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Abstract

We show that analytic solutions E of the Ernst equation with non-
empty zero-level-set of ℜE lead to smooth ergosurfaces in space-time.
In fact, the space-time metric is smooth near a “Ernst ergosurface” Ef

if and only if E is smooth near Ef and does not have zeros of infinite
order there.

1 Introduction

A standard procedure for constructing stationary axi-symmetric solutions
of the Einstein equations proceeds by a reduction of the Einstein equations
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to a two-dimensional nonlinear equation — the Ernst equation [5] — using
the asymptotically timelike Killing vector field X as the starting point of
the reduction: One finds a complex valued field

E = f + ib, (1.1)

by e.g. solving a boundary-value problem [17]. The space-time metric is
then obtained by solving ODEs for the metric functions. The following
difficulties arise in this construction:

1. Singularities of E , which might — or might not — lead to singularities
of the metric.

2. Struts or causality violations at the rotation axis.

3. Singularities of the equations arising at zeros of ℜE .

The aim of this work is to address this last question. Indeed, the equa-
tions determining the metric functions are singular at the zero-level-set1

Ef := {f = 0 , ρ > 0}

of f := ℜE ; we will refer to Ef as the E -ergosurface. We show, assuming
smoothness of E in a neighborhood of Ef , and excluding zeros of infinite or-
der, that the singularities of the solutions of those ODEs conspire to produce
a smooth space-time metric. More precisely, we have:

Theorem 1.1 Consider a smooth solution f + ib of the Ernst equations
(2.5)-(2.6) below such that f has no zeros of infinite order at the E –ergosurface
Ef . Then there exists a neighborhood of Ef on which the metric (2.1) ob-
tained by solving (2.3)-(2.4) is smooth and has Lorentzian signature.

An immediate corollary of Theorem 1.1 is the following: Any point ~x0

off the axis in the Weyl coordinate chart corresponds to space-time points at
which the metric is regular ⇐⇒ the Ernst potential is a real-analytic function
of the Weyl coordinates near ~x0 ⇐⇒ the Ernst potential is a smooth function
of the Weyl coordinates near ~x0 and zeros of ℜE have finite order.

The proof of Theorem 1.1 can be found at the end of Section 5.2.

1The equations are of course singular at f = ρ = 0 as well, but the singularity of
the whole system of equations has a different nature there, because of the ∂ρf/ρ terms
in the Ernst equation (2.2), and will not be considered here. Geometrically, the set
{ρ = f = 0} has a rather different nature, corresponding to Killing horizons, with the
boundary conditions there being reasonably well understood in any case [3, 10].
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The condition of zeros of finite order is necessary, in the following sense:
any zero of ℜE on a smooth space-time ergosurface is of finite order. This
is proved at the end of Section 2.

It is an interesting consequence of our analysis below that a critical zero
of f of order k corresponds to a smooth two-dimensional surface in space-
time at which k distinct components of the ergoregion {f < 0} “almost
meet”, in the sense that their closures intersect there, with the boundaries
branching out. Two exact solutions with this behavior for k = 2 are pre-
sented in Section 5.

Section 4 below appeared in preprint form in [4]; the reader will also find
in [4] some more information about second order zeros of f .

2 The field equations and ergosurfaces

We consider a vacuum gravitational field in Weyl-Lewis-Papapetrou coordi-
nates

ds2 = f−1
[
h

(
dρ2 + dζ2

)
+ ρ2dφ2

]
− f (dt + adφ)2 (2.1)

with all functions depending only upon ρ and ζ. The vacuum Einstein
equations for the metric functions h, f , and a are equivalent to the Ernst
equation

(ℜE )

(

E,ρρ + E,ζζ +
1

ρ
E,ρ

)

= E
2
,ρ + E

2
,ζ (2.2)

for the complex function E (ρ, ζ) = f(ρ, ζ) + ib(ρ, ζ), where b replaces a via

a,ρ = ρf−2b,ζ , a,ζ = −ρf−2b,ρ (2.3)

and h can be calculated from

h,ρ =
ρh

2f2

[
f2

,ρ − f2
,ζ + b2

,ρ − b2
,ζ

]
, h,ζ =

ρh

f2
[f,ρf,ζ + b,ρb,ζ ] . (2.4)

We will think of ρ and ζ as being cylindrical coordinates in R
3 equipped

with the flat metric
g̊ = dρ2 + ρ2dϕ2 + dζ2 ,

with all the above functions being ϕ–independent functions on R
3. Then

(2.2) can be rewritten as

f∆f = |Df |2 − |Db|2 , (2.5)

f∆b = 2(Df,Db) . (2.6)
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where ∆ is the flat Laplace operator of the metric g̊, and (·, ·) denotes the
g̊-scalar product, similarly the norm | · | is the one associated with g̊.

