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The future LISA detector will constitute the prime instrument for high-precision gravitational
wave observations. Among other goals, LISA is expected to materialise a ‘spacetime-mapping’
program, that is to provide information for the properties of spacetime in the vicinity of supermassive
black holes which reside in the majority of galactic nuclei. Such black holes can capture stellar-mass
compact objects, which afterwards slowly inspiral under the emission of gravitational radiation.
The small body’s orbital motion and the associated waveform observed at infinity carry information
about the spacetime metric of the massive black hole, and in principle it is possible to extract
this information and experimentally identify (or not!) a Kerr black hole. In this paper we lay the
foundations for a practical spacetime-mapping framework. Our work is based on the assumption
that the massive body is not necessarily a Kerr black hole, and that the vacuum exterior spacetime is
stationary-axisymmetric, described by a metric which deviates slightly from the known Kerr metric.
We first provide a simple recipe for building such a ‘quasi-Kerr’ metric by adding to the Kerr metric
the leading order deviation which appears in the value of the spacetime’s quadrupole moment. We
then study geodesic motion of a test-body in this metric, mainly focusing on equatorial orbits, but
also providing equations describing generic orbits formulated by means of canonical perturbation
theory techniques. We proceed by computing approximate ‘kludge’ gravitational waveforms which
we compare with their Kerr counterparts. We find that a modest deviation from the Kerr metric is
sufficient for producing a significant mismatch between the waveforms, provided we fix the orbital
parameters. This result suggests that an attempt to use Kerr waveform templates for studying
extreme mass ratio inspirals around a non-Kerr object might result in serious loss of signal-to-noise
ratio and total number of detected events. The waveform comparisons also unveil a ‘confusion’
problem, that is the possibility of matching a true non-Kerr waveform with a Kerr template of
different orbital parameters.

I. INTRODUCTION

During the past several years astronomical observations have provided almost indisputable evidence in favour of
the existence of ‘dark’ supermassive objects (with a mass spectrum ∼ 105 − 109M⊙) in the majority of galactic cores,
including our own Milky Way [1]. Conventional wisdom dictates that these objects should be Kerr black holes as
described by General Relativity. This belief is (so far) rather based on our faith in General Relativity itself rather
than on hard ‘experimental’ evidence 1. Other candidate massive objects have been proposed (such as soliton stars,
boson stars, gravastars and P-stars [3]) but these are treated with scepticism by the community as they involve ‘exotic’
physics.

The future LISA gravitational wave detector [4] is expected to be able to give a definitive answer to whether these
massive objects are Kerr black holes or not. It is commonly accepted [5] that LISA will have the potential of ‘mapping’
the spacetime in these objects’ close vicinity. This can be achieved by detection of gravitational radiation emitted
during the inspiral of a stellar-mass compact body around the supermassive object. It is expected that LISA will be
capable of detecting from several to about a thousand [6] of these extreme mass ratio inspirals (EMRIs), during a
3 − 5 years mission. For the actual detection and subsequent extraction of the system’s physical properties, LISA’s
data analysis will rely heavily on matched filtering. This method is based on cross-correlating the detector’s noisy
output with a pre-selected bank of waveform templates which should be accurate representations of the true signal.
Among anticipated gravitational wave sources, EMRIs are thought of as one of the ‘cleanest’: they can be accurately
modelled as a binary system of a ‘test-body’ orbiting a Kerr black hole, evolving under its own gravitational dynamics,
without receiving any other significant ‘environmental’ influence 2.

1 Note however that the existence of an event horizon seems to be required in order to explain the spectral properties of X-ray emission
by Galactic black hole binaries and AGNs, see for example Ref. [2]

2 This should be true for the majority of galactic supermassive black holes which are in a “quiescent” accretion state. For the small
fraction of strongly accreting black holes (like the ones in AGNs) the presence of an accretion disk may have non-negligible effects on a
orbiting body (see for example [7])
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The basic tool for studying such a system is black hole perturbation theory: the small body of mass µ ∼ 1− 10M⊙

perturbing the spacetime of the much more massive black hole (of mass M ∼ 106). For recent detailed reviews on
EMRIs and further references on the subject we refer the reader to Refs. [8], [9].

In their great majority, EMRI-related studies take for granted the Kerr identity of the supermassive object. However,
if we ever hope to materialise any spacetime-mapping program with LISA we should be prepared to dismiss (at least
to some degree) this assumption. In fact, any claim that LISA will be able to probe the Kerr metric would require
the use of realistic waveform templates which contain –in some suitable parametric form– deviations from the Kerr
metric. The task of a LISA data analyst would be to quantify these deviations, most likely pointing to a null result.

This idea was first put forward by Fintan Ryan in the late 90s. In a series of papers [10], Ryan demonstrated
how LISA could in principle construct a map of the massive body’s spacetime by means of EMRIs observations. His
method is based on writing the general stationary axisymmetric vacuum metric in terms of multipole moments as
prescribed in Ref. [11]. These can be mass moments Mℓ and current moments Sℓ, both labelled by the angular integer
eigenvalue ℓ ≥ 0. Given the moments, the metric takes the symbolic form [10],[11],

gab ∼
∞
∑

n=0

[

1

r2n+1

{

M2nP1
n(θ) + (Mℓ<2n, Sℓ<2n)

}

,
1

r2n+3

{

S2n+1P2
n(θ) + (Mℓ<2n+1, Sℓ<2n+1)

}

]

(1.1)

where P1,2
n (θ) are known angular functions and angular brackets stand for the contribution of lower moments (if they

exist for given n).
These multipole moments will be clearly encoded in the geodesic equations of motion3 for a test-body and conse-

quently in the phase and amplitude of the emitted waveform. LISA (as any other gravitational wave detector) will
be capable of tracking this phase with high precession and extract valuable information concerning the spacetime’s
multipolar structure.

The key feature that makes this method so attractive is that Kerr spacetime is special, in the sense that all of its
higher moments are ’locked’ to the first two, the mass M = M0 and spin J = S1 [11],

Mℓ + i Sℓ = M(ia)ℓ (1.2)

where a = J/M is the familiar Kerr spin parameter. This relation is unique to Kerr holes and is a mathematical
expression of the famous ‘no-hair’ theorem [12]. In practise this means that extracting just the three lowest moments,
M,J and (say) the quadrupole moment M2, is sufficient for verifying (or disproving!) that the central body is indeed
a Kerr black hole. Measurement of additional higher moments could pinpoint the identity of the body 4. We should
emphasise that a possible non-Kerr multipolar structure does not necessarily imply a non-Kerr identity for the massive
object. A true Kerr hole with a substantial amount of material in its vicinity (say, in the form of an accretion disk)
could effectively behave as a non-Kerr object. This scenario is not included in our present discussion but certainly
merits a future detailed investigation.

Ryan’s multipole expansion scheme is certainly an elegant and powerful method for ‘mapping spacetimes’, never-
theless there are some serious issues regarding its practicality. Computing gravitational waveforms for EMRIs requires
(i) precise knowledge of a test-body’s geodesic motion and (ii) a wave-emission formalism that allows the calculation
of waveforms and fluxes, once the orbital motion is prescribed. For the case of a Kerr black hole, geodesic motion is
well known and extensively studied [15], while wave dynamics is studied with the help of the celebrated Teukolsky
formalism [16] which encapsulates the dynamics of gravitational perturbations in one single master equation. How-
ever, it is not always appreciated that the study of both orbital and wave dynamics is greatly simplified due to the
speciality of Kerr spacetime. In particular, one is able to first decouple and then separate the dynamical equations
thanks to the Petrov type-D character of the Kerr spacetime and a suitable choice of coordinate frame [17],[18].

