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This paper presents a quasilocal method of studying the physics of dynamical black holes in numerical
simulations. This is done within the dynamical horizon framework, which extends the earlier work on
isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal
surfaces and study their time evolution. An important ingredient is the calculation of the signature of the
horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black
hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to
dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used
to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy
crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We
describe our numerical implementation of these concepts and apply them to three specific test cases,
namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron
star, and a nonaxisymmetric black hole collision with nonzero initial orbital angular momentum.
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I. INTRODUCTION

In spite of fundamental advances in our understanding of
black holes, relatively little is known about them in the
fully nonperturbative, dynamical regime of general rela-
tivity. Most of our intuition regarding black holes comes
from studying the stationary, axisymmetric Kerr-Newman
solutions, and perturbations thereof. This, along with post-
Newtonian calculations which treat the black hole as a
point particle, are usually adequate for understanding
many astrophysical processes involving black holes.
However, understanding the gravitational waveforms aris-
ing due to, say, the merger phase of the coalescence of two
black holes or the gravitational collapse of a star, will
require us to go beyond perturbation theory and to confront
the nonlinearities and dynamics of the full Einstein equa-
tions. This regime may contain qualitatively new, nonper-
turbative features. In this paper, we discuss an important
ingredient for understanding this regime, namely, the dy-
namics of the black hole horizon. Numerical simulations of
black holes have greatly improved in the last few years.
Simulations of the entire merger process, starting from the
last few orbits of the inspiral right up to the ringdown have
become possible in the past year [1–8]. It is then important
to look for better ways to extract more physical informa-
tion from simulations and to compare results from two
different simulations performed using different coordinate
systems, gauge conditions, etc. This can be a nontrivial
task in itself, and understanding black hole horizons is a
necessary ingredient.

Because of their global nature, black hole event horizons
can only be located once a simulation is complete and we
have obtained the full spacetime. In numerical simulations,
it is instead common to use marginally trapped surfaces to
locate black holes on a Cauchy surface in real time. We use
the formalism of dynamical horizons [9,10] to study black
holes. Using isolated/dynamical horizons, it is shown that
marginally trapped surfaces, while not a substitute for
event horizons, do have many useful properties and can
be used fruitfully to study black hole physics. Dynamical
horizons are a significant extension of the isolated horizon
framework [11–15], which models isolated stationary
black holes in an otherwise dynamical spacetime. Both
these frameworks are, in turn, very closely related to and
motivated by the earlier work on trapping horizons by
Hayward [16–18]. See [19–21] for reviews. Information
obtained from these quasilocal horizons complements the
information obtained from the event horizon. Once a simu-
lation is complete and ready for post-processing, event
horizons are useful for studying global properties and the
causal structure of the spacetime, and also phenomena such
as the topology change of the horizon during a black hole
coalescence. Reliable and computationally efficient codes
are now available for locating event horizons (see e.g.
[22]). Such information cannot be obtained at the quasilo-
cal level, which is instead better for tracking the physical
parameters and geometry of a black hole in real time.

The dynamics of apparent and event horizons have been
numerically studied in the past in detail in axisymmetry
(see e.g. [23–28]). We want to extend this work to non-
axisymmetric and nonvacuum spacetimes, and we want to
emphasize non-gauge-dependent analysis methods. In par-
ticular, we consider the following applications: (i) We
study the behavior of various marginally trapped surfaces
under time evolution. This leads to greater insights about
the trapped region of a spacetime. An important ingredient
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here is the signature of the world tube of marginally
trapped surfaces. This world tube is known to be null for
isolated horizons, and more generally, it can be either
spacelike or timelike; we show that both types occur
frequently in numerical simulations. (ii) We give mean-
ingful definitions for the angular momentum, mass, and
higher multipole moments for the dynamical black hole.
The multipole moments capture gauge invariant geometri-
cal information regarding the horizon geometry, and
should be useful for understanding fundamental issues
such as the final state of black hole collapse. For example,
we would expect that after a black hole has formed and
settled down, its multipole moments should be identical to
the source multipoles of a Kerr black hole. We show that it
is, in principle, possible to verify this conjecture and to
calculate the rate at which a black hole approaches equi-
librium. (iii) We also describe and implement methods for
calculating the energy flux falling into the horizon. This
gives us detailed information on how black holes grow as
they swallow matter and radiation.

This paper is organized as follows. Section II sets up
notation, and summarizes the basic definitions and prop-
erties of trapped surfaces and dynamical horizons.
Section III describes the various physical quantities that
we calculate using dynamical horizons, and also their
numerical implementation. Section IV presents three con-
crete, well-known numerical examples where these con-
cepts are applied and finally, Sec. V discusses some open
issues and directions for further work. Unless mentioned
otherwise, we use geometrical units with G � c � 1, the
spacetime signature is ��;�;�;��, all manifolds and
fields are assumed to be smooth, and the Penrose abstract
index notation is used throughout. The derivative operator
compatible with the spacetime metric gab is ra and, fol-
lowing Wald [29], the Riemann tensor is defined via
�rarb �rbra�!c � Rabc

d!d.

II. BASIC NOTIONS AND DEFINITIONS

A. Trapped surfaces and apparent horizons

Let S be a closed, orientable spacelike 2-surface in a 4-
dimensional spacetime �M; gab�. The expansion of any
such surface can be defined invariantly without any refer-
ence to a time slicing of the spacetime. Since S is smooth,
spacelike, and 2-dimensional, the set of vectors orthogonal
to it at any point form a 2-dimensional Minkowskian vector
space. Thus, we can define two linearly independent,
future-directed, null vectors ‘a and na orthogonal to S
such that

 gab‘
anb � �1: (2.1)

Note that this convention is different from that used in [10].
We shall assume that we know a priori what the outgoing
and ingoing directions on M are. By convention, ‘a will
denote an outgoing null normal and na an ingoing one. The
null normals are specified only up to a boost transformation

 ‘a ! f‘a; na ! f�1na (2.2)

where f is a, positive definite, smooth function on S. All
physical quantities must be invariant under this gauge
transformation.

The Riemannian 2-metric ~qab on S induced by the
spacetime metric gab is

 

~q ab � gab � ‘anb � na‘b: (2.3)

The tensor ~qba can be viewed as a projection operator on to
S. The null expansions are

 ��‘� � ~qabra‘b; ��n� � ~qabranb: (2.4)

These expansions tell us how the area element of S changes
as it is deformed along ‘a and na respectively.

The shear of ‘a, ��‘�ab, is the symmetric trace-free part
of the projection of ra‘b:

 ��‘�ab � ~qca~qdbr�c‘d� �
1
2��‘�~qab: (2.5)

Similarly, the shear of na is

 ��n�ab � ~qca~qdbr�cnd� �
1
2��n�~qab: (2.6)

Note that these definitions only involve derivatives tangen-
tial to S. Thus ‘a and na can, if necessary, be extended
arbitrarily away from S while computing these quantities.

The closed 2-surface S is said to be a trapped surface if
both expansions ��‘� and ��n� are strictly negative. This is
very different from a sphere in normal flat space which has
positive outgoing expansion and negative ingoing expan-
sion. This definition was first introduced by Penrose [30],
who recognized its importance in the formation of singu-
larities. On a marginal surface, one of the two null ex-
pansions vanish. Of particular interest are the marginally
outer trapped surfaces (MOTSs), for which the outgoing
null rays along ‘a have zero expansion. In addition, we
shall mostly deal with future marginally outer trapped
surfaces (FMOTSs), i.e., MOTSs with ��n� < 0.

There are three main reasons why closed trapped sur-
faces are important for studying black holes. First, the
existence of a trapped surface implies the existence of a
singularity in the future [30,31]. Second, they are guaran-
teed to always lie within the event horizon. Finally, in
stationary spacetimes, the null generators of the event
horizon have zero expansion. Thus for stationary space-
times, the cross section of the event horizon is a MOTS.

While trapped and marginally outer trapped surfaces are
defined in the full four dimensional spacetime, in numeri-
cal relativity, one usually considers trapped surfaces in
conjunction with a foliation of (partial) Cauchy surfaces
containing S; it is numerically much easier to look for
closed surfaces on the Cauchy surface rather than in the
full spacetime manifold. For concreteness, we shall work
in the ADM formalism where the relevant portion of space-
time is foliated by spacelike surfaces, and � shall denote
one of the leaves of this foliation. However, it will be
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obvious that the formalism is applicable no matter how
Einstein’s equations are implemented.

