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This paper presents a quasi-local method of studying the physics of dynamical black holes in nu-
merical simulations. This is done within the dynamical horizon framework, which extends the earlier
work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of
marginal surfaces and study their time evolution. An important ingredient is the calculation of the
signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calcula-
tion of the black hole mass and angular momentum, which were previously defined for axisymmetric
isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black
hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study
the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter
and/or radiation.

We describe our numerical implementation of these concepts and apply them to three specific test
cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a
neutron star, and a non-axisymmetric black hole collision with non-zero initial orbital angular mo-
mentum.

PACS numbers: 04.25.Dm, 04.70.Bw, 95.30.Sf, 97.60.Lf,

I. INTRODUCTION

In spite of fundamental advances in our understand-
ing of black holes, relatively little is known about them
in the fully non-perturbative, dynamical regime of gen-
eral relativity. Most of our intuition regarding black
holes comes from studying the stationary, axisymmet-
ric Kerr-Newman solutions, and perturbations thereof.
This, along with post-Newtonian calculations which
treat the black hole as a point particle, are usually ade-
quate for understanding many astrophysical processes
involving black holes. However, understanding the
gravitational waveforms arising due to, say, the merger
phase of the coalescence of two black holes or the grav-
itational collapse of a star, will require us to go beyond
perturbation theory and to confront the non-linearities
and dynamics of the full Einstein equations. This regime
may contain qualitatively new, non-perturbative fea-
tures. In this paper, we discuss an important ingredient
for understanding this regime, namely, the dynamics of
the black hole horizon. Numerical simulations of black
holes have greatly improved in the last few years. Sim-
ulations of the entire merger process, starting from the
last few orbits of the inspiral right up to the ringdown
have become possible in the past year [1, 2, 3, 4, 5, 6, 7]. It
is then important to look for better ways to extract more
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physical information from simulations and to compare
results from two different simulations performed using
different coordinate systems, gauge conditions etc. This
can be a non-trivial task in itself, and understanding dy-
namical black holes is a necessary ingredient.

The dynamics of apparent and event horizons have
been numerically studied in the past in detail in axisym-
metry (see e.g. [8, 9, 10, 11, 12, 13]). We want to extend
this work to non-axisymmetric and non-vacuum space-
times, and we want to emphasise non-gauge-dependent
analysis methods.

We use the formalism of dynamical horizons [14, 15]
to study black holes. Dynamical horizons are a sig-
nificant extension of the isolated horizon framework
[16, 17, 18, 19, 20], which models isolated stationary
black holes in an otherwise dynamical spacetime. Both
these frameworks are, in turn, very closely related to
and motivated by the earlier work on trapping horizons
by Hayward [21, 22, 23]. See [24, 25, 26] for reviews. The
basic aim is to study black holes quasi-locally without
reference to event horizons.

Since the event horizon is a global, teleological con-
cept, we have to know the entire history of the space-
time in order to locate it. This implies that event hori-
zons can never be observed experimentally and, from
the numerical relativity perspective, there is no known
quasi-local condition that can be used to locate the in-
tersection of the event horizon with a given Cauchy sur-
face. In numerical simulations, it is instead common to
use marginally trapped surfaces to locate black holes on
a Cauchy surface in real time. Similarly, in the theoreti-
cal works on quasi-local horizons mentioned above, it
is shown that marginally trapped surfaces, while not
a substitute for event horizons, do have many useful
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properties and can be used fruitfully to study black hole
physics. Thus, it is likely that ideas and results from
dynamical/trapping horizons can be very useful for nu-
merical relativity. Information obtained from the quasi-
local horizons complements the information obtained
from the event horizon. Once a simulation is complete
and ready for post-processing, event horizons are use-
ful for studying global properties and the causal struc-
ture of the spacetime, and also phenomena such as the
topology change of the horizon during a black hole co-
alescence. Reliable and computationally efficient codes
are now available for locating event horizons (see e.g.
[27]). Such information cannot be obtained at the quasi-
local level, which is instead better for tracking the physi-
cal parameters and geometry of a black hole in real time.

In particular, we consider the following applications:
(i) We study the behavior of various marginally trapped
surfaces under time evolution. This leads to greater
insights about the trapped region of a spacetime. An
important ingredient here is the signature of the world
tube of marginally trapped surfaces. This world tube is
known to be null for isolated horizons, and more gener-
ally, it can be either spacelike or timelike; we show that
both types occur frequently in numerical simulations.
(ii) We give meaningful definitions for the angular mo-
mentum, mass, and higher multipole moments for the
dynamical black hole. The multipole moments capture
gauge invariant geometrical information regarding the
horizon geometry, and should be useful for understand-
ing fundamental issues such as the final state of black
hole collapse. For example, we would expect that after
a black hole has formed and settled down, its multipole
moments should be identical to the source multipoles of
a Kerr black hole. We show that it is, in principle, pos-
sible to verify this conjecture and to calculate the rate at
which a black hole approaches equilibrium. (iii) We also
describe and implement methods for calculating the en-
ergy flux falling into the horizon. This gives us detailed
information on how black holes grow as they swallow
matter and radiation.