Life is considerably more complicated if we consider a non-Kerr spacetime with arbitrary multipolar structure. To
begin with, according to (1.1) an accurate representation of the metric in the strong field regime (the most relevant
part of the inspiral for LISA) requires the inclusion of a large number of multipoles. This point can be made clearer if
we notice that the metric (1.1) is an expansion in 1/r around the flat Minkowski spacetime. A more suitable expansion
would be around (say) the Schwarzschild spacetime. We will return to this point in future work.

Complications first appear at the level of geodesic motion. The spacetime’s stationary-axisymmetric character
guarantees the existence of two integrals of motion, the energy E and angular momentum (along the symmetry axis)

3 Multipolar expansion of the gravitational potential is a powerful technique in Newtonian gravity for performing geodesic measurements:
the motion of a satellite around the Earth provides information on our planet’s ‘bumpiness’.

4 For example, a rotating massive Boson star [13] has three independent moments and its higher moments certainly do not obey relation
(1.2).
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Lz. However, the third integral of motion (the famous Carter constant for the Kerr metric) will typically be lost, as
the Hamilton-Jacobi equation is not fully separable (see [12] for the solution of this equation in the Kerr case). Two
integrals of motion are sufficient (together with initial conditions) for fully describing motion only for the special case
of equatorial orbits. For generic orbits (which is the case relevant for LISA) the insufficient number of integrals of
motion would force us to use the second-order geodesic equation of motion. This would result in a more complicated
description of geodesic motion (as compared to the Kerr case), but technical complication is not the sole problem
here. Fewer integrals of motion could easily translate into chaotic dynamical behaviour which in turn would have a
great impact on LISA data analysis.

The picture appears even more blurred when one attempts to study wave dynamics in a non-Kerr metric. Lack
of decoupling for the perturbation equations inhibits the formulation of a ‘Teukolsky-like’ equation – the most ver-
satile method in black hole perturbation theory is now lost. An alternative way of computing rigorous gravitational
waveforms and fluxes would be the direct numerical time evolution of metric perturbations (after separation of the
azimuthal φ coordinate) which come in a package of ten coupled partial differential equations (combined with four
gauge-condition equations) [12].

Motivated (and partially discouraged!) by the above complications, we adopt a somewhat different (albeit less
general) approach in the present work. Based on the belief that the massive objects in galactic nuclei are most likely
Kerr black holes, we only address the question: is the spacetime around these objects described by the exact Kerr
metric, or by a slightly different metric ? We do not attempt to identify the source of this metric, in fact we are
agnostic on this issue. Our less ambitious goal is to quantify the deviation from the Kerr metric.

This point should be emphasised because none of the other candidate objects can be considered in any sense as
being ‘almost’ a Kerr black hole. The idea of building a ‘quasi-black hole’ spacetime has been recently advocated by
Collins & Hughes [19]. These authors constructed a ‘bumpy’ Schwarzschild black hole by adding a certain amount
of quadrupole moment (in the form of a given mass distribution outside the black hole) and then studied equatorial
orbits in the resulting spacetime.

In our scheme we modify the quadrupole moment of the exact Kerr metric (this is the lowest moment where Kerr
can be distinguished from the spacetime of another axisymmetric/stationary body). This procedure is performed
in a natural way with the help of the well-known Hartle-Thorne exterior metric [21]. The resulting ‘quasi-Kerr’
metric is customised for use in strong gravity situations and has the nice feature of smoothly reducing to the familiar
Kerr metric in Boyer-Lindquist (BL) coordinates. Being arbitrarily close to the BL Kerr metric (which allows full
separability of the Hamilton-Jacoby and wave equations) allows us to formulate first-order equations of motion and
integrals of motion by perturbing the well known Kerr equations. As yet, we have not explored whether the same
trick would lead to a ‘quasi-Teukolsky’ perturbation equation. For the purposes of the present investigation it is quite
sufficient to use the so-called hybrid approximation [22],[23] and compute ‘kludge’ waveforms.

The paper is structured as follows. In Section II we provide the prescription for building our quasi-Kerr metric. This
is the paper’s main result. Section III is devoted to the solution of the Hamilton-Jacobi equation in the quasi-Kerr
metric. We first discuss the issue of separation of variables for this equation and then proceed with the derivation
of equations of motion based on standard canonical perturbation theory. Section III C is dedicated to the study of
equatorial orbits and comparison of orbital frequencies and periastron advance for Kerr and quasi-Kerr orbits. In
Section IV we compute approximate waveforms from test-bodies in equatorial orbits of the quasi-Kerr metric. These
are compared to their Kerr analogues by calculating their overlap function in the LISA sensitivity band. In the
same Section we touch upon the problem of ‘confusion’ between Kerr and quasi-Kerr waveforms. A summary and
concluding discussion can be found in Section V. Appendices containing some technical details, including a review of
the action-angle formalism in the Kerr spacetime can be found at the end of the paper. Throughout the paper we
use geometrised units G = c = 1 and adopt a {−,+,+,+} signature for the metric. We repeatedly use the labels ‘K’
and ‘qK’ for ‘Kerr’ and ‘quasi-Kerr’, respectively.

II. BUILDING A QUASI-KERR SPACETIME

As we mentioned in the Introduction, the central idea of our work is to replace the general multipolar expansion
(1.1) of an axisymmetric-stationary vacuum spacetime with a less general ‘quasi-Kerr’ metric. In the language of
multipole moments this means,

Mℓ = MK
ℓ + δMℓ, ℓ ≥ 2 (2.1)

Sℓ = SK
ℓ + δSℓ, ℓ ≥ 3 (2.2)

where δMℓ, δSℓ are assumed small. With respect to the first two leading moments M,J the spacetimes outside a Kerr
hole and any other stationary axisymmetric rotating body are indistinguishable. Essentially, M and J can take the
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same value for both bodies (the spin is presumably limited, for a Kerr hole a ≤ M). This degeneracy is broken as
soon as we take into account the next most important moment, the mass quadrupole M2. In our scheme we choose
to take into account only the deviation in the quadrupole moment Q ≡ M2 and neglect any deviation in all higher
moments. We introduce the dimensionless deviation parameter ǫ as 5

Q = QK − ǫM3, where QK = −J
2

M
. (2.3)

Our quasi-Kerr metric takes the form,

gαβ = gK
αβ + ǫhαβ + O(δMℓ≥4, δSℓ≥3) (2.4)

where gK
αβ is the exact Kerr metric. Our goal is to determine the metric functions hαβ(r, θ).

This can be achieved by using the Hartle-Thorne (H-T) metric [21] which describes the spacetime outside any slowly
rotating axisymmetric and stationary body. Indeed, this metric is fully accurate up to the quadrupole moment (which
scales quadratically with the body’s spin), and it includes as a special case the Kerr metric (at O(a2) order). It is
then possible to isolate the leading-order quadrupole moment deviation and deduce the hαβ piece in (2.4). Implicit in
this prescription is the assumption that the massive body’s exterior spacetime has nonzero higher moments induced
by the body’s rotation, in the same sense that a black hole has nonzero moments (with ℓ > 0) only when a 6= 0. As
a consequence, terms of order O(ǫa, ǫ2) are beyond the desired accuracy and therefore neglected. Unlike the general
multipole expansion (1.1), our prescription by construction offers no information (regarding possible deviations from
the Kerr values) on moments higher than the quadrupole. On the other hand our metric is not an expansion in inverse
powers of r , instead is written in a compact fully relativistic form suitable for strong-field conditions.