Equations (2.5)-(2.6) degenerate at {f = 0}, and it is not clear that f
or b will smoothly extend across {f = 0}, if at all. In Section 3 below we
give examples of solutions which do not. On the other hand, there are large
classes of solutions which are smooth across Ef . Examples can be obtained
as follows:

First, every space-time obtained from an Ernst map E ′ associated to the
reduction that uses the axial Killing vector ∂ϕ (see, e.g., [3, 21]) will lead to
a solution E as considered here that extends smoothly across the space-time
ergosurfaces (if any); recall that an ergosurface is defined to be a timelike
hypersurface where the Killing vector X, which asymptotes a time transla-
tion in the asymptotic region, becomes null. Those ergosurfaces correspond
then to E -ergosurfaces across which f does indeed extend smoothly. We em-
phasise that we are interested in the construction of a space-time starting
from E , and we have no a priori reason to expect that an E –ergosurface,
defined as smooth zero-level set of ℜE , will lead to a smooth space-time
ergosurface.

Next, large classes of further examples are given in [9, 12, 14–17, 22]2.
Some of the solutions in those references have non-trivial zero-level sets of
ℜE , with gρρ = gzz and gtϕ smooth across Ef (see in particular [12]), but
smoothness of gϕϕ is not manifest.

Quite generally, we have the following: consider a vacuum space-time
(M , g) with two Killing vectors X, Y , and with a non-empty space-time
ergosurface defined as

EM := {g(X,X) = 0 , X 6= 0
︸ ︷︷ ︸

(1)

, g(X,X)g(Y, Y ) − g(X,Y )2 < 0
︸ ︷︷ ︸

(2)

} .

Condition (1) is the statement that X becomes null on EM , while (2) says
that the planes spanned by X and Y are timelike; condition (2) distinguishes
a space-time ergosurface from a horizon, where those plane are null. (For
solutions in Weyl form, condition (2) translates into the requirement ρ 6= 0.)
Now, by (2) there exists a linear combination of X and Y which is timelike
near EM , and if g is sufficiently differentiable (H2

loc in coordinates adapted
to the symmetry group is more than enough), the analysis of [13] shows that

2The solutions we are referring to here are not necessarily vacuum everywhere, and
some of them have a function E which is singular somewhere in the (ρ, ζ) plane. Our
analysis applies to the vacuum region, away from the rotation axis, and away from the
singularities of the Ernst map f + ib.
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there exist an atlas near EM in which g is analytic. By chasing through the
construction of Weyl coordinates, this implies that f and b are real-analytic
functions near Ef . In particular f will not have zeros of infinite order there.

3 Static solutions

In the remainder of this work only those solutions which are invariant under
rotations around some fixed chosen axis are considered (when viewed as
functions on subsets of R

3), and all functions are identified with functions
of two variables, ρ and ζ.

Consider a solution of (2.5)-(2.6) with b ≡ 0. Setting u = ln f in the
region Ω := {f > 0}, Equation (2.5) becomes

∆u = 0 on Ω . (3.1)

One can now obtain examples of solutions for which Ef is not empty as
follows: Let α ∈ R

∗, ~x0 = (ρ0, ζ0) ∈ (0,∞)×R; standard PDE considerations
show existence of solutions of (3.1) on Ω := {(0,∞) × R} \ {~x0} such that

uα = α ln
(

(ρ − ρ0)2 + (ζ − ζ0)2
)

+ O(1) .

This leads to

fα := euα =
(

(ρ − ρ0)2 + (ζ − ζ0)2
)α

gα ,

where gα has no zeros. We have the following:

• No such solution is smoothly extendable through the Ernst ergosurface
Efα

= {~x0} except perhaps when α ∈ N
∗.

• In that last case the solutions do not extend smoothly across Ef either,
which can be seen as follows. Consider, first α = 1, then f = f1 has a
zero of order two with positive-definite Hessian, but Lemma 5.2 below
shows that no such solutions which are smooth across Ef exist. For
general α = n ∈ N

∗ we note that

f1 =
(

(ρ − ρ0)2 + (ζ − ζ0)2
)

(gn)
1

n .

But smoothness of fn would imply that of gn, and thus of f1, which is
not the case. Thus fn, n ∈ N

∗, cannot be smooth either.
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Above we have considered differentiability of fα in (ρ, ζ)–coordinates. This
might not be equivalent to the question which is of main interest here, that
of regularity of the space-time metric. In the case b ≡ 0 this issue is easy to
handle, by noting that a can then always be made to vanish by a redefinition
of t. Now, the length g(∂ϕ, ∂ϕ) of the Killing vector ∂ϕ, generating rotations
around the axis, is a smooth — hence locally bounded — function on the
space-time. But gϕϕ = ρ2f−1 by (2.1) so, in the static case, zeros of f with
ρ0 6= 0 cannot correspond to ergosurfaces in space-time3.

4 Non-critical zeros of f

We start with the following:

Theorem 4.1 The conclusion of Theorem 1.1 holds if one moreover as-
sumes that |Df | has no zeros at the E –ergosurface Ef := {f = 0, ρ > 0}.

Proof: We need to show that the functions

α := −gϕt = af , β := ln gζζ = ln gρρ = ln(hf−1) ,

as well as

gϕϕ =
ρ2 − (af)2

f

are smooth across {f = 0, ρ > 0}, and that gϕt does not vanish whenever
gtt = −f does.

