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Abstract

We analyze the decomposition of recently constructed unfaithful spinor representations of K(E10) under its SO(9)×SO(9), and SO(9)×SO(2)

subgroups, respectively, where K(E10) is the ‘maximal compact’ subgroup of the hyperbolic Kac–Moody group E10. We show that under these
decompositions, respectively, one and the same K(E10) spinor gives rise to both the fermionic fields of IIA supergravity, and to the (chiral)
fermionic fields of IIB supergravity. This result is thus the fermionic analogue of the decomposition of E10 under its SO(9,9) and SL(9) × SL(2)

subgroups, respectively, which yield the correct bosonic multiplets of (massive) IIA and IIB supergravity. The essentially unique Lagrangian for
the supersymmetric E10/K(E10) σ -model therefore can also capture the dynamics of IIA and IIB including bosons and fermions in the known
truncations.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

Recent work has established the existence of two unfaith-
ful spinorial representations of the infinite-dimensional, ‘maxi-
mal compact’ subgroup K(E10) of the hyperbolic Kac–Moody
group E10, namely a ‘Dirac-spinor-type’ representation with
32 real components [1], and a ‘gravitino-type’ representation
with 320 real components [2–4].1 In this Letter, we analyze
the decomposition of these two representations under the maxi-
mal finite-dimensional subgroups SO(9) × SO(9) and SO(9) ×
SO(2) of K(E10), respectively, and show that the ‘K(E10)-
gravitino’ 320 and the ‘K(E10)-Dirac-spinor’ 32 decompose
and transform correctly as required by the fermionic multi-
plets of IIA and IIB supergravity, respectively. These consist,
respectively, of two gravitini and dilatini, each pair with both
chiralities, for the IIA theory; and two gravitini of one chi-
rality, and two dilatini, of the opposite chirality, for IIB. The
decomposition of the ‘Dirac-spinor’ representation 32 similarly
yields the correct supersymmetry parameters of these theories.

* Corresponding author.
E-mail address: axel.kleinschmidt@aei.mpg.de (A. Kleinschmidt).

1 The corresponding unfaithful representations for K(E9) had already been
identified and studied in [5].
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We thus find that one and the same 320 component (and 32
component) K(E10) spinor gives rise to the fermions of both
IIA and IIB supergravity, depending on how one ‘slices’ the
infinite-dimensional group K(E10) under its finite-dimensional
subgroups. This is our main result: it extends previous ones on
the emergence of the bosonic multiplets of these theories from
E10 under appropriate ‘level decompositions’ of E10 under its
A9, D9 and A8 × A1 subgroups, respectively, [6–8], and ear-
lier results on the embedding of these theories into E11 [9–13].
The present results thus strengthen the case for the (essentially
unique) supersymmetric E10/K(E10) σ -model proposed in [2]
as a candidate for a unification of the maximally extended su-
pergravity theories in ten and eleven space–time dimensions
into a single theory.

This Letter has the following structure. In Section 2, we
review, following [2], the definition and ‘low level’ commu-
tation relations of K(E10) viewed from its SO(10) subgroup,
and we identify the SO(9) × SO(9) and SO(9) × SO(2) sub-
groups of K(E10), relevant for the IIA and IIB theories. In
Section 3, we decompose the unfaithful ‘Dirac-spinor’ and
‘gravitino’ representations of K(E10) under these subgroups.
We also briefly discuss the relation to type I supergravity
and DE10. We end with some concluding remarks in Sec-
tion 4.

http://www.elsevier.com/locate/physletb
mailto:axel.kleinschmidt@aei.mpg.de
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2. SO(9) × SO(9) and SO(9) × SO(2) subgroups

The maximal compact group K(E10) is defined as the sub-
group of E10 whose Lie algebra is invariant under the Chevalley
involution θ (see [14] for an introduction to the theory of Kac–
Moody algebras). In this section, we will study its distinguished
subgroups SO(9)×SO(9) and SO(9)×SO(2), starting from the
SO(10) decomposition of K(E10) at low levels presented in [2].
These two subgroups together generate all of K(E10); there is
no finite-dimensional R symmetry in the present scheme that
would accommodate the fermions of both IIA and IIB super-
gravity.