We move on to the calculation of hab. For our purposes we shall only need the exterior H-T metric [21] which is
expressed in terms of the dimensionless parameters,

j ≡ J

M2
, q ≡ − Q

M3
(2.5)

Then at O(j2) accuracy, the metric is given by (these expressions are taken from Ref. [24] after correcting a typo-
graphical sign error in the F1 function),

gHT
tt = − (1 − 2M/r) [ 1 + j2F1 + qF2]

gHT
rr = (1 − 2M/r)

−1
[ 1 + j2G1 − qF2]

gHT
θθ = r2[ 1 + j2H1 + qH2]

gHT
φφ = r2 sin2 θ [ 1 + j2H1 + qH2]

gHT
tφ = −2M2j

r
sin2 θ (2.6)

The functions F1,2(r, θ), H1,2(r, θ) appearing in these expressions are given in Appendix A. Note that the metric
(2.6) is written in the coordinate frame {t, r, θ, φ} originally used by Hartle & Thorne. Without loss of generality, we
can write

q = j2 + ǫ (2.7)

Clearly, the limit ǫ→ 0 corresponds to the H-T representation of Kerr spacetime.

5 To convey an idea on the range of values that ǫ could take, we use the results of Laarakkers & Poisson [20] for the quadrupole moment
of rotating neutron stars. They show that the quadrupole moment could be approximated as q ≈ bj2. The factor b is a function of
the mass and equation of state, with numerical values varying from 2 to 12 (decreasing with mass and increasing with stiffness of the
equation of state). It was emphasised in [20] that this relationship holds even for fast rotations. The fact that b is positive reflects
oblateness of the mass distribution. Using this relationship we obtain: ǫ = (b− 1) j2, which tells us that for (stiff) rotating neutron star
(with M = 1.0) ǫ could be as large as 11 j2.
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For reasons we discuss later in the paper, it is highly desirable for the quasi-Kerr metric to reduce to the familiar
Kerr metric in Boyer-Lindquist (BL) coordinates in the limit ǫ→ 0. The transformation between BL and the original
H-T coordinates was provided by Hartle & Thorne 6:

tBL = t, φBL = φ (2.8)

rBL = r − j2M2

2r3
[(r + 2M)(r −M) − cos2 θ(r − 2M)(r + 3M)]

≡ r − j2M2fBL(r, θ) (2.9)

θBL = θ − j2M2

2r3
(r + 2M) sin θ cos θ ≡ θ − j2M2gBL(r, θ) (2.10)

Written in this manner, this transformation is not really practical for someone wishing to obtain the metric in BL
coordinates. Fortunately, inverting the above equations with respect to the H-T coordinates is a trivial task. According
to (2.10) rBL = r+O(j2) and θBL = θ+O(j2); therefore we are free to use either set of coordinates in the functions
fBL, gBL since these appear in the O(j2) terms. Thus, the inverse transformation is simply,

r = rBL + j2M2fBL(rBL, θBL)

θ = θBL + j2M2gBL(rBL, θBL) (2.11)

Hereafter, we shall drop the subscript on the BL coordinates. As the two sets of coordinates differ at order O(j2)
the quadrupole-order pieces in (2.6) are immune with respect to the transformation (2.11). Only the ‘Schwarzschild’
portion of the metric is affected by the coordinate transformation. For the contravariant metric components we obtain:

gtt
HT = gtt

Ka2 + ǫ (1 − 2M/r)−1[ f3(r) + f4(r) cos2 θ]

grr
HT = grr

Ka2 + ǫ (1 − 2M/r)[ f3(r) + f4(r) cos2 θ]

gθθ
HT = gθθ

Ka2 − ǫ

r2
[h3(r) + h4(r) cos2 θ]

gφφ
HT = gφφ

Ka2 −
ǫ

r2 sin2 θ
[h3(r) + h4(r) cos2 θ]

gtφ
HT = gtφ

Ka2 , (2.12)

where the functions f3, f4, h3, h4 are given in Appendix A. In eqns. (2.12) we have denoted as gαβ
Ka2 the O(a2) Kerr

metric (in BL coordinates) with a = jM . From eqns. (2.12) one can extract the desired deviation hαβ .
Putting all the pieces together, the ansatz for building a quasi-Kerr metric in Boyer-Lindquist coordinates is:

gab = gK
ab + ǫ hab (2.13)

where,

htt = (1 − 2M/r)−1[ (1 − 3 cos2 θ)F1(r)], hrr = (1 − 2M/r)[ (1 − 3 cos2 θ)F1(r)] (2.14)

hθθ = − 1

r2
[ (1 − 3 cos2 θ)F2(r)], hφφ = − 1

r2 sin2 θ
[ (1 − 3 cos2 θ)F2(r)] (2.15)

htφ = 0 (2.16)

The functions F1,2(r) are given in Appendix A.
Looking at the explicit form of hαβ it is evident that these functions are divergent at r → 2M . This would

correspond to the location of the event horizon at the accuracy O(j2) of the H-T metric. Hence, there is no real

6 Note that both the original transformation equations by Hartle & Thorne and their recent reproduction in Ref. [24] contain a sign error.
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mystery behind this behaviour which is also present in the case of the full Kerr metric. However, since in our scheme
we do not associate the quasi-Kerr metric with a black hole we are forced to be agnostic regarding the nature of the
‘surface’ of the massive body. Whether is an event horizon or something else is an issue we simply do not address.
This lack of information has no significant impact on the study of orbital motion of a test-body, as long as we do not
consider orbits too close to 2M (assuming they exist).

The situation is not so clear when one tries to study wave dynamics in a quasi-Kerr metric and compute (say)
fluxes. To begin with, we should mention that a first approximation would be to completely neglect any gravitational
flux impinging on the ‘surface’, assuming that is small compared to the fluxes at infinity. This is certainly true for
the case of black holes [25],[26] and it is not unreasonable to expect the same in other scenarios. The main issue
regards the computation of the fluxes at infinity, and their sensitivity to the absence of a concrete boundary condition
at r ∼ 2M . One could try different boundary conditions, say, perfect reflection or free propagation and assess how
robust the flux results are (see for example Ref. [10]). Other aspects of wave dynamics in a quasi-Kerr field, such as
the existence and properties of quasi-normal modes, are extremely sensitive to boundary conditions and cannot be
studied within our framework.

III. GEODESIC MOTION IN THE QUASI-KERR METRIC

A. The Hamilton-Jacobi equation: issues of separability

An elegant method for deriving equations of motion for a point-particle in a given gravitational potential is the
Hamilton-Jacobi (H-J) formalism (see Ref. [27] for background material and Appendix B of the present paper). The
end-product is the known H-J equation for the generating function S, which in its general relativistic version is written
as,

1

2
gαβ ∂S

∂xα

∂S

∂xβ
+
∂S

∂λ
= 0 (3.1)

where λ is the geodesic affine parameter. In essence, this equation follows from the definition of the Hamiltonian for
point-particle motion,

H(xα, pβ) =
1

2
gµν pµ pν = −1

2
µ2 (3.2)

by replacing the four momenta pα = dxα/dλ by pα = gαβ ∂S/∂xβ . Here the BL coordinates xα = {t, r, θ, φ} are
conjugate to pα.

