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Abstract: We explain how to achieve the traceless gauge for the spatial part of

the spin connection in the framework of the recently proposed correspondence

between the (appropriately truncated) bosonic sectors of maximal supergravi-

ties and the ‘geodesic’ σ-model over E10/K(E10) at low levels. After making

this gauge choice, the residual symmetries on both sides of this correspondence

match precisely. The gauge choice also allows us to give a physical interpreta-

tion to the multiplicity of certain primitive affine null roots of E10.

Recent work has established intriguing evidence for the realization of in-

definite (sometimes hyperbolic) Kac–Moody algebras in supergravity and

M-theory. In particular, for maximal D = 11 supergravity [1], there are now

several proposals on how to realize these symmetries. The approach of [2]

seeks a covariant implementation of the ‘very-extended’ Kac–Moody algebra

E11 via a non-linear realization directly in eleven dimensions (possibly aug-

mented by further central charge coordinates [3]). By contrast, the approach

of [4, 5], based on the hyperbolic Kac–Moody algebra E10, has its roots in

the classic BKL analysis of Einstein’s equations in the vicinity of a space-

like (cosmological) singularity [6], according to which the theory near the

singularity is effectively described by a one-dimensional reduction, in which

spatial gradients are neglected in comparison with time derivatives (for a
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recent review with many references, see [7]). A ‘hybrid’ approach, combining

some of the features of [2, 4] has been developed in [8, 9, 10].

In spite of important conceptual differences between these approaches, a

common feature is that they all require the tracelessness of the anholonomic-

ity coefficients (or, equivalently, the spin connection) in order to match the

(appropriately truncated) degrees of freedom between supergravity and the

Kac–Moody σ-model. For E11, the issue has been discussed in [11]. In this

note, we explain how to realize this gauge in the E10-based approach of [4],

by making joint use of diffeomorphisms and local Lorentz transformations in

such a way that, at the end of the gauge fixing procedure, the residual sym-

metries on both sides of the correspondence match precisely. Our arguments

underline a point already made in [12] concerning the importance of gauge

fixing before making the identification between the supergravity theory and

the ‘geodesic’ Kac–Moody σ-model, both at the kinematical and the dynam-

ical level. The traceless gauge choice also resolves a puzzle concerning the

multiplicity of the affine null root (=8 for E10) and its images under permu-

tations of the spatial coordinates; namely, we will show that this multiplicity

indeed coincides with the number of physically relevant degrees of freedom

for each choice of null root. In the final section, we comment on related issues

in the context of the E11 proposal of [2], and on the extension of the present

results to the fermionic sector.

Let us first summarize the basic conjecture and results of [4]. As shown in

[7], the relevant equations of motion simplify near a space-like singularity in

the sense that the degrees of freedom can be divided into ‘active’ ones (the

diagonal metric components), and ‘passive’ ones (off-diagonal metric and

various matter degrees of freedom) which freeze near the singularity. The

resulting dynamics is thus described by a one-dimensional reduction of the

higher dimensional field equations (i.e. purely time-dependent equations at a

fixed, but arbitrary spatial point x0) which receives effective corrections from

the passive degrees of freedom (in lowest order in the form of ‘walls’ leading
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to a cosmological billiards).1 In the context of supergravity, the possible rel-

evance of a reduction to one dimension, and the possible appearance of E10

in this reduction, had already been foreseen in [13], but one crucial difference

here is that the dependence on the spatial coordinates is conjectured to re-

emerge via a gradient expansion, which gets linked to a level expansion (or

height expansion) on the σ-model side. More precisely, the correspondence

is made between the purely t-dependent σ-model degrees of freedom of the

Kac–Moody σ-model, and the time-dependent supergravity fields and their

(so far only first order) spatial gradients at a fixed spatial point x0.

We now explain the successive gauge choices required for the correspon-

dence of [4], stressing the residual symmetries at every step.

Pseudo-Gaussian gauge: The analysis of [4] proceeds from a space-

time metric in the zero shift (or pseudo-Gaussian) gauge2

ds2 = −N2dt2 + gmndx
mdxn , N(t,x) = n(t)

√

g(t,x) (1)

where indices m,n, · · · = 1, . . . , 10 label the spatial coordinates, and g de-

notes the determinant of the spatial metric, and where the purely time-

dependent lapse n(t) is to be identified with the one of the geodesic Kac–

Moody σ-model, and hence left free. The above gauge is supposed to be valid

in a tubular neighborhood of the worldline parametrized by {(t,x0) | t > 0}

(in comoving coordinates). After making this choice, the metric (1) is left

invariant by separate reparametrizations of the time- and space coordinates,

respectively, that is, t→ t′(t) and x → x′(x), but coordinate changes mixing

space- and time coordinates are disallowed. The pure space reparametriza-

tions are assumed to leave the point x0 invariant (and hence the worldline).

