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Abstract
We use the uniform light-cone gauge to derive an exact gauge-fixed Lagrangian
and light-cone Hamiltonian for the Green–Schwarz superstring in AdS5 × S5.
We then quantize the theory perturbatively in the near plane wave limit, and
compute the leading 1/J correction to a generic string state from the rank-1
subsectors. These investigations enable us to propose a new set of light-cone
Bethe equations for the quantum string. The equations have a simple form and
yield the correct spinning string and flat space limits. Finally, we clarify the
notion of closed sectors in string theory by proving the existence of perturbative
effective string Hamiltonians which are direct analogues of (all-loop) dilatation
operators in the dual N = 4 gauge theory.

PACS numbers: 11.15.−q, 11.25.−w, 11.30.−j

1. Introduction

The quantization of the Green–Schwarz superstring [1] in the AdS5 × S5
5 background and the

determination of its quantum spectrum continues to be one of the great challenges in string
theory. The AdS5 × S5 spacetime background is distinguished by the fact that it constitutes
one of the three maximally supersymmetric solutions of ten-dimensional type IIB supergravity
[2], with the other two being flat Minkowski space and the IIB plane wave geometry [3],
connected to AdS5 × S5 through suitable Penrose limits [4]. While the superstring spectrum
in the latter two backgrounds is straightforwardly attainable [5] (at least in a light-cone gauge)
the situation is considerably more involved for AdS5 × S5. Next to these structural issues, the
greatest interest in the AdS5 × S5 quantum string stems from the AdS/CFT duality conjecture

3 Also at SUNYIT, Utica, USA and Steklov Mathematical Institute, Moscow.
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[6–8], asserting the equivalence of the string spectrum to the spectrum of scaling dimensions
of composite, gauge-invariant operators in the dual N = 4 U(Nc) super Yang–Mills theory in
the large Nc limit.

Here very important progress has been made during recent years building on the key
concept of integrability4. On the gauge theory side, it has been established that in planar
perturbation theory the dilatation operator [11], whose spectrum yields the desired scaling
dimensions of composite, gauge-invariant operators, is isomorphic to the Hamiltonian of an
integrable quantum spin chain [12]5. Here integrability secures the existence of a Bethe
ansatz which enables one to reformulate the quantum spectral problem into the solution of a
set of non-linear algebraic equations, the Bethe equations. These insights, at present firmly
established up to the three-loop order in the ’t Hooft coupling λ := gYMN2

c [13, 14] in
certain closed subsectors of the full PSU(2, 2|4) symmetry group, led to the formulation of
an exciting conjecture on the all-loop structure of these Bethe equations [15]. This conjecture
has been by now extended to the full PSU(2, 2|4) case in the gauge theory [16] and is
believed to hold in an asymptotic sense, where the classical scaling dimension of the operator
in question determines the loop order to which a prediction is made by the Bethe equations.
Moreover, in the prominent minimal compact, bosonic subsector of SU(2) the conjectured
gauge theory Bethe equations [15] were recently shown to arise microscopically from the
well-known Hubbard model at half filling [17]. Whether this surprising connection is indeed
fully realized beyond three loops remains to be seen; for this a four-loop computation on the
gauge theory side would have to be performed.

In view of these promising developments on the gauge theory side, it is clear that we need
to increase our knowledge of the quantum string spectrum as well.

While it is unclear at present how to attack the question of the exact spectrum, important
progress has been made by mapping out the quantum spectrum perturbatively around limiting,
solvable islands within the unknown full AdS5×S5 territory. One very well-studied such island
is the IIB plane wave background, obtainable as a limit of AdS5 × S5 when a single angular
momentum J on the S5 becomes large [18]. Here the first 1/J corrections to the spectrum
have been established in a series of papers by Callan et al in [19]. A wealth of islands is
obtained by applying the semiclassical approach [20], and looking at classical spinning string
solutions where several spins on AdS5 ×S5 and angular momenta on the S5 become large [21].
In this limit, the classical string energies can be shown to provide the leading contribution to
the true quantum spectrum as long as at least one angular momentum on the S5 becomes large.
Moreover, for a number of explicit solutions quantum fluctuation expansions about them have
been performed [22]. A further known but not so well-studied island is the large radius limit
of the AdS5 × S5 geometry limiting to flat Minkowski space. Here one presently only knows
the leading λ1/4√|n| behaviour of the spectrum [7]; corrections in the λ → ∞ expansion are
an unknown territory.

As a matter of fact, all these computations of the quantum spectrum in the various limits
which allow for an extrapolation to weak coupling λ � 1 display a worrisome disagreement
with the gauge theory results at the three-loop order, which might be related to an order of
limits problem [15]. Resolving this issue is a pressing problem for the AdS/CFT conjecture.

The sigma-model describing classical AdS5 × S5 strings [1] is an integrable model [23]
at the classical level. One certainly hopes integrability to persist also in the quantum theory,
although it is unclear at present how this could be precisely implemented. Inspired by the
all-loop Bethe ansatz conjectures on the gauge theory side and being aware of the data obtained

4 For a list of reviews, see [9].
5 While integrability is know to be broken beyond the planar level, it seems to be preserved if one is focusing on the
specific set of most probable string splitting channels [10].
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in the plane wave, flat space and spinning string limits, Arutyunov, Staudacher and one of the
present authors were able to write down a set of quantum string Bethe equations [24] which
are structurally very similar to the gauge theory equations of [15], differing by a so-called
dressing factor which depends on (an infinite set of ) undetermined functions of λ and thus
taking into account the three-loop discrepancies. These functions should be determined by
comparison with quantum string data. First steps in this direction have been performed in
[22, 25, 26]. The quantum string Bethe equations of [24] have also been generalized to the
full PSU(2, 2|4) setting in [16]6.

So on the string side two central questions arise: (1) Is the quantum string spectrum indeed
described by this (or a similar) set of Bethe equations? (2) How do such Bethe equations arise
at all from a treatment of the quantum string?

Addressing these questions is a complicated problem, and the present paper sets the stage
for an extension of the above-mentioned perturbative studies of the quantum string spectrum
by providing a novel, economic gauge-fixed description of the full AdS5 × S5 system. We
establish the exact form of the action in the novel uniform light-cone gauge, recently introduced
in a truncation to the SU(1|1) subsector [28]. This gauge choice generalizes the phase-space
light-cone gauge of Goddard et al [29] to curved backgrounds. It amounts to rewriting the
string action in a first-order form and introducing the light-cone coordinates x± := (φ ± t)/2,
where t is the global time coordinate of AdS5 conjugate to the energy E, and φ is an angle of
the S5 whose conjugate variable is the angular momentum J .7 The gauge consists of fixing
x+ = τ and p+ = P+ = const where p+ is conjugate to x−, along with a convenient fixing of
the local fermionic κ-symmetry to be discussed.

We establish an exact first-order form of the superstring action in this gauge, consisting
of a kinetic term which determines the (complicated) Poisson structure of the theory and an
exact world-sheet Hamiltonian Hlc = −P−. In order to perform a perturbative quantization
of the system about suitable limits, one needs to expand the Lagrangian in the number of
physical (transverse) fields. In addition, one needs to perform a field redefinition in order
to secure the standard Poisson structure and hence the canonical commutation relations. We
perform this program explicitly for the case of the near plane wave limit, which in the uniform
light-cone gauge amounts to taking the P+ → ∞ limit with λ

/
P 2

+ held fixed, and expanding
the Lagrangian up to the quartic order in transverse fields.

The resulting world-sheet Hamiltonian Hlc and the parameter P+ are related to the global
energy E and angular momentum J via

Hlc = −P− = E − J P+ = E + J. (1.1)

Since Hlc itself is a function of P+, which one determines in perturbation theory, one obtains
an equation E = J + Hlc(E + J ). Solving this in turn for E yields the energy E = E(J ). This
repackaging of the spectral problem for E appears to be very natural from the string viewpoint.
Indeed, one easily establishes that the first 1/P+ correction in the closed rank-1 subsectors
of the world-sheet energy Hlc is determined by a universal expression multiplied by s with
s = {1, 0,−1} for {su(2), su(1|1), sl(2)} respectively.

6 An alternative approach towards the quantum string spectrum not rooted in gauge theory insights has been pursued
in [27]. Here the focus is on the existence of the S-matrix.
7 Let us mention that in contrast to flat space where all null geodesics are equivalent, in AdS5 × S5, there are two
inequivalent sets of null geodesics: one corresponding to a particle orbiting around the big circle on S5, while not
moving in AdS5 and one where the particle moves only in the radial direction of AdS5 in global coordinates (i.e.
parallel to the boundary, in the Poincare coordinates). These two geodesics in turn lead to two possible choices of the
light-cone coordinates, and hence to two different light-cone gauge fixings. The latter coordinates were used in [38].
This choice is natural from the perspective of reaching the flat space limit as a Penrose limit around this geodesic
yields flat space. The former coordinates were used in [5] and are natural for the purposes of reaching the plane wave
limit.
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Interestingly, the energy shifts for the Hlc eigenvalues also follow from a rather simple
set of light-cone Bethe equations of the form8

exp

(
ipk

P+ + sM

2

)
=

M∏
j=1,j �=k

(
x+

k − x−
j

x−
k − x+

j

)s

, (1.2)

where pk denote the quasi-momenta, M is the number of string oscillator excitations, and the
variables x±

k = x±(pk) are those introduced in [15, 30] related to the quasi-momenta as

x±(p) = 1

4

(
cot

p

2
± i

)
(1 + Hlc(p)). (1.3)

Note that this definition depends on the dispersion relation of the light-cone system Hlc(p). To

the order we have computed (O(1/P+)) it is given by Hlc(p) =
√

1 + λ
4π2 p

2. This dispersion
relation will be corrected at higher orders in the 1/P+ expansion. However, the simplest guess
for the all-order structure inspired by the gauge theory Bethe ansätze is clearly

Hlc(p) =
√

1 +
λ

π2
sin2

(p

2

)
. (1.4)

A necessary condition on our light-cone Bethe equations (1.2) is the correct behaviour both
in the spinning string and strong coupling limits. This is explicitly demonstrated in section 8.
The novel feature of this set of Bethe equations is that the exponent on the left-hand side is
not an integer any longer, as P+ = E + J where E is the global energy we wish to determine
in the end. Moreover, the dressing factor which was present for the quantum string equations
[24] is now absent. It may appear, however, at higher orders in 1/P+.

Much of the material presented in this paper is of a rather technical nature, which we
have tried to delegate to the appendices as much as possible. In the main text, we present the
logic and the flow in the construction and uniform light-cone gauge fixing of the superstring
on AdS5 × S5. The leading corrections in the near plane wave expansion are presented in
great detail, along with a discussion of the most prominent closed subsectors and their energy
shifts. Here we reproduce the results of [19] in a very economic fashion. We also comment
on the emergence of effective Hamiltonians for the closed subsectors, which are the direct
analogues of the dilatation operators in the parallel subsectors in the gauge theory. In the final
section, we present the derivation of the light-cone Bethe equations stated above and show
that its thermodynamic and strong coupling limits are in agreement with previous results.

2. Review of the superstring on AdS5 × S5

In this section, we review the structure of the Green–Schwarz superstring action in the
AdS5 × S5 spacetime geometry following closely the discussion in [31, 32]. The superstring
is formulated as a two-dimensional non-linear sigma-model whose target space is given by
the coset manifold [1]

PSU(2, 2|4)

SO(4, 1) × SO(5)
. (2.1)

The full action is given by the sum of the non-linear sigma-model action and a topological
Wess–Zumino term which is fixed uniquely by requiring PSU(2, 2|4) and κ-symmetry
invariance.
8 Note that the wording ‘light cone’ used here does not refer to the gauge used to derive the world-sheet Hamiltonian.
In the spinning string limit, equations (1.2) reduce to the integral equations of [44, 45] which are derived from the
gauge unfixed sigma-model action. The main reason why our equations have a different form than those of [24] is
because they are diagonalizing a different (but equivalent) infinite set of charges. For example, the role of the global
energy E is replaced by the light-cone energy −P−.
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Let us first discuss some basic facts about the supergroup PSU(2, 2|4) that is the isometry
group of the AdS5 × S5 superspace and the corresponding Lie superalgebra psu(2, 2|4).

2.1. Superalgebra psu(2, 2|4)

A convenient description of the superalgebra su(2, 2|4) is provided by 8 × 8 supermatrices M
which can be written in terms of 4 × 4 blocks as

M =
(

A X

Y D

)
. (2.2)

Here the matrices A and D are Grassmann even and X, Y are Grassmann odd. The superalgebra
su(2, 2|4) is singled out by requiring M to have vanishing supertrace str M = tr A − tr D = 0
and to satisfy the following reality condition:

HM + M†H = 0. (2.3)

The choice of the Hermitian matrix H is not unique and we choose H to be of the diagonal
form

H =
(

� 0
0 I

)
, (2.4)

where � is the following matrix,

� =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (2.5)

and I denotes the identity matrix of the corresponding dimension. This choice of H makes it
obvious that the bosonic matrices A and D belong to the algebras u(2, 2) and u(4) respectively.
The condition (2.3) also implies that the fermionic matrices X and Y are conjugated to each
other via the relation

Y = −X†�. (2.6)

Only the supertraceless combination of the two u(1) generators of u(2, 2) and u(4) belongs to
su(2, 2|4). It is represented by the anti-Hermitian matrix iI. Thus, the bosonic subalgebra of
su(2, 2|4) is

su(2, 2) ⊕ su(4) ⊕ u(1). (2.7)

The superalgebra psu(2, 2|4) is defined as the quotient algebra of su(2, 2|4) over this u(1)

factor. It has no realization in terms of 8 × 8 supermatrices.
The construction of the superstring action uses the Z4 grading of the superalgebra

su(2, 2|4) defined by the automorphism M → �(M) with

�(M) =
(

KAtK −KY tK

KXtK KDtK

)
, (2.8)

where At is the usual transpose of A and we choose the 4 × 4 matrix K satisfying K2 = −I

to be

K =


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

 . (2.9)
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Any matrix M from su(2, 2|4) can then be decomposed into the sum

M = M(0) + M(2)︸ ︷︷ ︸
even

+ M(1) + M(3)︸ ︷︷ ︸
odd

,

where every matrix M(p) is an eigenstate of �

�(M(p)) = ipM(p). (2.10)

Explicitly, the matrices M(p) are given by

M(0) = 1

4
(M + �(M) + �2(M) + �3(M)) = 1

2

(
A + KAtK 0

0 D + KDtK

)
, (2.11)

M(2) = 1

4
(M − �(M) + �2(M) − �3(M)) = 1

2

(
A − KAtK 0

0 D − KDtK

)
, (2.12)

M(1) = 1

4
(M − i�(M) − �2(M) + i�3(M)) = 1

2

(
0 X + iKY tK

Y − iKXtK 0

)
, (2.13)

M(3) = 1

4
(M + i�(M) − �2(M) − i�3(M)) = 1

2

(
0 X − iKY tK

Y + iKXtK 0

)
. (2.14)

It is not difficult to check by using these formulae that the matrices M(0) form the
so(4, 1) × so(5) subalgebra which we wish to mod out in the coset. We also see that the
matrices M(1,3) contain the odd matrices. Splitting M into Grassmann even and odd parts

M = Meven + Modd, Meven =
(

A 0
0 D

)
, Modd =

(
0 X

Y 0

)
,

one can also rewrite the explicit expressions for M(p) in the following form,

M(0) = 1
2

(
Meven + K8M

t
evenK8

)
, M(2) = 1

2

(
Meven − K8M

t
evenK8

)
, (2.15)

M(1) = 1
2

(
Modd + iK̃8M

t
oddK8

)
, M(3) = 1

2

(
Modd − iK̃8M

t
oddK8

)
, (2.16)

where K and K̃ are defined as

K8 =
(

K 0
0 K

)
, K̃8 =

(
K 0
0 −K

)
.