One of the ‘miracles’ of the Kerr metric is that it allows full separability of the H-J equation, leading to the
well-known Kerr geodesic equations of motion [12], [15]. Separability with respect to λ, t, φ generates the conserved
quantities µ (the test-body’s mass), E (energy) and Lz (angular momentum along the symmetry axis). This is always
possible as long as the metric is stationary-axisymmetric. The special property of the Kerr metric (originating from
its Petrov type-D character) is that it allows the additional, non-trivial, separability with respect to (r, θ), leading to
the third constant Q, the Carter constant. This is possible only in a restricted family of coordinate frames, the BL
one among them [17]. In fact, if we expand the Kerr metric with respect to a, then the H-J equation is separable at
each individual order.

On the other hand, the H-J equation is not fully separable with respect to the H-T metric (2.6), not even when the
Kerr limit ǫ → 0 is taken. This reveals that the coordinate frame used in the original H-T metric is not ‘privileged’
and consequently a bad choice for a quasi-Kerr metric. Instead, BL coordinates seem like a good choice as in the
limit ǫ → 0 they admit separability. A similar conclusion can be reached for the general metric (1.1). In its present
form it does not allow separation of the H-J equation (or of the scalar and gravitational perturbation equations) even
when the Kerr limit is taken (which corresponds to enforcing relation (1.2)).

The H-J equation for the full quasi-Kerr metric (2.4) is solved by assuming the standard form,

S =
1

2
µ2 λ− E t+ Lz φ+ Sr(r) + Sθ(θ) (3.3)

with an extra expansion,

Sr,θ = Sr,θ + ǫ Ŝr,θ (3.4)
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where Sr,θ solves the exact Kerr H-J equation. After separating out the Kerr portion of (3.1), and neglecting O(ǫa, ǫ2)
terms, we are left with,

r (r − 2M)

[

2
dSr

dr

dŜr

dr
+ f3

(

dSr

dr

)2
]

+
E2 r3f3
r − 2M

−K h3 = −2
dSθ

dθ

dŜθ

dθ
+ Z(r) cos2 θ (3.5)

where K is a separation constant and

Z(r) = Kh4 − f4
E2 r3

r − 2M
− f4 r (r − 2M)

(

dS

dr

)2

(3.6)

This non-vanishing function spoils the separability of (3.5). In retrospect, this is not really surprising as the addition
of the ǫ-pieces ‘contaminates’ the Kerr metric in the sense that the resulting quasi-Kerr spacetime is not type-D
anymore, although (in some loose sense) is arbitrarily ‘close’ (this is also the explanation for why the non type-D H-T
metric does not lead to a separable H-J equation).

At this point it would seem that no real advantage has being gained by using the quasi-Kerr metric (2.4) as the H-J
equation is still non-separable with respect to (r, θ). However, the fact that the equation is separable in the ǫ → 0
limit can be exploited and by means of canonical perturbation theory [27] can lead to the desired equations of motion
(see Section III B).

Studying geodesic motion in a quasi-Kerr field is just the first step towards solving the EMRI problem. For
gravitational wave observations it is pivotal to be able to compute accurate waveforms and fluxes. In the case of
Kerr black holes, this is achieved by means of the Teukolsky equation [16] (see [8], [9] for reviews relevant to EMRI,
and further references), which governs the dynamics of perturbations of the Weyl scalars {ψ0, ψ4} in the framework
of the classic Newman-Penrose formalism. The remarkable result that all these perturbations are described by one
single master equation is a consequence (once more) of the Petrov type-D character of the Kerr metric, which allows
decoupling of the various perturbation equations [17]. Moreover, for a certain class of coordinate frames (the BL the
most widely used one) the Teukolsky equation admits separation of variables, reducing the problem to the solution
of simple ODEs. None of these properties survive for a non type-D metric such as (1.1) or (2.4). However, as the
quasi-Kerr metric is ‘almost’ type-D there may still be a chance of decoupling (at least partially) the perturbation
equations for the Weyl scalars. This crucial issue is left for future work. In the unfortunate case that this expectation
proves untrue, we may have to work with straight metric perturbations which are governed by ten coupled PDEs
plus gauge conditions. These equations will still admit separation with respect to φ so they can be studied in the
time-domain in a ‘2 + 1’ format. In the present paper, the issue of wave dynamics will be dealt by simply computing
approximate waveforms7 (Section IV), but our conclusions should be valid even if we had rigorous waveforms at our
disposal.

B. Generic orbits

Although we are mainly concerned with equatorial orbits in this paper, we nevertheless derive approximate equations
of motion for generic quasi-Kerr orbits. Our objective is to demonstrate how one can arrive to such equations despite
the non-separability of the H-J equation and without resorting to the full second-order equations of geodesic motion.
This subsection is somewhat detached from the paper’s main guideline and the reader should first consult Appendix B
(where we review the action-angle formalism in the Kerr spacetime, following Ref. [28]) for definitions and notation
used here.

Our calculation consists of nothing more than the application of canonical perturbation theory (see [27] for further
details) to point-particle motion in the Kerr spacetime. The full Hamiltonian can be written as the sum of the Kerr
point-particle Hamiltonian amended with the quadrupolar perturbation,

H =
1

2
gαβ

K pα pβ +
1

2
ǫ hαβ pα pβ ≡ H◦ + ǫH1, (3.7)

The unperturbed Hamiltonian is a function of the actions only, H◦ = H◦(Iβ), while the perturbation depends on both
actions and angles, H1 = H1(w

α, Iβ). Expressing the Hamiltonian in this functional form is possible provided we

7 A similar path was taken by Ryan who only calculated slow-motion, ‘restricted Post-Newtonian’, waveforms from circular equatorial
orbits [10]
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have first obtained relations xκ(wα, Iβ) and pκ(wα, Iβ). For the Kerr problem, these are given by implicit relations,
see Appendix B.

In the unperturbed problem H◦ the actions are constants and the angles vary linearly with respect to λ. This is
no longer true for the full perturbed Hamiltonian H . We seek a canonical transformation {wα, Iβ} ⇒ {ŵα, Îβ} to a
new set of angle-actions which would have exactly the above properties. Clearly, the old and new variables will differ
at O(ǫ). The generating function takes the form [27],

F (wα, Îβ) = wk Îk + Φ(wα, Îβ) (3.8)

Then we have,

Iα =
∂F

∂wα
= Îα +

∂Φ

∂wα
and ŵα =

∂F

∂Îα
= wα +

∂Φ

∂Îα
(3.9)

Denoting as K(Îβ , ǫ) the new Hamiltonian we also have,

dŵα

dλ
=

∂K

∂Îα
⇒ ŵα = ν̂α λ+ βα (3.10)

dÎα
dλ

= − ∂K

∂ŵα
= 0 + O(ǫ2) (3.11)

where ν̂α are the new fundamental frequencies. The function F solves the following H-J equation

H(wα,
∂F

∂wα
) = K(Îβ , ǫ) (3.12)

The standard choice for the Hamiltonian K is,

K(Îβ , ǫ) = H◦(Îβ) + ǫ 〈H1〉(Îβ) (3.13)

where we have defined the averaged perturbation with respect to the original angle variables,

〈H1〉(Îβ) ≡
∮

dwαH1(w
k, Îβ) (3.14)

Expanding the left-hand side of (3.12) we then find for the generating function,

να
∂Φ

∂wα
= ǫ [〈H1〉 −H1] (3.15)

The perturbed equations of motion are derived by first inverting eqns. (3.9) with respect to the old action-angles,
isolating the secular changes in these relations and then substituting in the unperturbed equations wα(xk, Iβ) (see
eqns. (B10) in Appendix B ). Note that in the function Φ we are free to interchange new with old actions at O(ǫ)
accuracy. From (3.15) and the fact that Φ(wα, Iβ) is a periodic function of the angles wα [27] we find that,

〈 ∂Φ

∂wα
〉 = 0 (3.16)

which implies that there are no secular changes in the actions at O(ǫ). This also means that there is no secular change
in {E,Lz, Q}. At leading order, quasi-Kerr orbits admit three integrals of motion, like in the Kerr geodesic motion.

