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1. Introduction

Witten’s action of cubic bosonic string field theory [1],

S =
1

2
〈Ψ|QBΨ〉 +

1

3
〈Ψ|Ψ ⋆Ψ〉 , (1.1)

leads to an innocent looking equation of motion,

QBΨ + Ψ ⋆Ψ = 0 . (1.2)

Yet, this equation remained unsolved for twenty years, until recently Schnabl finally found

a non trivial analytic solution [2]. The complexity of this equation stems from the infinite

number of string fields, its non-linearity and the difference in forms of the linear and non-

linear terms. Many attempts have been made in order to simplify the structure of this

equation [3–14].

Approximate numerical solutions were found earlier using level truncation regulariza-

tion [15]. Level truncation solves two issues. First, it gives a brute force tool for handling

the complexity of the star product. Second, it offers an elegant solution to the singulari-

ties that arise in string field theory due to the existence of an infinite tower of degrees of

freedom.

Schnabl overcame the complexity of the equation of motion using an intelligent choice of

coordinates that simplifies the star product and a novel gauge choice, which simultaneously

simplifies the kinetic term. The regularization of his solution came out naturally from the

derivation, and it can be written as

Ψλ = lim
N→∞

(

λNψN −
N

∑

n=0

λn∂nψn
)

. (1.3)

The tachyon solution is Ψ ≡ Ψ1, where it should be understood that we first set λ = 1 and

only then take the limit N → ∞. The Ψλ with λ < 1 form a one parameter family of pure

gauge solutions.
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In order to prove that Ψλ are indeed solutions, Schnabl showed that they satisfy the

equation of motion when contracted with a Fock space state 〈φ|, that is,

〈φ|QBΨλ + Ψλ ⋆Ψλ〉 = 0 . (1.4)

Here, we follow the standard abuse of terminology, defining a “Fock space” state as a state

with a finite number of excitations. This “Fock space” fails to satisfy the completness

requirement of a Hilbert space. Moreover, it is not closed under the star product. Even

the state |3〉 ≡ |0〉 ⋆ |0〉 is not part of this space. Needless to say that neither the tachyon

nor the gauge solutions are in this space.

This raises the notorious problem of defining “the correct space of string fields”. This

entity is not easily defined due to the absence of a positive definite norm in this space.

Nevertheless, it is clear that such a definition is crucial. Without a proper definition of

this space even the most fundamental questions, such as the triviality (of the cohomology)

of the kinetic operator around the new vacuum Q, are not well posed. Moreover, even the

derivation of (1.2) from (1.1) requires the definition of a space, for which a generalization

of the fundamental lemma of the calculus of variations holds. Lacking a definition of such a

space we are led to guesswork. Due to the existence of the second term in the action (1.1),

it is natural to expect that this space forms a star-algebra1. Thus, it is reasonable to

require that the (integer) wedge states lie in this space [17, 18]. Other clues for the form

of this space can come from various anomalies. For example, it was shown by Schnabl

that the inclusion of the so called “unbalanced wedge states” into the space of string

fields results in inconsistencies [18]. Other examples of potentially problematic anomalies

include twist, midpoint and associativity anomalies [19–22]. Some other thumb rules that

were considered for deciding whether a state is legitimate or not include a well defined local

coordinate patch [17,23–27] for surface states [28,29], eigenvalues bounded by unity for the

defining matrix of a squeezed state [30,31] and more [32]. The asymptotic behavior of level

truncation coefficients is another criterion. In fact, one of the justifications for considering

the first term of Schnabl’s tachyon solution (1.3)2 is to ensure a relatively fast decay of the

coefficients.

We do not know how to define the space of string fields on which we should be able to

contract the solution. Rather, we follow the common wisdom and check the contraction of

the equations of motion with the solutions themselves [14, 33, 34]. That is, we show that

the tachyon and gauge solutions can be added to the list of states for which the equation

of motion holds,

〈Ψλ1 |QBΨλ2 + Ψλ2 ⋆Ψλ2〉 = 0 , (1.5)

for any λ1, λ2 ≤ 1. This is a non trivial generalization of (1.4) since Ψλ is not in the “Fock

space”. Moreover, the tachyon solution λ = 1, involves the singular state ψN→∞. The

correlation function of this state vanishes with any “Fock space” state, yet this state is

1We consider here the space with general ghost number, without the restriction to physical states [16].
2This term does not contribute to the equation of motion, since in the limit its contraction with Fock

space states vanishes.
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clearly not zero. For example,

lim
N→∞

〈ψN |ψN ⋆ ψN 〉 =
3
√

3

2π
. (1.6)

Here, we take the limit N → ∞ simultaneously for all terms. Taking, for example, N to

infinity in the bra while taking 2N to infinity in the ket yields a different result.