The orthogonal complement M(2) of so(4, 1) × so(5) in su(2, 2) ⊕ su(4) can be
conveniently described as follows. In appendix A we introduce the Dirac matrices for
SO(5) γs, s = 1, 2, 3, 4 and γ5 ≡ �, which we all take to be Hermitian. These matrices obey
the relations

Kγ t
s K = −γs, K�tK = −�, (2.17)

and, therefore, span the orthogonal complement to the Lie algebra so(5). The same matrices
can be used to build the set of Dirac matrices for so(4, 1); one takes {i�, γa} with a = 1, 2, 3, 4.
Hence, we can represent any matrix M(2) from su(2, 2|4) in the form

M(2) =
(

it� + zaγa 0
0 iφ� + iysγs

)
+ im0I ≡ xM�M +

(
it� 0
0 iφ�

)
+ im0I,

where xM = {za, ys}, t , φ and m0 are real parameters of M(2), and the 8 × 8 matrices

�M =
{(

γa 0
0 0

)
,

(
0 0
0 iγs

)}
, �+ =

(
� 0
0 �

)
, �− =

(−� 0
0 �

)
. (2.18)

together with the U(1) generator iI form a basis of M(2) which shall be of use in the following.
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2.2. Lagrangian and coset element

Consider now a group element g belonging to PSU(2, 2|4) and construct the following
current,

A = −g−1 dg = A(0) + A(2)︸ ︷︷ ︸
even

+ A(1) + A(3)︸ ︷︷ ︸
odd

, (2.19)

where we also exhibited its Z4 decomposition. By construction this current has zero
curvature. The Lagrangian density for the superstring in AdS5 × S5 can then be written
in the form [1, 33]

L = − 1
2

√
λ Str

(
γ αβA(2)

α A
(2)
β + κεαβA(1)

α A
(3)
β

)
, (2.20)

which is the sum of the kinetic and the Wess–Zumino terms and κ-symmetry requires κ = ±1.
Here we use the convention ε01 ≡ ετσ = 1 and γ αβ = hαβ

√−h is the Weyl-invariant
combination of the metric on the string world-sheet with det γ = −1.

There are many different ways to parametrize the coset elements (2.1) related to each
other by non-linear field redefinitions. For example, the authors of [32] considered the
parametrization for the coset element

g = g(θ)g(x) (2.21)

where θ parametrizes the fermionic and x the bosonic degrees of freedom. This form
is especially convenient to analyse the global symmetries of the Lagrangian (2.20) as the
symmetries act linearly on the fermionic variables θ . Due to this the fermions θ are charged
under any U(1) subgroup of PSU(2, 2|4) and in particular under the subgroups generated by
shifts of the global time coordinate t of AdS5 and of an angle variable φ of S5. On the other hand,
as was discussed in [28], to impose the light-cone gauge it is convenient to use fields neutral
under these two U(1) subgroups. This requires us to redefine the fermions by performing
a similarity transformation of the matrix g(θ) [34]9. The result of this transformation is
equivalent to choosing a different coset element from the start, namely we choose the element
to be of the form

g(χ, x, t, φ) = �(t, φ)g(χ)g(x). (2.22)

Here xM = {za, ys}, a, s = 1, . . . , 4, and the coordinates t, za and φ, ys parametrize AdS5

and S5, respectively. The even matrices �(t, φ) and g(x) describe an embedding of AdS5 ×S5

into SU(2, 2) × SU(4) and g(χ) is a matrix which incorporates the 32 fermionic degrees of
freedom. The matrix g(x) and the diagonal matrix � are defined as

g(x) =
(

ga(z) 0
0 gs(y)

)
, (2.23)

ga(z) = 1√
1 − z2

4

(
1 +

1

2
zaγa

)
, gs(y) = 1√

1 + y2

4

(
1 +

i

2
ysγs

)
, (2.24)

and

�(t, φ) = exp

[
i

2
t

(
� 0
0 0

)
+

i

2
φ

(
0 0
0 �

)]
= exp

[
i

2
x+�+ +

i

2
x−�−

]
, (2.25)

9 In [34] a similarity transformation was used to make fermions neutral under all six U(1) subgroups of PSU(2, 2|4)

that was necessary to apply TsT-transformations to derive the Green–Schwarz action on γ -deformed AdS5 × S5

backgrounds [35, 36].



13044 S Frolov et al

where we have introduced the light-cone coordinates x±, t = x+ − x− and φ = x+ + x−, and
used the 8 × 8 matrices �± of (2.18).

It is not difficult to check that the following important relations are valid,

�±g−1(x) = g(x)�±, (2.26)

because � anticommutes with γa and g−1(x) = g(−x).
Using the parametrization (2.24) the metric on the coset becomes

ds2 = −Gtt (z) dt2 + Gφφ dφ2 +
1(

1 − z2

4

)2 dzi dzj +
1(

1 + y2

4

)2 dyi dyj .

Gtt =
(

1 + z2

4

1 − z2

4

)2

Gφφ =
(

1 − y2

4

1 + y2

4

)2

,

(2.27)

which shows explicitly that t is the global time coordinate of AdS5, φ is an angle of S5, and zi

and yi are the remaining coordinates of AdS5 and S5, respectively.
Finally, we choose the matrix g(χ) to be of the form

g(χ) = χ +
√

1 + χ2, (2.28)

where the odd matrix χ is

χ =
(

0 �

�∗ 0

)
, �∗ = −�†�, � =


θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

 . (2.29)

Here θij are complex fermions, and �† is the Hermitian conjugate of �. By construction the
element g, and g(χ) in particular, belong to the supergroup SU(2, 2|4). Let us stress that the
fermions and the bosonic coordinates zi and yi do not transform under the U(1) transformations
generated by shifts of t and φ. The fields are charged under the four remaining U(1) subgroups
of PSU(2, 2|4). The charges are given in appendix A.

3. Light-cone gauge

In this section, we introduce the first-order formalism for the Green–Schwarz superstring
in AdS5 × S5, and then, following [28], impose the uniform light-cone gauge and fix the
κ-symmetry. The uniform light-cone gauge generalizes the standard phase-space light-cone
gauge of [29] to a curved background, and differs from that used in [38] by the choice of the
light-cone coordinates and κ-symmetry fixing. It belongs to the class of uniform gauges used
to study the dynamics of spinning strings in AdS5 × S5 [39, 41].

3.1. First-order formalism

The simplest way to impose a light-cone gauge is to introduce momenta canonically conjugate
to the coordinates t and φ (or, equivalently, to the light-cone coordinates x±).10 In the case of
superstrings in AdS5 × S5 it is difficult to find the momenta because of a nontrivial interaction
between bosonic and fermionic fields. A better way to proceed is to introduce a Lie-algebra
valued auxiliary field π , and rewrite the superstring Lagrangian (2.20) in the form

L = −Str

(
πA

(2)
0 + κ

√
λ

2
εαβA(1)

α A
(3)
β − 1

2
√

λγ 00

(
π2 + λ

(
A

(2)
1

)2)
+

γ 01

γ 00

(
πA

(2)
1

))
. (3.1)

10 This is the best way to impose any uniform gauge where a momentum is distributed uniformly along a string.
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It is easy to see that if we solve the equations of motion for π and substitute the solution back
into (3.1) one obtains (2.20). The last two terms in (3.1) yield the Virasoro constraints

C1 = Str
(
π2 + λ

(
A

(2)
1

)2) = 0, (3.2)

C2 = Str πA
(2)
1 = 0, (3.3)

which are to be solved after imposing the light-cone gauge and fixing the κ-symmetry.
Without loss of generality we can assume that π belongs to the subspace M(2) of su(2, 2|4),

as the other components in the Z4 grading decouple. It therefore admits the following
decomposition (compare (2.18)),

π = π(2) = i

4
π+�+ +

i

4
π−�− +

1

2
πM�M + π0 iI, (3.4)

where �M are given by equation (2.18). It is obvious that since A(2)
α belongs to the

superalgebra su(2, 2|4), Str A(2)
α = 0, the variable π0 does not contribute to the Lagrangian.

The decomposition (3.4) secures the following identity:

Str πA(2)
α = Str π(2)Aα = Str πAα. (3.5)

The fields π± are not the momenta p± canonically conjugate to x∓ but they may be
expressed in terms of p±. Before doing so let us impose the κ-symmetry gauge conditions,
which simplify all expressions dramatically.

3.2. Fixing κ-symmetry

A key property of the Green–Schwarz action is its invariance under the fermionic κ-symmetry
that halves the number of fermionic degrees of freedom. A κ-symmetry gauge should be
compatible with the bosonic gauge imposed, and analysing the κ-symmetry transformations
(which can be extracted from [1, 33]) for the Green–Schwarz superstring action (3.1) one can
show that in the case of the uniform light-cone gauge κ-symmetry can be fixed by choosing
the fermion � of (2.29) to be of the form

� =


0 0 θ13 θ14

0 0 θ23 θ24

θ31 θ32 0 0
θ41 θ42 0 0

 . (3.6)

It is not difficult to check that � of such a form anticommutes with � and therefore the
gauge-fixed χ satisfies the following important relations:

�+χ = −χ�+, �−χ = χ�−. (3.7)

In fact these relations may be considered as the defining relations for the κ-symmetry gauge
we have chosen and can be used instead of specifying the explicit form of χ .

Taking into account that g−1(χ) = g(−χ) and these identities, one can easily show that

g−1(χ)�+ = �+g(χ) ⇒ g−1(χ)�+g(χ) = �+g(χ)2, (3.8)

g−1(χ)�− = �−g−1(χ) ⇒ g−1(χ)�−g(χ) = �−. (3.9)

Now it is straightforward to use the coset parametrization (2.22) to compute the current
(2.19)
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A = Aeven + Aodd

Aeven = −g−1(x)

[
i

2
dx+�+(1 + 2χ2) +

i

2
dx−�−

]
g(x)

− g−1(x)
[√

1 + χ2 d
√

1 + χ2 − χ dχ + dg(x)g−1(x)
]
g(x).

(3.10)

Aodd = −g−1(x)
[
i dx+�+χ

√
1 + χ2 +

√
1 + χ2 dχ − χ d

√
1 + χ2

]
g(x). (3.11)

These formulae demonstrate explicitly the important advantage of the κ-symmetry gauge we
have imposed. The odd part of the current A does not depend on the light-cone coordinate
x−! It also explains the drastic simplifications that will occur in the uniform light-cone gauge
in comparison to the uniform gauge t = τ, pφ = J used in previous works [19, 41]. In
the gauge x+ = τ the odd part of A depends only on the derivatives of the fermion χ .

3.3. Fixing the light-cone gauge

After having fixed the κ-symmetry we can now proceed to express p± in terms of π±. To this
end, omitting the Virasoro constraints, we can rewrite the Lagrangian (3.1) as follows,

L = p+ẋ− + p−ẋ+ − Str

(
πA⊥

even + κ

√
λ

2
εαβA(1)

α A
(3)
β

)
, (3.12)

where

A⊥
even = −g−1(x)

[√
1 + χ2∂τ

√
1 + χ2 − χ∂τχ + ∂τg(x)g−1(x)

]
g(x), (3.13)

and the momentum p+ canonically conjugate to x− can be easily shown to be equal to

p+ = i

2
Str(π�−g(x)2) = G+π+ − G−π−, G± = 1

2

(
G

1
2
t t ± G

1
2
φφ

)
. (3.14)

The variable p− is not equal to the momentum p− canonically conjugate to x+. It differs from
p− by a contribution coming from the Wess–Zumino term, and is defined as follows:

p− = i

2
Str(π�+g(x)(1 + 2χ2)g(x)). (3.15)

The uniform light-cone gauge is now imposed by setting [28]

x+ = τ +
m

2
σ, p+ = P+ = E + J = const,

x± = 1

2
(φ ± t), p+ = pφ − pt p− = pt + pφ,

(3.16)

where the spacetime energy E and the angular momenta J are integrals over σ of the momenta
pt and pφ conjugate to the global AdS time t and the angle φ

E = −
∫

dσ

2π
pt , J =

∫
dσ

2π
pφ. (3.17)

The string winding number m appears because φ is an angle variable. In what follows, we will
be interested in the near plane wave limit, and, therefore, we set m = 0. Let us stress again
that the density H of the target space Hamiltonian is not equal to −p−. The Wess–Zumino
term in (3.12) also contributes to p−, and, therefore, to H.
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3.4. PSU(2,2|4) charges

The invariance of the Green–Schwarz action under the PSU(2, 2|4) group leads to the existence
of conserved currents and charges. As was shown in [31] the conserved currents can be written
in terms of Aα as follows:

J α =
√

λg(x, θ)
(
γ αβA

(2)
β − κ

2
εαβ

(
A

(1)
β − A

(3)
β

))
g(x, θ)−1. (3.18)

The conserved charges are then given by integrals over σ of J τ

Q =
∫ 2π

0

dσ

2π
J τ . (3.19)

For our purposes, it is convenient to express the charges in terms of the momenta π . To this
end, we note that they satisfy the following equations of motion,

π =
√

λγ τβA
(2)
β =

√
λγ ττ

(
A(2)

τ +
γ τσ

γ ττ
A(2)

σ

)
, (3.20)

and therefore we can express A(2)
τ in terms of π , and substitute it into expression (3.19) for Q.

After a simple algebra we get

Q =
∫ 2π

0

dσ

2π
g(x, θ)

(
π −

√
λ

κ

2

(
A(1)

σ − A(3)
σ

))
g(x, θ)−1. (3.21)

The formula can be written in a more explicit form if we take into account that

A(1)
σ − A(3)

σ = −ig(x)K̃8F
t
σK8g(x)−1, (3.22)

where

Fσ =
√

1 + χ2∂σχ − χ∂σ

√
1 + χ2, (3.23)

is an odd component of the current g−1(χ)∂σ g(χ). Then, the psu(2, 2|4) charges are

Q =
∫ 2π

0

dσ

2π
�g(χ)g(x)

(
π + i

√
λ

κ

2
g(x)K̃8F

t
σK8g(x)−1

)
g(x)−1g(χ)−1�−1. (3.24)

The expression is very simple, and it has the important property that Q does not have an
explicit dependence on the world-sheet metric.

The combinations of components of the matrix Q give charges corresponding to rotations,
dilatations, supersymmetry and so on. To single out the charges one should multiply Q by a
corresponding 8 × 8 matrix, and take the supertrace

QM = Str(QM). (3.25)

The diagonal and skew-diagonal 4 × 4 blocks of M single out bosonic and fermionic
charges of psu(2, 2|4), respectively.