2.1. K(E10) in terms of SO(10)

In the approach of [2], the K(E10) algebra was written in
terms of generators derived from the SL(10) decomposition of
E10 [6]. Up to SL(10) level � = 3, the generators of the associ-
ated Lie algebra k10 ≡ Lie(K(E10)) are defined by

J ab = Ka
b − Kb

a,

J a1a2a3 = Ea1a2a3 − Fa1a2a3 ,

J a1...a6 = Ea1...a6 − Fa1...a6 ,

(1)J a0|a1...a8 = Ea0|a1...a8 − Fa0|a1...a8 ,

with the GL(10) generators Ka
b and the basic (level ±1)

E10 generators Eabc and Fabc = −θ(Eabc) ≡ (Eabc)T ; thus,
in terms of those generators, the compact generators are
generically ‘anti-symmetric’, i.e., of type J = E − ET ≡
E − F . Henceforth, we shall refer to J ab , J a1a2a3 , J a1...a6 ,
and J a0|a1...a8 as being of ‘levels’ � = 0,1,2,3, respectively,
although this ‘level’ is not a grading of k10;2 in fact, k10 is not
even a Kac–Moody algebra [15]. Up to � = 3 (and neglecting
higher level contributions), the k10 commutation relations are
given by [2,3]3

[
J ab, J cd

] = δbcJ ad + δadJ bc − δacJ bd − δbdJ ac

≡ 4δbcJ ad,

[
J a1a2a3 , J b1b2b3

] = J a1a2a3b1b2b3 − 18δa1b1δa2b2J a3b3 ,

[
J a1a2a3 , J b1...b6

]
= J [a1|a2a3]b1...b6 − 5!δa1b1δa2b2δa3b3J b4b5b6 ,

[
J a1...a6 , J b1...b6

] = −6 · 6!δa1b1 · · · δa5b5J a6b6 + · · · ,
[
J a1a2a3 , J b0|b1...b8

]
= −336

(
δb0b1b2
a1a2a3

J b3...b8 − δb1b2b3
a1a2a3

J b4...b8b0
) + · · · ,

[
J a1...a6 , J b0|b1...b8

]
= −8!(δb0b1...b5

a1...a6
J b6b7b8 − δb1...b6

a1...a6
J b7b8b0

) + · · · ,

2 Instead, we have a so-called ‘filtration’ [k(�), k(�′)] ⊂ k(�+�′) ⊕ k(|�−�′|).
3 Neglecting the non-trace part of Ja0|a1...a8 , the corresponding commutators

for K(E11) were already computed in [16].
[
J a0|a1...a8, J b0|b1...b8

]
= −8 · 8!(δa1...a8

b1...b8
J a0b0 − δ

a1...a8
b0b1...b7

J a0b8 − δ
a0a1...a7
b1...b8

J a8b0

(2)+ 8δ
a0
b0

δ
a1...a7
b1...b7

J a8b8 + 7δ
a1
b0

δ
a0a2...a7
b1...b7

J a8b8
) + · · · .

Here, all indices a, b, . . . = 1, . . . ,10 are to be regarded as
(‘flat’) SO(10) indices. As in [2] we make use of a short-
hand notation in (2), where the terms on the r.h.s. are to be
anti-symmetrized (with weight one) according to the anti-
symmetries on the l.h.s., as explicitly written out for the SO(10)

generators J ab in the first line. As also explained there, the
generator J a0|a1...a8 decomposes into two irreducible compo-
nents under SO(10), the trace and a non-trivial mixed (Young
tableau) representation.4 The SO(10) generators rotate the
higher level generators in the standard way as tensor represen-
tations.

2.2. SO(9) × SO(9) subgroup

In Ref. [7], the E10 group was analyzed under its regular
SO(9,9) subgroup. Similarly, one can study K(E10) under its
K(SO(9,9)) = SO(9) × SO(9) subgroup. The corresponding
generators of SO(9) × SO(9) can be written in terms of the
SO(10) generators of (1) as

Xij := 1

2

(
J (0)ij + J (1)ij10),

(3)Xı̄j̄ := 1

2

(
J (0)ij − J (1)ij10) for i, j = 1, . . . ,9.