The derivation of (1.5) also completes Schnabl’s proof of Sen’s first conjecture [35,36].

Schnabl calculated

〈Ψ|QBΨ〉 = − 3

π2
, (1.7)

and assumed (1.5) to get,

1

g2
o

(

1

2
〈Ψ|QBΨ〉 +

1

3
〈Ψ|QBΨ + Ψ ⋆Ψ〉

)

= − 1

2π2g2
o

. (1.8)

But a priori there was no justification for assuming (1.5) without an explicit calculation.

Our calculation shows that his assumption was nevertheless correct.

The rest of the paper is organized as follows. In section 2 we evaluate the correlators

of three ψn’s, which form the building blocks of Schnabl’s solutions Ψλ. Then, we sum the

relevant combinations of such correlators in section 3 to prove our main result, eq. (1.5).

Finally, we offer some concluding remarks in section 4.

While this work was nearing completion the paper [37] appeared, which overlaps a

major part of this work.

2. The cubic term

First we summarize the results from [2] relevant to our computation. All results are given

without proof. We refer the reader to [2] for further details.

A standard coordinate for the CFT computations of string theory is the upper half

plane, with the half unit circle |z| < 1 being our coordinate patch. For SFT computation

it is useful to change coordinates to a semi infinite cylinder of radius π, namely Cπ. The

conformal map to the new coordinates is z̃ = tan−1 z. Now the coordinate patch is defined

by the strip −π/4 < ℜ(z̃) < π/4.

It is natural to mode expand primary fields on the cylinder as

Õh(z̃) = tan ◦Oh(z) =

∞
∑

n=−∞

Õh
n

z̃n+h
. (2.1)

In this paper we only need to mode expand the energy momentum tensor Tz̃z̃ and the b̃

ghost

Ln = tan ◦Ln =

∮

dz̃

2πi
z̃n+1Tz̃z̃(z̃) , (2.2)

Bn = tan ◦bn =

∮

dz̃

2πi
z̃n+1b̃(z̃) . (2.3)
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The ψn terms of the solution can be written as wedge states |n+ 2〉 with c̃ ghost insertions

and the B0 + B†
0 operator,

ψn =
2

π2
U †
n+2Un+2

[

(B0 + B†
0)c̃(−

πn

4
)c̃(

πn

4
) +

π

2

(

c̃(−πn
4

) + c̃(
πn

4
)
)]

|0〉 , (2.4)

where

Un+2 =

(

2

n+ 2

)L0

, U †
n+2Un+2 = exp

(

−n
2
(L0 + L†

0)
)

. (2.5)

Ignoring for a moment the (B0 + B†
0) operator, the star multiplication of the above states

is straightforward, using the equation

U †
rUrφ̃(x̃1) · · · φ̃(x̃n) |0〉 ⋆ U †

sUsψ̃(ỹ1) · · · ψ̃(ỹm) |0〉 = (2.6)

U †
t Utφ̃(x̃1 +

π(s− 1)

4
) · · · φ̃(x̃n +

π(s− 1)

4
)ψ̃(ỹ1 −

π(r − 1)

4
) · · · ψ̃(ỹm − π(r − 1)

4
) |0〉 ,

where t = r + s− 1. For calculating the terms with B0 + B†
0 we use the two combinations,

BL−1 =
1

2
B−1 +

1

π

(

B0 + B†
0

)

, (2.7)

BR−1 =
1

2
B−1 −

1

π

(

B0 + B†
0

)

, (2.8)

which are useful because they obey simple relations with respect to the star product,

BL−1(ψ1 ⋆ ψ2) = (BL−1ψ1) ⋆ ψ2 , (2.9)

BR−1(ψ1 ⋆ ψ2) = (−1)ψ1ψ1 ⋆ (BR−1ψ2) . (2.10)