We start by Taylor-expanding f and b to order two near any point (ρ0, ζ0)
such that f(ρ0, ζ0) = 0:

f(ρ, ζ) = f̊,ρ(ρ − ρ0) + f̊,ζ(ζ − ζ0)

+
1

2
f̊,ρρ(ρ − ρ0)2 +

1

2
f̊,ζζ(ζ − ζ0)2 + f̊,ρζ(ρ − ρ0)(ζ − ζ0) + . . . ,

b(ρ, ζ) = b̊ + b̊,ρ(ρ − ρ0) + b̊,ζ(ζ − ζ0)

+
1

2
b̊,ρρ(ρ − ρ0)2 +

1

2
b̊,ζζ(ζ − ζ0)2 + b̊,ρζ(ρ − ρ0)(ζ − ζ0) + . . . ,

where a circle over a function indicates that the value at ρ0 and ζ0 is taken.
Inserting these expansions into (2.5)-(2.6), after tedious but elementary al-

3The discussion here gives a simple proof, under the supplementary condition of axi-
symmetry, of the Vishweshwara-Carter lemma, that there are no ergosurfaces in static
space-times.
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gebra one obtains either

b̊ρ = ηf̊ζ , b̊ζ = −ηf̊ρ, η = ±1

f̊,ρρ + f̊,ζζ =
f̊,ρ

ρ0
, b̊,ρρ + b̊,ζζ =

f̊,ζ

ρ0
, b̊,ρζ = f̊,ζζ, f̊,ρζ = b̊,ρρ,

(4.1)
or

b̊ρ = f̊ζ = b̊ζ = f̊ρ = 0 . (4.2)

The second possibility is excluded by our hypothesis that Df 6= 0 on Ef .
Suppose, first, that η = 1 in the first line of (4.1). From (2.3) we obtain

α,ρ =
f,ρ

f
α +

ρ

f
b,ζ , (4.3)

α,ζ =
f,ζ

f
α −

ρ

f
b,ρ , (4.4)

so that
(

α − ρ

f

)

,ρ

= [ρ(b,ζ + f,ρ) − f ]
︸ ︷︷ ︸

=:σρ

f−2 , (4.5)

(
α − ρ

f

)

,ζ

= ρ(f,ζ − b,ρ)
︸ ︷︷ ︸

=:σζ

f−2 . (4.6)

Inserting (4.1) into the definitions of σρ and σζ we find

σρ = σζ = 0 = dσρ = dσζ

at every point (ρ0, ζ0) lying on the E -ergosurface. Here, as elsewhere, dµ
denotes the differential of a function µ.

Recall that Df does not vanish on Ef . We can thus introduce coordi-
nates (x, y) near each connected component of Ef so that f = x. Since the
σa’s are smooth we have the Taylor expansions

σa = σa|Ef
+ (∂xσa)|Ef

x + rax
2 ,

for some remainder terms ra which are smooth functions on space-time. But
we have shown that σa|Ef

= (∂xσa)|Ef
= 0. Hence

σa = rax
2 = raf

2 ,
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It follows that the right-hand-sides of (4.5)-(4.6) extend by continuity across
Ef to smooth functions. Hence the derivatives of (α − ρ)/f extend by
continuity to smooth functions, and by integration

α − ρ = fα̂ , (4.7)

for some smooth function α̂(ρ, ζ). This proves smoothness both of gtϕ and
of gϕϕ. We also obtain that gtϕ = −ρ when f = 0, and since ρ > 0 by
assumption we obtain non-vanishing of gtϕ on the E –ergosurface.

In the case where η = −1 in (4.1), instead of (4.5)-(4.6) we write equa-
tions for (α + ρ)/f , and an identical argument applies.

We pass now to the analysis of gρρ = gzz. From (2.4),

ln(h/f),ρ =
1

2

[
ρ(f2

,ρ − f2
,ζ + b2

,ρ − b2
,ζ) − 2ff,ρ

]

︸ ︷︷ ︸

=:κρ

f−2, (4.8)

ln(h/f),ζ = [ρ(f,ρf,ζ + b,ρb,ζ) − ff,ζ]
︸ ︷︷ ︸

=:κζ

f−2. (4.9)

Evaluating κa and its derivatives on Ef and using (4.1) one obtains again

κa = dκa = 0

on Ef . As before we conclude that gρρ and gζζ are smooth across Ef .
2

5 Higher order zeros of f

We shall say that f has a zero of order n, n ≥ 1, at ~x0 = (ρ0, ζ0), if

f(~x0) = . . . = D · · ·D
︸ ︷︷ ︸

n−1 factors

f(~x0) = 0 but D · · ·D
︸ ︷︷ ︸

n factors

f(~x0) 6= 0 .