We divide all charges into two groups: kinematic and dynamic charges. Kinematic
charges are those that do not depend on x− and receive no corrections. The matrices M
corresponding to kinematic charges are of the form

Mkin =


a 0 0 g

0 b f 0
0 f̃ ã 0
g̃ 0 0 b̃

 (3.26)

where a, b, ã and b̃ are su(2) matrices. This is because �− commutes with any matrix of such
a form, and therefore x− drops out of QM. We also add to these charges the l.c. momentum
p+ that is expressed in terms of Q as follows:

p+ = i

2
Str(Q�−). (3.27)
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One can easily check that p+ coincides with (3.14).
The matrices M corresponding to dynamic charges are obviously of the form

Mdyn =


0 c h 0
d 0 0 k

h̃ 0 0 c̃

0 k̃ d̃ 0

 , (3.28)

and we also should add the l.c. momentum p− = −Hl.c that is expressed in terms of Q as
follows:

p− = i

2
Str(Q�+). (3.29)

It is not difficult to verify that −p− coincides with the Hamiltonian (4.4).
A convenient basis of the matrices M is provided by the SO(4) gamma matrices. It is

not difficult to check that Mkin are spanned by the following set of 29 matrices,

Mkin = {
�−, P ±

2 ⊗ 1
2 [�a, �b], σ± ⊗ �a, σ

± ⊗ ��a

}
, (3.30)

and Mdyn are spanned by the following 33 matrices,

Mdyn = {
�+, P

±
2 ⊗ �a, P

±
2 ⊗ ��a, σ

± ⊗ 1
2 [�a, �b], σ± ⊗ �, σ± ⊗ I4

}
. (3.31)

The detailed structure of the conserved charges and their algebra will be discussed elsewhere.

4. Gauge-fixed Lagrangian

Now we are ready to find the light-cone gauge-fixed Lagrangian. This is a multistep procedure.
First we solve equation (3.14) for π+(P+, π−). Second we solve the Virasoro constraint C2 of
equation (3.3) to find x ′

−. Finally we determine π− from the second Virasoro constraint C1 of
equation (3.2). Substituting all the solutions into the Lagrangian of equation (3.12), we end
up with the total gauge-fixed Lagrangian. This explicit derivation and definitions of all the
quantities used to write it down may be found in appendix B.

The upshot is a Lagrangian which can be written in the standard form as the difference of
a kinetic term and the Hamiltonian density:

Lgf = Lkin − H. (4.1)

The kinetic term Lkin depends on the time derivatives of the physical fields, and determines
the Poisson structure of the theory. It can be cast in the form

Lkin = pMẋM − iP+

4
Str (�+χ∂τχ) +

1

2
gNπM Str ([�N,�M ] Bτ )

+ iκ

√
λ

2

(
G2

+ − G2
−
)

Str
(
Fτ K̃8F

t
σK8

) − iκ

√
λ

2
GMGN Str

(
�NFτ�MK̃8F

t
σK8

)
,

(4.2)

where the functions Bα and Fα refer to the even and odd components of g−1(χ)∂αg(χ) and
are explicitly defined in appendix B.2 (equation (B.5)). As one can see, the kinetic term is
highly nontrivial and leads to a complicated Poisson structure (similar to that derived in [32]
for strings in su(1|1) subsector). To quantize the theory perturbatively, for example, in the
near plane wave limit, we will need to redefine the fields so that the kinetic term would acquire
the conventional form

Lkin → pMẋM − i

2
Str(�+χ∂τχ), (4.3)
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and, therefore, the redefined fields would satisfy the canonical commutation relations. This
will be done in the next section up to the quartic order in the fields.

The density H of the Hamiltonian is given by the sum of −p− and a contribution of the
Wess–Zumino term

H = −p− + HWZ (4.4)

HWZ = κ

√
λ

2

(
G2

+ − G2
−
)

Str
(
�+χ

√
1 + χ2K̃8F

t
σK8

)
+ κ

√
λ

2
GMGN Str

(
�+�Nχ

√
1 + χ2�MK̃8F

t
σK8

)
. (4.5)

Here the explicit expression for p− is given by (B.4), and we also should use the
formulae (B.16), (B.12) and (B.27) to express everything in terms of physical fields.

Let us stress that in this way we find the gauge-fixed Lagrangian as an exact function of
the light-cone momentum P+, and the string tension

√
λ. Then it is straightforward to consider

various expansions of the Lagrangian; in particular, in the next sections we will consider a
near plane wave expansion, with P+ → ∞ with λ

/
P 2

+ fixed.

5. Near plane wave expansion

In this section, we discuss the near plane wave expansion of the gauge-fixed Lagrangian (4.1),
which amounts to a large P+ limit with the effective coupling λ̃ = 4λ

P 2
+

fixed. For this we need
to redefine the fields to reduce the kinetic term (4.2) to the canonical form (4.3) up to terms
of sixth order in fields, and expand the density of the Hamiltonian to the quartic order. The
resulting quartic Hamiltonian may be used to compute the 1/J correction to the spacetime
energy E of an arbitrary string state.

5.1. Field redefinition

It is straightforward to find the necessary field redefinition to remove all quartic terms in the
kinetic term of the Lagrangian. To this end, we note that the kinetic term can be written in the
following form,

Lkin = pMẋM − iP+

4
Str(�+χχ̇) +

iP+

2
Str(�+�(p, x, χ)χ̇), (5.1)

where � is a function of cubic order in physical fields and has the same structure as χ , i.e. it
satisfies the defining relations (3.7) for our κ-symmetry gauge. Then it is clear that the last
term can be removed by the following redefinition of χ :

χ → χ + �(p, x, χ). (5.2)

This redefinition casts the kinetic term (5.1) into the form (up to a total derivative)

Lkin = pMẋM − iP+

4
Str(�+χχ̇) +

iP+

2
Str(�+(�(p, x, χ + �) − �(p, x, χ))χ̇)

+
iP+

4
Str(�+�(p, x, χ)�̇(p, x, χ)). (5.3)

Since � is at least of the cubic order in the fields, the terms on the second line of (5.3) are at least
of the sixth order. These terms can also be removed by a similar field redefinition. However,
this time one would need to redefine not only the fermions but the bosonic coordinates xM

and pM , too. For our purposes here it is sufficient to perform only the simplest redefinition
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(5.2), and just drop the terms on the second line of (5.3). This reduces the kinetic term to the
canonical quadratic form which can be written in a very explicit form as

Lkin = pMẋM − iP+

4
Str(�+χχ̇) = pMẋM +

iP+

4
tr(η†η̇ + θ †θ̇ )

= pMẋM +
iP+

2

(
η†

aη̇a + θ †
a θ̇a

)
. (5.4)

Here we used the following decomposition of the fermions (see appendix A):

χ = σ+ ⊗ � + σ− ⊗ �∗, � = P+η + P−θ †, η = ηa�a, θ = θa�a. (5.5)

Rescaling the fermions

χ →
√

2

P+
χ, η →

√
2

P+
η, θ →

√
2

P+
θ, (5.6)

brings the kinetic term into the canonical form

Lkin = pMẋM + iη†
aη̇a + iθ †

a θ̇a, (5.7)

which shows that (p, x), (η†, η) and (θ †, θ) are canonically conjugate pairs.
Before discussing the expansion of the Hamiltonian let us mention an important and nice

property of the redefinition (5.2). One can check that up to the sixth order in fields, the
formula (B.12) for x ′

− takes the form

x ′
− = − 1

P+

(
pMx ′

M − i

4
P+ Str(�+χχ ′) + ∂σf (p, x, χ)

)
, (5.8)

where f (p, x, χ) is a function of the momenta and coordinates. Thus, we see that integrating
(5.8) over σ we get the usual ‘flat space’ level-matching condition

V =
∫ 2π

0

(
pMx ′

M − i

4
P+ Str(�+χχ ′)

)
= 0, (5.9)

which in terms of the rescaled fermions (5.6) takes the form

V =
∫ 2π

0

(
pMx ′

M + iη†
aη

′
a + iθ †

aθ
′
a

) = 0. (5.10)

5.2. Hamiltonian

Here we derive the density H of the Hamiltonian up to the fourth order in fields. To this end we
expand (4.4), and take into account the fermion redefinition (5.2). The fermion shift produces
additional quartic terms in the Hamiltonian coming only from the shift of the quadratic part at
this order.

The density of the complete quadratic Hamiltonian can be easily found by using formulae
from appendix B:

H2 = 1

P+
p2

M +
P+

4
x2

M +
λ

P+
x ′2

M +
κ

2

√
λ Str(�+χK̃8χ

′tK8) +
P+

4
Strχ2. (5.11)

We see from this equation and the kinetic term (5.4) that in order to have a canonical Poisson
structure and a standard quadratic Hamiltonian of the form 1

2p2
M + 1

2x2
M we should make the

following rescaling of the fields:

pM →
√

P+

2
pM, xM →

√
2

P+
xM, χ →

√
2

P+
χ. (5.12)
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Then the density of the quadratic Hamiltonian takes the form

H2 = 1

2
p2

M +
1

2
x2

M +
λ̃

2
x ′2

M +
κ

2

√
λ̃ Str(�+χK̃8χ

′tK8) +
1

2
Str χ2, (5.13)

where

λ̃ = 4λ

P 2
+

(5.14)

is the effective coupling constant which is kept finite in the plane wave limit P+ → ∞ or
equivalently λ → ∞. This limit is the light-cone gauge equivalent of the usual J → ∞ BMN
limit. Note that the coupling λ̃ is not equal to the effective coupling λ′ = λ

J 2 but reduces to it
only in the strict J → ∞ limit.

In terms of the rescaled bosons and fermions η and θ H2 takes the form

H2 = p2
M

2
+

x2
M

2
+

λ̃

2
x ′2

M +
1

2
tr

(
η†η + θ †θ +

κ
√

λ̃

2
(ηη′ + θθ ′ − η†η′† − θ †θ ′†)

)
. (5.15)

The quartic Hamiltonian is also straightforwardly derived. The details of the computation
can be found in appendices C and D. In terms of the rescaled fields (5.12) it takes the form

H4 = 1

2P+

[
2̃λ(y ′2z2 − z′2y2 + z′2z2 − y ′2y2) − λ̃ Str

(
1

2
χχ ′χχ ′ + χ2χ ′2

+
1

4
(χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8 + χK̃8χ

′tK8χK̃8χ
′tK8

)
+ λ̃ Str

(
(z2 − y2)χ ′χ ′ +

1

2
x ′

MxN [�M,�N ](χχ ′ − χ ′χ) − 2xMxN�Mχ ′�Nχ ′
)

+
iκ

√
λ̃

4
(xNpM)′ Str([�N,�M ](K̃8χ

tK8χ − χK̃8χ
tK8))

]
. (5.16)

One can easily see that the uniform light-cone gauge quartic Hamiltonian (5.16) is considerably
simpler than the quartic Hamiltonian obtained by Calan et al [19], though still rather involved.
An important property of the Hamiltonian is that it vanishes in the point-particle limit, when
all fields do not depend on σ . One can show that the same property is also valid for the
sixth-order Hamiltonian. This is in accord with the observation that already the quadratic
particle Hamiltonian reproduces the spectrum of type IIB supergravity on AdS5 × S5.

It is convenient to express the Hamiltonian in terms of the (rescaled) complex bosonic
fields Za, Ya (see also appendix A),

Z1 = z2 + iz1, Z2 = z4 + iz3, Z4 = z2 − iz1, Z3 = z4 − iz3,

Y1 = y2 + iy1, Y2 = y4 + iy3, Y4 = y2 − iy1, Y3 = y4 − iy3,
(5.17)

and their canonical momenta (associated with za or ya)

P1 = 1
2 (p2 + ip1), P4 = 1

2 (p2 − ip1), P2 = 1
2 (p4 + ip3), P3 = 1

2 (p4 − ip3),

with

Z†
a = Z5−a, Y †

a = Y5−a, P z†
a = P z

5−a, P y†
a = P

y

5−a. (5.18)

The convention is chosen such that pMxM = P z
5−aZa + P

y

5−aYa . Then the kinetic term (5.7)
takes the form

Lkin = P z
5−aŻa + P

y

5−aẎa + iη†
aη̇a + iθ †

a θ̇a with a = 1, 2, 3, 4. (5.19)
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In terms of the complex fields the quadratic Hamiltonian acquires the form

H2 = P z
5−aP

z
a + P

y

5−aP
y
a +

1

4
(Z5−aZa + Y5−aYa) +

λ̃

4
(Z′

5−aZ
′
a + Y ′

5−aY
′
a)

+
1

2
tr

(
η†η + θ †θ +

κ
√

λ̃

2
(ηη′ + θθ ′ − η†η′† − θ †θ ′†)

)
, (5.20)

and the quartic Hamiltonian is given by the following sum,

H4 = Hbb + Hbf + Hff , (5.21)

where

Hbb = λ̃

4P+
(Y ′

5−aY
′
aZ5−bZb − Y5−aYaZ

′
5−bZ

′
b + Z′

5−aZ
′
aZ5−bZb − Y ′

5−aY
′
aY5−bYb), (5.22)

Hbf = 1

2P+
tr

[
λ̃

2
(Z5−aZa − Y5−aYa)(η

′†η′ + θ ′†θ ′)

− λ̃

2
Z′

mZn[�m, �n](P+(ηη′† − η′η†) − P−(θ †θ ′ − θ ′†θ)

+
λ̃

2
Y ′

mYn[�m, �n](−P−(η†η′ − η′†η) + P+(θθ ′† − θ ′θ †))

− iκ

2

√
λ̃
(
ZnP

z
m

)′
[�n, �m](P+(η

†η† + ηη) + P−(θ †θ † + θθ))

+
iκ

2

√
λ̃
(
YnP

y
m

)′
[�n, �m](P−(η†η† + ηη) + P+(θ

†θ † + θθ))

+ 4ĩλZmYn(−P−�mη′�nθ
′ + P+�mθ ′†�nη

′†)

]
. (5.23)

The quartic fermionic term can be written in the form

Hff = Hff (η) − Hff (θ), (5.24)

where Hff (η) takes the following amazingly simple form:

Hff (η) = − λ̃

4P+
tr �(η′†ηη′†η + η†η′η†η′ + η′†η†η′†η† + η′ηη′η). (5.25)

6. Quantization

We now turn to the perturbative quantization of the light-cone AdS5 × S5 superstring in the
near plane wave limit. Due to the fermionic field redefinitions performed above up to the sixth
order the kinetic Lagrangian is of canonical form. Promoting all fields to operators, we read
off from (5.19) the (anti)commutation relations[
Za, P

z
5−b

] = iδab

[
Ya, P

y

5−b

] = iδab

{
ηa, η

†
b

} = δab

{
θa, θ

†
b

} = δab. (6.1)

We now need to establish a mode decomposition of the bosonic and fermionic fields which
renders the quadratic piece of the Hamiltonian (5.20) in a diagonal form. This will be done
for the bosonic and fermionic sector in the following.
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6.1. Representation for bosons

The bosonic part of the quadratic Hamiltonian (5.20) has the form

H
(0)
bos = P z

5−aP
z
a + P

y

5−aP
y
a +

1

4
(Z5−aZa + Y5−aYa) +

λ̃

4
(Z′

5−aZ
′
a + Y ′

5−aY
′
a). (6.2)

We shall choose the following mode decompositions for Za and P z
a ,

Za(τ, σ ) =
∑

n

einσ Za,n(τ ), Z†
a,n(τ, σ ) = Z5−a,−n(τ.σ );

P z
a (τ, σ ) =

∑
n

einσ P z
a,n(τ ), P z†

a,n(τ, σ ) = P z
5−a,−n(τ, σ ),

P z
a,n =

√
ωn

2

(
β+

a,n + β−
5−a,−n

)
, Za,n = 1

i
√

ωn

(
β+

a,n − β−
5−a,−n

)
,

(6.3)

and similarly for Ya and P
y
a

Ya(τ, σ ) =
∑

n

einσ Ya,n(τ ), Y †
a,n(τ, σ ) = Y5−a,−n(τ, σ );

P y
a (τ, σ ) =

∑
n

einσ P y
a,n(τ ), P y†

a,n(τ, σ ) = P
y

5−a,−n(τ, σ ),

P y
a,n =

√
ωn

2

(
α+

a,n + α−
5−a,−n

)
, Ya,n = 1

i
√

ωn

(
α+

a,n − α−
5−a,−n

)
,

(6.4)

where the frequency ωn is defined as

ωn =
√

1 + λ̃n2. (6.5)

Then in terms of the creation and annihilation operators the quadratic bosonic Lagrangian,
stemming from the kinetic piece (5.19) and Hamiltonian (5.11), takes the form

L
(0)
bos = i

∑
a,n

(
α+

a,nα̇
−
a,n + β+

a,nβ̇
−
a,n

) −
∑
a,n

ωn

(
α+

a,nα
−
a,n + β+

a,nβ
−
a,n

)
. (6.6)

This shows that in quantum theory the only nontrivial commutators are simply[
α−

a,n, α
+
a,n

] = 1,
[
β−

a,n, β
+
a,n

] = 1, (6.7)

and we have the standard quadratic Hamiltonian.