Averaging the perturbation in the angle variables 〈∂Φ/∂Iα(wk, Iβ)〉 = 〈∂Φ/∂Iα〉(Iβ) 6= 0 implies that in a secular

sense wα = ν̂ λ+ β̂α where β̂α a constant phase.
Therefore we have shown that the quasi-Kerr geodesic equations of motion can be directly derived from the cor-

responding Kerr equations (B10) with the substitution να ⇒ ν̂α in the left-hand sides only . Despite the identical
shapes between Kerr and quasi-Kerr orbits, the difference in the frequencies will translate in a difference in precession
rates for the periastron and for the orbital plane 8.

8 A basic feature of generic Kerr orbits is their characterisation by three incommensurate orbital frequencies Ωi = νi/νt (in BL time).
This property results in orbits which are not closed, but rather exhibit precessional motions. Periastron precession is a consequence of
Ωr 6= Ωφ and orbital plane precession (Lense-Thirring precession) is a consequence of Ωθ 6= Ωφ. Keplerian orbits, on the other hand,
are fixed closed ellipses since their frequencies are degenerate, Ωr = Ωθ = Ωφ.
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Generic quasi-Kerr orbits will be discussed in detail in a future paper. Here we have shown that in a secular
sense the motion has three conserved quantities (apart from µ), which is an important property and stands above
of what one would expect for a general non-Kerr axisymmetric-stationary metric like (1.1). As we mentioned in the
Introduction, geodesic motion in such metric is not formally integrable and may well lead to chaotic behaviour in a
test-body motion.

In fact, orbital dynamics in general axisymmetric-stationary gravitational fields are typically much different than
the ones in spherically-symmetric fields or even the Kerr field. We can easily demonstrate this difference, by asking
the simple question: which axisymmetric-stationary gravitational fields can support circular orbits? In Newtonian
theory the answer is that only a special family of potentials with the form V (r, θ) = V◦(r) + V1(θ)/r

2 (where V◦, V1

arbitrary functions) admit orbits with ur = dur/dt = 0. In General Relativity the same requirement for a given metric
gab(r, θ) results in conditions involving the metric and its first derivatives. Once more, the Kerr metric is special as
it satisfies these conditions. Further analysis of this issue will be presented in a future paper.

C. Equatorial orbits

For the special case of equatorial orbits the quasi-Kerr H-J equation (3.1) is trivially separable. The resulting
equation of motion are,

(ur)2 =

(

dr

dλ

)2

= Vr(r) = (E2 − 1) +
2M

r
− [L2

z + a2(1 − E2)]
1

r2
+

2M

r3
(Lz − aE)2 −

ǫ

(

1 − 2M

r

) [

(f3 − h3)
L2

z

r2
+ f3

]

(3.17)

uφ =
dφ

dλ
= Vφ =

1

∆

[

2M

r
(aE − Lz) + Lz

]

− ǫ
h3

r2
Lz (3.18)

ut =
dt

dλ
= Vt =

1

∆

[

E(r2 + a2) +
2Ma

r
(Ea− Lz)

]

− ǫ

(

1 − 2M

r

)−1

f3E (3.19)

In the standard manner, we express the test-body’s radial location in terms of a pair of orbital elements, the semi-latus
rectum p and eccentricity e,

r =
p

1 + e cosχ
(3.20)

In the weak-field limit (p ≫ M) these parameters coincide with the familiar Keplerian parameters. The parameter
χ varies monotonically, while r ‘runs’ between the two radial turning points, the periastron rp = p/(1 + e) and the
apastron ra = p/(1 − e). The elements (p, e) can be written as functions of E,Lz (and vice-versa) using Vr(ra) =
Vr(rp) = 0. For the Kerr orbits Vr(r) is a cubic polynomial and the third root r3 (which is the smallest of the three)
can be used to define a ‘separatrix’ of bound/unbound orbits. The transition occurs when rp = r3 which defines
an innermost stable bound orbit. In the quasi-Kerr case, the equation Vr = 0 is more complicated, but since the
equations of motion (3.19) deviate only slightly from the corresponding Kerr equations, we expect the quasi-Kerr
separatrix to be located close to the Kerr separatrix [25] for the same {a, p, e}.

Equatorial orbits are characterised by a pair of orbital frequencies Ωr,Ωφ. These are defined in terms of the radial
period Tr (the coordinate time required for the body to move from rp to ra and back), and of the periastron shift ∆φ
(total accumulated angle φ over a period Tr),

Ωr =
2π

Tr
, Ωφ =

∆φ

Tr
(3.21)

These frequencies are ‘observables’ as the emitted gravitational waveform (on an adiabatic timescale where backreac-
tion is not significant) comes in discrete frequencies,

ωmk = mΩφ + kΩr (3.22)

where k,m are integers (the latter associated with the azimuthal angle φ). The appearance of a spectrum of the form
(3.22) is a direct consequence of the periodicity of the motion. Note that in the Keplerian limit (p ≫ M) we have
∆φ→ 2π, hence Ωr → Ωφ.
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As a first stab at the problem of comparing Kerr vs quasi-Kerr EMRIs we calculate the above frequencies Ωr,Ωφ

for identical values {a, p, e} while varying the quadrupole deviation ǫ. We use the simple expressions,

Tr =

∫ ra

rp

dt
ut

ur
=

∫ 2π

0

dχ
dr

dχ

ut

ur
(3.23)

and

∆φ =

∫ Tr

0

dt
uφ

ut
=

∫ 2π

0

dχ
dr

dχ

uφ

ur
=

∫ 2π

0

dχ
ep sinχ

(1 + e cosχ)2
Vφ(r(χ))

√

Vr(r(χ))
(3.24)

Results are shown in Figs. 1, 2 & 3 for the pair of orbits (p, e) = (10M, 0.5), (15M, 0.5) and a = 0.5M . A quantity
which nicely illustrates the difference between Kerr and quasi-Kerr orbits is the number of cycles N required to
accumulate π/2 difference in periastron shift:

N =
π/2

|∆φK − ∆φqK|
(3.25)

In Fig. 3 we show how N varies with ǫ and eccentricity e for fixed p and a. The dependence on e is quite weak, but
there is a strong dependence on ǫ. For example, for a moderate value |ǫ| = 0.05 which corresponds to a fractional
difference ∼ 8% in the quadrupole moment, we only need about ∼ 100 − 200 orbits to accumulate π/2 difference in
∆φ. Such large orbital dephasing would certainly manifest itself in the waveforms as we shall see in the following
Section.
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FIG. 1: Left panel: periastron shift difference ∆φK − ∆φqK as a function of the deviation ǫ. Right panel: number of cycles N

required to accumulate π/2 difference in periastron shifts (defined by eqn.(3.25)) as function of ǫ. For both panels, we have
considered two orbits: a = 0.5M, e = 0.5 and p = 10M, p = 15M .