Therefore, for the state on the left (right) side of the star product we write B0 + B†
0 using

BL−1 (BR−1) and B−1. We can get rid of the B−1 operator using its anti-commutation relation

{B−1, c̃(z̃)} = 1 , (2.11)

and the fact that it annihilates the vacuum. The remaining terms can be calculated thanks

to the commutation relations

[L0 + L†
0,BL−1] = [L0 + L†

0,BR−1] = 0 . (2.12)

Then the relations (2.9, 2.10) can be used again to get back a state in the form of a wedge

state with c̃ ghost insertions and the B0 + B†
0 operator. A straightforward but tedious use

of the above relations leads to the result,

ψn ⋆ ψm ⋆ ψk =
( 2

π

)3
U †
p+2Up+2

[

1

π
(B0 + B†

0)c̃(
πp

4
)c̃(−πp

4
) − 1

2

(

c̃(
πp

4
) + c̃(−πp

4
)
)

]

·
(

c̃(
π(−n+m+ k + 2)

4
) − c̃(−π(−n+m+ k)

4

)

(2.13)

·
(

c̃(
π(−n−m+ k − 2)

4
) − c̃(−π(−n−m+ k)

4

)

|0〉 ,
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where p = n+m+ k + 2. What is left is to calculate the correlation function

〈ψn|ψm ⋆ ψk〉 = 〈I|ψn ⋆ ψm ⋆ ψk〉 . (2.14)

For this calculation we need the relations,

UrU
†
s = U †

2+ 2
r
(s−2)

U2+ 2
s
(r−2) , UrUs = U rs

2
, (2.15)

to get

〈I|U †
p+2Up+2 = 〈0|U †

p+1Up+1 = 〈0|Up+1 . (2.16)

Next, we use the relation

〈0|Ur
(

rB†
0 + (r − 2)B0

)

= 0 , (2.17)

to replace the B†
0 operator with 2

p+1B0 and the anti-commutation relation

{B0, c̃(z̃)} = z̃ , (2.18)

to drag B0 to the right until it annihilates the vacuum. Now, we only need the correlation

function of three c̃ ghost insertions on the cylinder with radius π(p+1)
2 ,

〈c̃(x)c̃(y)c̃(z)〉Cπ(p+1)
2

=
(p+ 1

2

)3
sin

(2(x− y)

p+ 1

)

sin
(2(x− z)

p+ 1

)

sin
(2(y − z)

p+ 1

)

. (2.19)

This gives the final result,

〈ψn|ψm ⋆ ψk〉 =

(p+ 1)2

π3
sin2

( π

p+ 1

)

(

sin
(2π(n + 1)

p+ 1

)

+ sin
(2π(m+ 1)

p+ 1

)

+ sin
(2π(k + 1)

p+ 1

)

)

. (2.20)

3. The equation of motion

Schnabl showed that the equation of motion holds when contracted with Fock space states.

In this section we demonstrate that it also holds when contracted with any of the solutions.

The first term in (1.3) is the problematic one since it is naively zero but still contributes to

the action. We show that all combinations of the tachyon and gauge solutions satisfy the

equation of motion. For the gauge solutions this seems redundant since they do not have

the problematic ψN term. Then, this calculation is just an extra check that comes for free

with the main result.

We start with the diagonal sum over constant p = m+ k + 2

p−2 step 2
∑

r=−p+2

∂m∂k 〈ψn|ψm ⋆ ψk〉 , (3.1)

where r = m− k. The sum can be performed after noticing that

∂m∂k 〈ψn|ψm ⋆ ψk〉 = ∂2
p

(

(n+ p+ 1)2

π3
sin2

( π

n+ p+ 1

)

sin
(2π(n + 1)

n+ p+ 1

)

)

(3.2)

+ (fn,p(r − 2) − 2fn,p(r) + fn,p(r + 2) + fn,p(−r − 2) − 2fn,p(−r) + fn,p(r + 2)) ,

fn,p(r) =
(

∂2
r − ∂2

p

)

(

n+ p+ 1

4π3
sin

( π(p+ r)

n+ p+ 1

)

)