It is legitimate to raise the question whether solutions of the Ernst equa-
tions (2.2) with higher order zeros on Ef exist. A simple mechanism4 for
producing such solutions is the following: consider a family of solutions de-
pending continuously on one parameter, such that for large parameter values
there exist two disjoint ergosurfaces, while for small parameter values the
ergosurface is connected. Elementary considerations show that there exists

4We are grateful to M. Ansorg and D. Petroff for pointing this out to us.
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a value of the parameter where f has a zero of higher order. Examples of
such behavior have been found numerically by Ansorg [1] in families of dif-
ferentially rotating disks (however, the merging of the ergosurfaces in that
work occurs in the matter region, which is not covered by our analysis). In
Figure 1, due to D. Petroff5, the reader will find an example in a family
of solutions with a black hole surrounded by a ring of fluid. Those solu-
tions are globally regular, and the coalescence of ergosurfaces takes place
in the vacuum region. A purely vacuum example of this kind is hinted at
in [18, Fig. 2]. Finally, Figures 2-4 show a purely vacuum example within
the Kramer-Neugebauer family of solutions [9], where the parameters which
are being varied are the βi’s of [20]. While the value of the parameters found
numerically, for which f has a zero of order two, is only approximate, the
existence of a nearby value with a second order zero follows from what has
been said above together with the remaining results in this paper.

Similarly three ergosurfaces merging simultaneously will lead to a zero
of order precisely three, and so on.

In order to study the zeros of higher order it is convenient to consider
Taylor expansions of f and b to order n ≥ k,

f(ρ, ζ) =
∑

0≤i+j≤n

f̊i,j

i!j!
(ρ − ρ0)i(ζ − ζ0)j + rn , (5.1)

where

f̊i,j :=
∂i+jf

∂iρ∂jζ
(ρ0, ζ0) .

Similarly we denote the Taylor coefficients of b by b̊i,j.
Suppose that f has a zero of order k at ~x0. Note that the value b(ρ0, ζ0) =

ℑE (ρ0, ζ0) is irrelevant both for the equations and for the metric, so without
loss of generality we may assume that E (ρ0, ζ0) = 0. ¿From now on we
assume that this is the case. Let Ek be the homogeneous polynomial in
ρ − ρ0 and ζ − ζ0, of order k, obtained by keeping in the Taylor expansion
only the terms of first non-vanishing order, similarly fk. Thus, fk is a
homogeneous polynomial in ρ − ρ0 and ζ − ζ0, of order k:

fk(ρ, ζ) =
∑

i+j=k

f̊i,j

i!j!
(ρ − ρ0)i(ζ − ζ0)j . (5.2)

5We are very grateful to D. Petroff for providing this figure; a detailed analysis of
configurations of this type can be found in [2].
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Figure 1: A coordinate representation of ergosurfaces for three configura-
tions consisting of a black hole (coordinate origin) surrounded by a fluid
ring (shaded area). The values of the parameters, in the notation of [2],
are ̺i/̺o = 0.55, rc/̺o = 0.015, Jc/̺

2
o = 0.05, with V0 = −1.45 (dashed

line), V0 = −1.396 (solid line) and V0 = −1.35 (dotted line). The shape
of the ring (here corresponding to the ergosurface indicated by a solid line)
is represented by the shaded area and differs only minimally between the
three configurations. The coordinates ˜̺ and ζ̃ are related to ̺ and ζ by a
conformal transformation.

The polynomial fk can be written in a convenient form, (5.4) below, as
follows: suppose, for the moment, that ρ − ρ0 is strictly positive, by homo-
geneity we can then write

fk(ρ, ζ) = (ρ − ρ0)kPk(w) , where w :=
ζ − ζ0

ρ − ρ0
, (5.3)

for some non-trivial polynomial Pk of order smaller than or equal to k. Let
αi ∈ C, i = 1, . . . , n, be distinct zeros of Pk, with multiplicities mi, thus
Pk(w) = C Πn

i=1(w − αi)
mi , for some constant C ∈ C

∗. Hence

fk(ρ, ζ) = C(ρ − ρ0)m0 Πn
i=1

(

ζ − ζ0 − αi(ρ − ρ0)
)mi

, (5.4)
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Figure 2: Coalescing ergosurfaces in the “double-Kerr” family of metrics in
the (̺, ζ) half-plane, with one black hole extreme. We use a parameterization
as in [20]. In all five cases the event horizon of the degenerate black hole
lies at the origin, thus α1 = 0, while α2 = −1/6, α3 = −1, and with the
βa’s, a = 1, 2 of the form βa = −ba(1 + i), where: 1) b1 = 0.6, b2 = 1.5; 2)
b1 = 0.62, b2 = 1.66; 3) b1 = 0.6218704381, b2 = 1.668809562; 4) b1 = 0.62,
b2 = 1.68; 5) b1 = 0.6, b2 = 1.7. Those solutions have both singular struts
at the axis and singular rings away from the region where the coalescing of
ergosurfaces occurs, but those singularities are irrelevant for the proof that
there are no local obstructions to zeros of higher order.
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Figure 3: The first, third and fifth ergosurfaces of Figure 2 superimposed.

where m0 = k − m1 − · · ·mn. It should be clear that (5.4) remains true for
all ρ, and not only for ρ > ρ0 as assumed so far.

We will need the following:

Proposition 5.1 Assume that f and b are smooth near ~x0. Then the func-
tion b, normalised so that b(~x0) = 0, has a zero at ~x0 of precisely the same
order as f .

Proof: Let k ∈ N denote the order of the zero. For k = 1 the result has
already been established in Section 4, so we assume k ≥ 2. We then have
f = O(|~x − ~x0|

k), |Df | = O(|~x − ~x0|
k−1), ∆f = O(|~x − ~x0|

k−2), and (2.5)
shows that

|Db|2 = O(|~x − ~x0|
2k−2) .