IV. WAVEFORM COMPARISONS

A. Kerr vs quasi-Kerr

As we already pointed out in Section III A, the calculation of rigorous gravitational waveforms and fluxes is a major
challenge for any non-Kerr EMRI program. For the purposes of this study, which is just an initial investigation, it
will suffice to use approximate waveforms, in particular the ‘hybrid’ waveforms discussed in [8],[23]. These waveforms
are generated using flat spacetime wave formulae (see [12],[29] for more details) for the two components {h×, h+},
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FIG. 2: Difference in the radial period Tr Kerr and quasi-Kerr orbits with a = 0.5M, e = 0.5 and p = 10M, p = 15M .

FIG. 3: Number of cycles to accumulate π/2 difference between Kerr and quasi-Kerr periastron shifts as a function of ǫ and
eccentricity e. We have fixed the other two parameters: p = 10M , a = 0.5M .

coupled with exact relativistic geodesic motion. At least for the particular case of Kerr, it has been established that
these waveforms agree quite well with rigorous Teukolsky-based waveforms [23]. Hence, it makes sense to assume that
the same will be true for the quasi-Kerr case.

In this Section we shall compare quasi-Kerr against Kerr waveforms with identical orbital parameters (p, e), spin
a/M and for the same kinematic initial conditions. Since a nonzero ǫ imparts a change in the orbital frequencies we
would expect this change to manifest itself as a significant cumulative phase difference between the corresponding
waveforms after several orbits. This difference can be rigorously quantified in terms of the overlap function, that is,
the scalar product between the normalised waveforms within the LISA sensitivity band:

(ĥ1, ĥ2) = 4ℜ
∫ ∞

0

h̃1(f)h̃∗2(f)

Sh(f)
df (4.1)
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where a tilde denotes the Fourier transform of the waveform, a star stands for the complex conjugate, a hat denotes

normalised waveform h(tk) according to (ĥ1, ĥ1) = (ĥ2, ĥ2) = 1 and Sh(f) is the expected LISA sensitivity function
(one-sided power spectral density). To calculate this latter function we use an analytic fit (discussed in Ref. [23]) to
the numerically-generated sensitivity curve of Ref. [30], for one year of observation and omitting any confusion noise9.

The overlap defined in (4.1) is closely related to the signal-to-noise ratio (SNR) [31], which is given by,

SNR = (ĥ, s) = A(ĥ, ĥ) = A = (s, s)1/2

Here we have assumed that the template ĥ exactly matches the true signal s, and A is the amplitude of the signal

in units of the normalised waveform ĥ. An imperfect template or a disagreement between the template’s parameters
and those of the signal results in a reduced SNR,

SNR = (ĥ1, s) = A(ĥ1, ĥ2) < A (4.2)

In this expression we have assumed that the normalised template ĥ1 does not exactly match the signal s = Aĥ2. In
other words, a low overlap between a template and the expected signal implies a drop in SNR (which is accompanied
by a drop in the event rate due to the decrease of the observable spatial volume).

Since we neglect any radiation reaction effect on the orbital motion our calculations will be consistent provided we
‘truncate’ any waveform at the radiation reaction time scale TRR. We define TRR according to the following rule. For
a test-body in Kerr spacetime we can include orbital backreaction using the approximate hybrid method [8], [22], [32].
Then comparing Kerr waveforms with and without radiation reaction (denoted as hK(t), hRR

K (t), respectively) we can
define TRR as the truncation time Ttr at which the overlap between these two waveforms drops below 95%.

(

ĥK(t = TRR), ĥRR
K (t = TRR)

)

= 0.95 (4.3)

The particular threshold 0.95 was chosen as it coincides with the usual value of ‘minimal match’ for constructing
template banks [31], [33]. Based on our definition for TRR we can safely approximate the small body’s motion as a
geodesic for a time interval t <∼ TRR. We have numerically computed TRR (see Fig. 5) as a function of µ/M , and not
surprisingly, we find a linear dependence, TRR ∼M/µ.
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h +/(D
µ)

Kerr waveform with radiation reaction
Kerr waveform without radiation reaction
quasi-Kerr waveform

FIG. 4: Comparing quasi-Kerr (solid curve) and Kerr (dashed curve) approximate hybrid waveforms for the orbit p = 10M, e =
0.5, a = 0.5M and for ǫ = 0.15. In addition, we include a Kerr waveform taking into account backreaction on the orbit
(assuming the same initial orbit), represented by the dashed curve. All waveforms are shown at a time window close to the
radiation reaction timescale TRR.

9 We have observed that addition of confusion noise does not affect the overlaps, although it slightly affects the estimated radiation
reaction time scale.
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For the purpose of waveform comparison we select the moderately relativistic orbit p = 10M, e = 0.5, a = 0.5. For
a mass ratio µ/M ∼ 10−5 we have TRR ≈ 27500M . The quadrupolar deviation is fixed at ǫ = 0.15 which corresponds
to a fractional difference δQ/QK = 40%. The actual waveforms are shown in Fig. 4. Clearly, after a time lapse
∼ TRR the accumulated phase-difference between the two waveforms is quite significant. The waveform deviation due
to a nonzero ǫ can be also compared against the deviation imparted by allowing the orbit to evolve under radiation
reaction. For the particular case of Fig. 4, after a time interval t ∼ TRR, the waveforms dephase mainly due to the
non-Kerr property, rather than due to radiation reaction.

In order to quantify the waveform difference in a more rigorous manner we compute overlaps between Kerr and
quasi-Kerr waveforms truncated at t = TRR. Some results are given in Fig. 5 as a function of the mass ratio for the
two values ǫ = 0.07 and ǫ = 0.15. One can see that the overlap can drop quite dramatically (down to 40%) even for
small values of ǫ (0.07) and for realistic mass ratios (∼ 10−6).

This an important result of the present paper: The typically low overlaps between quasi-Kerr and Kerr waveforms
(for the same orbital parameters and spin) simply mean that using Kerr templates for studying EMRIs in a true
non-Kerr spacetime might result in low SNRs, accompanied by significant loss in the number of observed events.
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FIG. 5: Right panel: radiation reaction timescale TRR (see main text for definition), as a function of mass ratio µ/M . Left
panel: overlaps (expressed in %) between quasi-Kerr and Kerr waveforms for the same orbit p = 10M, e = 0.5, a = 0.5M and
for ǫ = 0.07, 0.15, truncated at t = TRR(µ/M). The solid line is the spline interpolation between the data points.

B. Prelude to the ‘confusion problem’

According to our results, it is clear that even a modest (say ∼ 10%) deviation from the Kerr quadrupole moment is
sufficient to render any Kerr template waveform inaccurate assuming the same orbit {p, e} and spin parameter a/M .