We use the notation of [7] with barred indices for the second
SO(9) in order to distinguish the two factors. It is worthwhile
to note that this definition uses both ‘level zero’ and ‘level one’
generators in terms of (1). We have indicated the A9 ‘level’
explicitly in parentheses in (3). The form of these generators
can be found by tracing back the definitions of Xij and Xı̄j̄ in
terms of the Chevalley generators of E10 given in [7] and then
re-expressing them in terms of the SO(10) tensors (1).

From (2) it is straightforward to check that the generators (3)
satisfy the SO(9) × SO(9) commutation relations
[
Xij ,Xkl

] = δjkXil + δilXjk − δjlXik − δikXjl,[
Xı̄j̄ ,Xk̄l̄

] = δj̄ k̄Xı̄l̄ + δı̄l̄Xj̄ k̄ − δj̄ l̄Xı̄k̄ − δı̄k̄Xj̄ l̄ ,

(4)
[
Xij ,Xk̄l̄

] = 0.

Evidently, no ‘higher level’ (� � 2) generators of K(E10) are
excited in these commutators.

2.3. SO(9) × SO(2) subgroup

The analysis of [8] started from an SL(9) × SL(2) decom-
position of E10 where the SL(2) was identified with the SL(2)

symmetry of type IIB supergravity after establishing a dynami-
cal correspondence. At the level of compact subgroups the de-
composition is SO(9) × SO(2) ≡ K(SL(9) × SL(2)) ⊂ K(E10)

4 Whereas Ja0|a1...a8 is irreducible as a representation of SL(10).
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and the generators are defined as

Rrs := J (0)rs , Rr9 := −R9r := J (1)r9 10,

for r, s = 1, . . . ,8,

(5)R := J (0)9 10.

The nine SO(9) indices had to be split into (8 + 1) since eight
directions are in common with an SO(8) ⊂ SO(10) but one
direction is different. This is in line with standard views on
T-duality [17–20]. The expressions (5) can again be deduced
by going via the explicit relation to the standard Chevalley ba-
sis of E10.

From (2) one can show that the generators (5) satisfy the
SO(9) × SO(2) relations

(6)
[
Rij ,Rkl

] = 4δjkRil,
[
R,Rij

] = 0

for i, j, k, l = 1, . . . ,9 (again with anti-symmetrizations under-
stood). In particular, R commutes with all SO(9) generators,
as required. In the supergravity context the compact SO(2) is
usually referred to as U(1) and we will use both terms inter-
changeably.

3. Unfaithful K(E10) spinor representations

In [1–3] two unfaithful representations of K(E10) were de-
fined. These consist of 32 and 320 real components, respec-
tively. In terms of the SO(10) generators (1), the ‘Dirac spinor’
representation 32, denoted by ε, transforms as [1]

(7)J (0)ab · ε = 1

2
Γ abε, J (1)abc · ε = 1

2
Γ abcε.

The ‘vector-spinor’ representation 320, denoted by ψa , trans-
forms as [2,3]

J (0)ab · ψc = 1

2
Γ abψc + 2δc[aψb],

(8)J (1)abc · ψd = 1

2
Γ abcψd + 4δd[aΓ bψc] − Γ d[abψc].

Here, Γ a (a = 1, . . . ,10) are the real (32 × 32) spatial
SO(1,10) Γ -matrices of eleven-dimensional supergravity [21],
which we use in the basis defined in [7]. In both cases we
have given the transformations only up to SO(10) ‘level one’
since this suffices to characterize the consistent unfaithful
K(E10) representation [4].5 Furthermore, the SO(9) × SO(9)

and SO(9) × SO(2) subgroup generators (3) and (5) only re-
quire the SO(10) levels zero and one. The transformation rules
(7) and (8) were derived in [2,3] by demanding a dynamical
correspondence between a K(E10) covariant spinor equation
and the gravitino equation of motion of D = 11 supergravity.

In the following we will decompose the Dirac- and vector-
spinor under the SO(9) × SO(9) and SO(9) × SO(2) subgroups
of K(E10). For this it will be important that the irreducible
Dirac-spinor of SO(9) has 16 real components and that in our

5 The transformation rules up to ‘level three’ are known and can be found in
[1–3].
basis the (32 × 32) matrix Γ 10 is of the block diagonal form

(9)Γ 10 =
(

116 0
0 −116

)
.