1It has already been noted before that this mechanism offers new possibilities for ‘emer-

gent spacetime’ scenarios, as the dependence on the spatial degrees of freedom here is

thought to ‘emerge out of’ (or ‘disappear into’) the spacelike singularity.
2For clarity, we will stick mostly to D = 11 supergravity, but the argument remains

the same for other models of interest in various space-time dimensions D ≤ 11.
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Vielbein gauge: Next we make partial use of the local Lorentz group

to bring the elfbein which gives rise to (1) into block-diagonal form. With a

(1+10) split of the indices we demand the form:

EM
A =

(

N 0

0 em
a

)

. (2)

The local space-time Lorentz group SO(1, 10) is thereby broken to its rota-

tion subgroup SO(10); that is, (2) still admits space-time dependent spatial

rotations Λab(t,x) as a residual symmetry.

Traceless spin connection gauge: We now wish to exploit this re-

maining rotation symmetry to set

Ωab b(t,x) = 0 ⇔ ωb ba(t,x) = 0 (3)

where

Ωab c := ea
meb

n(∂menc − ∂nemc) = −Ωba c

ωa bc :=
1

2

(

Ωab c + Ωca b − Ωbc a

)

= −ωa cb (4)

are the spatial components of the coefficients of anholonomicity, and the

spin connection, respectively. Relation (3) is supposed to hold in the same

tubular neighborhood as (1), and implies the vanishing of the trace and all

its spatial gradients along the the world line (t,x0). The necessity of the

tracelessness condition arises from the appearance of a representation for the

magnetic dual of the graviton [14, 15, 16, 2, 17, 11] at level ℓ = 3 in a level

decomposition of E10 under its A9 = SL(10) subgroup [4]. The associated

tensor of mixed symmetry is related via the correspondence of ref. [4] to this

dual graviton by

Pa0|a1...a8
=

3

2
Nǫa1...a8bcΩbc a0

. (5)

However, from the level decomposition it follows that this representation is

subject to the irreducibility constraint

P[a0|a1...a8] = 0 ⇐⇒ Ωab b = ωb ba = 0, (6)
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which, as indicated, is equivalent under the dictionary to the traceless gauge

(3). Inspection of the available tables of higher level representations [18] re-

veals the absence of such a trace representation at low levels; the relevant

representation (000000001) appears only at level ℓ = 13, with outer multi-

plicity equal to 22. Similar comments apply to representations corresponding

to the spatial gradients of the trace.

Because both Ωab c and ωa bc transform as scalars under coordinate trans-

formations, it is clear that diffeomorphisms are of no further use at this point;

in particular, a spatially constant Ωab c (with or without trace, e.g. Bianchi

cosmologies) remains invariant under relabeling of the coordinates. This is

analogous to the traceless gauge Γn
nm = 0 for the Christoffel symbol, which

transforms as a scalar under local Lorentz transformations, whence the role

of diffeomorphisms and the local Lorentz group is interchanged. Therefore,

given a spatial spin connection ωa bc, the problem reduces to solving the equa-

tion

ω′
b ba = ∂bUab + Uabωc cb = 0 (7)

in terms of the spatial rotation matrix Uab(t,x) ∈ SO(10). In infinitesimal

form (with Va ≡ ωb ba small, and ∂bUab = ∂bΛab), this equation becomes

∂bΛba = Va. (8)

Making the ansatz Λab = ∂avb − ∂bva, and noticing that va can be chosen

divergence-free by shifting va → va + ∂av with a suitable v = v(t,x), we

arrive at a continuous set of Poisson equations (one for each t)

△va(t,x) = Va(t,x) ; (9)

where △ ≡ ∂a∂a is the 10-dimensional spatial Laplacian. The set of equa-

tions (9) are to be solved in some tubular neighborhood of the worldline

(t,x0) with appropriate boundary conditions. The known local existence of

solutions to the Poisson equation guarantees that the gauge (3) can be cho-

sen; moreover the required SO(10) rotation only fixes the space-dependent
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part of the SO(10) transformations since it follows from (7) that ωb ba = 0 is

not changed by purely time-dependent SO(10) rotations.

