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interferometer applications
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We derive generic phase and amplitude coupling relations for beam splitters–combiners that couple a single
port with three output ports or input ports, respectively. We apply the coupling relations to a reflection grat-
ing that serves as a coupler to a single-ended Fabry–Perot ring cavity. In the impedance-matched case such
an interferometer can act as an all-reflective ring mode cleaner. It is further shown that in the highly un-
dercoupled case almost complete separation of carrier power and phase signal from a cavity strain can be
achieved. © 2006 Optical Society of America
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Two-port beam splitters–combiners, for example, par-
tially transmitting mirrors, are key devices in laser
interferometry. They serve as 50/50 beam splitters in
Michelson interferometers and as low transmission
couplers to cavities. Amplitude and phase relations of
two-port beam splitters–combiners are well known.
In the case of grating optics, diffraction orders of a
greater number can couple to one input port. Re-
cently a reflection grating with three diffraction or-
ders was used for interferometer purposes; laser light
was coupled into a linear high-finesse Fabry–Perot
cavity by using the second-order Littrow
configuration.1 The grating was built from a binary
structure. This property, together with the second-
order Littrow configuration, provided a symmetry
against the grating’s normal. The system was theo-
retically analyzed in Ref. 2. It was shown that a new
three-port (3p) coupled Fabry–Perot interferometer
can be designed such that resonating carrier light is
completely backreflected toward the laser source.
The additional interferometer port is then on a dark
fringe and contains half of the interferometer strain
signal.

In this Letter we first derive the generic coupling
relations of 3p beam splitters. This includes coupling
amplitudes and coupling phases that are required for
interferometric applications. Our description in-
cludes arbitrary gratings with three orders of diffrac-
tion regardless of the groove shape and the diffrac-
tion angles, as shown in Fig. 1. We then investigate
the 3p reflection grating coupled Fabry–Perot ring in-
terferometer and show that for a resonating carrier a
dark port can be constructed that contains an arbi-
trary high fraction of the interferometer’s strain sig-
nal.

Optical devices can be described by a scattering
matrix formalism.3 In general the coupling of n input
and n output ports requires an n�n scattering ma-
trix S. The n complex amplitudes of incoming and
outgoing fields are combined into vectors a and b, re-
spectively. For a lossless device S has to be unitary to
preserve energy, and reciprocity demands �Sij���Sji�
for all elements Sij of S. For a generic 3p device six
coupling amplitudes and nine coupling phases are in-
volved. Since three input and three output fields are
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considered, the number of phases can be reduced to
six without loss of physical generality; the remaining
six phases describe the phases of the six fields with
respect to a local oscillator field. Here we choose the
phases such that the matrix S is symmetric, and b
=S�a can therefore be written as

�
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b3
� = �

�1ei�1 �4ei�4 �5ei�5

�4ei�4 �2ei�2 �6ei�6
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� � �

a1
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a3
� , �1�

where 0��i�1 for all i describes the amplitude and
ei�i describes the phase of coupling. Figure 1 shows

Fig. 1. (Color online) Two examples of the three-port (3p)
beam splitters and/or combiners. Input fields ai and output
fields bi denote complex amplitudes of the electric field. (a)
Asymmetric triangular grating in second-order Littrow
configuration. (b) Binary grating in non-Littrow

configuration.
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two examples of 3p devices. In both cases the input
beam splits into three beams, and, vice versa, three
input beams can interfere to become a single one.
However, one realizes that the rigorously defined
scattering matrix for the device in Fig. 1(b) has a di-
mension of 6�6, but this matrix contains null ele-
ments because not six but only three ports couple,
and the matrix can be reduced to the matrix as given
in Eq. (1).

The unitarity condition S†S=1 entails the follow-
ing set of equations:
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Equations (2)–(10) set boundaries for physically
possible coupling amplitudes and phases of the ge-
neric lossless 3p beam splitter–combiner. Equations
(2)–(4) represent the energy conservation law and
arise from the diagonal elements of the unitarity con-
dition. Equations (5)–(10) arise from the off-diagonal
elements. They are already simplified to contain just
a single cosine term. However, it can be easily de-
duced that up to three phases in the scattering ma-
trix S can be chosen arbitrarily. In this analysis we
choose the phases �1 ,�2 ,�3 to be zero. This is a per-
mitted choice without introducing any restriction on
possible coupling amplitudes. Then the phases of the
scattering matrix can be written as
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It is interesting to note that the coupling relations
restrict the possible values of �i. Let us assume that
a free choice of �4

2 and �6
2 is desired, which then im-

mediately determines �2
2 according to Eq. (3). Substi-

tuting �1 and �3 by using Eqs. (2) and (4), Eqs.
(5)–(10) provide the following pair of inequalities that
restricts the values of �5 and thereby also the values
of �1 and �3:

�4�6�1 − �2�

�4
2 + �6

2 � �5 �
�4�6�1 + �2�

�4
2 + �6

2 . �12�

We now apply a 3p beam splitter–combiner in in-
terferometry. We focus on the device in Fig. 1(b) as a
coupler to a Fabry–Perot ring cavity as shown in Fig.
2. Laser light incident from the left is coupled accord-
ing to �4

2 into the cavity, which is formed by the grat-
ing and two additional highly reflecting cavity mir-
rors. If both cavity mirrors are lossless, the cavity
finesse depends on the specular reflectivity �2