The trapped region T � on � is defined to be the set of
points in � through which there passes a trapped surface
contained entirely in �. Note that there could be points in
� not contained in T �, but through which there passes a
trapped surface not contained in �. Thus, T � is a subset of
the intersection of � with the 4-dimensional trapped region
in the full spacetime. A connected component of the
boundary of T � is called an apparent horizon (AH).
Under suitable regularity conditions, the AH can be shown
to be a MOTS [32,33]. Thus, an apparent horizon is the
outermost MOTS on �. Because of this ‘‘outermost’’
property, an AH is not a quasilocal object on �. The
behavior of AHs under time evolution can be quite irregu-
lar. For example, they can ‘‘jump’’ discontinuously. On the
other hand, as we shall soon see, MOTSs are more regular.

B. Dynamical horizons

1. Definition and examples

We can use marginal surfaces to extract physically
interesting information about the black hole. The key
idea is to look not at a single MOTS by itself, but rather
a world tube H of MOTSs constructed by stacking up the
MOTSs obtained by time evolution. Such a world tube is
called a marginally trapped tube (MTT). A MTT is thus a
smooth 3-surface foliated by MOTSs.

The existence of MTTs: Numerically, it has been ob-
served that marginal surfaces (though not apparent hori-
zons—see below) usually behave smoothly under time
evolution and produce a smooth MTT. This observation
is placed on a more rigorous footing by the recent result of
Andersson et al. [34], which proves the local existence of
MTTs for a large class of MOTSs. Their results require the
MOTS to be strictly-stably-outermost. An MOTS S on � is
said to be strictly-stably-outermost if there exists an infini-
tesimal first order outward deformation which makes S
strictly untrapped. Working with a radial coordinate r on
� such that S is a level set of r, and r increases in the
outward direction, a sufficient (but not necessary) condi-
tion for S to be strictly-stably-outermost is @r��‘��r�> 0
everywhere1 on S. Here it is understood that we obtain ��‘�
as a function of r by calculating ��‘� for the constant-r
surfaces in the vicinity of S. In principle, for an unfortunate
choice of r, it might happen that @r��‘� < 0 even though
there is a different choice for which this condition is
satisfied. In any case, this is sufficient for verifying that S
is strictly-stably-outermost.2 This condition, unlike the

outermost condition for an AH, is a quasilocal condition.
We have found in our simulations that most physically
interesting MOTSs, such as ones which asymptote to the
event horizon, and also AHs, satisfy this condition quite
generally. However, as we shall see, there exist also
MOTSs which are not strictly-stably-outermost. In prac-
tice, instead of checking @r��‘� > 0 directly, we look for a
surface with a small positive (or negative) nonvanishing
expansion, and check that it lies completely outside (or
inside) the MOTS.

It is shown in [34] that if a MOTS S is strictly-stably-
outermost, then at least locally in time, S is a cross section
of a smooth MTT. More explicitly, this result shows that
given a foliation of the spacetime by Cauchy surfaces �t, if
there is a MOTS S0 on �0 which is strictly-stably-
outermost, then MOTSs St exist on �t for �� < t < �
(for sufficiently small �) such that the union

S
St is a

smooth MTT. The MTT will exist for at least as long as
the MOTS remains strictly-stably-outermost. This is a
conceptually important result for numerical relativity be-
cause it shows that a large class of MOTSs behave regu-
larly under time evolution. How is this to be reconciled
with the known fact that AHs can jump during a time
evolution? The reason is simply because of the outermost
property. It is possible that a new MOTS can appear on the
outside of a given MOTS. The ‘‘old’’ MOTS is then no
longer the globally outermost one even though it is locally
outermost, and it continues to evolve in a perfectly regular
manner, but it is no longer an AH.

There are, as yet, no similar existence proofs for MOTSs
which are not strictly-stably-outermost. However, as we
shall see later, we find in all the examples we have looked
at, that MOTSs evolve smoothly even in this case, forming
a regular world tube.

Isolated and dynamical horizons: A MTT is null in
equilibrium situations when no matter or radiation is fall-
ing into it; the rest of the spacetime is still allowed to be
highly dynamical. This situation is formalized by the no-
tion of an isolated horizon [11–15]. Using isolated hori-
zons, it has been possible to derive the laws of black hole
mechanics, use it as a basis for the quantum black hole
entropy calculations and find unexpected properties of
hairy black holes in Einstein-Yang-Mills theory; see [19]
and references therein. Most importantly for our purposes,
isolated horizons have also proved to be useful in numeri-
cal relativity. For example, isolated horizons provide a
coordinate invariant method of calculating the angular
momentum and mass of a black hole [35]. They can be
used to obtain boundary conditions for constructing qua-
siequilibrium initial data sets [36–39]. They might have a
role in waveform extraction [15]. A pedagogical review of
isolated horizons from the numerical relativity perspective
can be found in [21].

In this paper, we are more interested in the dynamical
regime when the MTT is not null. A spacelike MTT con-

1More precisely, @r��‘��r� � 0 with @r��‘��r�> 0 somewhere
on S.

2It is harder to show that a MOTS is not strictly-stably-
outermost. This can be done by calculating the signature of
the horizon (see below) or by calculating the principle eigen-
value of the stability operator defined in [34].
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sisting of future-marginally trapped surfaces is called a
dynamical horizon (DH). Thus, a dynamical horizon is a
spacelike 3-surface equipped with a given foliation by
FMOTSs. The properties of a dynamical horizon are
studied in detail in [9,10,40]. The case when the horizon
is very close to being isolated but still evolving dynami-
cally has been studied in [41,42] and its Hamiltonian treat-
ment is considered in [43]. Note that the local existence of
DHs follows from the local existence of MTTs because if
��n� < 0 at any given time, it will continue to be strictly
negative for at least a short duration. We elaborate on the
spacelike property below.

A timelike MTT will be called a timelike membrane
(TLM). A TLM cannot be considered to represent the
surface of a black hole since a timelike surface is not a
one-way membrane, and both ingoing and outgoing causal
curves can pass through it. In some instances, we shall use
the term ‘‘horizon’’ loosely to refer to a generic marginal
surface or a MTT without any further qualifiers. The exact
meaning should hopefully be clear from the context.

An explicit example of a dynamical horizon is provided
by the Vaidya spacetime which describes the gravitational
collapse of null dust [44–46]. (See also [47] for further
examples in spherically symmetry). More generally, Fig. 1
depicts a dynamical horizon H bounded by two MOTSs S1

and S2. S is a typical member of the foliation. The vector �̂a

is the future directed unit timelike normal to H, r̂a is
tangent to H and is the unit outward pointing spacelike
normal to the cross sections. A fiducial set of null normals
is

 ‘a �
1���
2
p ��̂a � r̂a�; na �

1���
2
p ��̂a � r̂a�: (2.7)

As before, ��‘� � 0 and ��n� < 0. The area of a cross

section S will be denoted by AS and its radius by RS :����������������
AS=4�

p
. A radial coordinate on H will be denoted by r;

the cross sections of H are the constant r surfaces. The 3-
metric and extrinsic curvature of H will be denoted, re-
spectively, by qab and Kab, and ~qab is the 2-metric on S.

Figure 1 shows also a Cauchy surface � intersecting a
dynamical horizon H. This intersection S will always be
assumed to be one of the given cross sections of H. The
unit timelike normal to the horizon is Ta and the unit
outward pointing spacelike normal to S within � is Ra.
The three metric and extrinsic curvature of � are denoted
by �qab and �Kab respectively. The fiducial set of null nor-
mals to S arising naturally from � are

 

�‘ a �
1���
2
p �Ta � Ra�; �na �

1���
2
p �Ta � Ra�: (2.8)

A boost transformation of the form of Eq. (2.2) connects
�‘a; na� and � �‘a; �na�:

 ‘a � f �‘a; na � f�1 �na: (2.9)

When the horizon settles down and becomes null, an
infinite boost (f ! 1) is required to go from � �‘a; �na� to
�‘a; na�.