6.2. Representation for fermions

For the quadratic fermionic sector we have the Hamiltonian from (5.20)

H
(0)
ferm = 1

2
tr
(
η†η + θ †θ − κ

2

√
λ̃(−ηη′ − θθ ′ + η†η′† + θ †θ ′†)

)
. (6.8)

Our mode decomposition for fermions follows a similar construction found in [32] and reads

η(τ, σ ) =
∑

n

einσ ηn(τ ), η†(τ, σ ) =
∑

n

e−inσ η†
n(τ ),

θ(τ, σ ) =
∑

n

einσ θn(τ ), θ †(τ, σ ) =
∑

n

e−inσ θ †
n(τ )

(6.9)

ηn = fnη
−
−n + ignη

+
n, η†

n = fnη
+
−n − ignη

−
n .

θn = fnθ
−
−n + ignθ

+
n , θ †

n = fnθ
+
−n − ignθ

−
n .

(6.10)
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Here we have introduced the quantities

fn =
√

1

2

(
1 +

1

ωn

)
, gn = κ

√
λ̃n

1 + ωn

fn. (6.11)

Note that g2
n = 1

2

(
1 − 1

ωn

)
. In terms of the creation and annihilation operators the quadratic

fermion Lagrangian then indeed takes the diagonalized form

L
(0)
ferm = i

2
tr
∑

n

(
η+

nη̇
−
n + θ+

n θ̇−
n

) − 1

2
tr
∑

n

ωn

(
η+

nη
−
n + θ+

n θ−
n

)
. (6.12)

If, furthermore, we use the decomposition of the matrices η and θ in terms of the Dirac
matrices of appendix A as

η−
n = η−

a,n�5−a, η+
n = η+

a,n�a, θ−
n = θ−

a,n�5−a, θ+
n = θ+

a,n�a, (6.13)

and the identity tr �a�5−b = 2δab, then the quadratic Lagrangian may be rewritten as

L
(0)
ferm = i

∑
n

(
η+

a,nη̇
−
a,n + θ+

a,nθ̇
−
a,n

) −
∑

n

ωn

(
η+

a,nη
−
a,n + θ+

a,nθ
−
a,n

)
. (6.14)

This shows that in quantum theory the only nontrivial anticommutators between fermionic
mode operators are{

η−
a,n, η

+
a,n

} = 1,
{
θ−
a,n, θ

+
a,n

} = 1, (6.15)

and we have a standard diagonal quadratic Hamiltonian in the fermionic sector as well.
Note that we will take the quartic Hamiltonian Hbb + Hbf + Hff to be normal-ordered

with respect to these bosonic and fermionic oscillator modes.

6.3. Generic string state

The generic eigenstate of the quadratic Hamiltonian can now be written in the form

|�〉 =
4∏

c=1

∣∣θc,M
c
θ

〉 ⊗ 4∏
c=1

∣∣ηc,M
c
η

〉 ⊗ 4∏
c=1

∣∣Zc,M
c
z

〉 ⊗ 4∏
c=1

∣∣Yc,M
c
y

〉
, (6.16)

where we assume the products to be in the decreasing order
∏4

c=1 fc ≡ f4f3f2f1, and take∣∣θc,M
c
θ

〉 ≡ θ+
c

(
nMc

θ

)
θ+
c

(
nMc

θ −1
) · · · θ+

c (n2)θ
+
c (n1)|0〉, (6.17)∣∣ηc,M

c
η

〉 ≡ η+
c

(
mMc

η

)
η+

c

(
mMc

η−1
) · · · η+

c (m2)η
+
c (m1)|0〉, (6.18)∣∣Zc,M

c
z

〉 ≡ β+
c

(
lMc

z

)
β+

c

(
lMc

z −1
) · · ·β+

c (l2)β
+
c (l1)|0〉, (6.19)∣∣Yc,M

c
y

〉 ≡ α+
c

(
kMc

y

)
α+

c

(
kMc

y−1
) · · · α+

c (k2)α
+
c (k1)|0〉. (6.20)

In the above, we have used the notation η+
c (m) ≡ η+

c,m and so on, and we assumed that the
mode numbers form increasing sequences, i.e. for fermions

n1 < n2 < · · · < nMc
θ −1 < nMc

θ
, m1 < m2 < · · · < mMc

η−1 < mMc
η

and for bosons

l1 � l2 � · · · � lMc
z −1 � lMc

z
, k1 � k2 � · · · � kMc

y−1 � kMc
y
.

The energy of this state is

H2|�〉 = E|�〉, E =
∑

mode numbers

ωmode number. (6.21)
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The string states must also satisfy the level-matching condition (5.9) that in terms of the
creation and annihilation operators takes the form

V =
∑
a,n

n
(
α+

a,nα
−
a,n + β+

a,nβ
−
a,n + η+

a,nη
−
a,n + θ+

a,nθ
−
a,n

)
. (6.22)

It just states that the sum of all mode numbers vanishes

V|�〉 = 0 ⇒
∑

all mode numbers

(mode number) = 0. (6.23)

7. Sectors and 1/J correction

It is known that in N = 4 SYM there are sectors of operators closed under the action
of the dilatation operator; see [9] and references therein. In this section, we explain how
string states dual to operators from su(2), sl(2), su(1|1), su(1|2) and su(2|3) sectors can be
constructed starting from corresponding eigenstates of the quadratic Hamiltonian, and compute
1/J corrections to energies of the states in the su(2), sl(2), su(1|1) sectors.

7.1. su(2) sector

The su(2) sector of N = 4 SYM consists of operators of the form

Osu(2) = tr(ZJ XM + permutations), (7.1)

where Z and X are the two complex scalars carrying unit charges under the two U(1) subgroups
of SU(4) that in the string picture correspond to the U(1) generating shifts of the angle φ of S5

and the U(1) generated by �S
1 , respectively; see appendix A. The operators, correspondingly,

carry J and M units of charges. They are highest weight which means that they have minimal
conformal dimensions among all the operators with the given charges.

Dual string states can be easily identified in the BMN limit P+ → ∞, λ̃ fixed. First of all
the charge J is assigned to the light-cone vacuum and no creation and annihilation operator
carries charges under this U(1). Then from the tables of charges in appendix A we see that the
string state carrying M units of charge under the second U(1) and having the minimal energy
is obtained by acting on the vacuum by M creation operators α+

1,n. Therefore, in the BMN
limit the string states dual to operators from the su(2) sector are the states

|�su(2)〉 = α+
1,nM

α+
1,nM−1

· · · α+
1,n1

|0〉, (7.2)

which are eigenstates of the quadratic Hamiltonian with the energy

E0 =
M∑

k=1

ωnk
, (7.3)

and satisfy the level-matching condition
M∑

k=1

nk = 0.

For generic values of the mode numbers nk there is no nontrivial degeneracy in the spectrum11,
and the leading 1/P+ correction to the energy of the string state can be found just by computing

11 Given a state with mode numbers {nk}, the state with the mode numbers {−nk} has the same energy. One can easily
see that the states do not mix with each other. One can also have a situation when mode numbers are divided into
several groups, each group satisfying the level-matching condition. Then changing the signs of the mode numbers in
any of the groups leads to a state with the same energy. One can show that these states do not mix at least at the 1/P+
order.
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the average of the quartic Hamiltonian Hbb in the state (7.2). The computation is very simple
because there is only one term in Hbb contributing to the average. Explicitly, we find

〈�su(2)|Hbb|�su(2)〉 = − λ̃

4P+

∫ 2π

0

dσ

2π
〈�su(2)|Y ′

aY
′
5−aYbY5−b|�su(2)〉

= λ̃

4P+

∑
n+m+k+l=0

nm√
ωnωmωkωl

〈�su(2)|4α+
a,nα

+
b,kα

−
a,−mα−

b,−l |�su(2)〉

= − λ̃

P+

M∑
k �=j

njnk + n2
k

ωjωk

= − λ̃

2P+

M∑
k �=j

(nj + nk)
2

ωjωk

, (7.4)

where for simplicity we used the notation ωj ≡ ωnj
=

√
1 + λ̃n2

k . Now to find the 1/J

correction to the energy of the string state we should solve the equation

E − J =
M∑

k=1

√
1 +

4λn2
k

(E + J )2
− λ̃

2P+

M∑
k �=j

(nj + nk)
2

ωjωk

(7.5)

in powers of 1/J keeping λ′ = λ/J 2 and M finite. A simple algebra gives

Esu(2) − J =
M∑

k=1

ω̄k − λ′

4J

M∑
k=1

M∑
j=1

n2
kω̄

2
j + n2

j ω̄
2
k

ω̄kω̄j

− λ′

4J

M∑
k �=j

(nj + nk)
2

ω̄j ω̄k

, (7.6)

where now ω̄k :=
√

1 + λ′n2
k with the BMN coupling constant λ′ := λ/J 2. Taking into account

the level-matching condition one can easily check that (7.6) coincides with the expression
obtained in [24] by using the quantum string Bethe ansatz, and in [42] by using a rather
complicated string Hamiltonian in the uniform gauge t = τ, pφ = J .

Since the quartic Hamiltonian H4 contains terms describing interactions of operators
α±

1,n with operators charged under other U(1) subgroups, the state (7.2) gets corrections
which depend on these operators. We will argue at the end of this section that there is a
unitary transformation which transforms the Hamiltonian to such a form that the action of the
transformed Hamiltonian on the states (7.2) (and in general on states dual to operators from
closed sectors) is closed. This Hamiltonian is a string analogue of the field theory dilatation
operator, and its restriction to operators α±

1,n can be considered as an effective Hamiltonian for
the su(2) sector.

7.2. sl(2) sector

The sl(2) sector of N = 4 SYM consists of operators of the form

Osl(2) = tr(DM
− ZJ + permutations), (7.7)

where D− is the covariant derivative in a light-cone direction carrying unit charge under the
U(1) subgroup of SU(2, 2), that in the string picture corresponds to the U(1) generated by
�AdS

1 ; see appendix A. The operators, correspondingly, carry J and M units of the charges.
They are again highest weight, and string states dual to operators from the sl(2) sector of
N = 4 SYM are easily identified by analysing the tables of charges in appendix A. We see
that the string state carrying M units of the charge S1 and having the minimal energy is obtained
by acting on the vacuum by M creation operators β+

1,n. Therefore, in the BMN limit the string
states dual to operators from the sl(2) sector are the states

|�sl(2)〉 = β+
1,nM

β+
1,nM−1

· · · β+
1,n1

|0〉. (7.8)



The AdS5 × S5 superstring in light-cone gauge and its Bethe equations 13057

The computation of the 1/P+ correction to this state literally repeats the computation we did
for the su(2) sector. The only change is the opposite sign of the correction (7.4), compare
(5.22), i.e. we have

E − J =
M∑

k=1

√
1 +

4λn2
k

(E + J )2
+

λ̃

2P+

M∑
k �=j

(nj + nk)
2

ωjωk

, (7.9)

and therefore, the 1/J correction for the sl(2) state takes the form

Esl(2) − J =
M∑

k=1

ω̄k − λ′

4J

M∑
k=1

M∑
j=1

n2
kω̄

2
j + n2

j ω̄
2
k

ω̄kω̄j

+
λ′

4J

M∑
k �=j

(nj + nk)
2

ω̄j ω̄k

. (7.10)

Again it is straightforward to check that (7.10) coincides with the expression obtained in [42].
Let us mention that the fact that the 1/J correction for su(2) states differs from the one for
sl(2) states just by a sign of one term seems not to have been noticed before. This sign
difference between the su(2) and sl(2) reflects the fact that curvatures in the S5 and AdS5 parts
are equal but of opposite signs.

7.3. su(1|1) sector

The detailed discussion of the su(1|1) sector in N = 4 SYM and string theory was given
in [28, 32, 43]. We find it useful, for completeness and since we have changed the basis of
gamma matrices, to review shortly the consideration in [32].

The su(1|1) sector of N = 4 SYM consists of operators of the form

Osu(1|1) = tr
(
ZJ− M

2 �M + permutations
)
. (7.11)

The fermion � is the highest weight component of the gaugino from the vector multiplet. The
gaugino �α belongs to the vector multiplet, it is neutral under su(3) which rotates the three
complex scalars between themselves, and it carries the same charge 1/2 under any of the three
U(1) subgroups of SU(4). The corresponding Lie algebra element is

�u(1)×su(3) =


i(ξ1 + ξ2 + ξ3) 0 0 0

0 −iξ1 α1 + iβ1 α2 + iβ2

0 −α1 + iβ1 −iξ2 α4 + iβ4

0 −α2 + iβ2 −α4 + iβ4 −iξ3

 , (7.12)

where the su(3) part is obviously specified by choosing ξ3 = −ξ1 − ξ2. It also transforms
as a spinor under one of the su(2) from the Lorentz algebra su(2, 2) and is neutral under
the other. Therefore, the highest weight component � carries the charges S1 = 1/2 and
S2 = −1/2. Therefore, the operators from the su(1|1) sector have the following charges:
S1 = M/2, S2 = −M/2, J1 = M/2, J2 = M/2 and J3 = J .