This paper is organized as follows. Section II sets
up notation, and summarizes the basic definitions and
properties of trapped surfaces and dynamical horizons.
Section III describes the various physical quantities that
we calculate using dynamical horizons, and also their
numerical implementation. Section IV presents three
concrete, well known numerical examples where these
concepts are applied and finally, section V discusses
some open issues and directions for further work. Un-
less mentioned otherwise, we use geometrical units
with G = c = 1, the spacetime signature is (−, +, +, +),
all manifolds and fields are assumed to be smooth, and
the Penrose abstract index notation is used throughout.
The derivative operator compatible with the spacetime
metric gab is ∇a and, following Wald [28], the Riemann

tensor is defined via (∇a∇b −∇b∇a)ωc = Rabc
dωd.

II. BASIC NOTIONS AND DEFINITIONS

A. Trapped surfaces and apparent horizons

Let S be a closed, orientable spacelike 2-surface in
a 4-dimensional spacetime (M, gab). The expansion of
any such surface can be defined invariantly without any
reference to a time slicing of the spacetime. Since S is
smooth, spacelike, and 2-dimensional, the set of vec-
tors orthogonal to it at any point form a 2-dimensional
Minkowskian vector space. Thus, we can define two lin-
early independent, future-directed, null vectors ℓa and
na orthogonal to S such that

gabℓ
anb = −1 . (2.1)

Note that this convention is different from that used in
[15]. We shall assume that we know a priori what the
outgoing and ingoing directions on M are. By conven-
tion, ℓa will denote an outgoing null normal and na an
ingoing one. The null normals are specified only up to a
boost transformation

ℓ
a → f ℓa , na → f−1na (2.2)

where f is a, positive definite, smooth function on S. All
physical quantities must be invariant under this gauge
transformation.

The Riemannian 2-metric q̃ab on S induced by the
spacetime metric gab is

q̃ab = gab + ℓanb + naℓb . (2.3)

The tensor q̃b
a can be viewed as a projection operator on

to S. The null expansions are

Θ(ℓ) = q̃ab∇aℓb , Θ(n) = q̃ab∇anb . (2.4)

These expansions tell us how the area element of S
changes as it is deformed along ℓa and na respectively.

The shear of ℓa, σ(ℓ)ab, is the symmetric trace-free part
of the projection of ∇aℓb:

σ(ℓ)ab = q̃c
a q̃d

b∇(cℓd) −
1

2
Θ(ℓ)q̃ab . (2.5)

Similarly, the shear of na is

σ(n)ab = q̃c
a q̃d

b∇(cnd) −
1

2
Θ(n)q̃ab . (2.6)

Note that these definitions only involve derivatives tan-
gential to S. Thus ℓa and na can, if necessary, be ex-
tended arbitrarily away from S while computing these
quantities.

The closed 2-surface S is said to be a trapped surface
if both expansions Θ(ℓ) and Θ(n) are strictly negative.
This is very different from a sphere in normal flat space
which has positive outgoing expansion and negative in-
going expansion. This definition was first introduced
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by Penrose [29], who recognized its importance in the
formation of singularities. On a marginal surface, one
of the two null expansions vanish. Of particular in-
terest are the marginally outer trapped surfaces (MOTSs),
for which the outgoing null rays along ℓa have zero ex-
pansion. In addition, we shall mostly deal with future
marginally outer trapped surfaces (FMOTSs), i.e., MOTSs
with Θ(n) < 0.

There are three main reasons why closed trapped sur-
faces are important for studying black holes. First, the
existence of a trapped surface implies the existence of
a singularity in the future [29, 30]. Secondly, they are
guaranteed to always lie within the event horizon. Fi-
nally, in stationary spacetimes, the null generators of the
event horizon have zero expansion. Thus for stationary
spacetimes, the cross-section of the event horizon is a
MOTS.

While trapped and marginally outer trapped surfaces
are defined in the full four dimensional spacetime, in
numerical relativity, one usually considers trapped sur-
faces in conjunction with a foliation of (partial) Cauchy
surfaces containing S; it is numerically much easier to
look for closed surfaces on the Cauchy surface rather
than in the full spacetime manifold. For concreteness,
we shall work in the ADM formalism where the rele-
vant portion of spacetime is foliated by spacelike sur-
faces, and Σ shall denote one of the leaves of this folia-
tion. However, it will be obvious that the formalism is
applicable no matter how Einstein’s equations are im-
plemented.

The trapped region TΣ on Σ is defined to be the set of
points in Σ through which there passes a trapped sur-
face contained entirely in Σ. Note that there could be
points in Σ not contained in TΣ, but through which there
passes a trapped surface not contained in Σ. Thus, TΣ is
a subset of the intersection of Σ with the 4-dimensional
trapped region in the full spacetime. A connected com-
ponent of the boundary of TΣ is called an apparent hori-
zon (AH). Under suitable regularity conditions, the AH
can be shown to be a MOTS [31, 32]. Thus, an appar-
ent horizon is the outermost MOTS on Σ. Due to this
“outermost” property, an AH is not a quasi-local object
on Σ. The behavior of AHs under time evolution can be
quite irregular. For example, they can “jump” discontin-
uously. On the other hand, as we shall soon see, MOTSs
are more regular.