Integrating radially around ~x0 gives b = O(|~x−~x0|
k), hence the order of the

zero of b is larger than or equal to k.
To show the reverse inequality, suppose that b = O(|~x−~x0|

k+1). Inserting
the Taylor expansion of f into (1.1) one finds that fk solves the equation

fk

(
∂2fk

∂ρ2
+

∂2fk

∂ζ2

)

=

(
∂fk

∂ρ

)2

+

(
∂fk

∂ζ

)2

. (5.5)
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Figure 4: Coordinate representation in R
3 of the first, third and fifth ergo-

surfaces from Figure 2. The cusps where the ergosurfaces meet the symmetry
axis have a geometric character and also arise in the Kerr solution [19].

On the set Ωk := {fk > 0} define uk = ln fk. Without loss of generality,
changing f to −f if necessary, we can assume that Ωk is non-empty, with ~x0

lying in the closure of Ωk. On Ωk, Equation (5.5) is simply the statement
that uk is harmonic in the variables (ρ, ζ):

∆2uk :=
∂2uk

∂ρ2
+

∂2uk

∂ζ2
= 0 . (5.6)

¿From (5.4) we have, assuming C 6= 0,

uk = ln C + m0 ln(ρ − ρ0) +
n∑

i=1

mi ln
(

ζ − ζ0 − αi(ρ − ρ0)
)

.

13



Inserting into (5.6) one obtains

∆2uk = −m0
1

(ρ − ρo)2
−

n∑

i=1

mi(1 + α2
i )

1
(

ζ − ζ0 − αi(ρ − ρ0)
)2 = 0 .

Recalling that the αi’s are distinct, this is only possible if

m0 = 0 = mi(1 + α2
i ) ∀ i .

Reordering the mi’s if necessary, as uk is real-valued we have proved that

uk = ln C+m1 ln
(

(ζ−ζ0)2+(ρ−ρ0)2
)

⇐⇒ fk = C
(

(ζ−ζ0)2+(ρ−ρ0)2
)m1

.

Subsequently,

f = C
(

(ζ − ζ0)2 + (ρ − ρ0)2
)m1

+ O(|~x − ~xo|
k+1) . (5.7)

As the order of ~x0 is even, this proves Proposition 5.1 for all k odd.
To continue, we note the following

Lemma 5.2 Under the hypotheses of Proposition 5.1, let ~x0 be a zero of
order two. Then the quadratic form defined by the Hessian DDf(~x0) of f
has signature (+−) or (−+). This implies that second order zeros of f are
isolated.

Remark 5.3 For further use we note that the derivation of (5.8)-(5.9) only
uses the truncated equations (5.13)-(5.14) below. Furthermore, the cal-
culations here — and therefore their conclusions — remain valid when a
supplementary error term o(|~x − ~x0|

3) is allowed at the right-hand-side of
(2.5).

Proof: The result is obtained by a calculation, the simplest way pro-
ceeds as in the proof of Theorem 5.6 below. Alternatively, one can use
Maple or Mathematica, the interested reader can download the work-
sheets from http://th.if.uj.edu.pl/~szybka/CMS; that last calculation
has been done as follows: Consider the polynomials Wa, a = 1, 2, obtained
by inserting the Taylor expansion of f and b, with f̊ = Df̊ = 0, into equa-
tions obtained by multiplying (2.5) and (2.6) with ρ. The requirement that
those polynomials vanish up-to-and-including order two imposes the follow-
ing alternative sets of conditions:

I. b̊2,0 = b̊1,1 = b̊0,2 = f̊1,1 = 0 , f̊2,0 = f̊0,2 ∈ R , (5.8)

II. f̊2,0 = −f̊0,2 = −̊b1,1 ∈ R , b̊0,2 = −f̊1,1 = −̊b2,0 ∈ R , (5.9)
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as well as a set which is related to II. above by exchanging b with −b. The
first set leads to f̊0,2 = 0 when requiring that the polynomials Wa just
defined vanish to one order higher, so that the first set cannot occur for
zeros of second order. One then checks that the set II. leads to Lorentzian
signature of DDf , unless vanishing. 2

Clearly the Hessian of f given by (5.7) does not have indefinite signature
when m1 = 1, proving Proposition 5.1 for zeros of order two.

It remains to consider m1 ∈ N satisfying m1 ≥ 2. Replacing f by −f if
necessary, it follows from (5.7) that f is strictly positive in a neighborhood
of ~x0, so that we can define

g := f1/m1 .

Usual arguments (cf., e.g., [11]), show that g is smooth and has a zero of
order two at ~x0. From (2.5) one has

g∆g − |Dg|2 =
1

m1
g2 |Db|2

f2
︸ ︷︷ ︸

O(1)

= O(|~x − ~x0|
4) . (5.10)

Taylor expanding g up to order o(|~x − ~x0|
4) and inserting into (5.10) gives

C = 0 (see Remark 5.3), proving Proposition 5.1. 2

5.1 Simple zeros

A zero of f of order k will be said to be simple if all the αi’s in (5.4) are
real and have multiplicities one, with m0 ∈ {0, 1}. We will show below that
zeros of finite order of solutions of Ernst equations are simple. Somewhat
to our surprise, for such zeros Theorem 4.1 generalises as follows:

Theorem 5.4 The conclusions of Theorem 1.1 are valid under the sup-
plementary condition that f has only simple zeros at the E –ergosurface
Ef := {f = 0, ρ > 0}.