Coming back to string theory we note that out of eight fermions η and θ only θ1 and θ2

are neutral under the su(3) subgroup, and, therefore, they are dual to the components of the
gaugino �α . From the table of charges in appendix A we see that θ1 should be identified with
the highest weight component �. Thus, in the BMN limit the string states dual to operators
from the su(1|1) sector are the states

|�su(1|1)〉 = θ+
1,nM

θ+
1,nM−1

· · · θ+
1,n1

|0〉. (7.13)

As was shown in [28], in the uniform light-cone gauge the string theory reduced to the su(1|1)

sector is described by a free fermion. We can also see that from our quartic Hamiltonian
(5.24). There is, therefore, no 1/P+ correction to the free spectrum of the state (7.13), and the
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1/J correction is just obtained by expanding the frequencies ωn in powers of 1/J . The result
of the simple computation is [28]

Esu(1|1) − J =
M∑

k=1

ω̄k − λ′

4J

M∑
k=1

M∑
j=1

n2
kω̄

2
j + n2

j ω̄
2
k

ω̄kω̄j

. (7.14)

This correction was first computed in [32] by using the uniform gauge t = τ, pφ = J in
which the su(1|1) sector is described by a nontrivial integrable model of an interacting Dirac
fermion. It was also guessed in [42] by analysing the known 3-impurity result [19].

7.4. su(1|2) sector

The su(1|2) sector can be considered as the union of the su(2) and su(1|1) sectors [16],
because it consists of operators of the form

Osu(1|2) = tr
(
ZJ− M

2 �MXK + permutations
)
. (7.15)

Since we already know that X and � correspond to α+
1 and θ+

1 , respectively, string theory states
dual to the operators (7.15) are of the form

|�su(1|2)〉 = |�su(1|1)〉 ⊗ |�su(2)〉 = θ+
1,nM

θ+
1,nM−1

· · · θ+
1,n1

· α+
1,jK

α+
1,jK−1

· · ·α+
1,j1

|0〉, (7.16)

where the mode numbers satisfy the level-matching condition

M∑
i=1

ni +
K∑

m=1

jm = 0.

This time, however, there is a mixing of states with the same numbers M and K, because any
state obtained from (7.16) by a permutation of the mode numbers ni and jm has the same
energy as the state (7.16) has. If all mode numbers are different the number of all these
states is equal to (M+K)!

M!K! , which makes the problem of computing the 1/P+ correction highly
nontrivial. Still the fact that the number of fermions and bosons is the same for all these states
appears to make the problem feasible.

7.5. su(2|3) sectors

The su(2|3) sector [13] is an extension of the su(1|2) sector. It consists of operators of the
form

Osu(2|3) = tr
(
ZJ− M+

2 − M−
2 XJ1Y J2�M+

+ �
M−
− + permutations

)
, (7.17)

where �+ is the highest weight component of the gaugino �α from the vector multiplet that
was denoted as � in previous subsections, and �− is the lowest weight component. String
theory states dual to the operators (7.17) are of the form

|�su(2|3)〉 = θ+
2,nM−

· · · θ+
2,n1

· θ+
1,mM+

· · · θ+
1,m1

· α+
2,kJ2

· · ·α+
2,k1

· α+
1,lJ1

· · · α+
1,l1

|0〉. (7.18)

In the plane wave limit the space of these string states is highly degenerate. Just as it was for
string states from the su(1|2) sector, we can permute mode numbers of fermions and bosons.
Then, a new feature appears in the su(2|3) sector. One can easily check by using the tables
of charges in appendix A that the operators α2,nα1,m and θ2,kθ1,l have the same charges Si and
Ji , and, therefore, we can replace any pair of operators α2,n and α1,m in the state (7.18) by a
pair of operators θ2,n and θ1,m (or θ2,m and θ1,n) with the same mode numbers n and m without
changing the plane wave energy of the state. Thus, there is a mixing of states with different
numbers of bosons and fermions. This new feature is a string theory analogue of the dynamic
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nature of the long-range spin chain that describes the su(2|3) sector in N = 4 SYM [13]. Let
us note, however, that in string theory only the states with the same total number of creation
operators, M = J1 + J2 + M− + M+, can mix. It seems hardly possible to compute the 1/P+

correction to an arbitrary su(2|3) string state by using conventional methods.
String states dual to all the remaining closed sectors of N = 4 SYM can also be easily

identified by using the tables of charges from appendix A. Let us also comment that the
main obstacle in explicit computations of energy shift for arbitrary M-excitation state which
originated from the large mixing problem can be significantly reduced if one assumes quantum
integrability of the full model (at order 1/P+). If the system is integrable, it is enough
to determine the energy shift of the arbitrary 3-excitation state. The energy shift for the
M-excitation state is then given by the sum over the corrected energies of individual impurities
(magnons).

7.6. Effective Hamiltonians for closed sectors

As was discussed above in this section, the eigenstates of the complete Hamiltonian depend
on all the 8 + 8 creation operators even for string states dual to operators from closed gauge
theory sectors. On the other hand, according to the AdS/CFT correspondence, the string
Hamiltonian should be equivalent to the dilatation operator. This means that there should exist
a unitary transformation such that the transformed Hamiltonian would have properties similar
to those of the dilatation operator; in particular, its action on string states dual to operators
from closed sectors would be closed.

We will show here that assuming the finiteness of the quantum theory such a unitary
transformation exists in perturbation theory around the plane wave.

In this section, we denote the creation and annihilation operators as A±
a,n, where a is an

index that distinguishes operators of different types, and n is a mode number. The quantum
string Hamiltonian will be of the form

H = H2 +
1

P+
H4 +

1

P 2
+

H6 + · · · . (7.19)

Here the quadratic Hamiltonian H2 reads

H2 =
∑
a,n

ωa,nA
+
a,nA

−
a,n, (7.20)

where the frequencies may in general depend on a and P+,

ωa,n = ωn +
1

P+
ω(1)

n +
1

P 2
+

ω(2)
n + · · · . (7.21)

The quartic Hamiltonian H4 is of the most general form

H4 =
∑

a,n;b,m;c,k;d,l

g++++
a,n;b,m;c,k;d,lA

+
a,nA

+
b,mA+

c,kA
+
d,l + g+++−

a,n;b,m;c,k;d,lA
+
a,nA

+
b,mA+

c,kA
−
d,l + h.c.

+ g++−−
a,n;b,m;c,k;d,lA

+
a,nA

+
b,mA−

c,kA
−
d,l, (7.22)

where the coupling constants ga,n;b,m;c,k;d,l may also depend on 1/P+. The remaining
Hamiltonians H6 and higher are also assumed to be of the most general form. For simplicity,
we restrict the consideration to the quartic Hamiltonian.

First of all we show that there exists a unitary transformation that removes all terms with
different numbers of creation and annihilation operators. The construction is perturbative in
1/P+, and the unitary transformation is of the form

U = eV , V = 1

P+
V4 +

1

P 2
+

V6 + · · · , (7.23)
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where Vi are polynomials of the ith order in the creation and annihilation operators

V4 =
∑

a,n;b,m;c,k;d,l

f ++++
a,n;b,m;c,k;d,lA

+
a,nA

+
b,mA+

c,kA
+
d,l + f +++−

a,n;b,m;c,k;d,lA
+
a,nA

+
b,mA+

c,kA
−
d,l − h.c.

Under the unitary transformation the Hamiltonian transforms as follows:

H → UHU †. (7.24)

It is not difficult to see that to remove all unwanted terms from (7.22) at the leading order in
1/P+ we should make the following choice of the constants fa,n;b,m;c,k;d,l :

f ++++
a,n;b,m;c,k;d,l = g++++

a,n;b,m;c,k;d,l

ωa,n + ωb,m + ωc,k + ωd,l

, f +++−
a,n;b,m;c,k;d,l = g+++−

a,n;b,m;c,k;d,l

ωa,n + ωb,m + ωc,k − ωd,l

.

It is important to stress that since in perturbation theory ωa,n + ωb,m + ωc,k − ωd,l is not equal
to 0 for any choice of the mode numbers, the unitary transformation is well defined12.

Then up to terms of order 1
/
P 2

+ the Hamiltonian H4 takes the form

H4 =
∑

a,n;b,m;c,k;d,l

g++−−
a,n;b,m;c,k;d,lA

+
a,nA

+
b,mA−

c,kA
−
d,l . (7.25)

The unitary transformation induces additional unwanted terms of order 1
/
P 2

+ but all these
terms can be removed by a similar unitary transformation. The unitary transformations at a
higher order in 1/P+ will typically also induce corrections to the functions g++−−

a,n;b,m;c,k;d,l . It is
clear that the procedure can be carried out to any order in 1/P+. The resulting Hamiltonian
hence contains only terms with an equal number of creation and annihilation operators, with
the coefficients which are functions of 1/P+. This Hamiltonian can be considered as a string
analogue of the field theory dilatation operator because as we will see in a moment it maps a
state from a closed sector to another state of this sector13.

To simplify the notation, we concentrate our attention on the su(2) sector, but the
conclusion is valid for all closed subsectors. Let us assume that we act by the ‘diagonal’
Hamiltonian of the form (7.25) on a state from the su(2) sector. Then only the terms which
do not contain any other annihilation operators but α−

1,n can produce a nontrivial state. All
other terms acting on an su(2) state produce the vacuum. Finally, taking into account that the
product of M operators α−

1,n carries the minimal charge J1 = −M , we find that the only way
to compensate the charge is to multiply them by M creation operators α+

1,n. Thus, the relevant
terms in the Hamiltonian are just obtained by setting all operators but α±

1,n to zero, and the
action of the resulting Hamiltonian is closed on the su(2) string states. This Hamiltonian can
be considered as an effective Hamiltonian for the su(2) sector, and its expansion in powers of
λ′ should reproduce the Landau–Lifschitz Hamiltonian derived in [39, 47].

One could try to simplify the Hamiltonian (7.25) by using a unitary transformation with
V of the form

V =
∑

a,n;b,m;c,k;d,l

g++−−
a,n;b,m;c,k;d,l

ωa,n + ωb,m − ωc,k − ωd,l

A+
a,nA

+
b,mA−

c,kA
−
d,l . (7.26)

If the denominator ωa,n + ωb,m − ωc,k − ωd,l would never vanish then we could remove all
quartic terms. It is clear, however, that in perturbation theory in 1/P+ it vanishes if k = n, l = m

12 Strictly speaking, since we are dealing with a system with an infinite number of degrees of freedom, to have a
well-defined transformation one should introduce an ultraviolet cut-off, for example by replacing ωa,n by ωa,n eε|n|
where ε is the regularization parameter. In fact, one would need a regularization parameter even to the normal-order
Hamiltonian.
13 Note that this is not necessarily in contradiction with Minahan [46], who argued for the non-perturbative violation
of the closedness of the su(2) sector, as our argument here is purely perturbative.
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or k = m, l = n, and therefore these terms cannot be removed. One can show that the
denominator does not vanish for any other choice of mode numbers, and, therefore, we can
reduce (7.25) to the following simple form:

H4 =
∑

a,n;b,m;c;d
g++−−

a,n;b,m;c;dA
+
a,nA

+
b,mA−

c,nA
−
d,m. (7.27)

A Hamiltonian of this form allows a straightforward computation of the energy of string states
from rank-1 closed sectors.

8. Quantum string light-cone Bethe equations

It has been proposed in [24] that the energies E of the AdS5 × S5 quantum string, as measured
with respect to the global time coordinate t, should arise as solutions of a set of quantum string
Bethe equations. The energy E is natural from the perspective of comparing with the dual
gauge theory and its scaling dimensions. However, as we have seen in the previous sections, the
energy in global time E is not the most natural quantity for the purposes of the quantization of
the AdS5 ×S5 string in light-cone gauge, but rather the world-sheet Hamiltonian Hlc = E−J .
A natural question to ask now is, whether it is possible to write down a set of light-cone
quantum string Bethe equations directly yielding the spectrum of Hlc. The expectation is
that this set of equations takes a simpler form than the quantum string Bethe equations of
[16, 24, 43] directly leading to E.

For this let us now assume that the quantum string is integrable in the sense that the
elementary world-sheet excitations (‘magnons’) interact with each other only via two-body
interactions, described by the S-matrix, as was advocated by Staudacher [43], whose logic we
closely follow. The system should then be described by the fundamental equation

P+

2
pk = 2πnk +

M∑
j �=k

θ(pk, pj ), (8.1)

where the S-matrix is given by S(p, q) = exp[iθ(p, q)]. In the plane wave limit, at the
leading order in the 1/P+ expansion, the system is free (i.e. θ(pj , pk) = 0). Thus pk has the
perturbative expansion for P+ → ∞ with λ̃ of (5.14) held fixed,

pk = 4π

P+
nk +

δpk

P 2
+

+ O
(

1

P 3
+

)
(8.2)

where δpk are corrections. From this one determines that

δpk = 2P+

M∑
j �=k

θ

(
4πnk

P+
,

4πnj

P+

)
. (8.3)

Next, we take our elementary excitations to satisfy the dispersion relation

Elc(pk) =
√

1 +
λ

4π2
p2

k , (8.4)

and take the total world-sheet energy Hlc to be additive Elc = ∑M
k=1 Elc(pk). Inserting the

corrections δpk of (8.3) and (8.2) into the dispersion relation (8.9), we deduce an expression
for the shift of P− at order 1

/
P 2

+ in terms of the S-matrix,

δP− = λ̃P+

2π

M∑
k,j=1,k �=j

nk√
1 + λ̃n2

k

θ

(
4π

P+
nk,

4π

P+
nj

)
. (8.5)
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On the other hand, the semiclassical quantization of the string yielded for the Elc shift
equations (7.5) and (7.9). By comparing (8.5) to (7.5) and (7.9), we can extract the S-matrix
at leading order 1

/
P 2

+ ,

θ(pk, pj ) = − s

2

(pk + pj )
2

pkωj − pjωk

where


s = 1 for su(2)

s = 0 for su(1|1)

s = −1 for sl(2)

ωk =
√

1 +
λ

4π2
p2

k .

(8.6)

This near plane wave S-matrix is singular at pk = pj . It is clear, however, that this
singularity is an artefact of the expansion in 1/P+ similar to the singularity of the XXX spin
chain S-matrix in the long spin chain length limit. It turns out that the fundamental relation
(8.1) with the above expression for the scattering phase shift θ(pk, pj ) follows from the very
compact set of light-cone Bethe equations with an S-matrix regular at pk = pj ,

exp

(
i
P+

2
pk

)
=

M∏
j=1,j �=k

(
x+

k − x−
j

x−
k − x+

j

ei(pj −pk)

)s

, (8.7)

where we have used the common variables x±
k = x±(pk) with

x±(p) = 1

4

(
cot

p

2
± i

)(
1 +

√
1 +

λ

π2
sin2

p

2

)
, (8.8)

first introduced in [30]. It can be checked that this S-matrix, after rescaling pk → 2pk/P+ and
expanding in 1/P+, indeed reduces to the scattering phase of equations (8.6). Moreover, it is
then natural to assume a generalized dispersion relation of the form

E
gen
lc (pk) =

√
1 +

λ

π2
sin2

(pk

2

)
, (8.9)

however the potential sine structure would only manifest itself in the next-to-leading
corrections to the plane wave limit of order 1/P+.