B. Dynamical horizons

1. Definition and examples

We can use marginal surfaces to extract physically in-
teresting information about the black hole. The key idea
is to look not at a single MOTS by itself, but rather a
world tube H of MOTSs constructed by stacking up the
MOTSs obtained by time evolution. Such a world tube is
called a Marginally Trapped Tube (MTT). An MTT is thus

a smooth 3-surface foliated by MOTSs.

The existence of MTTs: Numerically, it has been ob-
served that marginal surfaces (though not apparent
horizons – see below) usually behave smoothly under
time evolution and produce a smooth MTT. This obser-
vation is placed on a more rigorous footing by the re-
cent result of Andersson et al. [33], which proves the lo-
cal existence of MTTs for a large class of MOTSs. Their
results require the MOTS to be strictly-stably-outermost.
An MOTS S on Σ is said to be strictly-stably-outermost
if there exists an infinitesimal first order outward defor-
mation which makes S strictly untrapped. Working with
a radial coordinate r on Σ such that S is a level set of
r, and r increases in the outward direction, a sufficient
(but not necessary) condition for S to be strictly-stably-

outermost is ∂rΘ(ℓ)(r) > 0 everywhere1 on S. Here it
is understood that we obtain Θ(ℓ) as a function of r by
calculating Θ(ℓ) for the constant-r surfaces in the vicin-
ity of S. In principle, for an unfortunate choice of r, it
might happen that ∂rΘ(ℓ) < 0 even though there is a
different choice for which this condition is satisfied. In
any case, this is sufficient for verifying that S is strictly-

stably-outermost.2 This condition, unlike the outermost
condition for an AH, is a quasi-local condition. We have
found in our simulations that most physically interest-
ing MOTSs, such as ones which asymptote to the event
horizon, and also AHs, satisfy this condition quite gen-
erally. However, as we shall see, there exist also MOTSs
which are not strictly-stably-outermost. In practice, in-
stead of checking ∂rΘ(ℓ) > 0 directly, we look for a sur-
face with a small positive (or negative) non-vanishing
expansion, and check that it lies completely outside (or
inside) the MOTS.

It is shown in [33] that if a MOTS S is strictly-stably-
outermost, then at least locally in time, S is a cross-
section of a smooth MTT. More explicitly, this result
shows that given a foliation of the spacetime by Cauchy
surfaces Σt, if there is a MOTS S0 on Σ0 which is strictly-
stably-outermost, then MOTSs St exist on Σt for −ǫ <

t < ǫ (for sufficiently small ǫ) such that the union
⋃

St

is a smooth MTT. The MTT will exist for at least as long
as the MOTS remains strictly-stably-outermost. This is
a conceptually important result for numerical relativity
because it shows that a large class of MOTSs behave reg-
ularly under time evolution. How is this to be reconciled
with the known fact that AHs can “jump” during a time
evolution? The reason is simply because of the outer-
most property. It is possible that a new MOTS can ap-
pear on the outside of a given MOTS. The “old” MOTS is
then no longer the globally outermost one even though

1 More precisely, ∂rΘ(ℓ)(r) ≥ 0 with ∂rΘ(ℓ)(r) > 0 somewhere on S.
2 It is harder to show that a MOTS is not strictly-stably-outermost.

This can be done by calculating the signature of the horizon (see
below) or by calculating the principle eigenvalue of the stability op-
erator defined in [33].
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it is locally outermost, and it continues to evolve in a
perfectly regular manner, but it is no longer an AH.

There are, as yet, no similar existence proofs for
MOTSs which are not strictly-stably-outermost. How-
ever, as we shall see later, we find in all the examples
we have looked at, that MOTSs evolve smoothly even
in this case, forming a regular world tube.

Isolated and dynamical horizons: An MTT is null in equi-
librium situations when no matter or radiation is falling
into it; the rest of the spacetime is still allowed to be
highly dynamical. This situation is formalized by the
notion of an isolated horizon [16, 17, 18, 19, 20]. Us-
ing isolated horizons, it has been possible to derive the
laws of black hole mechanics, use it as a basis for the
quantum black hole entropy calculations and find unex-
pected properties of hairy black holes in Einstein-Yang-
Mills theory; see [24] and references therein. Most im-
portantly for our purposes, isolated horizons have also
proved to be useful in numerical relativity. For exam-
ple, isolated horizons provide a coordinate invariant
method of calculating the angular momentum and mass
of a black hole [34]. They can be used to obtain bound-
ary conditions for constructing quasi-equilibrium initial
data sets [35, 36]. They might have a role in waveform
extraction [20]. A pedagogical review of isolated hori-
zons from the numerical relativity perspective can be
found in [26].