Proof: As pointed out by Malgrange [11, end of Section 3], simplicity
implies that near ~x0 there exist smooth functions φa, a = 1, . . . , k, with
φa(~x0) = 0 and with nowhere-vanishing gradient, together with a strictly
positive smooth function g such that we can write

f = φ1 · · ·φkg . (5.11)
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(Supposing that m0 = 0, the φa’s have the Taylor expansion φa = ζ − ζ0 −
αa(ρ−ρ0)+O(|~x−~x0|

2); if m0 = 1, then one has φ1 = ρ−ρ0 +O(|~x−~x0|
2),

with the remaining Taylor expansions of the same form as before. For k = 2
this is a special case of Morse’s theorem [6, Theorem 6.9, p. 65].)

Equation (5.11) shows that Ef is, near ~x0, the union of the smooth
submanifolds {φa = 0}. On each of those Df is non-vanishing, except at
the origin. Passing to a small neighborhood of ~x0 if necessary, we can assume
that each of the sets {φa = 0,Df 6= 0} has precisely two components.

Consider a connected component of {φ1 = 0}, by Section 4 Equa-
tion (4.1) holds there. Suppose that the lower sign arises on this com-
ponent, then the same lower sign has to arise on the remaining component
of {φ1 = 0}, because the inversion ~x − ~x0 → −~x + ~x0 maps each compo-
nent to the accompanying one up to quadratic terms, and because Db has,
in the leading order of its Taylor development, the same parity as Df by
Proposition 5.1.

We consider the function σρ as in (4.5), an identical argument applies to
σζ and to κρ, κζ . Using a coordinate system (y1, y2) with φ1 = y1 we have
a Taylor expansion

σρ(y1, y2) = σρ,0(y2) + σρ,1(y2)y1 + σρ,2(y1, y2)(y1)2 . (5.12)

Note that f has a simple zero away from the origin on the axis {y1 = 0},
so by the results in Section 4 the functions σρ,0 and σρ,1 vanish there. By
continuity they also vanish at the origin, thus σρ factorises as

σρ = σ′
ρφ

2
1

for a smooth function σ′
ρ := σρ,2.

We introduce a new coordinate system (z1, z2) in which z1 = φ2. We
Taylor expand σ′

ρ as in (5.12), with the yi’s there replaced by zi’s, etc. The
equations

0 = σρ|z1=0,z2 6=0 = σ′
ρ|z1=0,z2 6=0 φ2

1|z1=0,z2 6=0
︸ ︷︷ ︸

6=0

,

0 = dσρ|z1=0,z2 6=0 = dσ′
ρ|z1=0,z2 6=0 φ2

1|z1=0,z2 6=0
︸ ︷︷ ︸

6=0

+2 σ′
ρ|z1=0,z2 6=0

︸ ︷︷ ︸

=0

(φ1dφ1)|z1=0,z2 6=0 ,

show that the function σ′
ρ vanishes, together with its first derivatives, away

from the origin on the axis {z1 = 0}. We conclude as before that σ′
ρ factorises
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as σ′
ρ = σ′′

ρφ2
2 for a smooth function σ′′

ρ , hence σρ factorises as

σρ = σ′′
ρφ2

1φ
2
2 .

Continuing in this way, in a finite number of steps one obtains

σρ = σ̂ρφ
2
1 · · ·φ

2
k ,

and the result easily follows. 2

5.2 Zeros of finite order are simple

Consider a zero of f of order k < ∞, with ρ0 > 0, then the leading order
Taylor polynomials fk and bk solve the truncated equations

fk

(
∂2fk

∂ρ2
+

∂2fk

∂ζ2

)

=

(
∂fk

∂ρ

)2

+

(
∂fk

∂ζ

)2

−

(
∂bk

∂ρ

)2

−

(
∂bk

∂ζ

)2

, (5.13)

fk

(
∂2bk

∂ρ2
+

∂2bk

∂ζ2

)

= 2
(∂fk

∂ρ

∂bk

∂ρ
+

∂fk

∂ζ

∂bk

∂ζ

)

. (5.14)

Let
fk + ibk ≡ Ek = α(z − z0)k , (5.15)

where α ∈ C, with z = ρ + iζ. It is straightforward, using the Cauchy-
Riemann equations, to check that functions of this form satisfy (5.13)-(5.14),
for all k ∈ N. (In fact, both the left- and right-hand-sides then vanish
identically.) Those solutions have been found by inspection of the solutions
found by Maple for k = 2 and by Singular [7, 8] for k = 3 and 4. In fact,
both the Singular–generated solutions, as well as our remaining computer
experiments using Singular, played a decisive role in our solution of the
problem at hand.

Let us show that:

Lemma 5.5 Zeros of fk given by (5.15) are simple.