We conclude this subsection with a short summary of
some basic properties of a dynamical horizon:

Topology: The cross sections of a DH can be either
spherical or toroidal [9,10,16,34]. Toroidal topology is
possible only in exceptional cases when ��‘�ab, the
scalar curvature ~R of S, L‘��‘�, Rab‘b, and �a (defined
in Sec. III) all vanish on S [10]. We shall therefore
always take the cross sections to be spherical. There
are no similar results for cross sections of TLMs.
However, we use an apparent horizon tracker which
can only locate spherical AHs [48] and therefore all
observed MOTSs have spherical topology.
Second Law: The area of the cross sections of a DH
increases along r̂a [9,10]. Thus, if we choose a time
evolution vector field ta for which t � r̂ > 0, then the area
of the dynamical horizon will increase in time, and this
result can be called the second law for dynamical hori-
zons. Similarly, the area of a TLM decreases if ��n� < 0,
and increases if ��n� > 0.
Foliation and Uniqueness: Any given spacelike MTT
cannot have more than one distinct dynamical horizon
structure on it [40]. This means that a DH can have one,
and only one foliation by FMOTSs. This further implies
that if a Cauchy surface � does not intersect a given DH
in one of the preferred cross sections, then the intersec-
tion cannot be a MOTS at all. Thus, different choices of
Cauchy surfaces in general lead to different dynamical
horizons. There are however some constraints on the
location of dynamical horizons and trapped surfaces as
proved by Ashtekar and Galloway [40]. For example,
they show that given a dynamical horizon H (along with
a mild genericity assumption), there cannot be any
trapped surfaces (and therefore no DHs) contained en-
tirely in the past domain of dependence of H. See also
[46,49] for further discussion.

τ̂ a

S1

S2

nar̂a

a
H

S

Ta

RaΣ

FIG. 1. A dynamical horizonH bounded by MOTSs S1 and S2.
‘a is the outgoing null normal, na is the ingoing null normal, r̂a

is the unit spacelike normal to the cross sections, and �̂a is the
unit timelike normal to H. � is a Cauchy surface intersecting H
in a 2-sphere S. Ta is the unit timelike normal to � and Ra is the
unit spacelike outward pointing vector normal to S and tangent
to �.
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2. The signature of a MTT

As discussed above, MTTs have been shown to exist for
a large and physically interesting class of MOTSs, and this
is borne out in a large number of numerical simulations
where MOTSs are located and evolved smoothly. How
many of these MTTs are actually dynamical horizons? In
other words, when is a MTT spacelike? The first result in
this direction was obtained by Hayward [16] (see also
[35]). Using the Raychaudhuri equation for ‘a, it can be
shown that a MTT is spacelike if �< 0, null if � � 0 and
timelike if �> 0, where

 � �
��‘�ab�ab�‘� � Rab‘

a‘b

Ln��‘�
: (2.10)

In writing this expression, it is assumed that ‘a and na are
extended off H geodetically, so that Ln��‘� is meaningful.
The term in the numerator is strictly positive in the case of
dynamical horizons if the matter fields satisfy, say, the null
energy condition. It vanishes for isolated horizons. The
denominator is negative for the Vaidya spacetime and also
for the stationary Kerr-Newman family. This captures the
notion that as we go inside the black hole, the outgoing null
rays become more and more converging. Assuming that the
numerator of Eq. (2.10) is nowhere vanishing on H, the
hypothesis that H is spacelike is equivalent to Ln��‘� < 0.
As shown by Ben-Dov [50], this last condition is not
satisfied for all MTTs; in Oppenheimer-Snyder collapse
[51], there exists a timelike world tube of FMOTSs with
Ln��‘� > 0.

The issue of the signature has been considered in [34].
There it is shown that if a MOTS S is strictly-stably-
outermost, and if the quantity ��‘�ab�ab�‘� � Rab‘

a‘b is non-
zero somewhere on S (and assuming the null energy con-
dition), then the MTT containing S is spacelike in a
neighborhood of S. This result is stronger than
Hayward’s result [Eq. (2.10)] and it shows clearly that
the spacelike case is physically the most interesting be-
cause ��‘�ab�ab�‘� � Rab‘

a‘b will not vanish in a nonsta-
tionary situation. It also shows, somewhat surprisingly, that
even if matter or radiation is falling into a black hole only
in the form of say, a single narrow beam from a particular
direction, the entire MTT is spacelike. One might naively
have thought that the MTT would be spacelike only on
portions where the energy flux is nonzero, and null other-
wise. This is not the case because of the elliptic nature of
the equations governing the deformations of a MOTS.3

In all the examples we present later, it turns out that
MOTSs form in pairs, i.e., just after a MOTS S0 appears

initially, it bifurcates into ‘‘outer’’ and ‘‘inner’’ MTTs,Hout

and Hin, respectively. The initial MOTS S0 is the common
cross section of Hout and Hin, and the union Htot �
Hout

S
Hin forms a single smooth manifold, as far as we

can tell numerically (though a more detailed analysis of the
differentiability of Htot is required). In particular, the area
of the cross sections is a differentiable and monotonic
function on this manifold. Furthermore, Hout is spacelike,
even on the initial cross section S0. This means that the
inner MTT Hin is, by continuity, initially spacelike in an
open neighborhood of S0. However, in some casesHin soon
acquires a mixed signature and becomes more and more
timelike, and ends up as a TLM. We strongly suspect that
such a bifurcation is a general phenomenon whenever a
new MOTS is formed. The MOTSs on the inner MTT are
not strictly-stably-outermost and thusHin is not required to
be spacelike according to the results of [34].

There is one configuration where the existence of an
inner MTT is plausible. Figure 2 shows two MOTSs S�1�;�2�
surrounded by a common MOTS Sout; ��‘� vanishes on all
these surfaces. Let us assume that S�1�, S�2�, and Sout are all
strictly-stably-outermost and that deforming S�1� and S�2�
outward yields strictly untrapped surfaces S0�1� and S0�2�.
Similarly, suppose that deforming Sout inwards gives a
strictly trapped surface S0out. Then, since ��‘� must change
sign somewhere between S0out and S0

�1� or S0
�2�, it is plausible

that there is a MOTS Sin in the intermediate region inside
Sout and outside S1 and S2. This argument is supported by a
recent result by Schoen [52] which shows the existence of a
MOTS between a trapped (in our case S0out) and an un-
trapped surface (in our case S0

�1�

S
S0
�2�). It might be pos-

sible to extend this proof to rigorously prove the existence
of Sin in our case, and to check whether it is topologically a
sphere. S�1�, S�2�, and Sout are cross sections of a dynamical
horizon while Sin is a cross section of a MTT, not neces-
sarily a dynamical horizon.

FIG. 2. Two MOTSs S�1� and S�2� surrounded by a common
MOTS Sout. Spheres lying just inside these FMOTSs must have
negative outgoing expansion. Thus, there must be a inner trapped
horizon Sin inside Sout which encloses S�1� and S�2�.

3The Oppenheimer-Snyder case studied in [50] does not
satisfy the hypotheses of these theorems because for this case,
the matter fields have a discontinuity at the surface of the star.
Further examples in spherical symmetry are studied in [47]
where the matter fields are smooth.
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III. APPLICATIONS

This section discusses some possible applications of
dynamical horizons. These ideas are illustrated using con-
crete numerical examples later in Sec. IV.

A. Computing the signature of a MTT

From a numerical standpoint, it is more convenient to
deduce the signature of H by directly calculating the
induced metric qab, rather than from Eq. (2.10) by calcu-
lating Ln��‘� which requires extensions of ‘a and na away
from the horizon. The signature ofH is then determined by
the sign of the determinant of qab which is gauge indepen-
dent; note that the determinant is itself gauge dependent.
To calculate qab we find a frame ea

�i� (i � 1; 2; 3) onH, i.e.,
three smooth vector fields on H which are pointwise line-
arly independent. We then simply need to compute the
determinant of the matrix

 q �i��j� :� gabea
�i�e

a
�j�: (3.1)

We construct a frame on H as follows. Let �t; xi� (i �
1; 2; 3) be the spacetime coordinates on M used in the
numerical simulation. The MTT H is topologically I 	 S2

(I some interval in R) so that we can assume coordinates
�r; �; �� on it. Here ��;�� are standard coordinates on S2

and r is a radial coordinate. We can use the time coordinate
t as the radial coordinate r on H by considering H to be
embedded into the spacetime M by means of the map

 F�r; �;�� � �t � r; xi � Fi�r; �; ���: (3.2)

The maps Fi are known as soon as the MOTSs are found by
the AH tracker. As a frame on H we choose

 e �1� � @�; e�2� �
1

sin�
@�; e�3� � @r: (3.3)

Hence, e�3� connects a point on a MOTS at a certain instant
of time with a corresponding point on the MOTS at the next
instant of time. Note that this choice of frame breaks down
at the poles of the sphere. To apply formula (3.1), the frame
(3.3) on H must be pushed forward to M by means of the
embedding F in the standard way:

 e �3� � �1; @rF1; @rF2; @rF3�: (3.4)

This enables us to calculate q�i��j� using the 3-metric on the
Cauchy surface, and the lapse and shift.

