorem 4.3 and evidence for the conjecture will be presented below, split
into five subsections. Since the arguments of the proof are lengthy and rather technical, we
will first give a fairly non-technical interpretation of the theorem and the conjecture.

Interpretation of theorem 4.3 and the conjecture. Theorem 4.3 essentially states that the
list given in theorem 4.1 is complete with the possible exception of the heteroclinic network
H0. One individual transversally stable fixed point on KC0

i with 1 < �i < 2 attracts a
three-parameter (two-parameter) set of orbits in the massive (massless) case; each such point
represents a single non-LRS Kasner solution. Analogously, the line QL0

i , taken as a whole,
attracts a three-parameter (two-parameter) set of orbits. Each point on QL0

i represents one
and the same non-flat LRS Kasner solution, i.e., the line QL0

i , taken as a whole, is associated
with a non-flat LRS Kasner solution. We see that points on KC0

i and QL0
i are not on an

equal footing; this is an artefact due to our choice of variables. Instead, one should treat
the individual fixed points on KC0

i (with 1 < �i < 2) and the line QL0
i (taken as a whole)

‘democratically’—each represents a particular non-flat Kasner solution—each attracts a three-
parameter (two-parameter) set of solutions in the massive (massless) case.

The Taub points T0
ij represent flat LRS Kasner solutions; they are associated with the Taub

representation of Minkowski spacetime. None of the nine Taub points attracts orbits of the
dynamical system, therefore there do not exist solutions of the Einstein–Vlasov system that
possess a flat LRS Kasner solution as a past asymptotic state. Although the individual Taub
points are not attractors, the heteroclinic networkH0, which is built upon the Taub points, is: we
conjecture (and prove the analogous statement for the special case of distributional distribution
functions) that the heteroclinic network H0 attracts a three-parameter (two-parameter) set of
solutions in the massive (massless) case. Hence, H0 should be treated on an equal footing
with one individual fixed point of KC0

i (with 1 < �i < 2) or the lines QL0
i . Solutions

attracted by H0 oscillate between different representations of the Taub solution. The evolution
is dominated by episodes when the solution is close to a particular Taub solution on standard
form, but there will be transitions between such episodes that transport the solution from the
neighbourhood of one Taub solution to the neighbourhood of another. It is important to note
that the transitions lead to perpetual oscillations in 	 so that 	 does not converge to zero in
the limit. For the particular case of solutions of the Einstein–Vlasov system associated with a
distributional distribution function, the solutions that have H0

1 as the past asymptotic state are
analysed in detail, see appendix D.

By definition, the past attractor of a dynamical system is the smallest closed invariant set
that contains the α-limits of generic orbits, see appendix A. If we assume that the conjecture
is correct (or if H0 attracts a lower dimensional set of solutions than in the conjecture), then
the application of this definition yields that the past attractor is the union of the sets KC0

i (with
1 � �i � 2). From the point of view of physics this is somewhat misleading. The attractor
excludes all asymptotic states corresponding to LRS Kasner solutions. Both the fixed points
Qij (i �= j) and the Taub points are part of the past attractor (since the attractor is defined to
be a closed set), but there do not exist any solutions that converge to these points. From a
physical perspective, the closure of the set KC0

i (with 1 < �i < 2) rather involves the whole
lines QL0

i as well as the entire network H0: each element of this set (a point on KC0
i with

1 < �i < 2, a line QL0
i , the network H0) attracts a three-parameter (two-parameter) set of

solutions. Finally, note that if the conjecture were wrong and H0 attracted a four-parameter
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(three-parameter) set of solutions, then, of course, H0 would have to be added to the above
mathematically defined attractor.

It is of interest to compare the dynamics of the Einstein–Vlasov equations with the perfect
fluid situation (with a linear equation of state, p = (γ − 1)ρ where 1 � γ < 2). In this
case each individual Kasner solution, including the flat Taub solutions, attracts one solution
towards the past (see, e.g., [1, p 135]); this means that all solutions asymptotically approach
Kasner states except for the isotropic and flat FRW solution. In the Vlasov case, both the
non-generic and generic situations are more complicated: both F0 and D0

i attract non-generic
solutions, see theorem 4.1; the flat Taub solutions are not among the past asymptotic states, but
the heteroclinic network H0 takes the role of the Taub solutions. Hence, instead of 	 → 0, 	

oscillates for solutions that approach the heteroclinic network; the consequences of this will
be discussed in the concluding remarks.

In the remainder of this section, we give the proof of theorem 4.3 and evidence for
the conjecture. (As the arguments of the proof are rather technical, the reader who is not
interested in the details of the global dynamical systems analysis may skip ahead to the
concluding remarks.) The first step in the proof is to gain a detailed understanding of the
dynamics on the relevant invariant subspaces of the dynamical system.

4.2.1. Dynamics on S0
i

Lemma 4.4. Consider an orbit in the interior of S0
i . Its α-limit set is a fixed point on KC0

j or

KC0
k (i �= j �= k), QL0

i or TL0
i , or it is the heteroclinic cycle H0

i , defined in (24). The ω-limit
set is the fixed point D0

i .

Proof. Without loss of generality we consider S0
1 , which can be described by the variables

0 < s2 < 1 (s3 = 1 − s2) and �1, �2, �3 (�1 + �2 + �3 = 0, �2 < 1), (25)

hence S0
1 is represented by the interior of a cylinder, cf figure 3. The boundary of S0

1 consists
of the lateral boundary S0

1 ∩ K0, the base S0
12 and the top surface S0

13.
Since S0

1 ∩ K0 is part of K, it follows that �i ≡ const for all orbits on S0
1 ∩ K0. We

observe that s2 is monotonically increasing (decreasing) when �2 < �3 (�2 > �3), since
s ′

2 = −2s2(1 − s2)(�2 − �3); the two domains are separated by the lines of fixed points TL0
1

and QL0
1, see figure 3.