Proof: Indeed, the equation fk = 0 is equivalent to

α(z − z0)k = iβ ,

for some β ∈ R. This is easily solved; we write α = |α|eiθ, and set

αℓ = tan
((2ℓ + 1)π − 2θ

2k

)

, ℓ = 1, . . . , k .
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Assuming αℓ 6= ±∞ for all ℓ, we obtain k distinct real lines z0 + R(1 + iαℓ)
on which ℜEk vanishes, and simplicity follows. The remaining cases are
analysed similarly, and are left to the reader. 2

Another non-trivial, “polarised”, family of solutions of (5.13)-(5.14) is

provided by bk = 0, fk = C
(

(ρ − ρ0)2 + (ζ − ζ0)2
)

m, m ∈ N. As mentioned

in Section 3, there exist associated static solutions of the Ernst equations.
However, as already pointed out (compare Remark 5.3), neither those, nor
any other solutions with this fk, bk, are smooth across Ef .

Setting z = ρ − ρ0 + i(ζ − ζ0), the equations satisfied by Ek = fk + ibk

take the form

(Ek + E k)
∂2Ek

∂z∂z̄
= 2

∂Ek

∂z

∂Ek

∂z̄
. (5.16)

Since Ek is a polyhomogeneous polynomial in x and y, it can be written
as

Ek =

k∑

m=0

βmzmz̄k−m .

Inserting this into (5.16) we obtain

∑

1≤m+j≤2k−1

mβm{(2j − k − m)βj + (k − m)β̄k−j}z
m+j−1z̄2k−m−j−1 = 0 .

Hence, for 1 ≤ ℓ ≤ 2k − 1,

∑

m+j=ℓ

{(k − m)β̄k−j − (k + m − 2j)βj}mβm = 0 . (5.17)

Since ℓ = 0 is trivial, we obtain 2k−2 equations for k+1 numbers βm, which
should be rather restrictive, especially for k ≥ 3. Nevertheless, as already
pointed out, there exist non-trivial solutions. It is instructive to find them
directly by inspection of (5.17). First, there is the obvious solution βm = 0
for m ≥ 1, which corresponds to an anti-holomorphic Ek = β0z̄

k. Next,
one checks that a collection with βk 6= 0 but βm = 0 for m < k provides
a solution, which corresponds to a holomorphic Ek = βkzk. Finally, when
k = 2n, one checks that βn ∈ R, but βm = 0 for m 6= k/2, is a solution,
which corresponds to a real E2n = βnznz̄n = βn(x2 + y2)n.

The computer algebra program Singular can be used to show that the
above exhaust the list of solutions for k less than or equal to eight6. This
turns out to be true for all k < ∞:

6The Singular input file is available on URL http://th.if.uj.edu.pl/~szybka/CGMS
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Theorem 5.6 These are all solutions: thus the homogeneous polynomial Ek

is either holomorphic, or anti-holomorphic, or real and radial.

Proof: The case k = 1 is a straightforward calculation, so we assume k > 1.
If Ek is a solution, then so is its complex conjugate; this implies that if an

ordered collection {βm}0≤m≤k satisfies (5.17), then so does {β̄k−m}0≤m≤k.
Inserting this into (5.17) one obtains, again for 1 ≤ ℓ ≤ 2k − 1,

∑

m+j=ℓ

{(k − m)βj − (k + m − 2j)β̄k−j}mβ̄k−m = 0 . (5.18)

Consider (5.17) with ℓ = 1; since 1 ≤ m ≤ ℓ this enforces m = 1, j = 0,
giving

{(k − 1)β̄k − (k + 1)β0}β1 = 0 . (5.19)

Similarly (5.18) with ℓ = 1 gives

{(k − 1)β0 − (k + 1)β̄k}β̄k−1 = 0 . (5.20)

Suppose, first, that β0 6= 0. We will use induction arguments to establish
the implication (5.21) below. So assume, for contradiction, that β1 6= 0.
Then β̄k = (k +1)β0/(k−1) 6= 0 from (5.19), inserting into (5.20) we obtain
βk−1 = 0. But then (5.18) with ℓ = 2 gives

0 = {(k − 2)β0 − (k + 2)β̄k}β̄k−2 =
(k − 2)(k − 1) − (k + 2)(k + 1)

k − 1
β0

︸ ︷︷ ︸

6=0

β̄k−2 ,

hence βk−2 = 0. Equation (5.18) with ℓ = 3 similarly gives now βk−3 = 0.
Continuing in this way one concludes in a finite number of steps that β1 = 0,
a contradiction. It follows that β0 6= 0 enforces β1 = 0.

Assume now, again for contradiction, that β0 6= 0 and β1 = 0 but β2 6= 0.
Equation (5.17) with ℓ = 2 gives

{(k − 2)β̄k − (k + 2)β0}β2 = 0 .

If k = 2 we obtain immediately a contradiction; otherwise β̄k = (k +
2)β0/(k − 2) 6= 0, inserting into (5.20) we find βk−1 = 0. But then (5.18)
with ℓ = 2 gives

0 = {(k − 2)β0 − (k + 2)β̄k}β̄k−2 =
(k − 2)2 − (k + 2)2

k − 1
β̄k

︸ ︷︷ ︸

6=0

β̄k−2 ,
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hence βk−2 = 0. Continuing in this way one concludes in a finite number of
steps that β2 = 0, a contradiction. This shows that β0 6= 0 and β1 = 0 but
β2 6= 0 is incompatible with the equations.