Summary of residual symmetries: Having achieved the gauge choices

(1), (2) and (3) we are left with the following three residual symmetries on

the supergravity side, which can now be directly identified with the residual

symmetries of the E10/K(E10) σ-model in the level decomposition under A9:

(i) Reparametrizations of the time parameter t → t′(t), where the time-

dependent lapse n(t) in (1) is identified with the lapse function of the

E10/K(E10) σ-model.

(ii) Purely space-dependent coordinate transformations (leaving x0 inert)

that can be expanded around x0 according to

ξm(x) = ξm
n(xn − xn

0 ) + . . . (10)

The first order term ξm
n realizes the GL(10) subgroup of the (global)

E10. The higher order terms in this expansion are related to higher

order spatial gradients of the various fields, which are expected to cor-

respond to higher level representations in the decomposition of E10

under its A9 subalgebra.3

(iii) Eq. (3) is left invariant by purely time-dependent spatial rotations

Λab = Λab(t). The resulting group SO(10) can be identified with the

subgroup of t-dependent SO(10) rotations within the local ‘R symme-

try’ group K(E10) on the σ-model side, which is the finite dimensional

residual invariance left by fixing the triangular gauge for all fields ex-

cept in the level ℓ = 0 sector.

In summary, we have a precise matching not only of the degrees of freedom

and equations of motion up to level ℓ = 3, but also of the residual symmetries

3The relevant E10 transformations in the σ-model will be accompanied by local (in

time) compensating K(E10) transformations. This is analogous to fixing a triangular

gauge of the spatial vielbein em

a in (2).
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on both sides of the correspondence.

Analogous results hold for the D9 and A8 ×A1 decompositions [19, 20] of

E10: one similarly finds no trace representations at low levels. For the A8×A1

decomposition (corresponding to IIB, see [20]) this is straightforward since

one deals with the dual of the graviton over A8 = SL(9) instead of SL(10),

and the irreducibility constraint (6) still implies that one has to fix the space-

dependent rotations to arrive at the traceless gauge.

For D9 = SO(9, 9) (related to massive IIA supergravity in [19]) the situ-

ation is slightly more involved since the relevant tensor containing the dual

of the graviton is now contained in an antisymmetric three-form represen-

tation of SO(9, 9) (at D9 level ℓ = 2), which we denote by PIJK (with

I, J,K = 1, . . . , 18). Seen from the compact subgroup SO(9) × SO(9) ⊂

SO(9, 9) there are four different components that need to be distinguished

(i, j = 1, . . . , 9 ; ı̄, ̄ = 10, . . . , 18, cf. [19])

Pijk Pı̄jk Pı̄̄ k Pı̄̄ k̄

SO(9)diag ⊕ ⊕
(11)

We have indicated the structure of these four tensors under the diagonal rota-

tion group SO(9)diag ⊂ SO(9)×SO(9). We see that those tensors which allow

for the mixed symmetry which is required for (part of) the dual graviton also

allow for the presence of a vector representation. The nine-dimensional trace
∑9

b=1 ωb ba transforms in a vector representation of SO(9)diag and therefore

it would seem unnecessary to choose a gauge for it. However, this reason-

ing overlooks the dual field for the type IIA dilaton gradient ∂aφ which also

transforms as a vector4. Now the appropriate gauge condition relates the

two vectors

1

2
∂aφ+

9
∑

b=1

ωb ba = 0 (12)

4φ is the scalar field defined in [19] and not strictly identical to the standard IIA dilaton.
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Interestingly, this is precisely what the original gauge condition summed over

ten space directions

0 =

10
∑

b=1

ωb ba = ω10 10a +

9
∑

b=1

ωb ba (13)

translates into if one follows through the redefinitions of [19]. This will be

discussed in more detail in [21].

In both cases we see that the matching between supergravity and the

E10/K(E10) σ-model is possible only if (3) is satisfied and all gauges are

fixed so that the residual symmetries agree.

Interpretation of root multiplicity: The significance and proper phys-

ical interpretation of the imaginary roots of E10 and their multiplicities in the

present context is far from understood5 (recall that, generically, imaginary

roots α are degenerate with exponentially growing multiplicities mult(α) >

1). The above choice of gauge now allows us to extend the matching (and

hence the ‘dictionary’) beyond real roots, and to give a physical interpretation

at least for the fact that lightlike (null) roots are associated with root multi-

plicity > 1. Namely, the roots associated with latter fall into two classes [7].