The key equations to understand the flow on S0
12 are

	′ = 	(2�2 − �3) and �′
3 = 	(2 − �3). (26)

From the first equation it follows that all points on KC0
3 are transversally hyperbolic repelling

fixed points except for T0
33; from the second equation we infer that T0

33 is the attractor of the
entire interior of S0

12. Similarly, T0
22 is the attractor on S0

13, see figure 3.
The plane D0

1, defined by �1 = −1, is an invariant subset in S0
1 . In the interior of the

plane we find the fixed point D0
1; the boundary consists of a heteroclinic cycle H0

1, see (24).
(Note that analogous cycles H0

2 and H0
3 exist on S0

2 and S0
3 , respectively.) The function M(5)

is monotonically decreasing on D0
1, cf (23). Application of the monotonicity principle, see

appendix A, yields that D0
1 is the ω-limit and that H0

1 is the α-limit for all orbits on D0
1,

cf figure 3.
Consider now an orbit in S0

1 with �1 �= −1. The function M(4) = (1 + �1)
2 is

monotonically decreasing on S0
1 , cf (22). The monotonicity principle implies that the

ω-limit lies on �1 = −1 or �2 = 1 (but �1 �= ±2). Since the logarithmic derivative of 	 is
positive everywhere on S0

1 ∩K0 (except at T0
22 and T0

33), i.e., 	−1	′|	=0 = 2−∑
k wk�k > 0,
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it follows that the ‘wall’ S0
1 ∩K0 of the cylinder is repelling everywhere away from �1 = −1.

Consequently, the ω-limit of the orbit cannot lie on �2 = 1 but is contained in �1 = −1. The
fixed point D0

1 is a hyperbolic sink, as we conclude from the dynamics on �1 = −1 and from
(1 + �1)

−1(1 + �1)
′|D0

1
= −3/4. Therefore, the a priori possible ω-limit sets on �1 = −1 are

D0
1 and the heteroclinic cycle H0

1.
To prove that D0

1 is the actual ω-limit, we again consider the function M(5). However,
we no longer restrict its domain of definition to D0

1, but view it as a function on S0
1 ; we

obtain

12M ′
(5) = −M(5)[(�1 + 2�2)

2 + (�1 + 2�3)
2 + 6(�1 + 1)2 − 6(�1 + 1)]. (27)

The bracket is positive when �1 < −1; hence M(5) is decreasing when �1 < −1. This
prevents orbits with �1 < −1 from approaching H0

1, since the cycle is characterized by
M(5) = ∞. Now suppose that there exists an orbit in �1 > −1, whose ω-limit is H0

1.
At late times the trajectory shadows the cycle; hence, for late times, the bracket in (27) is
almost always positive along the trajectory—only when the trajectory passes through a small
neighbourhood of (�1, �2, �3) = (−1, 1/2, 1/2) is the bracket marginally negative. Since
the trajectory spends large amounts of time near the fixed points and the passages from one
fixed point to another become shorter and shorter in proportion, it follows that at late times
M(5) is decreasing along the orbit (with ever shorter periods of limited increase). This is
a contradiction to the assumption that the orbit is attracted by the heteroclinic cycle. We
therefore draw the conclusion that D0

1 is the global sink on S0
1 .

Consider again an orbit in S0
1 with �1 �= −1. Invoking the monotonicity principle with

the function M(4) we find that the α-limit of the orbit must be located on �2 = 1, �1 �= −1.
From the analysis of the flow on the boundaries of the cylinder, we obtain that all fixed points
on �2 = 1 except for T0

22 and T0
33 are transversally hyperbolic. The fixed points on KC0

2
with �2 < �3 and the points on KC0

3 with �2 > �3 are saddles; the fixed points on KC0
2

with �2 > �3 and those on KC0
3 with �2 < �3 are transversally hyperbolic sources (except

for T0
22, T0

33): every point attracts a one-parameter set of orbits from S0
1 as τ → −∞. In

contrast, each fixed point on TL0
1 and QL0

1 is a source for exactly one orbit. The structure of
the flow on �2 = 1 implies that the α-limit of the orbit in S0

1 with �1 �= −1 must be one of
the transversally hyperbolic sources. This establishes lemma 4.4. �

Mathematically, the past attractor is the union of the sets KC0
2 (with �2 � �3) and KC0

3
(with �2 � �3), see appendix A. However, the above establishes that each transversally stable
fixed point on KC0

2 and KC0
3 attracts a one-parameter set of orbits towards the past and that the

same is true for the lines QL0
1 and TL0

1 considered as a whole. As discussed in the concluding
remarks, the present choice of variables yields multiple representations of the same solutions,
thus, e.g., each fixed point on QL0

1 represents the same non-flat LRS Kasner solution. Hence,
the above statement can be interpreted physically by saying that the individual non-flat Kasner
states and the Taub solution corresponding to TL0

1 attract a one-parameter set of solutions each.
The Taub states (flat Kasner solutions) corresponding to the points Tij (i, j ∈ {2, 3}) are not
attractive, but the heteroclinic cycle H0

1, which is built upon these points, is: the heteroclinic
cycle H0

1 also attracts a one-parameter set of solutions. Hence, individual non-flat Kasner
states, the Taub state TL0

1 and H0
1 should be treated ‘democratically’ as regards the dynamics

towards the past; physically it makes sense to define the past attractor on S0
i as consisting of

the union of the transversally stable fixed points on KC0
2, KC0

3, the lines QL0
1, TL0

1 and the
network H0

1; i.e., the physical attractor consists of the non-flat Kasner states, the Taub state
TL0

1 and H0
1.
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Figure 4. Schematic representation of the flow of the dynamical system on the invariant set
K0 = (z = 0) ∩ (�2 = 1), which is the Cartesian product of the (�2 = 1)-circle and the si -
triangle. The depicted fixed points are the Kasner fixed points and the lines of fixed points TL0

i

(↔�i = 2) and QL0
i (↔�i = −2). All orbits are heteroclinic, like the orbit through the arbitrary

point P that connects KC0
2 with KC0

3.