The combinations

(10)P± = 1

2

[
1 ± Γ 10]

are the standard orthogonal projectors onto two 16-component
subspinors of the 32 component Majorana spinor of SO(1,10);
viewed from D = 10, they become the two spinors of IIA su-
pergravity of opposite chirality.

3.1. SO(9) × SO(9) decomposition

3.1.1. Dirac-spinor
We diagonalize the action of (3) on the K(E10) Dirac-spinor

ε by defining

(11)ε± = P±ε

using the projectors (10). We immediately check the action of
the first SO(9) factor SO(9) × SO(9) from (7) as

(12)Xij · ε± = 1

4
P±Γ ij

(
1 + Γ 10)ε = 1

2
Γ ijP±P+ε,

such that ε+ transforms as a Majorana spinor under this SO(9),
and ε− transforms trivially.6 Under the second SO(9) these
properties are obviously interchanged, and therefore we deduce
the following decomposition of the K(E10) Dirac-spinor under
SO(9) × SO(9)

(13)32 → (1,16) ⊕ (16,1).

Under the diagonal SO(9)diag these two spinors become two
spinors of opposite handedness.7

3.1.2. Vector-spinor
In order to find the irreducible components of the K(E10)

vector-spinor (or gravitino) ψa in terms of SO(9) × SO(9) rep-
resentations we have to redefine the fermionic components ac-
cording to [7] as

ψ̃k = ψk + 1

2
ΓkΓ

10ψ10,

(14)ψ̃10 = −3

2
ψ10 − Γ10Γ

kψk.

For example, acting with Xij on P−ψ̃10, using the formulas (8)
leads to (after some computation)8

(15)Xij · P−ψ̃10 = 1

2
Γ ijP−ψ̃10,

6 The matrices Γ ijP± can be identified with the (16 × 16) gamma matrices
of SO(9).

7 This terminology obviously refers to the chirality w.r.t. to the space–time
Lorentz group SO(1,9), from which these spinors originate. Although SO(9)

by itself has no chiral representations, we will nevertheless make occasional
use of this terminology.

8 Of course, (7) does not fix the normalization of ψ̃10 but only the relative
coefficients. The normalization was fixed in [7] by demanding a canonical form
of the resulting kinetic term.
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so that the K(E10) action (8) expressed in terms of SO(9) ×
SO(9) via (3) is equivalent to the projection on one chiral com-
ponent which transforms in the usual SO(9) spinor representa-
tion. In other words, P−ψ̃10 transforms in the 16 representation
under the first SO(9) of SO(9) × SO(9) and trivially under the
second SO(9) (the projectors are orthogonal). The opposite be-
haviour is deduced for P+ψ̃10, so that the ψ̃10 part of the 320 of
K(E10) gives rise to the (16,1)⊕ (1,16) under SO(9)×SO(9).
A similar calculation for the ψ̃k component gives

Xij · ψ̃k = 1

2
Γ ijP+ψ̃k + 2δk[iP−ψ̃j ],

(16)Xı̄j̄ · ψ̃k = 1

2
Γ ijP−ψ̃k + 2δk[iP+ψ̃j ].

The two different projectors appearing in this computation im-
ply that the P+ψ̃k part transforms in the spinor 16 of the first
SO(9), and the vector 9 of the second SO(9), and oppositely for
the other chiral projection P−ψ̃k .

Together with (7) we therefore deduce the expected total re-
sult

(17)320 → (9,16) ⊕ (1,16) ⊕ (16,9) ⊕ (16,1).

This is precisely the representation used in [7] for which also a
partial dynamical check was carried out there, analogous to the
one performed in [6]. The representations on the r.h.s. are to be
interpreted as the two gravitini and the two dilatini of (massive)
IIA supergravity. We emphasize again the chirality-symmetric
nature of these spinors, which here manifests itself in the sym-
metry under interchange of the two SO(9) groups.

3.2. SO(9) × SO(2) decomposition

For the analysis of the subgroup SO(9) × SO(2), we first
define the matrix

(18)Γ ∗ := Γ 9Γ 10.

Obviously, (Γ ∗)2 = −1, whence Γ ∗ can be regarded as an
imaginary unit. This will turn out to be a main difference with
the SO(9) × SO(9) decomposition of the previous section: un-
like Γ 10 (which squares to +1), we cannot use Γ ∗ to define
projectors unless we complexify the representation. Two useful
relations are

P±Γ ∗ = Γ ∗P∓, P±Γ 10 = ±P±.