It should be clear to the reader how to iterate this argument to obtain
the implication

β0 6= 0 implies βm = 0 for m = 1, . . . , k . (5.21)

Using symmetry under complex conjugation, the hypothesis βk 6= 0 leads
to βm = 0 for m = 0, . . . , k − 1.

It remains to analyse what happens when β0 = βk = 0, which we assume
from now on. Suppose (for contradiction if k > 2) that β1 6= 0. Recalling
that k > 1, (5.17)-(5.18) with ℓ = 2 give

(β̄k−1 − β1)β1 = 0 = (β1 − β̄k−1)β̄k−1 .

If k = 2 we obtain β1 ∈ R, and we are done.
Otherwise βk−1 = β̄1 6= 0 and (5.18) with ℓ = 3 gives

{(k − 1)β2 − (k + 1)β̄k−2}β1 = 0 .

When k = 3 this gives a contradiction, and the result is established for this
value of k.

For k ≥ 4 the proof will be finished by more induction arguments, as
follows: Suppose, to start with, that βk = 0 and that there exist k0, k1 ∈ N,
1 ≤ k1 ≤ k0 ≤ k/2, such that βm = 0 for 0 ≤ m ≤ k0 − 1 and for
k − k1 < m ≤ k but βk0

6= 0. (The case k1 > k0 can be reduced to this one
by replacing Ek with its complex conjugate.) With these hypotheses (5.17)
can be rewritten as

∑

k0≤m≤min(k−k1,ℓ−k1)

{(k−m)β̄k−(ℓ−m)−(k+3m−2ℓ)βℓ−m}mβm = 0 . (5.22)

Equation (5.22) with ℓ = k0 + k1 ≤ k gives:

(k − k0)β̄k−k1
= (k + k0 − 2k1)βk1

which equals zero unless k1 = k0. It follows that we can without loss of
generality assume that k1 = k0 and

βk−k0
= β̄k0

.
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We can now rewrite (5.18) as

∑

k0≤m≤min(k−k0,ℓ−k0)

{(k − m)βℓ−m − (k + 3m − 2ℓ)β̄k−(ℓ−m)}mβ̄k−m = 0 .

(5.23)
Suppose that k = 2k0; then (5.23) leads immediately to the restriction βk0

∈
R, giving a real radial solution, as desired. Otherwise, choosing ℓ = 2k0 + 1
in (5.23) one obtains

(k − k0)k0βk0+1 = [(k − k0)k0 + 2]β̄k−k0−1 .

Equation (5.22) with ℓ = 2k0 + 1 gives

(k − k0)k0β̄k−k0−1 = [(k − k0)k0 + 2]βk0+1 .

It follows that
βk0+1 = βk−k0−1 = 0 .

Our aim now is to show (5.24) below, by a last induction. So, suppose
there exists k2 ∈ N satisfying k0 < k2 < k − k0 such that βm = 0 for
k0 < m < k2 and for k − k2 < m < k − k0; we have shown that this is true
with k2 = k0 + 2. Equation (5.23) with ℓ = k0 + k2 gives

(k − k0)k0βk2
= [(k − k0)k0 + 2(k2 − k0)2]β̄k−k2

.

But from (5.22) again with ℓ = k0 + k2 one obtains

(k − k0)k0β̄k−k2
= [(k − k0)k0 + 2(k2 − k0)2]βk2

.

This allows us to conclude that

βm = 0 except if m = k0 or if m = k − k0 , with βk−k0
= β̄k0

. (5.24)

Equation (5.23) with ℓ = k gives now βk0
= 0 (recall that we have assumed

k 6= 2k0), a contradiction, and the theorem is proved. 2

We can now pass to the

Proof of Theorem 1.1: Theorem 5.6 gives the list of all possible Ek’s.
The real ones do not lead to smooth f ’s by Proposition 5.1. The holo-
morphic ones lead to simple zeros by Lemma 5.5; the same is true for the
anti-holomorphic ones, because the condition of simplicity is preserved by
complex-conjugation of E . The result follows now from Theorem 5.4. 2
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tributions, Distributions, Ed. Éc. Polytech., Palaiseau, 2003, http:

//www.math.polytechnique.fr/xups/vol03.html, pp. 1–21. MR
MR2065138

[12] V.S. Manko and E. Ruiz, Extended multi-soliton solutions of the Ein-
stein field equations, Class. Quantum Grav. 15 (1998), 2007–2016. MR
MR1633190 (99m:83045)

[13] H. Müller zum Hagen, On the analyticity of stationary vacuum solutions
of Einstein’s equation, Proc. Cambridge Philos. Soc. 68 (1970), 199–
201. MR 41 #5017

[14] G. Neugebauer, A general integral of the axially symmetric stationary
Einstein equations, Jour. Phys. A 13 (1980), L19–L21. MR MR558632
(80k:83024)
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