In this paper, we are more interested in the dynamical
regime when the MTT is not null. A spacelike MTT con-
sisting of future-marginally trapped surfaces is called
a Dynamical Horizon (DH). Thus, a dynamical horizon
is a spacelike 3-surface equipped with a given foliation
by FMOTSs. The properties of a dynamical horizon are
studied in detail in [14, 15, 37]. The case when the hori-
zon is very close to being isolated but still evolving dy-
namically has been studied in [38, 39] and its Hamilto-
nian treatment is considered in [40]. Note that the lo-
cal existence of DHs follows from the local existence of
MTTs because if Θ(n) < 0 at any given time, it will con-
tinue to be strictly negative for at least a short duration.
We elaborate on the spacelike property below.

A timelike MTT will be called a timelike membrane
(TLM). A TLM cannot be considered to represent the
surface of a black hole since a time-like surface is not
a one-way membrane, and both ingoing and outgoing
causal curves can pass through it. In some instances, we
shall use the term “horizon” loosely to refer to a generic
marginal surface or a MTT without any further quali-
fiers. The exact meaning should hopefully be clear from
the context.

An explicit example of a dynamical horizon is pro-
vided by the Vaidya spacetime which describes the
gravitational collapse of null dust [41, 42] (see [43] for
further examples). This example is not meant to be an
astrophysically realistic model of gravitational collapse,
but it nevertheless provides a good illustration of the
properties of a dynamical horizon. The Penrose diagram

for this spacetime is shown in figure 1. The 4-metric is

gab = −
(

1 − 2M(v)

r

)

∂av∂bv + 2∂(av∂b)r

+ r2(∂aθ∂bθ + sin2 θ∂aφ∂bφ) , (2.7)

and the stress energy tensor is

Tab =
Ṁ(v)

4πr2
∂av∂bv (2.8)

where Ṁ(v) ≡ dM/dv. The coordinates (v, r, θ, φ) are
analogous to the ingoing Eddington-Finkelstein coordi-
nates for Schwarzschild spacetime. The prescribed mass
function M(v) is a positive, non-decreasing function of
the retarded time coordinate v; the Schwarzschild space-
time is recovered when M(v) is a positive constant. Just
as in Schwarzschild, the 2-surfaces r = 2M(v) (for con-
stant v) are FMOTSs. Unlike in the Schwarzschild space-
time where the 3-surface r = 2M is null and coincides
with the event horizon, in this case the r = 2M(v) sur-
face is spacelike if Ṁ > 0, and it lies strictly inside the
event horizon. While H is the only spherically symmet-
ric dynamical horizon in this spacetime, and there are
no spherically symmetric MOTSs outside H, it is shown
in [44] that H is not the boundary of the trapped re-
gion. There exist many more non-spherically-symmetric
MOTSs and MTTS which come arbitrarily close to the
event horizon. Thus the event horizon is the most likely
candidate for the boundary of the trapped region [45].

More generally, figure 2(a) depicts a dynamical hori-
zon H bounded by two MOTSs S1 and S2. S is a typi-
cal member of the foliation. The vector τ̂a is the future
directed unit timelike normal to H, r̂a is tangent to H
and is the unit outward pointing spacelike normal to the
cross-sections. A fiducial set of null normals is

ℓ
a =

1√
2
(τ̂a + r̂a) , (2.9)

na =
1√
2
(τ̂a − r̂a) . (2.10)

As before, Θ(ℓ) = 0 and Θ(n) < 0. The area of a cross-
section S will be denoted by AS and its radius by RS :=
√

AS/4π. A radial coordinate on H will be denoted by
r; the cross sections of H are the constant r surfaces. The
3-metric and extrinsic curvature of H will be denoted
respectively by qab and Kab, and q̃ab is the 2-metric on S.

Figure 2(b) shows a Cauchy surface Σ intersecting a
dynamical horizon H. This intersection S will always
be assumed to be one of the given cross-sections of H.
The unit timelike normal to the horizon is Ta and the
unit outward pointing spacelike normal to S within Σ

is Ra. The three metric and extrinsic curvature of Σ are
denoted by q̄ab and K̄ab respectively. The fiducial set of
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FIG. 1: The Vaidya spacetime. The dashed line indicates the
singularity. This diagram is valid for a strictly increasing mass
function M(v) which vanishes for v ≤ 0, and asymptotes to a
finite value for v → ∞. Furthermore, in drawing this diagram,
M(v) is assumed to satisfy Ṁ(0) < 1/16 so that the singular
point r = 0, v = 0 is locally naked, and for large v, M(v) is
such that the singularity is not globally naked. The Penrose
diagram may change qualitatively for other mass functions;
see [42] for details. The dynamical horizon is the spacelike
surface r = 2M(v) denoted by H, and the event horizon is
denoted by E. The shaded portion of the spacetime is flat.

null normals to S arising naturally from Σ are

ℓ̄
a =

1√
2
(Ta + Ra) , (2.11)

n̄a =
1√
2
(Ta − Ra) . (2.12)

A boost transformation of the form of equation (2.2) con-
nects (ℓa, na) and (ℓ̄a, n̄a):

ℓ
a = f ℓ̄a , na = f−1n̄a . (2.13)

When the horizon settles down and becomes null, an
infinite boost ( f → ∞) is required to go from (ℓ̄a, n̄a) to
(ℓa, na).