3.2.1. Dirac-spinor
For the K(E10) Dirac-spinor we define new components via

(19)ε1 := P−ε, ε2 := P−Γ ∗ε = Γ ∗P+ε.

The use of the projector P− here makes explicit that we are
really dealing with two 16-component objects, from which the
original spinor can be reconstructed via

(20)ε = ε1 − Γ ∗ε2.

Equivalently, we could work with the complex 16-component
spinor ε1 − iε2, replacing the matrix Γ ∗ by the imaginary unit.
Acting with an SO(2) rotation R from (5) on this spinor we
obtain

(21)R · ε1 = +1

2
ε2, R · ε2 = −1

2
ε1.

The pair (ε1, ε2) therefore transforms as a doublet under SO(2):
the complex spinor ε1 ± iε2 carries U(1) charge ∓ 1

2 .
Under SO(9) the components ε1 and ε2 both transform as

(suppressing the SO(2) indices)

(22)Rrs · ε = 1

2
Γ rsε, Rr9 · ε = +1

2
Γ rΓ ∗ε.

This is the correct transformation of an SO(9) Dirac-spinor, as
it does not mix ε1 and ε2 (both Γ rs and Γ rΓ ∗ commute with
P± and Γ ∗). Due to the presence of the projector P− in the
definition of ε1 and ε2 the action of the (32 × 32) Γ -matrices
of SO(1,10) can be seen as the action of (16 × 16) γ -matrices
of SO(9). The present realization of the SO(9) Clifford algebra
is in terms of (32 × 32) matrices {Γ rs,Γ rΓ ∗}. We conclude
that the 32 of K(E10) decomposes under the SO(9) × SO(2)

subgroup into an SO(2) doublet of SO(9) spinors:

(23)32 → (16,2).

3.2.2. Vector-spinor
The K(E10) vector-spinor ψa gives rise to two kinds of

spinors, namely the dilatini

λ1 := P−
(
ψ9 − Γ ∗ψ10

)
,

(24)λ2 := P−
(
Γ ∗ψ9 + ψ10

)
,

and the gravitini

χ9
1 := P−

(
ψ9 + Γ ∗ψ10

)
,

χ9
2 := P−

(−Γ ∗ψ9 + ψ10
) = −P−Γ ∗(ψ9 + Γ ∗ψ10

)
,

χr
1 := P−

(
−4

3
ψr − 1

3
Γ rΓ 9ψ9 − 1

3
Γ rΓ 10ψ10

)
,

(25)χr
2 := P−Γ ∗

(
−4

3
ψr − 1

3
Γ rΓ 9ψ9 − 1

3
Γ rΓ 10ψ10

)
.

Again, the lower index (1,2) is the SO(2) index, while the up-
per index (with r = 1, . . . ,8 as in (5)) is an SO(9) vector index.
The linear combinations appearing in the above equation were
arrived at by demanding proper behavior under SO(9) trans-
formations, to wit, by requiring that χ9 and χr combine into
a vector-spinor χi (i = 1, . . . ,9) of SO(9), starting from (7)
and (8), see below. As before, one can also combine these
spinors into a complex dilatino λ ≡ λ1 ± iλ2 and a complex
gravitino χi ≡ χi

1 ± iχi
2.

First we determine the SO(2) properties of the new fermions
(24) and (25). A straightforward calculation using (5) and (8)
together with (24) shows that

(26)R · λ1 = +3

2
λ2, R · λ2 = −3

2
λ1,

whence the complex dilatino λ1 ± iλ2 carries U(1) charge ∓ 3
2 .

The pair of gravitini turns out to have the same SO(2) charge as
the Dirac-spinor representation (in agreement with the fact that
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the gravitino and the supersymmetry transformation parameter
should transform in the same SO(2) representation). Using (5)
and (8) again, we derive

(27)R · χi
1 = +1

2
χi

2, R · χi
2 = −1

2
χi

1.