4.2.2. Dynamics on K0. The invariant subset K0 is defined by setting z = 0 and �2 = 1; it
can be represented by the Cartesian product of the circle (�2 = 1) in the �i-space times the
si-triangle given by

{
0 < s1, s2, s3 < 1,

∑
k sk = 1

}
. The flow on this space possesses a simple

structure: since �′
i ≡ const for all orbits, the dynamical freedom resides in the si-spaces.

A schematic depiction of the flow on K0 is given in figure 4. All fixed points are located
on the boundaries of K0, i.e., on s1 = 0, s2 = 0 or s3 = 0. The vertices of the si-triangle are the
Kasner circles KC0

i . If (�1, �2, �3) ∈ (�2 = 1) is such that �k = 2 (respectively �k = −2)
for some k, then the side sk = 0 of the triangle is a line of fixed points, TL0

k (respectively
QL0

k). Note that all fixed points are transversally hyperbolic on K0 and that they constitute the
α- and ω-limit sets for all orbits on K0. The character of the fixed points, i.e., whether they
are (transversal) attractors or repellors, depends on the sector of the circle (�2 = 1), see
figure 4.

The results about the global dynamics on S0
i and K0 will turn out to be an integral part in

the proof of theorem 4.3, which we will address next. First, we will prove the massless case
of the theorem.

4.2.3. Dynamics on Z0. Let γ be an arbitrary orbit in the interior of Z0, γ �= {F0}.
The function M(2) is strictly monotonically decreasing on Z0 (except at F0, where it has a
minimum), cf (20) ff; hence we can use the monotonicity principle: the α-limit set α(γ ) of γ

must be located on the boundaries of Z0, i.e., on S0
i or K0. The first step in our analysis is

to prove that the interior of the subsets S0
i and K0 cannot belong to α(γ ), unless γ is one of

three special orbits.
Recall from our analysis of S0

i that the fixed point D0
i ∈ S0

i is a hyperbolic sink on S0
i . In

the orthogonal direction, however, we obtain s−1
i s ′

i |D0
i
= 3. It follows that D0

i is a hyperbolic
saddle in the state space Z0 and that there exists exactly one orbit δ0

i that emanates from
D0

i into the interior of Z0. (Theorem 4.2 implies that δ0
i converges to the global sink F0 as

τ → ∞.)
Henceforth, let γ be different from δ0

i . In order to show that α(γ ) does not contain any
point in the interior of S0

i , we perform a proof by contradiction: assume that α(γ ) contains
a point P in the interior of S0

i ; then the whole orbit through P and the ω-limit ω(P) (as well
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as the α-limit) of that orbit must be contained in α(γ ). As already shown, D0
i is the global

attractor on S0
i , hence α(γ ) � ω(P) = D0

i . Since the saddle D0
i is in α(γ ), the unique orbit

δ0
i emanating from it is contained in α(γ ) as well. Thus, ultimately, ω

(
δ0
i

)
, i.e., the point F0,

must be contained in α(γ ); this is a contradiction, since F0 is a sink. Therefore, γ cannot
contain any α-limit point in the interior of S0

i . We will now use similar reasoning repeatedly.
Assume next that α(γ ) contains a point P in the interior of K0, i.e., a point with �2 = 1,

0 < si < 1 ∀i. Suppose first that �k �= ±2 for all k. Since P is an element of α(γ ), the
whole orbit through P and the α-limit α(P) of that orbit must be contained in α(γ ). From the
dynamics on K0, cf figure 4, it follows that α(P) is one of the Kasner fixed points on KC0

i ,
where i corresponds to the direction determined by �i = maxk �k; we hence denote α(P) as
KP. Since �k �= ±2, it follows from the previous analysis that KP is a transversally hyperbolic
source on the subspace K0; 	−1	′|�2=1 = 2 − ∑

k wk�k > 0 yields that KP is a transversally
hyperbolic source on the whole space Z0. Since α(γ ) contains the transversally hyperbolic
source KP, that fixed point necessarily constitutes the entire α-limit set, i.e., α(γ ) = KP. This
is in contradiction to our assumption α(γ ) � P. The omitted cases �i = ±2 for some i will
be dealt with next.

Suppose that �i = −2 for one index i. Assume that P lies in α(γ ), therefore α(P) is
contained in α(γ ) as well. The dynamics on K0 implies that α(P) is a fixed point QP on QL0

i ,
cf figure 4. This point is a transversally hyperbolic source; 	−1	′|QL0

i
= 1 in this case. By

the same argument as above we obtain a contradiction to the assumption α(γ ) � P.
Finally suppose that �i = 2 for one index i. When we assume that P is in α(γ ), then

the ω-limit ω(P) is contained in α(γ ). From figure 4, we see that ω(P) is a fixed point TP on
TL0

i . The point TP is a transversally hyperbolic saddle, since 	−1	′|TL0
i
= 3, and there exists

exactly one orbit that emanates from it, namely the orbit that connects TP with Di in S0
i . Since

TP ∈ α(γ ), that orbit must also be contained in α(γ ). This is in contradiction to the previous
result: α(γ ) cannot contain interior points of S0

i . Hence, our assumption α(γ ) � P was false:
the α-limit of γ cannot contain any interior point of K0.

Our analysis results in the following statement: there exist four special orbits, one trivial
orbit corresponding to the fixed point F0, and three orbits, the orbits δ0

i , that converge to the
fixed points D0

i ∈ D0
i . The α-limit set of every orbit γ in Z0 different from F0 and δ0

i must
be located on the boundaries of the spaces S0

i and K0, i.e., on the union of the boundaries of
the cylinders S0

i , which we denote by ∂S0 = ∂S0
1 ∪ ∂S0

2 ∪ ∂S0
3 . The set ∂S0 is depicted in

figure 2: it comprises the lateral surfaces of the cylinders and the base/top surfaces.
All fixed points on ∂S0 are transversally hyperbolic except for the points T0

ii : TL0
i consists

of transversally hyperbolic saddles; in contrast, the fixed points on QL0
i are transversally

hyperbolic sources; points on KC0
i with �i > 1, �i �= 2 are sources while those with �i < 1

are saddles. Combining the analysis of the preceding sections, see figures 3 and 4, we obtain,
more specifically: each point on QL0

i is a source for a one-parameter family of orbits that
emanate into the interior of Z0 and each point on KC0

i with �i > 1 (�i �= 2) is the source for
a two-parameter family. (The points with �i = 1 on KC0

i are the two points Q0
ij ∈ QL0

j and
Q0

ik ∈ QL0
k . Each of these two points is a transversally hyperbolic source for a one-parameter

family of orbits; however, those orbits are not interior orbits, but remain on the boundary
of Z0.)