Having calculated the matrix q�i��j� and assuming its
determinant to be positive, we can easily calculate the
unit vector r̂a. It is simply the outward pointing unit space-
like vector which is a linear combination of �e�1�; e�2�; e�3��,
and is orthogonal to e�1� and e�2�. This construction of r̂a

will also work in the timelike case, but not in the null case
where q�i��j� becomes degenerate.

B. Angular momentum and mass

Let ’a be a rotational vector field on H tangent to each
cross section.4 The angular momentum of a cross section S
associated with ’a is given by

 J�’�S � �
1

8�

I
S
Kab’

ar̂bd2V: (3.5)

We refer to [10] for a justification for this formula. The
interpretation of J�’�S as angular momentum is most clear
cut when ’a is a rotational symmetry on H, i.e., when
L’Kab � 0 and L’qab � 0. See [35] for a method of
finding Killing vectors suitable for numerical implementa-
tion. Booth and Fairhurst have shown that this formula also
arises from a Hamiltonian calculation [43]. As we shall see
below, J�’�S is also gauge invariant when ’a is only diver-
gence free, and not necessarily a symmetry vector.
However, J�’�S may not be meaningful for more general ’a.

If a cross section S has radius RS and angular momentum
J�’�S , we can meaningfully talk about the mass:

 M�’�S �
1

2RS

����������������������������
R4
S � 4�J�’�S �

2
q

: (3.6)

This mass has the same dependence on the area and
angular momentum as in the Kerr solution. There is a
meaningful balance law for the mass and furthermore, it
satisfies a physical process version of the first law [9,10].

Equation (3.5) uses the metric qab and Kab and extrinsic
curvature of the dynamical horizon. It is more convenient
to recast this in terms of the metric �qab and extrinsic
curvature �Kab of the partial Cauchy surface � (see
Fig. 1). It is also more convenient to work with the null
normals � �‘a; �na� defined in Eq. (2.8). It is clear that � �‘a; �na�
must be related to the old null normals �‘a; na� by a boost
transformation, i.e., there must exist a positive function f
on S such that

 ‘a � f �‘a and na � f�1 �na: (3.7)

After some simple algebra, Eq. (3.5) can be written as:

 J�’�S � �
1

8�

�I
S

�KabR
a’bd2V �

I
S
L’ lnfd2V

�
:

The second integral vanishes precisely when ’a is diver-
gence free, i.e., when ’a is a symmetry of the area element
on S. In this case:

 J�’�S � �
1

8�

I
S

�KabRa’bd2V: (3.8)

In particular, this will be true when’a is a symmetry of the
metric ~qab, but the divergence free condition is much
weaker than this. For example, following [19], we can

4This means that ’a is tangent to S, has closed integral curves,
and is normalized so that its integral curves have an affine length
of 2�, and it vanishes at exactly two points on S.
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always construct a divergence free vector field on a 2-
sphere even in the absence of axisymmetry as follows.
Let h be any smooth function on S, and g another smooth
function satisfying ~�ab@ah@bg � 0, where ~�ab is the vol-
ume form on S. It is easy to check explicitly that the
following vector field is automatically divergence free:

 ~’a � g~�ab@bh: (3.9)

The integral curves of ~’a are the level curves of h. In
particular, if h is chosen to be a geometric quantity such as,
say, the curvature ~R, and g chosen such that ~’a has affine
length 2�, then ~’a will coincide with an axial Killing
vector, if it exists. Therefore, ~’a can be viewed as an ersatz
axial symmetry vector field even in the absence of
axisymmetry.

However, we have not as yet satisfactorily implemented
the above construction due to numerical difficulties arising
from errors in taking derivatives of the scalar curvature.
Furthermore, the ’a coming from Eq. (3.9) may not look
like a rotational vector field;, in particular, it may vanish at
more than just two points on the sphere even when S is
close to axisymmetry.5 This is work in progress. The
results presented below all use the method described in
[35] of finding Killing vectors based on the Killing trans-
port equations. This reduces the problem of finding Killing
vectors on a sphere to the diagonalization of a 3	 3
matrix, and integrating a 1-dimensional ordinary differen-
tial equation. We have found this method to be quite
reliable for the cases when the horizon is sufficiently close
to axisymmetry, even in cases when the coordinate system
is not adapted to the axial symmetry. Thus, it works well
for the head-on collision and axisymmetric neutron star
collapse, but only at very early and late times for a non-
axisymmetric black hole collision. This caveat only affects
the example of Sec. IV B. It is important to keep in mind
that this Killing transport method is not reliable for check-
ing whether the horizon is close to axisymmetry; this
requires an independent calculation of L’~qab to verify
that it is sufficiently small. Finally, we emphasize that
this method is also not guaranteed to produce a divergence
free rotational vector field; this must also be checked
independently.

C. Multipole moments

The notion of multipole moments play a very important
role in Newtonian gravity and classical electrodynamics.
Let us focus on classical electrodynamics in Minkowski
space with axisymmetric charge and current distributions 	
and ja respectively, given on a sphere S of radius RS. Let
��;�� be coordinates on S; 	 and ja, being axisymmetric,
are functions only of �. The electric multipoles En and
magnetic multipoles Bn are, respectively, defined as

 En � RnS
I
	Pn�cos��d2V; (3.10)

 Bn � �R
n�1
S

I
S
� ~j	 ~~@Pn�cos��� � n̂d2V; (3.11)

where Pn is the nth Legendre polynomial, ~@ denotes the
standard derivative operator on a sphere, and n̂ is the unit
outward normal to the sphere. For black holes, the analogs
of the electric and magnetic multipole moments are, re-
spectively, the mass and angular momentum multipole
moments. Motivated by this analogy, there exist mean-
ingful definitions of the source multipole moments for an
isolated horizon [53]. Roughly speaking, these definitions
correspond to taking the moments of the free data on an
axisymmetric isolated horizon, and knowledge of these
moments is sufficient to construct the entire horizon
geometry.

For dynamical horizons, we can generalize the construc-
tion of [53] to construct a set of multipole moments which
capture the geometry of a dynamical horizon at any instant
of time, and which are furthermore equal to the isolated
horizon multipole moments when the black hole is iso-
lated. The analog of charge density is (proportional to) the
scalar curvature on S:

 	S �
1

8�
MS

~R; (3.12)

and the angular momentum current is

 ja � �
1

8�
~qca �KcbRb: (3.13)

The moments of these quantities will give the desired
multipole moments. We could also use ~qcaKcbr̂b instead
of ~qca �KcbRb above; the two expressions are related by a
boost transformation. Just as for angular momentum, the
final expressions for the multipole moments given below
will be boost invariant if the ’a used in their definition is
divergence free. To define the moments, we need a pre-
ferred coordinate system on S so that we can define the
preferred spherical harmonics.

The construction of the preferred coordinate system
��;�� on S is the same as given in [53]: � 2 
0; 2�� is
the affine parameter along ’a and � :� cos� 2 
�1; 1� is
defined by the condition

 

~Da� �
1

R2
S

~�ba’
a: (3.14)

The freedom to add a constant to � is removed by requiring
its integral over S to vanish:

H
S �d

2V � 0. When applied to
a Kerr black hole, these invariant coordinates turn out to be
the same as the usual Boyer-Lindquist ��;�� coordinates.