Under the SO(9) part SO(9) × SO(2) one finds after some
computation that

(28)Rrs · λ = 1

2
Γ rsλ, Rr9 · λ = −1

2
Γ rΓ ∗λ

for both λ1 and λ2. This is the transformation of an SO(9)

spinor where now the representation is in terms of (32 × 32)

matrices {Γ rs,−Γ rΓ ∗}, projected onto (16 × 16) matrices by
the projector P− in the redefinition of the fermions. Notice that
this Clifford algebra now differs from formula (22) by the sign
in front of Γ rΓ ∗. Although the representations are equivalent
over SO(9) (for which there is no chirality), we take this dif-
ference of sign as a manifestation of the opposite chiralities of
these two spinors in IIB supergravity w.r.t. the Lorentz group
SO(1,9) in ten dimensions [22,23]. For the gravitino compo-
nents (25) one finds similarly, using (8) and the redefinitions
(25),

Rrs · χk = 1

2
Γ rsχk + 2δk[rχs],

(29)Rr9 · χk = +1

2
Γ rΓ ∗χk + 2δk[rχ9],

where k = 1, . . . ,9, and where we have suppressed the SO(2)

indices. This is the correct transformation of a vector-spinor
(with Γ -trace) under SO(9). Therefore, we conclude that the
K(E10) vector-spinor decomposes as

(30)320 → (16,2) ⊕ (144,2)

under SO(9)×SO(2), giving the dilatino and gravitino doublets
(where the bar over the first 16 is meant to indicate opposite
chirality w.r.t. SO(1,9)).9 In summary, we have obtained per-
fect agreement between the IIB supergravity assignments of the
fermionic fields and the SO(2) (or U(1)) charges and SO(9) as-
signments as they emerge from K(E10)!

3.3. Embedding K(DE10) ⊂ K(E10)

The truncation to pure type I theory in ten space–time di-
mensions is conjectured to be associated with the algebra DE10
in the hyperbolic KMA setting [24] (for very-extended alge-
bras one expects DE11 [25]). It was shown in [7] that DE10 is
a proper subgroup of E10. Moreover, it was shown there that
in the SO(9,9) decomposition of DE10 only tensorial repre-
sentations appear, whereas for the decomposition of E10 one
also finds SO(9,9) spinor representations (for example associ-
ated with the RR fields). Under the compact SO(9) × SO(9) of
SO(9,9), an SO(9,9) Dirac-spinor decomposes into the tensor

9 In the 144 of SO(9) a γ -trace can be separated (whence the representa-
tion is reducible), but we prefer to write the 144 as one representation since it
corresponds to the physical gravitino.
product of two SO(9) spinors associated with the two SO(9)

factors of SO(9) × SO(9). Such a generator was denoted Eαᾱ

in [7] and evidently can be used to transform an SO(9)× SO(9)

representation of the type (1,16) into (16,1), i.e. changing the
‘chirality’ under SO(9) × SO(9). Since generators like Eαᾱ do
not exist in DE10 this can never happen and we are led to
conclude that there are two inequivalent 16-dimensional Dirac-
spinor representations of K(DE10) which we denote by 16
and 16. They are distinguished by their decomposition under
SO(9) × SO(9) via

(31)16 → (16,1), 16 → (1,16).

We also find that under K(DE10) ⊂ K(E10) the K(E10) Dirac-
spinor decomposes as

(32)32 → 16 ⊕ 16.

Similarly, the decomposition of the K(E10) vector-spinor is ex-
pected to be

(33)320 → 160 ⊕ 160.

In this sense, and because it gives rise to D = 10 spinors of a
given chirality, K(DE10) can be viewed as a ‘chiral half’ of
K(E10).

3.4. Unfaithful spinor representations of K(En)

Our results can be extended to unfaithful spinor represen-
tations of K(En) for any n � 9, most notably K(E9) [5] and
K(E11) [16]. The form of the transformation rules (7) and
(8) imply that they define consistent unfaithful representation
for the maximal compact subgroup K(En) of En for n � 9.10

These representations are written in terms of the SO(n) sub-
groups of K(En), but one could also introduce the flat metric of
SO(n−p,p) (with corresponding real gamma matrices) in (8),
in particular, SO(1,10) for K(E11) by using the so-called tem-
poral involution [26,27].11 The reason that (7) and (8) define
unfaithful representations for any K(En) (n � 9) is that the nec-
essary consistency conditions do not involve traces (and so are
independent of n) and take the same form for all n � 9.