The non-transversally hyperbolic fixed points T0
ii are part of a special structure that is

present on ∂S0: the set ∂S0 exhibits a robust heteroclinic network H0 (of depth 1), see,
e.g., [12] for a discussion of heteroclinic networks; the network H0 is depicted in figure 5; a
schematic depiction is given in figure 6. In particular, we observe that the heteroclinic cycles
H0

i of the spaces S0
i appear as heteroclinic subcycles of the network.
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Figure 5. The heteroclinic network H0 that exists on the set ∂S0. Its building blocks are the
heteroclinic cycles H0

1,H0
2, H0

3.
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Figure 6. Schematic representation of H0.

A straightforward analysis of the flow on ∂S0 using the same type of reasoning as above
leads to the result that there exist no other structures on ∂S0 that could serve as α-limits for
an interior Z0-orbit γ . We have thus proved the following statement: the α-limit of γ is
one of the transversally hyperbolic sources listed above or it is the heteroclinic network (or a
heteroclinic subcycle thereof). This concludes the proof of the massless case of theorem 4.3.

4.2.4. Global dynamics in the massive case. Let γ be an arbitrary orbit in the interior of
the state space X . The function M(1) is strictly monotonically increasing on X (and on K),
cf (18) ff; moreover, M(1) vanishes for z → 1 and si → 0 (unless z → 0 simultaneously).
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Hence, by applying the monotonicity principle we obtain that the α-limit set α(γ ) of γ must
be located on Z0 including its boundaries.

Consider the fixed point F0 ∈ Z0. By theorem 4.2 this fixed point is a global sink on Z0.
In the orthogonal direction, however, we have z−1z′|F0 = 2. It follows that F0 is a hyperbolic
saddle in the space X and that there exists exactly one orbit φ that emanates from F0 into the
interior of X . (Theorem 4.2 implies that φ converges to FS1 as τ → ∞; thus, φ represents
the unique solution of the Einstein–Vlasov equations that isotropizes towards the past and the
future.)

Let γ be different from φ. Assume that α(γ ) contains a point P in the interior of Z0;
then the whole orbit through P and the ω-limit ω(P) must be contained in α(γ ). Theorem 4.2
implies ω(P) = F0, hence F0 ∈ α(γ ). Since the saddle F0 is in α(γ ), the unique orbit
φ emanating from it is contained in α(γ ) as well. Thus, ultimately, ω(φ), i.e., a point on
FS1, must be contained in α(γ ); this is a contradiction, since FS1 consists of transversally
hyperbolic sinks. We conclude that γ cannot contain any α-limit point in the interior of Z0.

Since α(γ ) must be located on the boundary on Z0, i.e., on S0
i or K0, the proof can be

completed in close analogy to the proof in the massless case. We thus restrict ourselves here
to giving some relations that establish that the sources on Z0 generalize to sources on X : on
KC0

i we have z−1z′|KC0
i

= 2(1 + �i), which is positive for all �i > −1 and thus for �i > 1

in particular; for QL0
i we obtain z−1z′|QL0

i
= 4. We further note that z−1z′|D0

i
= 3; thus D0

i

possesses a two-dimensional unstable manifold. (Orbits in that manifold converge to FS1.)
Finally, note that along the heteroclinic cycle H0

1 : T0
22 → T0

32 → T0
33 → T0

23 → T0
22, we

obtain that z−1z′ equals 6s2, 2(1 + �3), 2(1 + �2), 6(1 − s2), respectively (and similarly for
H0

2 and H0
3); from this it follows that z−1z′ is positive on H0, except at T0

ij (i �= j) where
z−1z′ = 0.

This concludes the proof of theorem 4.3.

4.2.5. Heuristic motivation for the conjecture. Let us first consider the space S0
1 (or,

analogously, S0
2 ,S0

3 ). In the proof of lemma 4.4, we have classified the α-limits of orbits in
S0

1 . Each individual point on KC0
2 with �2 > �3 (but �2 �= 2) and each point on KC0

3 with
�2 < �3 (but �3 �= 2) attracts a one-parameter family of orbits. Each point on QL0

1 (where
�2 = �3 = 1) attracts one orbit, hence QL0

1 considered as a whole attracts a one-parameter
family; analogously, TL0

1 (where �2 = �3 = −1) attracts a one-parameter family, and so
does the heteroclinic cycle H0

1; H0
1 is on an equal footing with an individual fixed point on

KC0
2 with �2 > �3 (but �2 �= 2), a point on KC0

3 with �2 < �3 (but �3 �= 2) and with
the lines QL0

1 and TL0
1. This constitutes a proof for the conjecture in the special case of the

Einstein–Vlasov equations with a distributional distribution function.
We now note that s−1

1 s ′
1 = z−1z′ along the heteroclinic cycle H0

1 and that s−1
1 s ′

1 = z−1z′

is positive on H0
1, except at T0

23, T0
32, where the quantity vanishes. This strongly suggests

that H0
1 (or its generalization H0) attracts a three-parameter (two-parameter) set of solutions

in the massive (massless) case and that H0 can be viewed as being on an equal footing with
the individual fixed points on KC0

i (with 1 < �i < 2) and with the lines QL0
i . A proof of

the conjecture would require a theorem generalizing the Hartman–Großman theorem and the
centre manifold reduction theorem to heteroclinic networks.