2 and
does not rely on high values of first- or second-order
diffraction efficiencies. Using high reflection dielec-
tric coatings makes high-finesse values and high la-
ser buildups possible, similar to the linear cavity in-
vestigated in Ref. 1. However, here the cavity outputs
depend on �4

2 (into port c1) and �6
2 (into port c3) that

can have different values.
Assuming unity laser input and perfectly reflecting

cavity mirrors, the system is described by

Fig. 2. (Color online) Three-port coupled grating in a ring
Fabry–Perot interferometer. The grating can be designed
such that the laser input is completely sent into port c1 on
cavity resonance. If the cavity is impedance matched this
device might serve as an all-reflective mode cleaner. An-
other interesting case occurs in which the cavity is highly
undercoupled. Then almost the complete cavity strain sig-
nals are sent to port c3. Such a device separates carrier

light from its modulation sidebands.
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Here �=�L /c denotes the detuning from cavity reso-
nance, with L the cavity length, � the laser field an-
gular frequency, and c the speed of light. Solving for
the reflected amplitudes yields

c1 = �1 +
�4

2 exp	2i��4 + ��


1 − �2 exp�2i��
, �14�

c2 =
�4 exp�i�4�

1 − �2 exp�2i��
, �15�

c3 = �5 exp�i�5� +
�4�6 exp	i��4 + �6 + 2��


1 − �2 exp�2i��
. �16�

From Eq. (14) it can be shown that, for a grating
with �5

2 at its maximum value for given �4
2 and �6

2,
and a cavity on resonance ��=0�, no carrier light from
the laser incidenting from the left is leaving the cav-
ity to the left �c3=0�. This dark port is indicated in
Fig. 2 by a dashed arrow. If the cavity moves away
from resonance, for example, caused by a cavity
strain, amplitude c3 is no longer zero. This field is
generally termed a phase signal and might appear at
some sideband frequency 	 if the cavity is locked to
the time-averaged carrier frequency �0 with a lock-
ing bandwidth smaller than 	. The phase signal gen-
erated inside the cavity obviously leaves the cavity
according to the magnitudes of �4

2 and �6
2 in two di-

rections. From Eqs. (14) and (16) it is easy to prove
that the power of the signal indeed splits according to
the ratio �4

2 /�6
2. We now discuss two distinct ex-

amples; in both of them we consider �5
2 to be designed

close to its maximum value. For �4
2=�6

2 the cavity out-
put coupling is twice the input coupling and the sig-
nal is split into two equal halves. We term this case a
symmetric or an impedance-matched 3p coupled cav-
ity; this is in analogy to the lossless impedance-
matched linear cavity whose output coupling is also
twice the input coupling. However, due to the choice
of �5

2 all the carrier power is sent into port c1 if the
cavity is on resonance as discussed above. Such a de-
vice can serve as an all-reflective mode cleaner. For
�4
�6 the 3p coupled lossless cavity can be termed
overcoupled and for �4��6 undercoupled. As the sec-
ond example we consider the highly undercoupled
grating cavity ��4

2��6
2��2

2� and explicitly choose the
following coupling coefficients:

�4
2 = 0.0001, �6

2 = 0.0099, �2
2 = 0.99,

�5
2 = 0.0394, �1

2 = 0.9605, �3
2 = 0.9507,

�1 = 0, �2 = 0, �3 = 0,

�4 � − 3.1349, �5 � 1.5708, �6 � 1.5707.
�17�
For this set of measures again �5
2 is almost at its

maximum value, and consequently �1
2 and �3

2 are
close to their minimum values. As in the impedance-
matched case described above, again all the carrier
power is sent into port c1. Owing to the high asym-
metry of the ratio between �4

2 and �6
2 the signal is

sent mainly into port c3. The special property of the
highly undercoupled grating Fabry–Perot interfer-
ometer is therefore the possibility of separating car-
rier light and phase signal. This is a remarkable re-
sult. Separation of carrier light and phase signal is
well known for a Michelson interferometer operating
on a dark fringe. Such an interferometer sends all
the laser power back to the laser source. The anti-
symmetric mode of phase shifts in the Michelson
arms is sent into the dark port. The symmetric mode
is combined with the reflected laser power and sent
toward the bright port. In the case of the highly un-
dercoupled 3p grating Fabry–Perot interferometer
the almost complete phase signal is separated from
carrier light and is accessible to detection, and the re-
flected field in the bright port contains only a mar-
ginal fraction of the signal ��4

2 /�6
2�.

We point out that all results obtained for the
Fabry–Perot ring interferometer using the 3p coupler
in Fig. 1(b) also hold for a linear cavity using the 3p
coupler in Fig. 1(a). However, some distinctive prop-
erties should be mentioned. Regardless of their dif-
ferent topologies, the ring Fabry–Perot interferom-
eter is content with only low efficiencies for greater
than zero diffraction orders. All coupling amplitudes
in Eqs. (17) with values close to unity describe specu-
lar reflections. The production of such a grating with
low overall loss should be possible with standard
technologies building on the concept used in Refs. 1
and 4. In the case of the (highly undercoupled) linear
Fabry–Perot interferometer �1

2 and �3
2 do not describe

specular reflections, and high diffraction efficiencies
in the second-order diffraction are required. How-
ever, especially in the second-order Littrow configu-
ration, carrier and signal separation offers straight-
forward extension by interferometer recycling
techniques.5
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