This statement begs the question: is it actually best to compare waveforms corresponding to the same set of
parameters {a, p, e} ? One could argue that we should have rather fixed the orbital frequencies,

ΩK
i = ΩqK

i , i = φ, r (4.4)

Then one would expect a good agreement in phase between the two waveforms. Note that this choice would correspond
in comparing waveforms with different {p, e}, given fixed values of a, ǫ. If (p, e) and (p̃, ẽ) are the Kerr and quasi-Kerr
orbital elements, respectively, and assuming a small deviation δp = p̃− p ∼ O(ǫ) (and similarly for e) we have,

ΩK
i (p, e) = ΩqK

i (p̃, ẽ) = ΩK
i (p̃, ẽ) + ǫΩ

(1)
i (p, e) ⇒

∂ΩK
i

∂p
δp+

∂ΩK
i

∂e
δe = −ǫΩ(1)(p, e) (4.5)
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This 2×2 system has a non-vanishing determinant and a unique solution for (δp, δe). Note that for ǫ = 0 this solution
becomes trivial, but this is true as long as we do not allow for variation in a/M . In Fig. 6 we show the solution of
(4.5) for a = 0.4M, ǫ = 0.1. We can see that the most pronounced deviation between Kerr and quasi-Kerr orbits
occurs in the small p, small e region. This is understandable as in this case the body spends most of its orbital time
in the strong-field where the deviation from the Kerr metric is stronger. As expected for p≫M both δp, δe→ 0.

Our preliminary results on waveform comparison are quite alarming: fixing the orbital frequencies instead of {p, e}
lead to overlaps very close to unity between Kerr and quasi-Kerr waveforms. For the particular case of µ/M = 10−5,
a = 0.3M and ǫ = 0.1 and for {p̃, ẽ} = {10M, 0.3} we get from (4.5) {p, e}K = {9.906M, 0.317} and the resulting
overlap is 97.6% (for the time interval TRR ≈ 31000M). Hence, we have naturally stumbled upon a case of the
confusion problem: the possibility that for a given non-Kerr EMRI waveform there might be a corresponding Kerr
waveform with a different set of parameters which could mimic the former (that is produce an overlap ≥ 95%) on a
radiation reaction timescale.

Here we have given one example where this scenario is indeed true, but this is not the end of the story. Allowing a
time window, longer than TRR, for which radiation reaction effects become important the overlap could significantly
reduce as a consequence of different orbital evolution between Kerr and quasi-Kerr. Orbits which are initially ‘tuned’
to have almost identical orbital frequencies are not expected to preserve this property for t >∼ TRR.

The non-trivial issue of waveform confusion is of great importance for LISA and certainly requires further investi-
gation. We will address it in more detail in a following paper.
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FIG. 6: Deviation in the orbital elements p, e between Kerr (squares) and quasi-Kerr (circles), after equating the orbital
frequencies Ωr, Ωφ, and for fixed a = 0.4M, ǫ = 0.1.

V. CONCLUDING DISCUSSION

One of the LISA mission main science goals will be the ‘mapping’ of Kerr spacetime. In order to perform this
crucial test of General Relativity we should be in a position to prepare data analysis tools capable of gauging any
possible deviations from the Kerr metric. In this paper we have introduced a practical scheme which could be a strong
candidate for this task. Our scheme is based on the notion of a ‘quasi-Kerr’ metric, that is, a metric that deviates
only slightly from the known Kerr metric, while still being stationary and axisymmetric. This deviation can first
appear in the value of the spacetime’s quadrupole moment. We only consider such deviations and ignore any other
possible disagreement in higher multipole moments.

Our quasi-Kerr metric is built with the help of the exterior Hartle-Thorne metric, which describes the spacetime
outside any slowly-rotating, stationary axisymmetric body. Given this metric, we have first studied geodesic motion
of a test-body. Despite the fact that the Hamilton-Jacobi equation is non-separable, we manage to derive approximate
equations for generic orbits employing canonical perturbation theory.
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In this paper we mostly focused on equatorial orbits (in which case the Hamilton-Jacobi equation is trivially
separable) and for given orbital parameters and spin we computed the change imparted to the orbital frequencies
and periastron advance by the non-Kerr metric deviation. We found that for (say) a ∼ 10% fractional difference in
the quadrupole moment, the cumulative change in these quantities is significant after about ∼ 100 orbits, and even
for moderately relativistic orbits, it significantly affects the gravitational wave phasing. This was demonstrated by
generating approximate ‘hybrid’ waveforms (for orbits with identical p, e), for both Kerr and quasi-Kerr spacetimes,
and computing their mutual overlap function.

These overlaps typically drop below ∼ 60% for the relevant mass ratio (allowing for a time interval at which any
radiation reaction effects are still not important). Such low overlaps mean that we might expect significant loss in
signal-to-noise ratio if we attempt to use Kerr waveform templates for the detection of a gravitational wave signal
generated by an EMRI in a quasi-Kerr field. This statement holds as long as we compare waveforms with the same
orbital elements. However, the picture becomes more blurred when we compare waveforms which correspond to
different orbits but same orbital frequencies. Then it is possible for a pair of Kerr and quasi-Kerr waveforms to match
extremely well. This confusion problem could be a generic feature of any non-Kerr data analysis effort, and it means
that we may confuse a possible true non-Kerr event with a Kerr EMRI with the wrong parameters. A possible way to
break this degeneracy is to include backreaction effects, in which case orbits with initial identical frequencies diverge
on the radiation-reaction timescale. This issue will be further analysed in a following paper. Similarly, we shall extend
the present calculations to the case of non-equatorial orbits, but we expect that the conclusions of the present paper
will remain true in this more general scenario.

The scheme we propose here clearly requires further development, especially towards the direction of computing
rigorous quasi-Kerr inspiral waveforms. The subject of wave-dynamics in a general vacuum axisymmetric-stationary
spacetime or even a less general spacetime like the quasi-Kerr, is almost unexplored. Work in progress aims to inves-
tigate if it would be useful to work within the Newman-Penrose formalism [15], trying to formulate some approximate
‘quasi-Teukolsky’ equation, or if it would be more practical to work directly with metric perturbations.
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APPENDIX A

Here we provide the explicit form of the various functions appearing in the H-T metric, eqn. (2.6).

F1(r, θ) = − 1

8Mr4(r − 2M)
[ (r −M)(16M5 + 8M4r − 10M2r3 − 30Mr4 + 15r5)

+ cos2 θ(48M6 − 8M5r − 24M4r2 − 30M3r3 − 60M2r4 + 135Mr5 − 45r6)] +A1(r, θ)

≡ f1(r) + f2(r) cos2 θ , (A1)

F2(r, θ) = −5(r −M)(2M2 + 6Mr − 3r2)

8Mr(r − 2M)
{1 − 3 cos2 θ} −A1(r, θ)

≡ f3(r) + f4(r) cos2 θ , (A2)

G1(r, θ) =
(P − 72M5r) − 3 cos2 θ(L − 56M5r)

8Mr4(r − 2M)
−A1(r, θ) ≡ g1(r) + g2(r) cos2 θ , (A3)

H1(r, θ) =
(16M5 + 8M4r − 10M2r3 + 15Mr4 + 15r5)

8Mr4
{1 − 3 cos2 θ} +A2(r, θ)

≡ h1(r) + h2(r) cos2 θ , (A4)

H2(r, θ) =
5(2M2 − 3Mr − 3r2)

8Mr
{1 − 3 cos2 θ} −A2(r, θ) ≡ h3(r) + h4(r) cos2 θ , (A5)

where

P (r) = 15 r6 − 45Mr5 + 20M2r4 + 10M3r3 + 8M4 r2 + 80M6 (A6)

A1(r, θ) =
15r(r − 2M)

16M2
ln

(

r

r − 2M

)

{1 − 3 cos2 θ} , (A7)

A2(r, θ) = −15(r2 − 2M2)

16M2
ln

(

r

r − 2M

)

{1 − 3 cos2 θ} . (A8)

The radial functions F1,2(r) appearing in the quasi-Kerr metric (2.13) are:

F1(r) = − 5(r −M)

8Mr(r − 2M)
(2M2 + 6Mr − 3r2) − 15r(r − 2M)

16M2
ln

(

r

r − 2M

)

(A9)

F2(r) =
5

8Mr
(2M2 − 3Mr − 3r2) +

15

16M2
(r2 − 2M2) ln

(

r

r − 2M

)

(A10)

APPENDIX B

In this Appendix we present, in some detail, the Hamilton-Jacoby/action-angle theory for a test-body in the Kerr
spacetime, see Refs. [12], [28], [34] for full exposition to the topic.