5. Concluding remarks

In this paper, we have analysed the asymptotic behaviour of solutions of the Einstein–Vlasov
equations with Bianchi type I symmetry. To that end we have reformulated the equations as



3482 J M Heinzle and C Uggla

a system of autonomous differential equations on a compact state space, which enabled us
to employ powerful techniques from dynamical systems theory. However, our formulation
yielded multiple representations of some structures, e.g., the Kasner solutions. This could
have been avoided to a considerable extent by using other variables. Replacing si with
Ei =

√
gii/H , i.e., the Hubble-normalized spatial frame variables of [7, 13], and using

y = m2H−2 instead of z, yields a single Kasner circle on the massless boundary instead of
three. The latter variables, however, are not bounded; indeed, they blow up towards the future
in the present case. It is possible to replace the variables by bounded variables; however,
variables of this type lead to differentiability difficulties towards the singularity. Issues like
these made the variables we employed in this paper more suitable for the kind of analysis we
have performed. However, Ei-variables, or ‘Ei-based’ variables, would have yielded a more
direct physical interpretation, and would have been more suitable to relate the present results
to a larger context; but it is not difficult to translate our results to the Ei-variables, used in
e.g. [7, 13], where the relationship between the dynamics of inhomogeneous and spatially
homogeneous models was investigated and exploited.

In the present work we have not considered a cosmological constant, �. The effects
of a positive cosmological constant can be outlined as follows: since ρ → ∞ towards the
singularity, it follows that � can be asymptotically neglected and hence that the singularity
structure is qualitatively the same as for � = 0. However, towards the future � destabilizes
FS1, which becomes a saddle, and instead solutions isotropize and asymptotically reach a de
Sitter state.

Based on the global dynamical systems analysis, we have identified all possible attracting
sets of orbits—both in the massless and massive cases. We have proved that for the invariant
subset S0

1 , the heteroclinic cycle H0
1 attracts a one-parameter set of orbits just like the non-flat

Kasner states; in a sense, H0
1 adopts the role of (two of the three equivalent) flat Taub Kasner

states in the perfect fluid case. However, there is a difference: 	 oscillates for solutions that
approach H0

1 while 	 → 0 for solutions that approach Kasner states. We have presented a
heuristic argument that provides support for the conjecture that the heteroclinic network H0

will play an analogous role in the full state space, but unfortunately we have not been able to
prove this. If true, H0 yields a new example of self-similar breaking at the initial singularity,
see [14, 15].

If correct, the conjecture states that the heteroclinic network H0 takes on the role played
by the flat Taub solutions in Bianchi type I. In the perfect fluid case, a solution that is associated
with a Taub asymptote has a so-called weak null singularity, and therefore the solution can
be C0 extended to the Minkowski spacetime (see [16, p 176]). This is not going to be the
case for Vlasov matter: the Taub points themselves do not attract any solutions; a solution
converging to H0 oscillates forever between different Taub states, which leads to an oscillation
in 	—Vlasov matter seems to prevent weak null singularities from forming.

Heuristically, it is reasonable to assume that the Bianchi type I Einstein–Vlasov case will
play a role that is similar to that of the Bianchi type I perfect fluid case as regards singularities
in a more general spatially homogeneous, or even spatially inhomogeneous, context; the
mechanisms that make Bianchi type I so prominent—symmetry and source ‘contractions’,
and asymptotic silence (see, e.g., [17, 7])—should work in both cases. This is of relevance
for the above statement about weak null singularities, but even more so for generic spacelike
singularities. For such singularities, the Taub states play a key role in the vacuum and perfect
fluid cases—indeed they are one of the main obstacles for producing theorems in this context.
Considering the above and that H0 takes on the role of the Taub points for Vlasov matter leads
to an issue: does Vlasov matter generically lead to a ‘simpler’ singularity structure that makes
it easier to establish new singularity theorems?
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Under all circumstances, H0 will be important for the intermediate dynamical behaviour
of many models, and thus there are significant differences between perfect fluid models and
models with Vlasov matter. The existence of H0 is directly related to the anisotropy of the
energy–momentum tensor; this leads to another question: which sources yield heteroclinic
networks and the associated mathematically and physically interesting phenomena?
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Appendix A. Dynamical systems

In this appendix, we briefly recall some concepts from the theory of dynamical systems which
we use in the paper.

Consider a dynamical system defined on an invariant set X ⊆ R
m. The ω-limit set ω(x)

(α-limit set α(x)) of a point x ∈ X is defined as the set of all accumulation points of the future
(past) orbit of x. The simplest examples are fixed points and periodic orbits.

The monotonicity principle [1] gives information about the global asymptotic behaviour
of the dynamical system. If M : X → R is a C1 function which is strictly decreasing along
orbits in X, then

ω(x) ⊆ {
ξ ∈ X̄\X ∣∣ lim

ζ→ξ
M(ζ ) �= sup

X

M
}

(A.1a)

α(x) ⊆ {
ξ ∈ X̄\X ∣∣ lim

ζ→ξ
M(ζ ) �= inf

X
M

}
(A.1b)

for all x ∈ X.
Locally in the neighbourhood of a fixed point, the flow of the dynamical system is

determined by the stability features of the fixed point. If the fixed point is hyperbolic, i.e.,
if the linearization of the system at the fixed point is a matrix possessing eigenvalues with
non-vanishing real parts, then the Hartman–Großman theorem applies: in a neighbourhood
of a hyperbolic fixed point, the full nonlinear dynamical system and the linearized system are
topologically equivalent. Non-hyperbolic fixed points are treated in centre manifold theory:
the reduction theorem generalizes the Hartman–Großman theorem; for further details see, e.g.,
[18]. If a fixed point is an element of a connected fixed point set (line, surface, . . . ) and the
number of eigenvalues with zero real parts is equal to the dimension of the fixed point set, then
the fixed point is called transversally hyperbolic. Application of the centre manifold reduction
theorem is particularly simple in this case. (The situation is analogous in the more general
case when the fixed point is an element of an a priori known invariant set that coincides with
the centre manifold of the fixed point.)

Given a flow on a state space X, the future (past) attractor A+(A−) is defined as the smallest
closed invariant set such that ω(x) ⊂ A+ (α(x) ⊂ A−) for all points x ∈ X apart from a set
of measure zero.