The mass and angular multipole moments are then re-
spectively:5We thank Ivan Booth for this comment.
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 Mn �
RnSMS

8�

I
S
f ~RPn���gd2V; (3.15)

 Jn � �
Rn�1
S

8�

I
S
f~�ab�@bPn����KacRcgd2V

�
Rn�1
S

8�

I
S
P0n��� �Kab’

aRbd2V (3.16)

where P0n��� � dPn���=d� . We have used Eq. (3.14) to
obtain the final expression for Jn above. This form clarifies
the relation of Jn to the angular momentum and also
demonstrates the gauge invariance of Jn when ’a is diver-
gence free. Using the Gauss-Bonnet theorem, it is trivial to
check that M0 � MS and J1 � JS. J0 vanishes because we
do not consider any topological defects. Furthermore, these
expressions are well suited for numerical computation
because they involve only quantities on the Cauchy surface
and an integral over the MOTS.

D. The energy and angular momentum fluxes

Hawking’s area theorem shows that if matter satisfies the
null energy condition, then the area of the event horizon
can never decrease. This is one of the central results of
black hole physics, and it leads to the classical picture of
the black hole growing inexorably as it swallows matter
and radiation. Therefore, one might expect there to be a
balance law relating the increase in area to fluxes of matter
and radiation crossing the event horizon. However, the
teleological nature of event horizons is again a problem;
there cannot exist any such local balance law for the area of
the event horizon. A clear example is seen in the Vaidya
spacetime where the event horizon is formed in flat space
and its area increases in anticipation of matter falling into
the black hole at a later time; see [19] for a discussion.

For DHs, it is possible to obtain an exact balance law for
the area increase [9,10]; i.e., given two cross sections S1

and S2 with radii R1 and R2 respectively, and with S2 lying
to the outside of S1, the increase in the radius is given by
the sum of the energy flux due to matter (F �m�) and
gravitational radiation (F �g�), both of which are manifestly
positive:

 

R2 � R1

2
� F �m� �F �g�; (3.17)

where

 F �m� �
Z
H

���
2
p
Tab�̂

a‘bdRd2V; (3.18)

 F �g� �
1

8�

Z
H
fj��‘�j2 � j�j2gdRd2V: (3.19)

Here j��‘�j2 :� ��‘�ab�ab�‘�, j�j
2 :� �a�a where �a is a vec-

tor on S defined as

 �a :�
���
2
p

~qabr̂crc‘b; (3.20)

and d2V is the natural geometric volume element on H.
The extra factors of 2 and

���
2
p

in the above equations as
compared to the corresponding equations in [10], arise
because of our normalization convention ‘ � n � �1;
[10] uses ‘ � n � �2.

See [10] for additional reasons why F �g� has the right
properties to be viewed as the flux of gravitational radia-
tion. Equation (3.17) is an exact statement about black
holes in full nonlinear general relativity, and it is the analog
of the Bondi mass balance law at null infinity.

From a numerical point of view, F �g� is inconvenient to
calculate, especially when the horizon is settling down and
is close to being null. First of all, we have direct access
only to the fiducial null normals � �‘a; �na� defined in
Eq. (2.8) and not to �‘a; na� themselves. The two sets of
null normals are related to each other by a boost trans-
formation ‘a � f �‘a, n � f�1 �na. Under this transforma-
tion, �‘ � f� �‘. Similarly, it is easy to show that

 �a � f2 �
a � �!a; (3.21)

where

 �
 a � ~qab �‘crc �‘b and �!a � ~qab �ncrc �‘b: (3.22)

Here �
a and �!a are tangent to the cross sections of the DH.
When the DH approaches equilibrium, f ! 1. However,
the value of F �g� itself remains finite. All fields with a bar
remain finite even when the horizon becomes null even
though f diverges. While this is not a problem analytically,
this does cause numerical errors in the transition to equi-
librium when we multiply a very small quantity on the
horizon with a very large one. This is consistent with the
results of [41] where it is found that j�� �‘�j

2 is the most
important when the horizon is close to equilibrium.

Let t be the time coordinate used to label the Cauchy
surfaces. Using this coordinate, we can identify the diver-
gence of various terms appearing in F �g�. We start by
rewriting F �g� as:

 F �g� �
1

8�

Z
H
fj��‘�j2 � j�j2g

dR
dt
d2Vdt: (3.23)

The integrand on the right hand side can be expanded as
 

�j��‘�j2 � j�j2� _R � _Rf4j �
j2 � _Rf2�j�� �‘�j
2 � �! � �
�

� _Rj �!j2: (3.24)

Let us look at the various terms in this expression. First, �!a

can be shown to be equal to the angular momentum cur-
rent; for an axial symmetry vector ’a, the angular momen-
tum is simply the integral of’a �!a over the cross section of
the MTT. Thus, �!a need not vanish even when the MTT
becomes an isolated horizon. The j �!j2 term in the flux can,
in some sense, be viewed as the flux of rotational energy
entering the horizon. Now consider �
a. For an isolated
horizon, �‘brb �‘a / �‘a because in this case �‘a is guaranteed
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to be geodetic. This implies �
a � 0. On the dynamical
horizon side, we can choose suitable extensions of �‘a (and
�na) away from the MTT so that �
a � 0. The shear �� �‘� on
the other hand contains most of the nontrivial information
about the radiation falling into the black hole. It vanishes
on an isolated horizon as it should, and it is independent of
any extensions of �‘a, �na away from the MTT. Therefore, in
the examples of Sec. IV, we shall usually plot �� �‘� to show
the energy flux falling into the horizon.

The angular momentum also obeys a balance law similar
to Eq. (3.17):

 J2 � J1 � J �m�’ � J �g�’ (3.25)

where

 J �m�
’ � �

Z
�H
Tab�̂a’bd3V; (3.26)

 J �g�
’ � �

1

16�

Z
�H
PabL’qabd

3V (3.27)

where Pab :� Kab � Kqab. Unlike the energy flux F �g�,
the angular momentum flux J �g� is not positive definite.
Also, J �g� vanishes when ’a is an axial Killing vector on
H. Thus, angular momentum is conserved in the axisym-
metric vacuum case, as it should be.

IV. EXAMPLE NUMERICAL SIMULATIONS

In this section, we apply the ideas discussed in the
previous sections to three concrete numerical simulations:
(i) A head-on collision of two black holes starting with
Brill-Lindquist initial data; (ii) A nonaxisymmetric black
hole collision using puncture initial data with nonvanishing
linear momentum; and (iii) Axisymmetric collapse of a
neutron star. Each of these three cases is quite well known
in the numerical relativity literature, and all have been well
studied. This section aims to further explore these ex-
amples using the tools described in Sec. III.

A. Head-on collision with Brill-Lindquist data

The Brill-Lindquist initial data [54] for binary black
holes represent initial data for two nonspinning black holes
without any orbital angular momentum. The reader can
consult a review on initial data, such as [55] for details.
Here we simply note that these initial data are conformally
flat and time-symmetric:

 �q ab �  4�ab; �Kab � 0: (4.1)

The manifold � is R3 with two points removed (the
punctures). The only equation to be solved is the flat space
Laplace equation for the conformal factor:

 � � 0: (4.2)

Let d denote the shortest distance between the two punc-

tures as measured with respect to the fictitious flat back-
ground metric �ab; the physical proper distance between
the punctures is actually infinite. It was shown in [54] that
each of the punctures is actually an asymptotically flat
region. The total ADM mass of the common asymptotic
region is

 mADM � 2��1� � 2��2�; (4.3)

and the ADM masses of the two punctures are

 mADM
�1� � 2��1� �

2��1���2�
d

(4.4)

 mADM
�2� � 2��2� �

2��1���2�
d

: (4.5)

These are exact results, irrespective of the distance d
between the punctures. In the next two subsections, we
look at two different regimes (i) the far limit when d is
large and (ii) the merger of the two holes starting from
relatively small values of d.

1. The far limit

Before presenting the results from the numerical evolu-
tion of this data, it is instructive to look at a special case
which is amenable to analytic treatment, namely, in the far
limit where the separation between the holes is very large:
d� ��1�, ��2�. In this case, there are two MOTSs sur-
rounding each of the punctures without any common
MOTS surrounding them. The angular momenta of the
two black holes are trivially zero because the extrinsic
curvature vanishes. What about the mass? Should mADM

�1�

andmADM
�2� be identified with the masses of the black holes?