In addition, we are only considering translationally invariant states as a consequence of
the level-matching condition such that

M∑
j=1

pj = 0. (8.10)

Using this our light-cone Bethe equations can be rewritten in an even simpler form as

exp

(
i
P+ + sM

2
pk

)
=

M∏
j=1,j �=k

(
x+

k − x−
j

x−
k − x+

j

)s

. (8.11)

The associated dispersion relation for the world-sheet energy Elc is stated in (8.9).
The light-cone Bethe equations can be used to compute subleading 1

/
P 2

+ corrections. We
do not expect, however, that they will produce the correct result. In particular, the anomaly
computation of [25] observed a discrepancy between the quantum string Bethe predictions
and the results of the semiclassical string quantization. The anomaly in [25] arose purely from
the short distance behaviour of the term on the RHS of (8.11), while the other terms which are
different in (8.11) with respect to equations of ([24]) did not contribute. Thus, the anomaly
prediction from (8.11) will be the same as those in [25], and hence will not cure the problem
which ([24]) faced.
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The Bethe equations (8.7) have been derived by using the expansion around the plane
wave. On the other hand, one should expect them to also reproduce the leading λ1/4 asymptotic
behaviour of short strings in the strong coupling (flat space) limit and the finite-gap integral
equations of [44, 45] which describe strings spinning in R × S3 and AdS3 × R in the scaling
limit of [21], just as the quantum string Bethe equations of [24] did.

8.1. Strong coupling limit

The leading λ1/4 asymptotic behaviour of short strings in the strong coupling (flat space) limit
was discussed in detail for the su(1|1) sector in [28]. The consideration there is also valid for
the su(2) and sl(2) sectors because as one can easily see the S-matrix does not contribute in
the strong coupling limit λ → ∞, λ

/
P 4

+ fixed: the quasi-momenta then have an expansion
of the form

ps.c.
k = p0

k

λ1/4
+

p1
k

λ1/2
+ · · · . (8.12)

Then obviously the scattering phase of (8.6) scales as θ(pk, pj ) ∼ 1√
λ

in consequence of

ω(pk) ∼ λ1/4. Therefore the fundamental equation (8.1) yields

p0
k = 4πnk

E(0)
where P+ = E + J = λ1/4E(0) + E(1) + J + O(λ−1/4). (8.13)

Plugging this into the dispersion relation (8.4) we find

Elc = λ1/4E(0) + O(1) =
M∑

k=1

λ1/4 2|nk|
E(0)

+ O(1). (8.14)

Due to the level-matching condition
∑

k nk = 0 and one may define the level number n as
the sum over the positive nk . This implies

∑
k |nk| = 2n. With this definition, we indeed

reproduce the result of [7] upon solving the quadratic equation (8.14) for E(0)

E = 2λ1/4√n + O(1). (8.15)

Hence in the light-cone gauge the leading λ1/4 asymptotics just comes from the spectrum of
the free harmonic oscillator.

8.2. Spinning string limit

To derive the integral equations in the spinning string limit it is convenient to use the logarithmic
form (8.1) of the Bethe equations (8.7). To take the limit we rescale momenta as pk → 2pk/P+

and introduce the distributional density [48]

ρ(p) = 2

P+

M∑
k=1

δ(p − pk),

∫
C

dp ρ(p) = 2M

P+
. (8.16)

Then in the limit P+ → ∞,M/P+ fixed, we get the following integral equation,

p = −
∫

C
dq ρ(q)θ(p, q), (8.17)

where

θ(p, q) = − s

2

(p + q)(pω(q) + qω(p))

p − q
, ω(p) =

√
1 +

λ̃

4π2
p2. (8.18)
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This equation should be supplemented by the zero-momentum condition∫
C

dp ρ(p)p = 0. (8.19)

Then, solving equations (8.16), (8.17) and (8.19), we can find the light-cone energy of a
spinning string by using the equation

2Elc

P+
=

∫
C

dp ρ(p)ω(p). (8.20)

To compare equations (8.16), (8.17), (8.19) and (8.20) with the finite-gap integral
equations of [44, 45] we should start with their unscaled form14

2 −
∫

C
dy

ρs(y)

x − y
= 2π(P+ + P−)√

λ

x

x2 − λ̃
16π2

, (8.21)

∫
C

dx
ρs(x)

x
= 2πm = 0, (8.22)∫

C
dx ρs(x) = 2π√

λ
(P− + M), (8.23)∫

C
dx

ρs(x)

x2
= 2π√

λ
(P− − M), (8.24)

where we set the winding number to 0 because our Bethe equations have been derived under
this assumption.

First, we rescale the spectral parameter as x → 2πP+x/
√

λ. This rescaling should be
contrasted to the rescaling x → 4π(J + M)x/

√
λ performed in [44], in order to achieve the

comparison with the gauge theory Bethe ansatz [16].
Then, it is easy to see that after the rescaling, the set of equations (8.21), (8.22), (8.23)

and (8.24) can be written in the form∫
C

dx
ρs(x)

x
= 0, (8.25)∫

C
dx ρs(x)

(
1 − λ̃

16π2

1

x2

)
= 2M

P+
, (8.26)

2P−
P+

=
∫

C
dx ρs(x)

(
1 +

λ̃

16π2

1

x2

)
, (8.27)

x

x2 − 1
= 2 −

∫
C

dy
ρs(y)

x − y
− P−

P+

x

x2 − 1
. (8.28)

Finally, making the change of the spectral parameter x

p = x

x2 − λ̃
16π2

, ρ(p) = ρs(x)

p2ω(p)
, (8.29)

we find that the finite-gap integral equations (8.28), (8.25), (8.27) and (8.26) coincide with
the equations (8.16), (8.17), (8.19) and (8.20) we derived in the spinning string limit.

14 We restrict our attention to the su(2) sector because the consideration of the equations in the sl(2) sector literally
repeats the one we do for the su(2) sector.
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9. Conclusions and outlook

The bulk of this paper consisted in a rather laborious derivation of the exact uniform light-cone
and κ-symmetry gauge-fixed Lagrangian in a first-order formalism. This enables one to read
off the (involved) Poisson structure and form of the light-cone Hamiltonian Hlc = −p− of the
AdS5 × S5 superstring. We then went on to quantize this system in the near plane wave limit
of taking the constant light-cone momentum P+ to infinity while keeping λ̃ = 4λ

/
P 2

+ fixed.
In this limit, we could systematically expand the Hamiltonian to the quartic order in physical
fields and study the leading energy shifts of the closed rank-1 subsectors for general states,
reproducing the results of Callan et al [19] in a rather economical fashion. Furthermore, we
proved the existence of effective Hamiltonians in closed subsectors of the theory, which are
the analogues of the dilatation operators in the closed subsectors of the gauge theory. Finally
we were able to write down a novel, compact set of light-cone Bethe equations, which captures
the leading 1/P+ energy shifts in the rank-1 subsectors of the quantum superstring. This set
of quantum string equations was shown to possess the correct strong coupling and spinning
string limits known in the literature.

There are numerous extensions of the present work. First of all the next-order energy shift
computation for Hlc in the 1/P+ expansion is now within reach and should be performed. It will
be able to test the sine structure in the dispersion relation for the energy. Here subtle quantum
ordering ambiguities have to be overcome: at the leading 1/P+ order our simple normal
ordering prescription was justified by the requirement of having an unmodified quadratic
Hamiltonian. At the next order such a simple normal ordering prescription fails, as it would
lead to energy shifts of protected states. We believe that imposing the closure of the algebra of
the system will pave us the correct path to resolve these ordering ambiguities at the quantum
level. We are presently investigating this issue.

The uniform light-cone gauge Hamiltonian we have established should be the basis of an
investigation of the near flat space limit of AdS5 × S5. Here the subtlety lies in the treatment
of the zero modes, which in a naive approach leads to a breakdown of the perturbation theory
about the flat space point.

Another obvious question is how to generalize our findings to the case of non-vanishing
winding numbers. This should be relevant for the study of γ -deformed models [35, 36]
which are known to be related to Green–Schwarz superstrings in AdS5 × S5 subject to twisted
boundary conditions [34, 36]. The twisting effectively corresponds to a non-vanishing (and
non-integer) mode number in the expansion around plane wave limits. In the γ -deformed
case there are (at least) two inequivalent plane wave limits [35–37] and the light-cone-type
gauges seem to be very convenient to study 1/J corrections to energies of string states in these
limits.

One might also try to find explicit string solutions of our exact gauge-fixed Lagrangian
and study quantum fluctuations about these. In particular finding circular string would be
interesting. It would allow for a computation of the 1/J 2 corrections to the energies of such
circular strings that could be potentially simpler than the computations in the static gauge [21]
used before.

Our newly proposed quantum string light-cone Bethe equations call for a number of
checks and extensions. Their generalization to the full PSU(2, 2|4) structure seems obvious
to guess in view of [16]. This could be checked by a parallel independent computation of the
energy shifts in larger subsectors based on our quartic Hamiltonian. Finally, we have seen
that focusing on the computation of the corrections to light-cone energy � − J instead of
the dilatation operator � has lead to the simplified Bethe equations on the string side: the
dressing factor has ‘disappeared’. It would be very interesting to understand what are the
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corresponding changes for the (asymptotic) Bethe equations in the dual gauge theory, once
they are rephrased in the language of the light-cone variables.

We intend to return to some of these questions in future works.
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Appendix A. Dirac matrices

Throughout the paper we will use the following explicit representation of Dirac matrices,

γ 1 =


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

 , γ 2 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 , γ 3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

γ 4 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , γ 5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = �,

satisfying the SO(5) Clifford algebra

γ aγ b + γ bγ a = 2δab.

Moreover, all of them are Hermitian, so that iγa belongs to su(4).
It is also useful to introduce such a basis that all bosonic fields have definite charges under

the U(1) subgroups of PSU(2, 2|4). We also describe a convenient parametrization of the
fermionic matrices χ and �.

The complex fields carrying definite charges are

Z1 = z2 + iz1, Z2 = z4 + iz3, Z1̄ = z2 − iz1, Z2̄ = z4 − iz3,

Y1 = y2 + iy1, Y2 = y4 + iy3, Y1̄ = y2 − iy1, Y2̄ = y4 − iy3.
(A.1)

We want to have the identity

ziγi = Za�a = Z1�1 + Z1̄�1̄ + Z2�2 + Z2̄�2̄, (A.2)

which lets us introduce

�1 = 1

2
(γ2 − iγ1) =


0 0 0 i
0 0 0 0
0 −i 0 0
0 0 0 0

 , �1̄ = �
†
1 = 1

2
(γ2 + iγ1) =


0 0 0 0
0 0 i 0
0 0 0 0
−i 0 0 0



�2 = 1

2
(γ4 − iγ3) =


0 0 −i 0
0 0 0 0
0 0 0 0
0 −i 0 0

 , �2̄ = �
†
2 = 1

2
(γ4 + iγ3) =


0 0 0 0
0 0 0 i
i 0 0 0
0 0 0 0

 .

(A.3)
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In what follows, we will often use for the indices 1̄ and 2̄ the following convention:

1̄ ≡ 4, 2̄ ≡ 3, ⇒ ā ≡ 5 − a, a = 1, 2, 3, 4. (A.4)

In particular, this means that

�1̄ ≡ �4, �2̄ ≡ �3, �ā ≡ �5−a, �†
a ≡ �5−a.

It is also useful to introduce the following two orthogonal projectors:

P+ = 1

2
(I4 + �) =

(
I2 0
0 0

)
, P− = 1

2
(I4 − �) =

(
0 0
0 I2

)
. (A.5)

We can write the fermionic 8 × 8 matrix χ in the form

χ =
(

0 �

�∗ 0

)
= σ+ ⊗ � + σ− ⊗ �∗ (A.6)

where

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (A.7)

are the two nilpotent 2 by 2 matrices. Note that the two-dimensional projectors P ±
2 are

expressed through σ± as follows:

P +
2 = σ+σ− =

(
1 0
0 0

)
, P −

2 = σ−σ+ =
(

0 0
0 1

)
. (A.8)

Then, the κ-fixed � can be expanded as follows:

� = P+η + P−θ †, η = ηa�a, θ = θa�a

�† = η†P+ + θP− = P−η† + P+θ

�∗ = −�†� = −η†P+ + θP− = −P−η† + P+θ.

(A.9)

The fermions θij are related to ηa and θa as follows:

θ13 = −iη2, θ14 = iη1, θ23 = iη4, θ24 = iη3,

θ31 = iθ †
2, θ32 = −iθ †

4, θ41 = −iθ †
1, θ42 = −iθ †

3 .
(A.10)

Since � anticommutes with all �a it also anticommutes with the κ-gauge-fixed � and �∗. By
using this property one can easily show that

�+χ = −χ�+, �−χ = χ�−.

The bosonic fields and fermions are charged under the four U(1) subgroups of
SU(2, 2) × SU(4) generated by

�AdS
i = P +

2 ⊗ �i, �S
i = P −

2 ⊗ �i, (A.11)

where

�1 = 1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , �2 = 1

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

It is not difficult to check (see [32] for details) that �AdS
1 and �AdS

2 generate rotations in the
planes z2z1 and z4z3, or multiplication by a phase of Z1 and Z2, respectively. We denote these
AdS5 charges as Si . Similarly, �S

1 and �S
2 generate rotations in the planes y2y1 and y4y3, or

multiplication by a phase of Y1 and Y2, respectively. We denote these S5 charges as Ji .
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In the tables below we list the field charges under the four U(1) subgroups. Let us stress
again that all the fields are neutral under the two U(1) subgroups that correspond to shifts of
the global time coordinate, and the S5 angle φ.

Charges of bosonic fields and creation and annihilation operators:

S1 S2 J1 J2

Z1, P
z
1 , β+

1,n, β
−
4,n +1 0 0 0

Z2, P
z
2 , β+

2,n, β
−
3,n 0 +1 0 0

Z3, P
z
3 , β+

3,n, β
−
2,n 0 −1 0 0

Z4, P
z
4 , β+

4,n, β
−
1,n −1 0 0 0

,

S1 S2 J1 J2

Y1, P
y

1 , α+
1,n, α

−
4,n 0 0 +1 0

Y2, P
y

2 , α+
2,n, α

−
3,n 0 0 0 +1

Y3, P
y

3 , α+
3,n, α

−
2,n 0 0 0 −1

Y4, P
y

4 , α+
4,n, α

−
1,n 0 0 −1 0

Charges of fermions and creation and annihilation operators:

S1 S2 J1 J2

θ1, θ
†
4, θ

+
1,n, θ

−
4,n + 1

2 − 1
2 + 1

2 + 1
2

θ2, θ
†
3, θ

+
2,n, θ

−
3,n − 1

2 + 1
2 + 1

2 + 1
2

θ3, θ
†
2, θ

+
3,n, θ

−
2,n + 1

2 − 1
2 − 1

2 − 1
2

θ4, θ
†
1, θ

+
4,n, θ

−
1,n − 1

2 + 1
2 − 1

2 − 1
2

,

S1 S2 J1 J2

η1, η
†
4, η

+
1,n, η

−
4,n + 1

2 + 1
2 + 1

2 − 1
2

η2, η
†
3, η

+
2,n, η

−
3,n + 1

2 + 1
2 − 1

2 + 1
2

η3, η
†
2, η

+
3,n, η

−
2,n − 1

2 − 1
2 + 1

2 − 1
2

η4, η
†
1, η

+
4,n, η

−
1,n − 1

2 − 1
2 − 1

2 + 1
2

,

Below we collect some useful identities:
K2

4,8 = −I4,8 �2
± = I

K4�K4 = −�, K8�±K8 = −�±
K4γ

iK4 = −(γ i)t KgtK = −g,

K(g−1)tK = −g−1, K∂αgtK = −∂αg

g�±g−1 = g2�± = �±g−2.