Appendix B. FRW and LRSi symmetry

In this section, we discuss the sets FRW and LRSi in detail.
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Figure 7. The functions u and v are monotonic along the boundaries of the space {(s1, s2, s3) |si �
0,

∑
k sk = 1}.

To begin with, we prove that the fixed point F0 on z = 0 is well-defined and unique. Since
the defining equations for F0 are w1 = w2 = w3 = 1/3, we must show that these equations
indeed possess a unique solution (s1, s2, s3) = (

sF
1, s

F
2, s

F
3

)
for all distribution functions f0.

Setting z = 0 in (9) implies that equations w1 = w2 = w3 = 1/3 are equivalent to the system

u :=
∫

f0
[
s1v

2
1 − s2v

2
2

] (∑
k

skv
2
k

)−1/2

d3v = 0 (B.1)

and v = 0, where v is defined by replacing
[
s1v

2
1 − s2v

2
2

]
by

[
s1v

2
1 − s3v

2
3

]
in (B.1). On the

three boundaries of the space
{
(s1, s2, s3)

∣∣ si � 0,
∑

k sk = 1
}
, the functions u and v are

monotonic; their signs are given in figure 7. The derivative ∂u/∂s1 is manifestly positive,
∂u/∂s2 is negative, hence grad u is linearly independent of the surface normal (1, 1, 1), and it
follows that u = const describes a curve for all const ∈ R. The same argument applies to v,
since ∂v/∂s1 > 0 and ∂v/∂s3 < 0. Figure 7 reveals that u = 0 (v = 0) connects the upper
(right) vertex of the (s1, s2, s3)-space with the opposite side. Investigating (grad u − λ grad v)

we find that the first component is manifestly positive when λ � 2/3 and negative when
λ � 3/2, the second component is negative when λ � 3 and the third component is positive
when λ � 1/3, which implies that (grad u − λ grad v) is linearly independent of the surface
normal (1, 1, 1) for all λ. It follows that all equipotential curves of the functions u and v

intersect transversally; hence u = 0 and v = 0 possess a unique point of intersection, which
proves the claim.

The established existence and uniqueness result for the fixed point F0 is independent of
the prescribed distribution function f0. Therefore, we have shown that for each distribution
function there exists a unique FRW solution of the massless Einstein–Vlasov equations
(represented by F0).

The situation is different in the massive case. A FRW solution must satisfy the
equations �i = 0, w1 = w2 = w3 = w and si = const ∀i (then one can use a rescaling
of the spatial coordinates {xi} to bring the metric to a form that is explicitly isotropic,
g11(t) = g22(t) = g33(t).) However, for a general distribution function f0, these equations
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are incompatible with the Einstein–Vlasov equations; in other words, the straight line �i = 0,
si = sF

i ∀i is not an orbit of the dynamical system. Hence, in the massive case, the Einstein–
Vlasov equations do not admit a FRW solution for arbitrary f0; the distribution function f0 is
required to satisfy FRW compatibility conditions, see below, in order for a FRW solution to
exist.

Note, however, that for each f0, there exists exactly one orbit that originates from F0 and
ends on FS1, see section 4, i.e., there exists a unique solution of the Einstein–Vlasov equations
that isotropizes towards the past and towards the future. This anisotropic solution can be
regarded as a generalized FRW solution; if f0 is compatible with the FRW geometry, then the
generalized FRW solution reduces to an ordinary FRW solution.

The treatment of the LRS case is analogous: the subset LRS1 (and, analogously, LRS2,3),
defined through the equations �2 = �3, w2 = w3, describes solutions exhibiting LRS
geometry. (For a solution on LRS1, equation (13b) entails s2(τ ) ∝ s3(τ ); by rescaling
the coordinates one can achieve g22 = g33, i.e., a line element in an explicit LRS form.)
However, for general f0, the set LRS1 is not invariant under the flow of the dynamical system,
so that orbits will not remain on LRS1. Consequently, for general f0, the Einstein–Vlasov
equations do not admit solutions with LRS geometry.

More specifically, consider

(�2 − �3)
′ = −3	

[
1
2 (1 − w)(�2 − �3) − (w2 − w3)

]
. (B.2)

Hence, (�2 − �3)
′ vanishes when �2 = �3 and w2 = w3. From (13b) and (13c), we obtain

an equation for w′
i ,

w′
i = −2wi

[
�i −

∑
k

�k

(
1

2
wk +

1

2
w−1

i β
(0)

ik

)
+

z

2

(
w−1

i β
(1)

i + β (1)
)]

, (B.3)

where we have defined

β
(m)

i1...ik
= (1 − z)k

∫
f0

(
�k

n=1sinv
2
in

) [
z + (1 − z)

∑
k skv

2
k

]1/2−k−m
dv1 dv2 dv3∫

f0
[
z + (1 − z)

∑
k skv

2
k

]1/2
dv1 dv2 dv3

; (B.4)

note that wi = β
(0)

i . Equation (B.3) implies

(w2 − w3)
′ = − (�1 − �2)

(
β

(0)

22 − β
(0)

33

) − z (�1 + 1)
(
β

(1)

2 − β
(1)

3

)
, (B.5)

when �2 = �3 and w2 = w3. We conclude that the set �2 ≡ �3, w2 ≡ w3 is an
invariant set of the dynamical system, iff w2 = w3 implies β

(0)

22 = β
(0)

33 and β
(1)

2 = β
(1)

3 .
(In the massless case, only the first condition is required.) These conditions are violated for
general distribution functions; if the conditions hold for f0, then this distribution function is
said to be compatible with the LRS symmetry. This is the case, for instance, when
there exist constants a2 > 0, a3 > 0, such that f0 is invariant under the transformation
v2 → (a3/a2)v3, v3 → (a2/a3)v2; e.g., f0 = f̃ 0

(
v1, v

2
2v

2
3

)
or f0 = f̃ 0

(
v1, a

2
2v

2
2 + a2

3v
2
3

)
; in

the latter case w2(τ ) ≡ w3(τ ) implies a2
3s2(τ ) ≡ a2

2s3(τ ).
Finally, note that a distribution function f0 is compatible with a FRW geometry, if it is

compatible with all LRS symmetries. This means that, for instance, f0 = f̃ 0
(
a2

1v
2
1 + a2

2v
2
2 +

a2
3v

2
3

)
is compatible with the FRW symmetry and thus admits a unique FRW solution of the

Einstein–Vlasov equations.