There are three difficulties with this. First, these ADM
masses also include contributions from radiation present
in the respective asymptotic regions. Secondly, if this
identification is correct, mADM

�i� (i � 1; 2) is supposed to
be the mass of the black hole for all values of d, even when
the two black holes are very close to each other. Should not
the mass of the black holes in this regime also include, say,
contributions from the tidal distortions produced by the
other hole? Finally, the strategy of using the asymptotic
regions to define black hole masses is not applicable gen-
erally, say in the case when there are matter fields and the
topology of � is just R3, or in Misner data [56] where the
two black holes do not have their own individual asymp-
totic regions.

From the isolated/dynamical horizon perspective, since
the black holes have zero angular momentum, from
Eq. (3.8), the irreducible mass is the correct measure of

mass in this case:m�i� �
������������������
a�i�=16�

q
where a�i� is the area of

the MOTS around each of the punctures. Let us then
calculate the mass of the black holes as a power series in
1=d. To simplify calculations, put the origin of coordinates
at the location of the first puncture and the other puncture
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on the z-axis at �0; 0; d�. Introduce the usual spherical
coordinates �r; �;�� so that the conformal factor becomes
explicitly

 ��r; �� � 1�
��1�
r
�
��2�
r

�
1�

2d cos�
r

�
d2

r2

�
�1=2

:

(4.6)

We see that due to axisymmetry, there is no dependence on
�. Let the surface of the FMOTS around the origin be
given by the equation r � h���. In the limit when d! 1,
the initial data reduces to Schwarzschild in isotropic coor-
dinates so that the horizon is located at r � ��1�.

Higher order effects can also be explicitly calculated. It
turns out [57] that up to O�d�3�, the location of the MOTS
is given by
 

r � ��1� �
��1���2�
d

�
��1���2�
d

���2� � ��1� cos��

�
��1���2�

3
��2
�2� � 3��1���2� cos�

�
5

7
�2
�1�P2�cos��� �O�d�4� (4.7)

where P2 is the second Legendre polynomial. Using this

result, the horizon mass m�i� �
������������������
a�i�=16�

q
can be calcu-

lated and, somewhat surprisingly, the mass is the same as
the ADM mass even up to third order:

 m�1� � 2��1� �
2��1���2�

d
�O�d�4�: (4.8)

This relation was verified numerically for a sequence of BL
data with different values of d. However, we did not have
sufficient resolution to estimate the leading order deviation
betweenm�1� andmADM

�1� . Similarly, the shear of the horizon
vanishes up to third order indicating that the individual
horizons are isolated to an excellent approximation. As we
shall see below, the individual horizons are isolated even
for relatively small values of d once the common MOTS
has formed.

2. Numerical results for the merger phase

We performed a numerical evolution starting with Brill-
Lindquist initial data. Working in units where the total
ADM mass is unity, the punctures were located at z �

0:5, and the individual black holes had equal masses.
Thus 2��1� � 2��2� � 0:5. The domain had an explicit
octant symmetry and extended up to x; y; z � 96. Near
the outer boundary the spatial resolution was h � 1:6,
and near the punctures we used mesh refinement to in-
crease the resolution successively up to h � 0:0125, so that
the individual horizon diameters contained initially 32 grid
points. We used fourth order accurate spatial differencing
operators, and a third order Runge-Kutta time integrator.

We excised [58] coordinate spheres with a radius of re �
0:0625 about the punctures from the domain, correspond-

ing to a diameter of 10 grid points. We used the AEI BSSN
formulation [58,59] for time evolution, using the boundary
conditions also described in [58]. These boundary condi-
tions are known to be incompatible with the Einstein
equations. We used a 1� log slicing condition [60] start-
ing from � � 1, and a zero shift. This makes both the
individual and the outer common horizon grow in coordi-
nate space. We used the CACTUS framework [61,62], the
Carpet mesh refinement driver [63,64], and the
CACTUSEINSTEIN infrastructure. We located the apparent
horizon surfaces with J. Thornburg’s AHFINDERDIRECT

[48,65].
In this setup, the apparent horizon has two disconnected

components in the initial data, and a common MOTS forms
shortly after t � 0:5. The individual horizons are null up to
numerical errors (consistent with the result on the small-
ness of ��‘� in the far limit), and their masses are essen-
tially constant up to numerical error. As discussed in
Sec. II B 2 and Fig. 2, the common MOTS forms initially
as a single surface but then bifurcates: an outer horizon
which is strictly-stably-outermost, and an inner one which
becomes strictly untrapped on being deformed inwards.
Figure 3 shows the shapes of the individual and the inner
and outer common MOTSs at time t � 1, where the inner
and outer common MTTs have already noticeably sepa-
rated. As expected, the outer MTT is purely spacelike
while the inner MTT, being spacelike initially, becomes
partly timelike quickly. Figure 4 shows the horizon world
tube metric signature at t � 0:6 and t � 1. At later times,
the outer MTT tends to become null (as expected), while
the inner MTT becomes completely timelike, and then
becomes so distorted at about t � 1:2 that it cannot be
reliably tracked any more. This coordinate distortion is
already evident in Fig. 3, and the horizon discretization

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

x

z

Horizon shapes at t=1

individual horizons
inner horizon
outer horizon

FIG. 3 (color online). Coordinate shapes of the horizons at t �
1 in the xz plane. A common horizon has formed, and the inner
and outer common horizons have already separated. Compare
Fig. 2.
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used in the apparent horizon finder is inaccurate near the
neck of the inner horizon [48]. Figure 5 shows the time
evolution of the masses M �

�����������������
AS=16�

p
of the individual

and the common horizons (in this case, the angular mo-
mentum vanishes identically). If M1 is the asymptotic
value of the mass of the outermost horizon at late times,
then MADM �M1 is, in principle, a reliable way of esti-
mating the amount of energy radiated away to infinity in
the form of gravitational waves. This difference could be
used as a consistency check on other estimates using the
extracted waveforms at large distances from the black
holes. However, our emphasis in this paper is on the
dynamics of the merger and not on long duration stable
evolutions. Our simulations do not last long enough to
estimate M1 reliably.

Another feature of the horizons, shown in Fig. 5, is that
while the common outer MTT increases in area as ex-
pected, the area of the common inner MTT decreases
monotonically. This is explained as follows. Initially,
when the common MOTS is just formed, by continuity
with the outer MTT, the inner MTT is spacelike for a very
short duration (much before t � 0:6) and it is thus a DH for
this duration. However, this DH is being traversed in the
inwards direction (i.e., along �r̂a) so that its area appears
to decrease. Shortly after its formation, the inner MTT
becomes partly timelike and later fully timelike. Recall
that for a TLM, the area decreases if ��n� < 0. Thus, both
the spacelike and timelike portions of the inner MTT
contribute to its monotonic area decrease. This behavior
of the outer MTT is roughly similar to what was found in
[47] for spherically symmetric horizons; however due to
spherical symmetry, the horizons in [47] did not have any
cross sections of mixed signature.

Figure 6 demonstrates how the common outer apparent
horizon grows. The energy flux vanishes at the poles, and
the shear (but not the total flux) is maximum at the equator.
The horizon is spacelike all the time, but it becomes
increasingly isolated at late times as it approaches equilib-
rium. Thus the rate of area increase becomes smaller and
the fluxes also becomes correspondingly smaller.

Let us now consider the higher mass multipoles Mn (all
the Jns vanish identically). Here, since all quantities are
symmetric with respect to a reflection about the equatorial
plane, Mn � 0 for odd n. Figure 7 plots the mass quadru-
pole momentM2 and alsoM4 andM6 of the outer and inner
common MTTs as a function of time. We expect that the
black hole should eventually settle down to a
Schwarzschild solution by radiating away all of its higher
multipole moments. Clearly, for the outer MTT, M2, M4

and M6 all become smaller with time, approaching zero.
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FIG. 5 (color online). Irreducible mass vs time for the indi-
vidual and the common MTTs. The outer common MTT grows
and accretes mass, while the inner MTT shrinks and loses mass.
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However, the run did not last long enough for us to obtain
the asymptotic falloff rate. It is interesting to note that, as
far as we can tell, the multipole moments for the inner
MTT do not vanish asymptotically. This tells us that the
spacetime near the inner MTT is not close to
Schwarzschild even at late times. At even later times, all
the inner horizons presumably cease to exist (see next
paragraph) and the spacetime approaches Schwarzschild
everywhere.