2. Summary of basic properties

Topology: The cross-sections of a DH can be either
spherical or toroidal [14, 15, 21, 33]. Toroidal topol-
ogy is possible only in exceptional cases when

σ(ℓ)ab, the scalar curvature R̃ of S, LℓΘ(ℓ), Rabℓ
b,

and ζa (defined in section III) all vanish on S [15].
We shall therefore always take the cross-sections to
be spherical. There are no similar results for cross-
sections of TLMs. However, we use an apparent
horizon tracker which can only locate spherical
AHs [46] and therefore all observed MOTSs have
spherical topology.

τ̂a

S1

S2

nar̂a

ℓa

H

(a) Dynamical horizon
bounded by S1 and S2.

S1

S2

S
Ta

RaΣ

(b) A dynamical horizon intersecting a Cauchy
surface.

FIG. 2: The top panel shows a dynamical horizon H. S1 and
S2 are the initial and final FMOTSs, ℓa is the outgoing null
normal, na is the ingoing null normal, r̂a is the unit space-
like normal to the cross-sections, and τ̂a is the unit timelike
normal to H. The bottom panel shows a dynamical horizon
and a Cauchy surface Σ intersecting in a 2-sphere S. Ta is the
unit timelike normal to Σ and Ra is the unit space-like outward
pointing vector normal to S and tangent to Σ.

Second Law: The area of the cross-sections of a DH in-
creases along r̂a. This is simply a consequence of
Θ(ℓ) = 0 and Θ(n) < 0:

Dar̂a =
1

2
q̃ab∇a(ℓb − nb)

=
1

2
(Θ(ℓ) − Θ(n)) > 0 . (2.14)

If we choose a time evolution vector field ta for
which t · r̂ > 0, then the area of the dynamical
horizon will increase in time, and this result can
be called the second law for dynamical horizons.
An analogous calculation for TLMs shows that the
area decreases if Θ(n) < 0, and increases if Θ(n) > 0.

Foliation: Any given spacelike surface cannot have
more than one distinct dynamical horizon struc-
ture on it [37]. This means that a DH can have
one, and only one foliation by FMOTSs. This im-
plies that if a Cauchy surface Σ does not inter-
sect a given DH in one of the preferred cross-
sections, then the intersection cannot be a MOTS
at all. Thus, different choices of Cauchy surfaces
in general lead to different dynamical horizons.
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Uniqueness: As mentioned above, the dynamical hori-
zon depends on the choice of foliation Σt, i.e.,
choosing a different time slicing would lead to a
different dynamical horizon (if it exists). There are
however some constraints on the location of dy-
namical horizons and trapped surfaces as proved
by Ashtekar and Galloway [37]. For example, they
show that given a dynamical horizon H (along
with a mild genericity assumption), there cannot
be any trapped surfaces (and therefore no DHs)
contained entirely in the past domain of depen-
dence of H. See also [44] for further discussion.

III. APPLICATIONS

This section discusses some possible applications of
dynamical horizons. These ideas are illustrated using
concrete numerical examples later in Section IV.

A. The signature of a MTT

1. Background

As discussed above, MTTs have been shown to exist
for a large and physically interesting class of MOTSs,
and this is borne out in a large number of numeri-
cal simulations where MOTSs are located and evolved
smoothly. How many of these MTTs are actually dy-
namical horizons? In other words, when is a MTT space-
like? The first result in this direction was obtained by
Hayward [21] (see also [34]). Using the Raychaudhuri
equation for ℓa, it can be shown that an MTT is space-
like if α < 0, null if α = 0 and timelike if α > 0, where

α ≡
σ(ℓ)abσab

(ℓ) + Rabℓ
aℓb

LnΘ(ℓ)
. (3.1)

In writing this expression, it is assumed that ℓa and
na are extended off H geodetically, so that LnΘ(ℓ) is
meaningful. The term in the numerator is strictly pos-
itive in the case of dynamical horizons if the matter
fields satisfy, say, the null energy condition. It vanishes
for isolated horizons. The denominator is negative for
the Vaidya spacetime and also for the stationary Kerr-
Newman family. This captures the notion that as we
go inside the black hole, the outgoing null rays become
more and more converging. Assuming that the numer-
ator of Eq. (3.1) is nowhere vanishing on H, the hypoth-
esis that H is spacelike is equivalent to LnΘ(ℓ) < 0.