Appendix C. Future asymptotics

In this section, we give the proof of theorem 4.2:
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Theorem 4.2. The ω-limit of every orbit in the interior of the massive state space X (massless
state space Z0) is one of the fixed points FS1 (the fixed point F0).

Proof. Consider first the state space Z0 of massless particles and the associated system (19).
The function M(2), cf (20) ff, is well-defined and monotonically decreasing everywhere except
for at the fixed point F0, where it has a global minimum. On the boundaries S0

i (given by
si = 0) and K0 (�2 = 1) of the state space Z0, the function M(2) is infinite. Therefore, the
application of the monotonicity principle yields that the ω-limit of every orbit must be the
fixed point F0.

In the massive case consider (13a) in the form

�′
i = −3	

[
1
2 (1 − w)(1 + �i) − 1

2 (1 − 3w) − wi

]
. (C.1)

The rhs is positive when �i � −1 and z > 0 (w < 1/3). This implies that the hyperplanes
�i = −1 constitute semipermeable membranes in the state space X , whereby the ‘triangle’
(�1 > −1) ∩ (�2 > −1) ∩ (�3 > −1) becomes a future invariant subset of the flow (13).

The first part of the proof is to show that every orbit enters the triangle at some time τe

(and consequently remains inside for all later times).
Assume that there exists an orbit with �i(τ) � −1 for all τ (for some i). From (13b) we

infer that

s ′
i = −2si[sj (�i − �j) + sk(�i − �k)] > 0 (C.2)

if �i < −1 and that s ′
i � 0 if �i = −1; hence si(τ ) � si(τ0) = const > 0 for all τ ∈ [τ0,∞).

From (16) we obtain
1
3	−1	′∣∣

	=0 = 1 − 1
3wi(1 + �i) − 1

3wj(1 + �j) − 1
3wk(1 + �k)

� 1 − wj − wk = (1 − 3w) + wi � const > 0, (C.3)

since si � const > 0. Consequently, 	(τ) � const > 0 for all τ ∈ [τ0,∞). It follows from
(C.1) that

�′
i � const > 0 (C.4)

for all τ ∈ [τ0,∞) by the same argument. This is in contradiction to the assumption �i � −1
for all τ .

Thus, in the second part of the proof, we can consider an arbitrary orbit γ and assume,
without loss of generality, that γ (τ) lies in the �-triangle for all τ ∈ [τe,∞). Equation (13c)
leads to

z′ = 2z(1 − z)
∑

n

sn(1 + �n) � 0 (C.5)

for all τ ∈ [τe,∞), hence z(τ ) � z(τe) > 0 for all τ ∈ [τe,∞).
We define the function N by

N = (1 + �1)(1 + �2)(1 + �3). (C.6)

The derivative can be estimated by

N ′ � 3	N

[
−3

2
(1 − w) +

1

2

∑
n

1 − 3w

1 + �n

]
. (C.7)

Since w(τ) � const < 1/3 (because z(τ ) � const > 0), N ′ is positive when at least one
of the �i is sufficiently small, i.e., when N itself is small (a detailed analysis shows that
N ′ � 3	N [−(3/2)(1 − w) +

√
3(1 − 3w)N−1/2]). We conclude that there exists a positive

constant N0 such that N(τ) � N0 for all τ ∈ [τe,∞). This in turn implies that there exists
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ν > 0 such that �i(τ) � −1 + ν for all i, for all τ ∈ [τe,∞), whereby z′ � 2z(1 − z)ν for all
τ ∈ [τe,∞).

It follows that the ω-limit of γ must lie on z = 1, i.e., on Z1. Taking into account the
simple structure of the flow on Z1, characterized by 	′ = 3(1 − 	)	, we conclude that the
fixed points FS1 given by �1 = �2 = �3 = 0 are the only possible ω-limits. �

Remark. In order to demonstrate the versatility of the dynamical systems methods, we
have chosen here to prove theorem 4.2 by using techniques that are slightly different from
those employed in section 4 (which exploit the monotonicity principle). However, it is
straightforward (in fact, even simpler) to give a proof by making use of the hierarchy of
monotone functions. Indeed, the function M(1) ensures that the ω-limit of every orbit lies on
Z1 or Si ; modulo some subtleties, we can exclude that Si is attractive by using the monotone
function M(3) and the local properties of the fixed points.

Appendix D. The spaces S0
i—interpretation of solutions

The flow on the boundary subsets S0
i is of fundamental importance in the analysis of the

global dynamics of the state space, see section 4.2. Note that except for F0 all attractors (D0
i ,

QL0
i , KC0

i and the heteroclinic network) lie on S0
i . For a depiction of the flow on S0

1 , see
figure 3. In the following we show that orbits on S0

1 represent solutions of the Einstein–Vlasov
system that are associated with a special class of distribution functions. Furthermore, we
investigate in detail solutions that converge to the subcycle H0

1 of the heteroclinic network.
Consider a distribution function f0 of the form

f0(v1, v2, v3) = δ(v1)f
red
0 (v2, v3), (D.1)

where f red
0 (v2, v3) is even in v2 and v3. In the case of massless particles, m = 0 (and z = 0

respectively), we obtain

w1 = 0, wj = gjj
∫
f red

0 v2
j

[
g22v2

2 + g33v2
3

]−1/2
dv1 dv2 dv3∫

f red
0

[
g22v2

2 + g33v2
3

]1/2
dv1 dv2 dv3

(j = 2, 3), (D.2)

where g22 and g33 can be replaced by s2 and s3, if desired. In the unbounded variables gii , the
equations read

�′
1 = −	[1 + �1], (g11)′ = −2g11(1 + �1) (D.3a)