We conclude this section with some remarks on the
eventual fate of the inner MTT. First of all, as expected,
the outer MTT eventually settles down and approaches
future timelike infinity. The inner MTT shrinks and ap-
proaches the two individual horizons which are essentially
stationary. It is interesting to speculate on how, if at all, the
inner MTT will merge with the two individual MTTs. Does
the inner MTT ‘‘pinch off’’ into two individual horizons?

If the inner MTT is indeed the one predicted by [52], then it
has a priori curvature bounds. If these curvature bounds are
maintained in the limit, then the inner horizon cannot pinch
off. It is more likely that the two individual MTTs merge
first with each other and then later, perhaps also with the
inner MTT. It would be interesting to investigate this
question further. If the inner MTT does indeed merge
smoothly with the two individual MTTs, then the set of
all MTTs in this case would form one single smooth 3-
manifold. Furthermore, the area of the cross section of this
manifold would be monotonic in the outward direction—
traversing this manifold in the outward direction means
going forward in time on the individual and outer MTTs,
and backward in time on the inner MTT.

We are not able to settle these issues numerically in a
conclusive manner because the inner MTT becomes so
distorted at late times that the AH tracker is no longer
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able to track it. This is because the AH tracker can only
locate star-shaped surfaces and, as is clear from Fig. 3, the
inner MTT will not necessarily be star-shaped at later
times. Furthermore, our gauge choice in which we allow
the outer MTT to grow in coordinate space, makes the
inner MTT shrink and therefore harder to resolve at later
times.

B. Nonaxisymmetric black hole collision

The head-on collision described above does not incor-
porate any effects of angular momentum. In this section,
we remove the restriction of axisymmetry by taking initial
configurations in which the black holes are orbiting around
each other. We use the so called ‘‘puncture’’ data intro-
duced by Brandt and Brügmann [66], which is a general-
ization of the Brill-Lindquist construction. The data is still
taken to be conformally flat, but now no longer assumed to
be time symmetric.

We performed a numerical evolution of puncture initial
data corresponding to the innermost stable circular orbit as
predicted in [67]. This model was also studied as ‘‘QC-0’’
with the Lazarus perturbative matching technique [68,69]
and later in [2–5,70]. In our setup, the punctures were
located at x � 
1:168 642 873, and their mass parameters
were m � 0:453, and their momenta were py �

0:333 191 749 8. The domain had an explicit rotating
quadrant symmetry and extended up to x; y; z � 10. Near
the outer boundary the spatial resolution was h � 0:4, and
near the punctures we used mesh refinement to increase the
resolution successively up to h � 0:025, so that the indi-
vidual horizon diameters contained initially 16 grid points.
We used fourth order accurate spatial differencing opera-
tors, and a third order Runge-Kutta time integrator.

We excised [58] coordinate spheres with a radius of re �
0:075 about the punctures from the domain, corresponding
to a diameter of 6 grid points. We used again the AEI
BSSN formulation [58,59] for time evolution, a 1� log
slicing condition [60] starting from a lapse that is one at
infinity and zero at the punctures, and a � driver shift
condition, starting from a rigid corotation with an angular
velocity of ! � 0:06. We also used a drift correcting shift
term similar to [71,72] to keep the individual horizons
centered about their initial locations.

As previously, we used the CACTUS framework [61,62],
the Carpet mesh refinement driver [63,64], and the
CACTUSEINSTEIN infrastructure. We solved the initial data
equation with M. Ansorg’s TWOPUNCTURE solver [73], and
we located the apparent horizon surfaces with J.
Thornburg’s AHFINDERDIRECT [48].

This setup contains two initially separated horizons that
rotate around each other for a fraction of an orbit before a
common horizon forms [68,70]. Its ADM mass isMADM �
1:007 88, the initial proper horizon separation is L �
4:99MADM, and the horizons have initially the angular
momentum J � 0:78M2

ADM and angular velocity � �

0:17=MADM. The common apparent horizon forms at about
t � 17:5, which we verified through pretracking [74].

Figure 8 shows the shape of the various MOTSs at a time
t � 18, a short while after the common horizon has
formed. The qualitative behavior of the various MTTs is
exactly the same as in Sec. IVA 2. Figure 9 compares the
determinants of the MTT three-metrics at this time.
Figure 10 shows the irreducible mass of the outer and inner
MTTs as a function of time. Again, the behavior is quali-
tatively the same as we saw in the head-on collision.

Figure 11 shows the flux of gravitational wave energy
falling into the outer horizon at t � 18:4 and also the shear
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j�� �‘�j
2 at the same time, for the outer and individual

horizons. The 2-d contour plots of the shear j�� �‘�j
2 and

the total flux on the horizon shows in detail how gravita-
tional radiation is falling into the horizon. Unlike in the
head-on case (Fig. 6), the shear and the flux are now no
longer axisymmetric. Therefore, the flux is no longer con-
stant along the � direction but its maxima still lie on the
equator. The shear on the other hand, now has its maximum
on the poles and its minima lie on the equator. It would be
interesting to further investigate the behavior of j�� �‘�j

2 and
the energy flux as a function of time and for different
physical situations to gain a better understanding of how
a black hole grows.

Let us now turn to the rotational vector ’a on the outer
horizon and the quantities such as angular momentum,
mass, and multipole moments associated with it. The
simulation presented here was run only up to t � 19:4,
and the final black hole has not settled down sufficiently,
and has not attained axisymmetry at this point. Figure 12
shows the Lie derivative of the 2-metric L’~qab on the
horizon at t � 18, where ’a is the Killing vector candidate
found by the algorithm presented in [35]. It is clear that
L’~qab is very far from 0 at this time. This means that the
angular momentum, mass, and multipole moments associ-
ated with this ’a are not meaningful at this point. This is to
be expected, since the final black hole should attain ax-
isymmetry only on a time scale set by the quasinormal
mode ringdown, which has a period of 15:9MADM in this
case. It is interesting to see that our Killing vector field
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FIG. 11 (color online). Energy flux through the common hori-
zon and shear j� ��‘�j

2 on the horizon at t � 18:4 in
��;��-coordinates. The spacetime is not axisymmetric, and since
it contained two inspiralling black holes, there is no mirror
symmetry across the x� z or y� z planes either. The energy
flux shows this asymmetry clearly.
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candidate is indeed Killing on the equator. This is by
construction, since we choose the Killing vector field
candidate by an integral along the equator; see [35].
However, the vector field ’a is far from Killing away
from the equator.

A word of caution is due here regarding the Killing
vector finding algorithm of [35]. First of all, the algorithm
only produces a candidate for a Killing vector, and an
independent check is required to see whether L’~qab is
sufficiently small or not. Furthermore, as mentioned pre-
viously, this method reduces the problem of finding a
Killing vector on a sphere to diagonalizing a 3	 3 matrix
followed by integrating a 1-dimensional ODE. In particu-
lar, the method requires that one of the eigenvalues of this
matrix is sufficiently close to unity. While this is fine when
the horizon is exactly axisymmetric, the subtlety arises
when the horizon is only approximately axisymmetric. It
is not clear how close the eigenvalue must be to unity for
the horizon to be regarded as approximately axisymmetric.
Work is in progress to understand this better and to also
investigate an alternate method of finding an appropriate
’a as discussed in Sec. III B, which is guaranteed to
produce a divergence free vector.

C. Axisymmetric gravitational collapse

1. The initial configuration

Up to now, all of our examples have involved only
vacuum spacetimes. In this section, we present an example
of the gravitational collapse of a neutron star to form a
black hole in an axisymmetric spacetime. These simula-
tions were performed using the WHISKY code which deals
with the matter terms of the Einstein equations in the
framework of the CACTUS toolkit. Thus, the WHISKY code
solves the conservation equations for the stress energy
tensor Tab and for the matter current density Ja:

 raTab � 0; raJ
a � 0: (4.9)

For details about the WHISKY code and the implementation
of the above equations, we refer the reader to [75] and
references therein. Here we shall restrict ourselves to de-
scribing the initial stellar configuration which is one of the
configurations studied in [75].