As shown by Ben-Dov [47], this last condition is not
satisfied for all MTTs; in Oppenheimer-Snyder collapse
[48], there exists a timelike world tube of FMOTSs with
LnΘ(ℓ) > 0. This is illustrated in figure 3 showing a por-
tion of the Oppenheimer-Snyder spacetime. There are
two sets of FMOTSs in this spacetime which are denoted

H1

H2

EH

Σ

Singularity

Surface of star

ℓa ℓa
nana

FIG. 3: Portion of Oppenheimer-Snyder collapse spacetime de-
scribing spherically symmetric collapse of pressure-less dust.
Trapped surfaces are formed the point where the surface of the
star intersects the event horizon. There are two sets of trapped
surfaces. The ones lying on the timelike surface H1 are the in-
ner marginally trapped surfaces while the ones lying on the
null surface H2, which is part of the event horizon and also
an isolated horizon, are the outermost ones. Since na points
away from the trapped region, deforming the inner MOTSs on
H1 along na makes them untrapped. Therefore LnΘ(ℓ) > 0 for
H1.

by H1 and H2 in figure 3; H2 is an isolated horizon, i.e.,
it is null, is part of the event horizon E, and has constant
area. H1 has decreasing area, is timelike, and goes into
the singularity. A Cauchy surface such as Σ would con-
tain two FMOTSs. As expected, LnΘ(ℓ) < 0 for H2, but
LnΘ(ℓ) > 0 for H1. There are no spherically symmetric
dynamical horizons in this dynamical black hole space-
time.

The issue of the signature has been considered in [33].
There it is shown that if a MOTS S is strictly stably out-

ermost, and if the quantity σ(ℓ)abσab
(ℓ) + Rabℓ

aℓb is non-

zero somewhere on S (and assuming the null energy con-
dition), then the MTT containing S is spacelike in a
neighborhood of S. This result is stronger than Hay-
ward’s result (Eq. (3.1)) and it shows clearly that the
spacelike case is physically the most interesting because

σ(ℓ)abσab
(ℓ) + Rabℓ

aℓb will not vanish in a non-stationary

situation. It also shows, somewhat surprisingly, that
even if matter or radiation is falling into a black hole
only in the form of say, a single narrow beam from a par-
ticular direction, the entire MTT is spacelike. One might
naively have thought that the MTT would be spacelike
only on portions where the energy flux is non-zero, and
null otherwise. This is not the case because of the elliptic
nature of the equations governing the deformations of a
MOTS.

In figure 3, the inner MOTS on Σ is not strictly sta-
bly outermost; an outward deformation takes it into the
trapped region. The results of [33] do not place any re-
strictions on the signature of H1. While the outer MOTS

is strictly-stably-outermost, σ(ℓ)abσab
(ℓ) + Rabℓ

aℓb vanishes
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identically on it. Thus, the results of [33] are not appli-
cable, and neither H1 nor H2 are spacelike. This case is
non-generic in the sense that the outermost FMOTS be-
comes isolated as soon as it is formed, and it becomes a
cross-section of an isolated horizon. This happens due
to the discontinuity of the matter fields at the surface of
the star. Choosing a smooth density profile in the initial
data will smoothen the transition between H1 and H2.
H2 will be initially spacelike and eventually settle down
to an isolated horizon. Such examples in spherical sym-
metry are studied in [43].

In all the examples we present later, just as in the
Oppenheimer-Snyder case, it turns out that MOTSs
form in pairs, i.e., just after a MOTS appears initially,
it bifurcates into an “outer” and and “inner” MTT. The
outer MTT is spacelike and is a DH. Furthermore, un-
like the Oppenheimer-Snyder case which has a discon-
tinuous matter distribution, the transition between the
outer and inner MTT is smooth, as far as we can tell nu-
merically, in all the cases we have looked at. The inner
MTT is, by continuity, initially spacelike. However, it
soon acquires a mixed signature and becomes more and
more timelike, and ends up as a TLM. The MOTSs on
the inner MTT are not strictly-stably-outermost and thus
this MTT is not required to be strictly spacelike accord-
ing to the results of [33]. We strongly suspect that such
a bifurcation is a general phenomenon whenever a new
MOTS is formed.

There is one case where the existence of the inner MTT
is easy to motivate. Figure 4 shows two MOTSs S(1),(2)
surrounded by a common MOTS Sout; Θ(ℓ) vanishes on
all these surfaces. Let us assume that S(1), S(2), and
Sout are all strictly-stably-outermost and that deforming
S(1) and S(2) outward yields strictly untrapped surfaces

S′
(1) and S′

(2). Similarly, suppose that deforming Sout in-

wards gives a strictly trapped surface S′
out. Then, since

Θ(ℓ) must change sign somewhere between S′
out and S′

(1)

or S′
(2), it is plausible that there is a MOTS Sin in the

intermediate region inside Sout and outside S1 and S2.
This argument is supported by a recent result by Schoen
[49] which shows the existence of a MOTS between a
trapped (in our case S′

out) and an untrapped surface (in
our case S′

(1)

⋃

S′
(2)). It might be possible to extend this

proof to rigorously prove the existence of Sin in our case,
and to check whether it is topologically a sphere. S(1),
S(2), and Sout are cross sections of a dynamical horizon
while Sin is a cross-section of an MTT, not necessarily a
dynamical horizon.