�′
j = −	[1 + �j − 3wj ], (gjj )′ = −2gjj (1 + �j) (j = 2, 3), (D.3b)

cf the remark at the end of section 2. In particular, we note that the equation for g11

decouples; hence the full dynamics is represented by a reduced system in the variables
(�1, �2, �3, g

22, g33), which coincides with the system (D.3) on the invariant subset g11 = 0.
In analogy to the definitions (7a), we set

s1 = 0, s2 = g22

g22 + g33
, s3 = g33

g22 + g33
, (D.4)

so that s2 + s3 = 1. This results in the dynamical system

�′
1 = −	[1 + �1], s1 ≡ 0 (D.5a)

�′
j = −	[1 + �j − 3wj ], s ′

j = −2sj [�j − (s2�2 + s3�3)] (j = 2, 3). (D.5b)
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This system (D.5a) coincides with the dynamical system (13) induced on S0
1 (which is obtained

by setting z = 0, thus w = 1/3 and s1 = 0 in (13).
Our considerations show that the flow on S0

1 possesses a direct physical interpretation:
orbits on S0

1 represent solutions of the massless Einstein–Vlasov system of Bianchi type I with
a ‘distributional’ distribution function of the type (D.1). Note that the system (D.5) on S0

1
must be supplemented by the decoupled equations (11b) and (g11)′ = −2g11(1 + �1) in order
to construct the actual solution from an orbit in S0

1 .
Two structures in S0

1 are of particular interest: the fixed point D0
1 and the heteroclinic

cycle H0
1, see figure 3. The fixed point D0

1 represents an LRS solution (associated with a
distributional f0); it is straightforward to show that the metric is of the form

g11 = const, g22 ∝ t4/3, g33 ∝ t4/3, (D.6)

and H = (4/9)t−1.
The orbit T0

22 → T0
32, which is part of H0

1, corresponds to a solution

g11 = g0
11, g22 = g0

22(3H0t)
2, g33 = g0

33, (D.7a)

here, H = (3t)−1; H0 is a characteristic value of H. For the orbit T0
33 → T0

23, the result is
analogous with g22 and g33 interchanged. A more extensive computation shows that the orbit
T0

32 → T0
33 leads to

g11 = g0
11, g22 = g0

22[log(1 + 3H0t)]
2, g33 = g0

33(1 + 3H0t)
2, (D.7b)

together with H = H0(1 + 3H0t)
−1(1 + [log(1 + 3H0t)]−1). (Note that 3Ht is always close to

1 and approaches 1 for t → 0 and t → ∞.) The result for the orbit T0
23 → T0

22 is analogous
with g22 and g33 interchanged.

An orbit close to the fixed point T0
32 corresponds to a solution

g11 = g0
11, g22 = g0

22(3H0t)
2, g33 = g0

33. (D.7c)

This is reflected in (D.7a) and in (D.7b) (since (D.7b) approximates this behaviour in the limit
of small t). The result for the fixed point T0

23 is analogous with g22 and g33 interchanged.
Orbits in the neighbourhood of T0

22 lead to more complicated behaviour:

g11 = g0
11, g22 = g0

22(3H0t)
2, g33 = g0

33h(3H0t), (D.7d)

where h is a function that grows logarithmically initially to become approximately constant
(set to one). The analogous result holds for T0

33.
Now consider an orbit converging to the heteroclinic cycle as τ → −∞, i.e., t ↘ 0.

Epochs associated with the orbit being close to one of the fixed points lead to (D.7c) and (D.7d);
transition periods, i.e., episodes in which the orbit is close to one of the four heteroclinic orbits
(and far from the fixed points) yield characteristic behaviour of the types (D.7a) and (D.7b).
The joining of epochs and transition episodes is reflected in a matching of the constants
in (D.7).

Example. Let t (n) denote a monotone sequence of times such that the solution is in transition
episode (n) at time t (n) (i.e., the orbit is close to one of the four heteroclinic orbits and far
from the fixed points); t (n) ↘ 0 as n → ∞. Since 3Ht ≈ 1 as t ↘ 0, the sequence
t (n) gives rise to a sequence H(n) defined by 3H(n)t (n) = 1. During episode (n) the
solution exhibits characteristic behaviour of the type (D.7a) or (D.7b) with H0 = H(n) (and
g0

22 = g
(n)
22 , g0

33 = g
(n)
33 ). Suppose that the orbit is close to the heteroclinic orbit T0

32 → T0
33

in episode (n). We obtain behaviour of the type (D.7b) with H0 = H(n). As H(n)t gets
small, we see that g22 ≈ g

(n)
22 (3H(n)t)2, g33 ≈ g

(n)
33 , i.e., the orbit enters an epoch described

by (D.7c). The next (as t ↘ 0) episode corresponds to the orbit running close to T0
22 → T0

32;
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the behaviour of the solution is (D.7a) with g
(n+1)
22 , g

(n+1)
33 and H0 = H(n+1). The matching

between the episodes (n) and (n + 1) is thus straightforward: g
(n+1)
22 (H (n+1))2 = g

(n)
22 (H (n))2

and g
(n+1)
33 = g

(n)
33 . Matching episodes (n + 1) and (n + 2) is slightly more involved. As t ↘ 0,

episode (n + 1) is followed by an epoch characterized by (D.7d), i.e., g22 = g
(n+1)
22 (3H0t)

2 and
g33 = g

(n+1)
33 h(3H0t). In episode (n + 2), the orbit is close to the heteroclinic orbit T0

23 → T0
22,

where

g11 = g0
11, g22 = g

(n+2)
22 (1 + 3H(n+2)t)2, g33 = g

(n+2)
33 [log(1 + 3H(n+2)t)]2. (D.8)

When H(n+2)t is large, as it is as the beginning (as t ↘ 0) of episode (n + 2), we get
g22 = g

(n+2)
22 (3H(n+2)t)2 and g33 = g

(n+2)
33 (log 3H(n+2)t)2. The matching between episode

(n + 1) and (n + 2) thus yields g
(n+2)
22 (H (n+2))2 = g

(n+1)
22 (H (n+1))2; the matching of g33 involves

information on the function h.
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