The neutron star is modeled as a uniformly rotating ball
of perfect fluid. The equation of state is taken to be a K �
100, � � 2 polytrope so that the pressure p and rest-mass
density 	 are related according to p � K	�. The equilib-
rium configuration is determined by the mass MNS, central
density 	c, and the angular momentum JNS; when neces-
sary, the subscript NS is used in order to avoid any con-
fusion with previously defined symbols. The model we
take is the one denoted as ‘‘D4’’ in [75] which has MNS �
1:86M�, 	c � 1:934	 1015 g cm�3, and JNS �
0:543M2

NS. This leads to a ratio of polar to equatorial
coordinate radii of 0.65, a circumferential equatorial radius
of 14.22 km, and a rotational frequency of 1295.34 Hz.

This equilibrium configuration turns out to be dynamically
unstable. In practice, the instability is induced by uni-
formly reducing the pressure slightly throughout the star.

2. Numerical results

We simulated the above system on a grid with an explicit
rotating octant symmetry. The outer boundary was at
x; y; z � 150, and the grid spacing near the outer boundary
was h � 3. We used mesh refinement to increase our
spatial resolution in the center of the domain to h �
0:375 at the initial time, and progressively introduced
more mesh refinement levels to increase the central reso-
lution up to h � 0:046 875 as the neutron star collapsed,
based on the maximum density in the star [76,77]. We also
apply third order Kreiss-Oliger dissipation [78] to the
spacetime (but not the hydrodynamics) variables.

We find an apparent horizon starting at about t � 130;
this time is mainly dependent on the details of how the
collapse is induced and has no intrinsic meaning. The
horizon is born with an irreducible mass of about Mirr �
1:51 and an angular momentum of J � 0:89 (a � 0:38),
giving it a total mass of MH � 1:54. Some time after t �
185, a singularity forms in the spacetime, and the simula-
tion aborts because we do not use excision inside the
apparent horizon. As before, a pair of MOTSs is formed,
an outer and an inner one. The outer MTT is spacelike, has
increasing area, and tends to null at late times. In this case,
the inner MTT remains spacelike. However, its area de-
creases because we are traversing it in the inward direction;
in other words, the time evolution vector ta is such that at
the inner MTT, t � r̂ < 0 so that the area decreases along ta.
Our gauge conditions are such that the outer horizon grows
in coordinate space while the inner horizon shrinks. After
about t � 140, the inner horizon is so small that we do not
have enough resolution to track it beyond that time. See
Fig. 13. The areal radius of the outer MTT increases but not
as rapidly as the coordinate radius; it levels off at later
times. The area radius of the inner horizon decreases
initially and shows an increase at later times, but this is
probably just a numerical artefact due to poor resolution at
later times.

Figure 14 shows the determinant of the metric on the
MTTs. The outer MTT is initially spacelike, which is
consistent with its growing, and exponentially approaches
null at late times. After about t � 160, the simulation
cannot distinguish the horizon world tube signature from
null any more. As an example we also show the determi-
nant as a function of the latitude � at t � 138, and the
average value of the determinant over the horizon as a
function of time. The inner MTT is also spacelike and
becomes more and more null at least as long as we are
able to track it reliably.

Figure 15 shows the outer horizon has grown at t � 155
to an irreducible mass of Mirr � 1:80 and an angular
momentum of J � 1:93 (a � 0:55), giving it a total mass
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of MH � 1:87. For comparison, the corresponding ADM
quantities are MADM � 1:86 and JADM � 1:88 (a � 0:54).
Because the spacetime is axially symmetric, gravitational
waves cannot carry away angular momentum. That means
that the spin a � J=M2 is approximately correct at late
times. Unlike in the nonaxisymmetric black hole collision
discussed earlier, the present case is explicitly axisymmet-
ric and there are no problems with locating the rotational
symmetry vector.

Figure 16 shows the mass quadrupole moment M2 and
the angular momentum octopole moment of the outer and
inner MTTs as a function of time. Given that we know the
asymptotic values of the area and angular momentum of
these MTTs (the ADM values), we can also calculate the
expected values of M2 and J3 at late times. The plots
clearly show that the values of M2 and J3 approach the
Kerr values at later times (though this matching is not
exact, presumably due to numerical errors). Also note
that M2 is noisy. We have observed such noise only in
simulations that include matter, and we find that this noise
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is much improved by using artificial dissipation on the
spacetime variables (which we do). The angular momen-
tum multipoles seem unaffected.

V. DISCUSSION

In this article, we have applied the dynamical horizon
formalism to numerical simulations of black hole space-
times. The main theme in this formalism is to take trapped
surfaces seriously as a way of describing black hole phys-
ics. Marginally trapped surfaces behave more regularly
that one might have expected previously, and they are
useful for extracting interesting physical information about
the horizon. We have shown how the mass, angular mo-
mentum, multipole moments, and the flux of energy due to
in-falling gravitational radiation and matter can be calcu-
lated in a coordinate independent way (given a particular
time slicing of our spacetime). We have implemented these
ideas numerically and shown three concrete examples. In
these examples, we see how the black hole is formed, how
it grows, and how it settles down to an isolated Kerr black
hole. We have also seen that the dynamical horizon formal-
ism is valuable for exploring the geometry of the trapped
region. It allows us to classify various types of trapped
surfaces which might appear during the course of a gravi-
tational collapse or a black hole coalescence. Finally, these
ideas can also be viewed as a set of diagnostic tools which
allow us to keep track of what is going on during the course
of a numerical simulation, and whether numerical results
make sense and satisfy some basic, but nontrivial proper-
ties in the strong field region.

Some suggestions for future work:
(i) As mentioned in the text, the calculation of the

axial vector ’a for nonaxisymmetric cases is not
yet satisfactory. We have used the method sug-

gested in [35] which works well enough at early
and late times, when the horizon is approximately
axisymmetric. However, in general, the result is not
guaranteed to be divergence free and thus the an-
gular momentum not guaranteed to be gauge in-
variant. We have not yet implemented the
generalization described in Sec. III B satisfactorily;
this is work in progress.

(ii) The accuracy of the numerical examples that we
have shown decreases with time, and this is a
common feature of most present day black hole
numerical simulations. Thus, we have not been
conclusively able to prove that the black hole set-
tles down to Kerr (though there are strong indica-
tions that this does happen). We have not been able
to extract the rate at which equilibrium is reached,
thereby extending Price’s law (see [79] and e.g.
[80]) to more general situations, but this is, in
principle possible and requires more stable and
accurate simulations. Similarly, we have not been
able to accurately calculate the asymptotic value of
the black hole mass M1. The difference MADM �
M1 is, in principle, a reliable estimate of the
amount of energy radiated to infinity. While the
ADM mass is hard to calculate reliably during the
simulation because of the finite grid and low reso-
lution in the asymptotic region, it can usually be
calculated accurately from the initial data them-
selves. Calculating M1 and understanding this es-
timate of the radiated energy requires more
accurate and stable runs, applied to diverse and
realistic initial data. The results of [41] could also
be used to study the approach to equilibrium.

(iii) It would be useful numerically to have a gauge
condition which ensures that the horizon stays at
the same coordinate location at all times. While
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such conditions are not difficult to find in the
isolated case, dynamical situations are harder.
Given the location of an outer MOTS at a particular
instant of time, the results and methods of [34] can
be used to predict the location of the MOTS at the
next instant by solving an elliptic equation on the
MOTS. This could be used to construct appropriate
gauge conditions and evolution schemes which
take the horizon geometry into account [49,81].

(iv) What happens to the inner horizon of Figs. 2, 3, and
8? As described in Sec. IVA 2, the eventual fate of
these inner MTTs and the two individual horizons
is not yet known, and would be interesting to
investigate further. This requires simulations with
higher resolution near the inner horizons, different
gauge conditions, and perhaps also AH trackers
capable of handling non-star-shaped surfaces, and
perhaps also higher genus surfaces.

(v) Can the methods of [34] be extended for MOTSs
which are not strictly-stably-outermost? In this re-
gard, it would be interesting to study the stability
operator L� introduced in [34]. For a strictly-sta-
bly-outermost MOTS, the principle eigenvalue of
L� turns out to be strictly positive and this is an
important ingredient in the existence results. A
numerical computation of the eigenvalues of this
operator, especially during the transition between
inner and outer MTTs and for the inner nonspace-
like MTTs might lead to further insights.
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[27] J. Libson, J. Massó, E. Seidel, W.-M. Suen, and P. Walker,

Phys. Rev. D 53, 4335 (1996).
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