2. Numerical implementation

From a numerical standpoint, it is more convenient to
deduce the signature of H by directly calculating the in-
duced metric qab, rather than from Eq. (3.1) by calculat-
ing LnΘ(ℓ) which requires extensions of ℓa and na away
from the horizon. The signature of H is then determined
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FIG. 4: Two MOTSs S(1) and S(2) surrounded by a common
MOTS Sout. Spheres lying just inside these FMOTSs must have
negative outgoing expansion. Thus, there must be a inner
trapped horizon Sin inside Sout which encloses S(1) and S(2).

by the sign of the determinant of qab which is gauge in-
dependent; note that the determinant is itself gauge de-
pendent. To calculate qab we find a frame ea

(i) (i = 1, 2, 3)

on H, i.e., three smooth vector fields on H which are
pointwise linearly independent. We then simply need
to compute the determinant of the matrix

q(i)(j) := gabea
(i)e

a
(j) . (3.2)

We construct a frame on H as follows. Let (t, xi)
(i = 1, 2, 3) be the spacetime coordinates on M used in
the numerical simulation. The MTT H is topologically

I × S2 (I some interval in R) so that we can assume co-
ordinates (r, θ, φ) on it. Here (θ, φ) are standard coor-
dinates on S2 and r is a radial coordinate. We can use
the time coordinate t as the radial coordinate r on H by
considering H to be embedded into the spacetime M by
means of the map

F(r, θ, φ) = (t = r, xi = Fi(r, θ, φ)) . (3.3)

The maps Fi are known as soon as the MOTSs are found
by the AH tracker. As a frame on H we choose

e(1) = ∂θ , e(2) =
1

sin θ
∂φ, e(3) = ∂r. (3.4)

Hence, e(3) connects a point on a MOTS at a certain in-
stant of time with a corresponding point on the MOTS
at the next instant of time. Note that this choice of frame
breaks down at the poles of the sphere. To apply for-
mula (3.2), the frame (3.4) on H must be pushed forward
to M by means of the embedding F in the standard way:

e(3) = (1, ∂rF1, ∂r F2, ∂r F3). (3.5)

This enables us to calculate q(i)(j) using the 3-metric on

the Cauchy surface, and the lapse and shift.
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Having calculated the matrix q(i)(j) and assuming

its determinant to be positive, we can easily calculate
the unit vector r̂a. It is simply the outward pointing
unit spacelike vector which is a linear combination of
(e(1), e(2), e(3)), and is orthogonal to e(1) and e(2). This
construction of r̂a will also work in the timelike case, but
not in the null case where q(i)(j) becomes degenerate.

B. Angular momentum and mass

Let ϕa be a rotational vector field on H tangent to

each cross-section.3 The angular momentum of a cross-
section S associated with ϕa is given by

J
(ϕ)
S = − 1

8π

∮

S
Kabϕa r̂bd2V . (3.6)

We refer to [15] for a justification for this formula. The

interpretation of J
(ϕ)
S as angular momentum is most

clear cut when ϕa is a rotational symmetry on H, i.e.,
when LϕKab = 0 and Lϕqab = 0. See [34] for a method
of finding Killing vectors suitable for numerical imple-
mentation. Booth and Fairhurst have shown that this
formula also arises from a Hamiltonian calculation [40].

As we shall see below, J
(ϕ)
S is also gauge invariant when

ϕa is only divergence free, and not necessarily a sym-

metry vector. However, J
(ϕ)
S is not meaningful for more

general ϕa. This is not a real restriction because, while
every 2-sphere metric does not have a symmetry vector,
every 2-sphere metric always admits a divergence free
vector.

If a cross-section S has radius RS and angular momen-

tum J
(ϕ)
S , we can meaningfully talk about the mass:

M
(ϕ)
S =

1

2RS

√

R4
S + 4(J

(ϕ)
S )2 . (3.7)

This mass has the same dependence on the area and
angular momentum as in the Kerr solution. There is a
meaningful balance law for the mass and furthermore,
it satisfies a physical process version of the first law
[14, 15].

Equation (3.6) uses the metric qab and Kab and extrin-
sic curvature of the dynamical horizon. It is more con-
venient to recast this in terms of the metric q̄ab and ex-
trinsic curvature K̄ab of the partial Cauchy surface Σ (see
figure 2(b)). It is convenient to work with the null nor-
mals (ℓ̄a, n̄a) defined in equation (2.11). It is clear that
(ℓ̄a, n̄a) must be related to the old null normals (ℓa, na)

3 This means that ϕa is tangent to S, has closed integral curves, and
is normalized so that its integral curves have an affine length of 2π,
and it vanishes at exactly two points on S.

by a boost transformation, i.e., there must exist a posi-
tive function f on S such that

ℓ
a = f ℓ̄a and na = f−1n̄a . (3.8)

After some simple algebra, the integrand of equation
(3.6) can be written as:

ϕa r̂bKab = ϕaRbK̄ab + Lϕ ln f . (3.9)

Therefore, the angular momentum is

J
(ϕ)
S = − 1

8π

(
∮

S
K̄abRa ϕb d2V +

∮

S
Lϕ ln f d2V

)

.