(A.12)

Appendix B. Computing the gauge-fixed Lagrangian

In this appendix, we simplify various terms appearing in the Lagrangian (3.12), solve the
Virasoro constraints and find x ′

− and π−.

B.1. Simplifying p−

Taking into account the decomposition (3.4) of π , we rewrite p− (3.15) in the form

p− = π−
8

Str(�8(1 + 2χ2)g(x)2) − π+

8
Str((1 + 2χ2)g(x)2)

+
iπM

4
Str(�M�+g(x)(1 + 2χ2)g(x)) (B.1)

where

�8 = −�+�− =
(

I4 0
0 −I4

)
.

In what follows, we find it convenient to use the following definitions:

g(x) = g+I8 + g−�8 + gM�M, gM = {ga, gs},

g± = 1

2

 1√
1 − z2

4

± 1√
1 + y2

4

 , ga = za

2
√

1 − z2

4

, gs = ys

2
√

1 + y2

4

; (B.2)
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g(x)2 = G+I8 + G−�8 + GM�M, GM = {Ga,Gs},

G± = 1

2

(
1 + z2

4

1 − z2

4

± 1 − y2

4

1 + y2

4

)
, Ga = za

1 − z2

4

, Gs = ys

1 + y2

4

.
(B.3)

Then by using (3.14) and the properties of Dirac matrices, one can easily get

p− = −G−
G+

P+ +
G2

+ − G2
−

G+
π− − P+

4
Str(χ2) +

i

2
gNπM Str([�N,�M ]χ2(�+g+ − �−g−)).

(B.4)

As one can see, p− has only an explicit quadratic dependence on the fermion χ . However, the
true χ dependence is much more complicated because π− nontrivially depends on χ .

B.2. Simplifying −Str πA⊥
even

Let us introduce the even and odd components of g−1(χ)∂αg(χ)

g−1(χ)∂αg(χ) = Bα + Fα,

Bα = − 1
2χ∂αχ + 1

2∂αχχ + 1
2

√
1 + χ2∂α

√
1 + χ2 − 1

2∂α

√
1 + χ2

√
1 + χ2,

Fα =
√

1 + χ2∂αχ − χ∂α

√
1 + χ2.

(B.5)

Then A⊥
even can be written in the form

A⊥
even = −g−1(x)Bτg(x) − g−1(x)∂τ g(x). (B.6)

The supertrace of the second term with π can be easily computed, and we get

Str πg−1(x)∂τ g(x) = pM∂τxM, (B.7)

where the momenta conjugate to the coordinates xM = {za, ys} are given by

pM = {
pz

a, p
y
s

}
, pa = πa

1 − z2

4

, ps = πs

1 + y2

4

. (B.8)

The term dependent on Bα can also be written in a more explicit form:

Str(πg−1Bαg) = iπ+

4
Str(�+Bαg2) +

iπ−
4

Str(�−Bαg2) +
πM

2
Str(�Mg−1Bαg).

Now, taking into account the formulae

Str(�+Bα) = −Str(�+χ∂αχ), Str(�−Bα) = 0, Str(�+χ
n) = 0, (B.9)

that follow from the fact that �+ anticommutes with χ , �− commutes with χ and we obtain
the explicit form of Bα ,

Str(πg−1Bαg) = − i

4
P+ Str(�+χ∂αχ) +

1

2
πM Str(g�Mg−1Bα). (B.10)

The last term in (B.10) can also be simplified by using the explicit formula (B.2) for g(x),
commutativity of �± with Bα , and the properties of gamma matrices.

The final expression for −Str πA⊥
even then takes the form

−Str
(
πA⊥

even

) = pM∂τxM − i

4
P+ Str(�+χ∂τχ) +

1

2
gNπM Str([�N,�M ]Bτ ). (B.11)
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B.3. Solving the Virasoro constraint C2: Str πA
(2)
1 = 0

The constraint C2 = 0 can now be easily solved to find x ′
− ≡ ∂1x−,

−Str
(
πA

(2)
1

) = P+x
′
− + pMx ′

M +
i

4
P+ Str(�+B1) +

1

2
πM Str(g�Mg−1B1) = 0.

Thus

x ′
− = − 1

P+

(
pMx ′

M − i

4
P+ Str(�+χχ ′) +

1

2
gNπM Str([�N,�M ]Bσ )

)
. (B.12)

The nice feature is that in the light-cone gauge x ′
− has no dependence on π−.

B.4. Level-matching condition

Integrating (B.12) over σ we derive the level-matching condition

V =
∫ 2π

0

dσ

2π

(
pMx ′

M − i

4
P+ Str

(
�+χχ ′) +

1

2
gNπM Str ([�N,�M ] Bσ )

)
= 0, (B.13)

that should be imposed on physical string states.

B.5. Solving the Virasoro constraint C2: Str(π2 + λ(A
(2)
1 )2) = 0

Since x ′
− does not depend on π−, the Virasoro constraint C1 = 0 can be easily solved to find

π−. The solution has in fact the same form as in the bosonic case:

Str
(
π2 + λ

(
A

(2)
1

)2) = π+π− + π2
M + λ Str

((
A

(2)
1

)2)
= 1

G+
(P+ + G−π−)π− + π2

M + λ Str
((

A
(2)
1

)2)= 0. (B.14)

Let us denote

A2 ≡ Str
((

A
(2)
1

)2)
(B.15)

to simplify the notation. Then the solution to this constraint is

π− = − 2G+
(
π2

M + λA2
)

P+ +
√

P 2
+ − 4G+G−

(
π2

M + λA2
) . (B.16)

B.6. Preliminary form of the gauge-fixed Lagrangian

The gauge-fixed Lagrangian can now be written in the form

Lgf = pMẋM − iP+

4
Str(�+χ∂τχ) +

1

2
gNπM Str([�N,�M ]Bτ ) + LWZ + p−. (B.17)

Here we should use the formulae for π−, x ′
− and p− to express everything in terms of physical

fields.

B.7. Simplifying A2

To compute A2 we use the following formula:

A
(2)
1 = −

(
i

4
x ′

−(�−g2 + g2�−) +
1

2

(
g−1B1g − gK8B

t
1K8g

−1
)

+
1

2
(g−1g′ + g′g−1)

)
.

(B.18)

We see that A2 is given by the sum of three terms: (i) quadratic in x ′
−, (ii) linear in x ′

−, and
(iii) independent of x ′

−.
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B.7.1. Computing the term quadratic in x ′
−. This term is equal to

− x ′2
−

16
Str[(�−g2 + g2�−)(�−g2 + g2�−)] = −4x ′2

−G+G−, (B.19)

where we took into account that �−g = g−1�−, �2
− = I8, and the formula

g4 + g−4 = 2(Gtt + Gφφ − 1)I8 + 8G+G−�8. (B.20)

B.7.2. Computing the term linear in x ′
−. The linear term is equal to

i

4
x ′

− Str
[
(�−g2 + g2�−)

(
g−1B1g − gK8B

t
1K8g

−1 + g−1g′ + g′g−1
)]

= 2ix ′
−G+G− Str(�+χχ ′), (B.21)

where we used that Str �−gng′ = 0 for any n, and equation (B.20).

B.7.3. Simplifying the term independent of x ′
−. The term independent of x ′

− is

1
4 Str

[(
g−1B1g − gK8B

t
1K8g

−1 + g−1g′ + g′g−1
)2]

= 1
4 Str

[(
g−1B1g − gK8B

t
1K8g

−1
)2]

+ 1
2 Str

[(
g−1B1g − gK8B

t
1K8g

−1
)
(g−1g′ + g′g−1)

]
+ 1

4 Str[(g−1g′ + g′g−1)2]. (B.22)

The last term independent of B1 in (B.22) can be easily computed,

1

4
Str[(g−1g′ + g′g−1)2] = z′2

a(
1 − z2

4

)2 +
y ′2

s(
1 + y2

4

)2 . (B.23)

The first term in (B.22) can be cast in the form

1
4 Str

[(
g−1B1g − gK8B

t
1K8g

−1
)2] = 1

2 Str B2
1 − 1

2 Str
(
g−2B1g

2K8B
t
1K8

)
. (B.24)

Note that this term is of the fourth order in fermions. The second term in (B.24) can be written
in a more explicit form

− 1
2 Str

(
g−2B1g

2K8B
t
1K8

) = − 1
2

(
G2

+ + G2
−
)

Str
(
B1K8B

t
1K8

)
−G+G− Str

(
�8B1K8B

t
1K8

)
+ 1

2GMGN Str
(
�MB1�NK8B

t
1K8

)
. (B.25)

The second term in (B.22) can be cast in the form

1
2 Str

[(
g−1B1g − gK8B

t
1K8g

−1
)
(g−1g′ + g′g−1)

] = Str[B1(g
2)′g−2]

= (G+G−)′ Str(�8B1) − G′
MGN Str(�M�NB1)

= − 1
2G′

MGN Str([�M,�N ]B1), (B.26)

where we took into account that 2G+G−�8 − GMGN�M�N +
(
G2

+ + G2
− − 1

)
I8 = 0.
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B.7.4. Final form of A2. Collecting the pieces together we get A2

A2 = Str
[(

A
(2)
1

)2] = −4x ′2
−G+G− + 2ix ′

−G+G− Str(�+χχ ′) +
z′2
a(

1 − z2

4

)2 +
y ′2

s(
1 + y2

4

)2

− 1

2
G′

MGN Str([�M,�N ]B1) +
1

2
StrB2

1 − 1

2
Str

(
g−2B1g

2K8B
t
1K8

)
= −4x ′2

−G+G− + 2ix ′
−G+G− Str(�+χχ ′) +

z′2
a(

1 − z2

4

)2 +
y ′2

s(
1 + y2

4

)2

− 1

2
G′

MGN Str([�M,�N ]B1) +
1

2
Str B2

1 − 1

2

(
G2

+ + G2
−
)

Str
(
B1K8B

t
1K8

)
−G+G− Str

(
�8B1K8B

t
1K8

)
+

1

2
GMGN Str

(
�MB1�NK8B

t
1K8

)
. (B.27)

These formulae allow us to compute all necessary terms very efficiently.

B.8. Simplifying the Wess–Zumino term

By using the decomposition (B.5), the odd components of Aα can be written in the form

Aodd
τ = −ig−1(x)�+χ

√
1 + χ2g(x) − g−1(x)Fτg(x), (B.28)

Aodd
σ = −g−1(x)Fσg(x). (B.29)

Then the Wess–Zumino term can be written as a sum of the two terms,

LWZ = −κ

√
λ

2
εαβ Str A(1)

α A
(3)
β = iκ

√
λ

2
Str Fτg(x)2K̃8F

t
σK8g(x)−2

− κ

√
λ

2
Str �+χ

√
1 + χ2g(x)2K̃8F

t
σK8g(x)−2. (B.30)

It is clear that the second term in (B.30) represents the additional contribution of the Wess–
Zumino term to the momentum p− canonically conjugate to x+.

Both terms can be written in the following more explicit form by using expression (B.3)
for g2,

iκ

√
λ

2
Str Fτg(x)2K̃8F

t
σK8g(x)−2 = iκ

√
λ

2

(
G2

+ − G2
−
)

Str
(
Fτ K̃8F

t
σK8

)
− iκ

√
λ

2
GMGN Str

(
�NFτ�MK̃8F

t
σK8

)
, (B.31)

−κ

√
λ

2
Str �+χ

√
1 + χ2g(x)2K̃8F

t
σK8g(x)−2

= −κ

√
λ

2

(
G2

+ − G2
−
)

Str
(
�+χ

√
1 + χ2K̃8F

t
σK8

)
− κ

√
λ

2
GMGN Str

(
�+�Nχ

√
1 + χ2�MK̃8F

t
σK8

)
. (B.32)

The Wess–Zumino term is given by the sum of the terms in (B.31) and (B.32).
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B.9. Final form of the gauge-fixed Lagrangian

It is useful to single out a kinetic term and the density of the Hamiltonian from the gauge-fixed
Lagrangian (B.17), and write it in the form

Lgf = Lkin − H, (B.33)

where

Lkin = pMẋM − iP+

4
Str(�+χ∂τχ) +

1

2
gNπM Str([�N,�M ]Bτ )

+ iκ

√
λ

2

(
G2

+ − G2
−
)

Str
(
Fτ K̃8F

t
σK8

)
− iκ

√
λ

2
GMGN Str

(
�NFτ�MK̃8F

t
σK8

)
, (B.34)

H = −p− + κ

√
λ

2

(
G2

+ − G2
−
)

Str
(
�+χ

√
1 + χ2K̃8F

t
σK8

)
+ κ

√
λ

2
GMGN Str

(
�+�Nχ

√
1 + χ2�MK̃8F

t
σK8

)
. (B.35)

Here p− is given by (B.4), and we should use the formulae (B.16), (B.12) and (B.27) for
π−, x ′

− and A2 to express everything in terms of physical fields.

Appendix C. Deriving the quartic Hamiltonian

In this appendix, we derive the various forms of the quartic Hamiltonian used in the paper.

C.1. Redefining fermions

The kinetic part (B.34) of the gauge-fixed Lagrangian (B.33) up to the quartic order in fermions
can be written in the form (5.1) where �(p, x, χ) is given by

�(p, x, χ) = − 1

p+

i

2
gNπM�+[χ, [�N,�M ]]

+
1

p+
κ
√

λ�+

[
−1

2
K̃8(χχ ′χ)tK8 − 1

2
χK̃8χ

′tK8χ

+
(
G2

+ − G2
− − 1

)
K̃8χ

′tK8 − GMGN�MK̃8χ
′tK8�N

]
. (C.1)

Expanding the bosonic fields, and keeping only terms quartic in fields, we get

� = − 1

p+

i

4
xNpM�+[χ, [�N,�M ]] +

1

p+
κ
√

λ�+

[
−1

2
K̃8(χχ ′χ)tK8 − 1

2
χK̃8χ

′tK8χ

+
1

2
(z2 − y2)K̃8χ

′tK8 − xMxN�MK̃8χ
′tK8�N

]
. (C.2)

Then the redefinition of χ is

χ → χ + �(p, x, χ). (C.3)

These shifts of fermions produce additional quartic terms in the Hamiltonian but all these
terms come only from its fermionic quadratic part

Hferm
2 = κ

2

√
λ Str(�+χK̃8χ

′tK8) +
p+

4
Str χ2. (C.4)
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The additional quartic terms in the Hamiltonian are equal to

Hadd = κ
√

λ Str(�+�K̃8χ
′tK8) +

p+

2
Str �χ. (C.5)

The first term in (C.5) gives

κ
√

λ Str(�+�K̃8χ
′tK8) = iκ

√
λ

8p+
(xNpM)′ Str([�N,�M ](K̃8χ

tK8χ − χK̃8χ
tK8))

− λ

2p+
Str(χχ ′χχ ′) − λ

2p+
Str(χK̃8χ

′tK8χK̃8χ
′tK8)

+
λ

2p+
(z2 − y2) Str(χ ′χ ′) − λ

p+
xMxN Str(�Mχ ′�Nχ ′). (C.6)

Computing the second term we get

p+

2
Str �χ = i

4
xNpM Str �+[�N,�M ]χ2 − κ

2

√
λ Str

(
1

2
(z2 − y2)�+χK̃8χ

′tK8

+
1

2
�+χ

3K̃8χ
′tK8 +

1

2
�+χχ ′χK̃8χ

tK8 + xMxN�+�Nχ�MK̃8χ
′tK8

)
.