The dimension of the Dirac-spinor representation of K(En)

is given by the dimension of the real spinor representation of
SO(n − p,p), i.e., 16 for (n,p) = (9,0) and 32 for (n,p) =
(11,1). The naïve dimension of the vector-spinor is then = 144
for K(E9) and = 352 for K(E11) (with temporal involution).
However, the resulting vector-spinor of K(E9) is reducible
since one can construct the gamma trace of the vector-spinor
in a K(E9) invariant fashion. Therefore the irreducible vector-
spinor of K(E9) has dimension 128, as already established in
[5]. For all other n > 9, the gamma matrices are not invari-
ant objects under K(En). For K(E11), the vector-spinor has

10 For n < 9, it is straightforward to check that the relevant maximal compact
subgroups K(E8) ≡ Spin(16)/Z2, etc., are faithfully generated by the � � 3
elements.
11 See [28] for an analysis of the orbits of non-Euclidean signatures under the
E11 Weyl group.
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dimension 352, and we have checked that under the IIA and
IIB decompositions of K(E11) this 352 reduces to the correct
SO(1,9) covariant vector-like and chiral spinors of the IIA and
IIB theories, respectively.12 However, these considerations con-
cern the representations, and are therefore purely kinematical.
We have not investigated the form of the K(E11) covariant
spinor equations corresponding to the D = 11 gravitino vari-
ation and equation of motion.

4. Outlook

In this Letter, we have demonstrated that, at the kinemati-
cal level, the unfaithful 32 and 320 spinor representations of
K(E10) decompose into the correct fermionic representations
under the subalgebras relevant for the IIA and IIB analysis
of E10. At the dynamical level, partial checks concerning the
SO(9) × SO(9) decomposed fermionic sector were carried out
already in [7]. Using the formulation of [2], the dynamical sys-
tem with manifest full local K(E10) invariance (and global
E10 invariance) is correctly described by the gauge-fixed La-
grangian

(34)L= 1

2n
〈P|P〉 − i(χ |Dχ)vs.

This E10/K(E10) σ -model describes the motion of a massless
spinning particle on the E10/K(E10) coset space, where we
take the ‘spin’ in the 320 unfaithful vector-spinor representation
of K(E10). Here, P is the K(E10) covariant bosonic velocity
and χ the matter fermion with D being the K(E10) covari-
ant derivative. As shown in [2] (see also [3]), the Lagrangian
(34) correctly reproduces both the fermionic and bosonic equa-
tions of motion of eleven-dimensional supergravity at linearized
fermion order and with the appropriate truncations on the su-
pergravity side, i.e., neglecting second and higher order spatial
gradients for the bosonic fields, and all spatial gradients of the
fermionic fields. As shown in [7], the action of IIA supergravity
reduces to a K(E10)-invariant action of the type (34). Given the
kinematical ‘versatility’ of K(E10) and these results for D = 11
(massive) IIA supergravity we expect that (34) will also de-
scribe the fermionic equations of motion of IIB supergravity
(in the same truncation). Moreover, the K(E10)-invariant model
(34) would exhibit also a dynamical versatility!

In light of the gradient hypothesis of [6], it is also interest-
ing to note that the space–time dimension of the correspond-
ing theory depends upon which subgroup of E10 (or K(E10))
is selected to perform the level decomposition: D = 11 for
A9 ≡ SL(10), and D = 10 for D9 ≡ SO(9,9) and A8 × A1 ≡
SL(9) × SL(2). In this sense, the dimension of space–time is
no longer a fundamental datum of this theory, but an emer-
gent phenomenon. Let us also note that a different proposal
for the emergence of space–time and its dimension within the
framework of E11 was already made in [16,27] where, however,

12 The inner products on these vector-spinor representations are, however, not
given by the same form as for K(E10), as the invariance of the latter requires
ten dimensions [2].
space–time is implemented in terms of an E11 representation
rather than within the algebra itself.

To be sure, we envisage that ultimately the unfaithful, finite-
dimensional representations of K(E10) studied here will be re-
placed by faithful representations (probably by taking tensor
products with the coset or the compact subgroup itself), re-
placing the 320 time-dependent gravitino components ψa by
a infinite tower of components characterizing the spatial de-
pendence of the fermions in line with the gradient conjecture
of [6].
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