First, there are the gravitational roots (giving rise to ‘gravitational walls’)

associated with those components Ωbc a, for which the indices a, b, c are all

different: these correspond to level-3 roots αabc defined by the wall forms (cf.

[7], section 6.2)

αabc(β) = 2βa +
∑

e 6=b,c

βe (14)

and are real: α2
abc = 2. The corresponding components of the dual field

Pa0|a1...a8
are the ones where a0 is equal to one of the indices a1, . . . , a8.

In addition, [7] identified ten subleading gravitational walls associated

with ten null roots, designated as µa for a = 1, . . . , 10, cf. eqn. (6.16) there,

5Other ideas on the physical rôle of imaginary roots can be found in [22].

8



and defined by the wall forms

µa(β) =
∑

e 6=a

βe (15)

These ten null roots (for a = 1, . . . , 10) can all be obtained by sl(10) Weyl

reflections (or, equivalently, by permuting the spatial coordinates) from the

primitive (i.e. lowest height) null root at height 30, which has δ2 = 0,

mult(δ) = 8 and is identical to the null root of the affine subalgebra e9 ⊂ e10

(in the notation of [7], we have δ = µ1). This null root, and its images

under the sl(10) Weyl group, are the only imaginary roots appearing on

levels ℓ ≤ 3 in the A9 decomposition. The associated components of the

dual field Pa0|a1...a8
belonging to these null roots are the ones for which the

indices a0, . . . , a8 are all distinct. Using the correspondence we can now give

a physical interpretation to the multiplicity mult(δ). Since the indices on

Pa0|a1...a8
are all different, two indices on the dual coefficient of anholonomicity

Ωab c must be equal, i.e. we must consider the components6 Ωab b. As shown

in [7], these components are then all associated with the null root µa, and it

would thus appear that we have nine possible values for b. However, thanks

to our gauge choice (3), there is now one linear relation
∑

b Ωab b = 0, whence

the number of independent field components associated to each null root µa

is only eight — in agreement with the root multiplicity mult(δ) = 8!

How are these statements mirrored in E11 [2, 23, 24, 11]? At least lo-

cally, the traceless gauge ΩAB
B = 0 (contractions now to be taken with the

Minkowski metric in eleven dimensions) can be reached by exploiting the full

local Lorentz group SO(1, 10) [11]. The difference is now that, after gauge

fixing, the local Lorentz group has been ‘used up’ completely, and there re-

mains no symmetry to identify with the SO(1, 10) subgroup of the local group

K(E11), while the traceless gauge is still compatible with full 11-dimensional

diffeomorphism invariance. A second difference is that a counting argument

analogous to the one given above would suggest that there are now nine

6We temporarily suspend the summation convention for this discussion, i.e. there is

no summation on b here!
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independent components in ΩAB
B = 0 for each A (no summation on B),

whereas the multiplicity of the associated null root δ remains the same (= 8)

when δ is considered as a root of E11. As also mentioned in [11], instead of

discarding the trace (in order to retain full Lorentz invariance), one might

look for a trace representation at higher levels. Inspection of the tables [18]

reveals that the relevant representation (0000000010) does appear in the A10

decomposition of E11, but only at level ℓ = 14, and with outer multiplic-

ity 491.

Supersymmetric generalization: Similar considerations apply to the

supersymmetric version of the E10 σ-model [25, 26]. The Kac–Moody model

allows only a local supersymmetry with parameter ǫ(t) depending only on

time.7 Therefore, we should require on the supergravity side, a similar gauge

conditon on the supergravity fermions involving spatial gradients, which re-

duces ǫ(t,x) to purely time-dependent supersymmetry transformations with

parameter ǫ(t). The precise form of this condition is presently unknown but

will be schematically of the form ∂mΨm = 0 (where Ψm denotes the spatial

components of the gravitino). We note also that one can consider a com-

pletely gauge-fixed version of the model where one chooses the lapse n(t) = 1

which is reflected in the supersymmetric partner constraint ψ0 −Γ0Γ
aψa = 0

[25].

Acknowledgements: This work was partly supported by the European

Research and Training Network ‘Superstrings’ (contract number MRTN-CT-
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7Of course, one envisages an analogue of the gradient conjecture where the space depen-

dence of the ǫ(t,x) is encoded in some ‘higher level’ components of an infinite-dimensional

spinor of K(E10). Here, we discuss only the truncation to the unfaithful spinor represen-

tation studied in [25, 26].
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