, (3.3)
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giving

p−2 step 2
∑

r=−p+2

∂m∂k 〈ψn|ψm ⋆ ψk〉 =

(p− 1)∂2
p

(

(n + p+ 1)2

π3
sin2

( π

n+ p+ 1

)

sin
(2π(n + 1)

n+ p+ 1

)

)

+ (fn,p(p) − fn,p(p− 2) − fn,p(−p+ 2) + fn,p(−p)) . (3.4)

Some trigonometry shows that this is equal to the kinetic term calculated by Schnabl,

∂p 〈ψn|QBψp−1〉 =

p−2 step 2
∑

r=−p+2

∂m∂k 〈ψn|ψm ⋆ ψk〉 . (3.5)

Therefore, when plugging Ψλ into the equation of motion, the coefficient of λp is zero. This

result is independent of n. Thus,

〈Ψλ1 |QBΨλ2 + Ψλ2 ⋆Ψλ2〉 = 0 , (3.6)

for λ1, λ2 < 1. Combining this with Schnabl’s result on the vanishing of the kinetic term

for the pure gauge solution, we see that the cubic term in the action also vanishes.

For the cubic term of the tachyon solution we need to calculate four terms. The first

term is,

lim
N→∞

〈ψN |ψN ⋆ ψN 〉 =
3

π
sin

(2π

3

)

=
3
√

3

2π
. (3.7)

The second term involves a sum that in the limit N → ∞ can be transformed into a

Riemann integral, giving exactly the same result as the first term,

lim
N→∞

∫ 1

0
dx∂x 〈ψN |ψN ⋆ ψxN 〉 =

3
√

3

2π
. (3.8)

The third term involves two sums that, again, can be transformed into integrals,

lim
N→∞

∫ 1

0
dx

∫ 1

0
dy∂x∂y 〈ψN |ψxN ⋆ ψyN 〉 =

3
√

3

2π
. (3.9)

The fourth term involves three sums, but these sums cannot be transformed into an integral

near the origin. Still, we calculate the cubic integral,

lim
N→∞

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz∂x∂y∂z 〈ψzN |ψxN ⋆ ψyN 〉 =

3
√

3

2π
, (3.10)

but replace the result of the integral with a sum for the corner of the cube x+ y + z < 1.

Luckily, we already have performed this sum for the pure gauge calculation and it is

zero (3.5, 3.6). All that is left is to subtract the integral for this illegal domain,

lim
N→∞

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−y−x

0
dz∂x∂y∂z 〈ψzN |ψxN ⋆ ψyN 〉 =

3

π2
. (3.11)
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Amazingly, all the other contributions cancel and we are only left with this last contribution

from the illegal domain,

〈Ψ|Ψ ⋆Ψ〉 =
3

π2
. (3.12)

Together with Schnabl’s result for the kinetic term we get that the equation of motion

holds when contracted with the solution itself,

〈Ψ|QBΨ + Ψ ⋆Ψ〉 = 0 . (3.13)

This also completes the proof of Sen’s first conjecture (1.8).

We have also checked that the equation of motion for the tachyon solution holds when

contracted with a gauge solution and that the equation of motion for the gauge solution

holds when contracted with the tachyon solution.

4. Conclusions

We showed that Schnabl’s tachyon solution of string field theory is valid in the sense that

it solves the equation of motion even when contracted with itself. Lacking a definition for

the space of string states, our check gives a good indication that this state is well behaved.

It is easy to generalize our calculation to see that this result is independent of the

relative regularization of the bra and the ket states. Instead of integrating over a cube,

we now have to integrate over a box. The result of the integral will be different, but these

integrals cancel each other. The only non trivial contribution is from the corner of the cube,

eq. (3.11). Now, we will take a corner from the box, but of the same shape, giving the

same contribution. Schnabl’s calculation of the kinetic term can be described in the same

way as integrating over the square and then correcting for the lower triangle. Therefore,

the kinetic and cubic terms again cancel.

To conclude, using a correct regularization for the tachyon solution is crucial for ob-

taining the right state. Yet after regularization, the state we get seems to be well behaved

under all our tests, to the extent that the regularization we used to get this state is irrele-

vant.

This work bridges a gap left in [2]. We believe that it will prove useful for a better

understanding of Schnabl’s construction and for further applications thereof. We hope that

it would also serve in the search for the space of string fields.
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