The starting point is the Hamiltonian for point-particle motion (α, β, κ ∈ {t, r, θ, φ}),

H◦(x
α, pβ) =

1

2
gαβ
K pα pβ = −1

2
µ2 (B1)

Generating a canonical transformation {xα, pβ} ⇒ {Qα, γβ}, with the requirement of a vanishing new Hamiltonian
K, leads to the following H-J equation for the generating function S(xα, γβ, λ):

1

2
gαβ ∂S

∂xα

∂S

∂xβ
+
∂S

∂λ
= 0 (B2)
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As we have emphasized, the Kerr metric allows full separability of this equation in BL coordinates. We write

S(xα, γβ , λ) =
µ2

2
λ− E t+ Lz φ+ Sr(r) + Sθ(θ) ≡

µ2

2
λ+W (xα, γβ) (B3)

The function W (xα, γβ) itself is a generator of a canonical transformation with K = −µ2/2. In any case we find,

Sr(r) =

∫

dr

√
R

∆
and Sθ(θ) =

∫

dθ
√

Θ (B4)

where ∆ = r2 − 2Mr + a2. The potentials R(r, αk) and Θ(θ, αk), where αk ≡ {−µ2/2, E, Lz, Q} are given by the
well-known expressions (see [12],[14]):

R =
[

(r2 + a2)E − aLz

]2 − ∆
[

µ2 r2 + (Lz − aE)2 +Q
]

Θ = Q− cos2 θ

[

a2 (µ2 − E2) +
L2

z

sin2 θ

]

. (B5)

The ‘third’ constant Q is the familiar Carter constant and is related to the original (r, θ) separation constant C as
Q = C2 − L2

z − a2E2.
Equations of geodesic motion are derived from,

pα = gαβ ∂S

∂xβ
⇒







































pt = −gttE + gtφ Lz = (r2 + a2)∆−1 T − a (aE sin2 θ − Lz)

pr = ±grr ∆−1
√
R = ±Σ−1

√
R

pθ = ± gθθ
√

Θ = ±Σ−1
√

Θ

pφ = gφφ Lz − E gtφ = a∆−1 T − aE + L2
z/ sin2 θ

(B6)

where T = (r2 + a2)E − aLz and Σ = r2 + a2 cos2 θ. Similarly, the covariant momentum components are: pt =

−E, pr = ±
√
R/∆, pθ = ±

√
Θ, pφ = Lz. Incidentally, we point out that an equivalent ‘integrated’ form of the

equations of motion can be written by using Qa = ∂S/∂γa, where we can always make the identification γk = αk.
The periodic character of the motion is revealed when we introduce action-angle canonical variables. The actions

are defined as (hereafter i ∈ {r, θ, φ}),

Ji =

∮

pi dq
i ⇒























Jr = 2
∫ ra

rp

dr
√
R/∆

Jθ = 2
∫ θs

θn

dθ
√

Θ

Jφ = 2 π Lz

and are constant functions Ji(ακ). In the expression for Jθ we have used θn, θs for the turning points of the θ-motion.
The next step is to generate the canonical transformation {xα, pβ} ⇒ {wα, Iβ} with Iβ = {pt, Jr, Jθ, Jφ}. Clearly,

Iβ(ακ), or ακ(Iβ). Since the new momenta Iβ are constants with respect to λ the new Hamiltonian must be K =
K(Iβ) = K(αk). Hence we can set K = −µ2/2 and use W (xa, Iβ) of (B3) as the generating function.

For the new coordinates conjugate to Iβ we have,

dwa

dλ
=
∂K

∂Iα
=
∂H◦

∂Iα
≡ να ⇒ wa = νaλ+ βa (B7)

with νa, β
a constants. As expected, wa are angle variables and να fundamental frequencies. These frequencies are

related to the orbital frequencies (in BL time) as,

MΩi = νi/νt (B8)

The explicit expressions can be found in Ref. [28]. We also have,

wα =
∂W

∂Iα
=
∂W

∂ακ

∂ακ

∂Iα
(B9)
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Expanding eqns. (B9),

wt = νt λ+ βt = −2 νt

[

∂Sr

∂µ2
+
∂Sθ

∂µ2

]

+ t−
[

∂Sr

∂E
+
∂Sθ

∂E

]

wr = νr λ+ βr = −2 νr

[

∂Sr

∂µ2
+
∂Sθ

∂µ2

]

+
∂Q

∂Jr

[

∂Sr

∂Q
+
∂Sθ

∂Q

]

wθ = νθ λ+ βθ = −2 νθ

[

∂Sr

∂µ2
+
∂Sθ

∂µ2

]

+
∂Q

∂Jθ

[

∂Sr

∂Q
+
∂Sθ

∂Q

]

wφ = νφ λ+ βφ = −2 νφ

[

∂Sr

∂µ2
+
∂Sθ

∂µ2

]

+
∂Q

∂Jφ

[

∂Sr

∂Q
+
∂Sθ

∂Q

]

+
1

2 π

[

φ+
∂Sr

∂Lz
+
∂Sθ

∂Lz

]

(B10)

These are the ‘integrated’ form of the equations of motion and they also provide the xa(wk, Iβ) relations in an implicit
form. Eqns. (B10) are fully equivalent to eqns. (B6); this can be easily demonstrated by differentiating (say) the wr

and wθ equations,

r2 R−1/2 ṙ + a2 cos2 Θ−1/2 θ̇ +
1

2
κr

[

Θ−1/2 θ̇ −R−1/2 ṙ
]

= 1

r2 R−1/2 ṙ + a2 cos2 θΘ−1/2 θ̇ +
1

2
κθ

[

Θ−1/2 θ̇ −R−1/2 θ̇
]

= 1 (B11)

where here an overdot stands for d/dλ and

κi ≡
1

νi

∂Q

∂Ji
(B12)

Combining eqns. (B11),

(κr − κθ)
[

Θ−1/2 θ̇ −R−1/2 ṙ
]

= 0 ⇒ Θ−1/2 θ̇ = R−1/2 ṙ = σ(r, θ) (B13)

since κr 6= κθ for non-equatorial orbits. The remaining function σ(r, θ) is subsequently specified by substitution into
either of eqns. (B11). We find σ = (r2 + a2 cos2 θ)−1 = Σ−1. Hence, we have arrived at the expected (r, θ) equations
of motion. The remaining (t, φ) equations can be obtained in a similar fashion from the (wt, wφ) equations.
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