(C.7)

We will see that the first term cancels the same term coming from p−, and the terms with κ

just cancel all quartic terms in HWZ (4.5).

C.2. −p− up to the quartic order

−p− (B.4) is given by

−p− = G−
G+

P+ − G2
+ − G2

−
G+

π− +
P+

4
Str(χ2) − i

2
gNπM Str([�N,�M ]χ2(�+g+ − �−g−)).

(C.8)

C.2.1. G−
G+

P+ up to the sixth-order term.

G−
G+

P+ ≈ P+

4
(y2 + z2) − 1

64
P+y

2z2(y2 + z2). (C.9)

After rescaling (5.12) it takes the form

G−
G+

P+ ≈ 1

2
(y2 + z2) − 1

8P 2
+

y2z2(y2 + z2). (C.10)

We see that it does not have a quartic term.

C.2.2. G2
+−G2

−
G+

π− up to the quartic order. Since G2
− is of the quartic order and π− is of the

quadratic order, we get

− G2
+ − G2

−
G+

π− ≈ −G+π− ≈ 1

P+
G2

+

(
π2

M + λA2
)

(C.11)

where (see (B.27))

A2 ≈ z′2(
1 − z2

4

)2 +
y ′2(

1 + y2

4

)2 +
1

2
Str B2

1 − 1

2
Str

(
B1K8B

t
1K8

)
+

1

4
x ′

MxN Str([�M,�N ](χχ ′ − χ ′χ)). (C.12)



The AdS5 × S5 superstring in light-cone gauge and its Bethe equations 13075

We also have

Str B2
1 = 1

2 Str(χχ ′χχ ′ − χ2χ ′2) (C.13)

Str
(
B1K8B

t
1K8

) = 1
4 Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8). (C.14)

Then we get

A2 ≈ z′2 + y ′2 + 1
2z′2z2 − 1

2y ′2y2 + 1
4x ′

MxN Str([�M,�N ](χχ ′ − χ ′χ))

+ 1
4 Str(χχ ′χχ ′ − χ2χ ′2) − 1

8 Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8). (C.15)

The expansion of G2
+ gives

G2
+ ≈ 1 + 1

2 (z2 − y2), (C.16)

so we have

− G2
+ − G2

−
G+

π− ≈ 1

P+

(
p2

z + p2
y + λ(z′2 + y ′2) +

1

2

(
p2

yz
2 − p2

zy
2
)

+
λ

2
(y ′2z2 − z′2y2) + λ(z′2z2 − y ′2y2)

+
1

4
λx ′

MxN Str([�M,�N ](χχ ′ − χ ′χ)) +
λ

4
Str(χχ ′χχ ′ − χ2χ ′2)

− λ

8
Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8)

)
. (C.17)

C.2.3. The last term of −p− up to the quartic order. For the last term in (C.8) we find

− i

2
gNπM Str[�N,�M ]χ2(�+g+ − �−g−) ≈ − i

4
xNpM Str �+[�N,�M ]χ2. (C.18)

We see that this term is cancelled by the first term in (C.7).

C.2.4. The final result for −p− up to the quartic order. Summing up the terms we get
for −p−

−p− ≈ 1

4
P+(y

2 + z2 + Str(χ2)) +
1

P+

(
p2

z + p2
y + λ(z′2 + y ′2)

+
1

2

(
p2

yz
2 − p2

zy
2
)

+
λ

2
(y ′2z2 − z′2y2) + λ(z′2z2 − y ′2y2)

+
λ

4
x ′

MxN Str([�M,�N ](χχ ′ − χ ′χ))

+
λ

4
Str(χχ ′χχ ′ − χ2χ ′2) − λ

8
Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8)

)
− i

4
xNpM Str �+[�N,�M ]χ2. (C.19)

After rescaling according to (5.12) this takes the form

−p− ≈ 1

2

(
p2

z + p2
y + z2 + y2 + λ̃(z′2 + y ′2) + Str(χ2)

)
+

1

2P+

(
p2

yz
2 − p2

zy
2 + λ̃(y ′2z2 − z′2y2) + 2̃λ(z′2z2 − y ′2y2)

+
λ̃

2
x ′

MxN Str([�M,�N ](χχ ′ − χ ′χ)) +
λ̃

2
Str(χχ ′χχ ′ − χ2χ ′2)

− λ̃

4
Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8) − ixNpM Str �+[�N,�M ]χ2

)
.
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C.3. Contribution of the WZ term to the Hamiltonian

Contribution of the Wess–Zumino term to the Hamiltonian (B.35) is given by

HWZ = κ

2

√
λ Str

((
G2

+ − G2
−
)
�+χ

√
1 + χ2K̃8F

t
1K8 + GMGN�+�Nχ

√
1 + χ2�MK̃8F

t
1K8

)
.

(C.20)

Up to the quartic order we get

HWZ = κ

2

√
λ Str

(
�+χK̃8χ

′tK8 +
1

2
(z2 − y2)�+χK̃8χ

′tK8 +
1

2
�+χ

3K̃8χ
′tK8

+
1

2
�+χχ ′χK̃8χ

tK8 + xMxN�+�Nχ�MK̃8χ
′tK8

)
. (C.21)

We see that it is exactly cancelled by the contribution (C.7) coming from the fermion
shift (C.3).

C.4. Quartic Hamiltonian in terms of χ

Summing up all the contributions we get the quartic Hamiltonian

H4 = 1

2P+

[
p2

yz
2 − p2

zy
2 + λ̃(y ′2z2 − z′2y2) + 2̃λ(z′2z2 − y ′2y2) − λ̃ Str

(
1

2
χχ ′χχ ′ + χ2χ ′2

+
1

4
(χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8 + χK̃8χ

′tK8χK̃8χ
′tK8

)
+ λ̃ Str

(
(z2 − y2)χ ′χ ′ +

1

2
x ′

MxN [�M,�N ](χχ ′ − χ ′χ) − 2xMxN�Mχ ′�Nχ ′
)

+
iκ

√
λ̃

4
(xNpM)′ Str([�N,�M ](K̃8χ

tK8χ − χK̃8χ
tK8))

]
. (C.22)

The bosonic part of the Hamiltonian can be further simplified if we consider the point-particle
reduction of the Hamiltonian, that is, if we assume the fields to be independent of σ , we get

Hparticle = p2
M

2
+

x2
M

2
+

1

2
tr(η†η + θ †θ) +

1

2P+

(
p2

yz
2 − p2

zy
2
)
. (C.23)

We see first of all that the fermionic part of the Hamiltonian is just given by the quadratic term.
Moreover, the bosonic quartic term can be removed from the Hamiltonian (C.23) by means of
the canonical transformation generated by

V = 1

2P+
(pyyz2 − pzzy

2). (C.24)

Let us recall that given a generating function V (p, x), the canonical transformation of an
arbitrary function f (p, x) of the phase space can be written in the form

f (p, x) → f̃ (p, x) = f (p, x) + {V (p, x), f (p, x)} +
1

2
{V, {V, f }} + · · ·

= f +
∞∑

n=1

1

n!
{V, {V, · · · {︸ ︷︷ ︸

n

V , f } · · ·}, (C.25)

where the Poisson bracket is defined as

{V (p, x), f (p, x)} = ∂V (p, x)

∂pM

∂f (p, x)

∂xM

− ∂V (p, x)

∂xM

∂f (p, x)

∂pM

, (C.26)
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that is,

{pM, xN } = δMN. (C.27)

In quantum theory, the canonical transformation corresponds to a unitary transformation
generated by the operator U

U = eiV , f (p, x) → f̃ (p, x) = Uf (p, x)U †, [p, x] = 1

i
. (C.28)

The canonical transformation (C.24) can be easily lifted to σ -dependent fields

V = 1

2P+

∫ 2π

0

dσ

2π
(pyyz2 − pzzy

2). (C.29)

Then by using (C.25) one can easily find that the bosonic part of the canonically transformed
Hamiltonian takes the form (5.22)

Hbb = λ̃

p+
(y ′2z2 − y2z′2 + z2z′2 − y2y ′2), (C.30)

and we get (5.16).
The canonical transformation (C.25) removes all non-derivative terms from the

Hamiltonian. One can show that the sixth-order non-derivative terms can also be removed by
a canonical transformation. This is in accord with the observation that already the quadratic
particle Hamiltonian reproduces the spectrum of type IIB supergravity on AdS5 × S5.

Appendix D. Hamiltonian in terms of η and θ

In this appendix, we use the decomposition (5.5) for χ to express (5.16) in terms of η and θ .
Quadratic Hamiltonian. We first use

Str(χ2) = 2 tr(��∗) = −2 tr(��†�),

Str(�+χK̃8χ
′tK8) = −tr(��K�′tK) − tr(��†K�′†,tK),

to write the quadratic Hamiltonian in the form

H2 = 1

2
p2

M +
1

2
x2

M +
λ̃

2
x ′2

M − κ

2

√
λ̃(tr(��K�′tK) + tr(��†K�′†,tK)) − tr(��†�).

Then by using

tr ��†� = − 1
2 tr(η†η + θ †θ)

tr ��K�′tK = 1
2 tr(−ηη′ + θ †θ ′†), tr ��†K�′†,tK = 1

2 tr(η†η′† − θθ ′),

we obtain (5.20).
Quartic Hamiltonian. We first use the following relations,

Str(χ ′χ ′) = −2 tr(��′�′†), Str(χχ ′χχ ′) = tr(��′†��′† − �†�′�†�′),
Str(χ2χ ′2) = tr(��†�′�′† − �†��′†�′),
Str((χχ ′ − χ ′χ)K8(χχ ′ − χ ′χ)tK8) = tr((��′† − �′�†)K(��′† − �′�†)tK

− (�†�′ − �′†�)K(�†�′ − �′†�)tK),

Str(χK̃8χ
′tK8χK̃8χ

′tK8) = tr(K�′†,tK�†K�′†,tK�†) − tr(K�′tK�K�′tK�),

xMxN Str(�Mχ ′�Nχ ′) = −2iZmYn tr(��m�′�n�
′†),

x ′
MxN Str([�M,�N ](χχ ′ − χ ′χ)) = −Z′

mZn tr(�[�m, �n](��′† − �′�†))

+ Y ′
mYn tr(�[�m, �n](�†�′ − �′†�)),
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(xNpM)′ Str([�N,�M ](K̃8χ
tK8χ − χK̃8χ

tK8))

= 2
(
ZnP

z
m

)′
tr([�n, �m](K�†,tK�† + �K�tK))

− 2
(
YnP

y
m

)′
tr([�n, �m](K�tK� + �†K�†,tK)),

to write the quartic Hamiltonians Hbf and Hff in the form

Hbf = 1

2p+

[
−2̃λ(z2 − y2) tr(��′�′†) + 4ĩλZmYn tr(��m�′�n�

′†)

− λ̃

2
tr(Z′

mZn�[�m, �n](��′† − �′�†) − Y ′
mYn�[�m, �n](�†�′ − �′†�))

+
iκ

2

√
λ̃ tr

((
ZnP

z
m

)′
[�n, �m](K�†,tK�† + �K�tK)

− (
YnP

y
m

)′
[�n, �m](K�tK� + �†K�†,tK)

)]
, (D.1)

Hff = 1

2p+

[
− λ̃

2
tr(��′†��′† − �†�′�†�′ + ��†�′�′† − �†��′†�′)

− λ̃

4
tr((��′† − �′�†)K(��′† − �′�†)tK

− (�†�′ − �′†�)K(�†�′ − �′†�)tK)

− λ̃ tr(K�′†,tK�†K�′†,tK�† − K�′tK�K�′tK�)

]
. (D.2)

Note that we used

zmγm = Zm�m, ymγm = Ym�m, py
mγm = 2P y

m�m, py
mγm = 2P y

m�m. (D.3)

Then by using

tr �(�′†�′) = − 1
2 tr(η′†η′ + θ ′†θ ′),

tr ��m�n(��′† − �′�†) = tr(P+�m�n(ηη′† − η′η†) − P−�m�n(θ
†θ ′ − θ ′†θ)),

tr ��m�n(�
†�′ − �′†�) = tr(−P−�m�n(η

†η′ − η′†η) + P+�m�n(θθ ′† − θ ′θ †)),

tr ��m�′�n�
′† = tr(−P−�mη′�nθ

′ + P+�mθ ′†�nη
′†),

tr([�n, �m](K�†,tK�† + �K�tK))

= −trP+[�n, �m](η†η† + ηη) − trP−[�n, �m](θ †θ † + θθ),

tr([�n, �m](K�tK� + �†K�†,tK))

= −trP−[�n, �m](η†η† + ηη) − trP+[�n, �m](θ †θ † + θθ),

we obtain (5.23).
To find Hff we need

tr(��′†��′† − �†�′�†�′ + ��†�′�′† − �†��′†�′)
= tr(P+ηη′†ηη′† − P−η†η′η†η′ + P+ηη†η′η′† − P−η†ηη′†η′

−P+θθ ′†θθ ′† + P−θ †θ ′θ †θ ′ − P+θθ †θ ′θ ′† + P−θ †θθ ′†θ ′),
tr((��′† − �′�†)K(��′† − �′�†)tK − (�†�′ − �′†�)K(�†�′ − �′†�)tK)

= tr �((ηη′† − η′η†)(η′†η − η†η′) − (θ ′†θ − θ †θ ′)(θθ ′† − θ ′θ †)),

tr(K�′†,tK�†K�′†,tK�† − K�′tK�K�′tK�)

= tr(P+η
′†η†η′†η† − P−η′ηη′η − P+θ

′†θ †θ ′†θ † + P−θ ′θθ ′θ).
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By using these formulae we find the following expression for Hff ,

Hff = Hff (η) − Hff (θ), (D.4)

where

Hff (η) = λ̃

2p+
tr

[
−1

2
(P+ηη′†ηη′† − P−η†η′η†η′ + P+ηη†η′η′† − P−η†ηη′†η′)

− 1

4
�(ηη′† − η′η†)(η′†η − η†η′) − (P+η

′†η†η′†η† − P−η′ηη′η)

]
. (D.5)

It can be cast in the form

Hff (η) = λ̃

2p+
tr

[
−1

2
�(η′†ηη′†η + η†η′η†η′ + η′†η†η′†η† + η′ηη′η)

− 1

4
(ηη′†ηη′† − η†η′η†η′ + ηη†η′η′† − η†ηη′†η′ + 2η′†η†η′†η† − 2η′ηη′η)

]
.

(D.6)

By using the formula

tr �a�5−b�c�5−d = δabδcd + δadδbc − δacδbd, (D.7)

one can check that the second line in (D.6) vanishes, and, therefore, Hff (η) takes the
form (5.25).
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