The second integral vanishes precisely when ϕa is di-
vergence free, i.e., when ϕa is a symmetry of the area
element on S. In this case:

J
(ϕ)
S = − 1

8π

∮

S
K̄abRa ϕb d2V . (3.10)

In particular, this will be true when ϕa is a symmetry
of the metric q̃ab, but the divergence free condition is
much weaker than this. For example, following [24],
we can always construct a divergence free vector field
on a 2-sphere even in the absence of axisymmetry as
follows. Let h be any smooth function on S, and g an-

other smooth function satisfying ǫ̃ab∂ah∂bg = 0, where
ǫ̃ab is the volume form on S. It is easy to check explic-
itly that the following vector field is automatically di-
vergence free:

ϕ̃a = gǫ̃ab∂bh . (3.11)

The integral curves of ϕ̃a are the level curves of h. In par-
ticular, if h is chosen to be a geometric quantity such as,
say, the curvature R̃, and g chosen such that ϕ̃a has affine
length 2π, then ϕ̃a will coincide with an axial Killing
vector, if it exists. Therefore, ϕ̃a can be viewed as an er-
satz axial symmetry vector field even in the absence of
axisymmetry.

However, we haven’t as yet satisfactorily imple-
mented the above construction due to numerical diffi-
culties arising from errors in taking derivatives of the
scalar curvature. Furthermore, the ϕa coming from eq.
(3.11) may not look like a rotational vector field; in par-
ticular it may vanish at more than just two points on the

sphere even when S is close to axisymmetry.4 This is
work in progress. The results presented below all use
the method described in [34] of finding Killing vectors
based on the Killing transport equations. This reduces
the problem of finding Killing vectors on a sphere to
the diagonalization of a 3 × 3 matrix, and integrating a
1-dimensional ordinary differential equation. We have

4 We thank Ivan Booth for this comment.
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found this method to be quite reliable for the cases when
the horizon is sufficiently close to axisymmetry, even
in cases when the coordinate system is not adapted to
the axial symmetry. Thus, it works well for the head-
on collision and axisymmetric neutron star collapse, but
only at very early and late times for a non-axisymmetric
black hole collision. This caveat only affects the exam-
ple of section IV B. It is important to keep in mind that
this Killing transport method is not reliable for check-
ing whether the horizon is close to axisymmetry; this re-
quires an independent calculation of Lϕ q̃ab to verify that
it is sufficiently small. Finally, we emphasize that this
method is also not guaranteed to produce a divergence
free rotational vector field; this must also be checked in-
dependently.

C. Multipole moments

The notion of multipole moments play a very impor-
tant role in Newtonian gravity and classical electrody-
namics. Let us focus on classical electrodynamics in
Minkowski space with axisymmetric charge and current
distributions ρ and ja respectively, given on a sphere S of
radius RS. Let (θ, φ) be coordinates on S; ρ and ja, being
axisymmetric, are functions only of θ. The electric mul-
tipoles En and magnetic multipoles Bn are respectively
defined as

En = Rn
S

∮

ρPn(cos θ)d2V , (3.12)

Bn = −Rn+1
S

∮

S

(

~j ×~̃∂Pn(cos θ)
)

· n̂ d2V , (3.13)

where Pn is the nth Legendre polynomial, ∂̃ denotes the
standard derivative operator on a sphere, and n̂ is the
unit outward normal to the sphere. For black holes, the
analogs of the electric and magnetic multipole moments
are respectively the mass and angular momentum mul-
tipole moments. Motivated by this analogy, there ex-
ist meaningful definitions of the source multipole mo-
ments for an isolated horizon [50]. Roughly speaking,
these definitions correspond to taking the moments of
the free data on an axisymmetric isolated horizon, and
knowledge of these moments is sufficient to construct
the entire horizon geometry.

For dynamical horizons, we can generalize the con-
struction of [50] to construct a set of multipole moments
which capture the geometry of a dynamical horizon at
any instant of time, and which are furthermore equal to
the isolated horizon multipole moments when the black
hole is isolated. The analog of charge density is (propor-
tional to) the scalar curvature on S:

ρS =
1

8π
MSR̃ , (3.14)

and the angular momentum current is

ja = − 1

8π
q̃c

aK̄cbRb . (3.15)

The moments of these quantities will give the desired

multipole moments. We could also use q̃c
aKcbr̂b instead

of q̃c
aK̄cbRb above; the two expressions are related by a

boost transformation. Just as for angular momentum,
the final expressions for the multipole moments given
below will be boost invariant if the ϕa used in their def-
inition is divergence free. To define the moments, we
need a preferred coordinate system on S so that we can
define the preferred spherical harmonics.

The construction of the preferred coordinate system
(θ, φ) on S is the same as given in [50]: φ ∈ [0, 2π) is
the affine parameter along ϕa and ζ := cos θ ∈ [−1, 1] is
defined by the condition

D̃aζ =
1

R2
S

ǫ̃baϕa . (3.16)

The freedom to add a constant to ζ is removed by requir-
ing its integral over S to vanish:

∮

S ζ d2V = 0. When ap-
plied to a Kerr black hole, these invariant coordinates
turn out to be the same as the usual Boyer-Lindquist
(θ, φ) coordinates.

The mass and angular multipole moments are then re-
spectively:

Mn =
Rn

S MS

8π

∮

S

{

R̃Pn(ζ)
}

d2V , (3.17)

Jn = −
Rn+1

S

8π

∮

S

{

ǫ̃ab(∂bPn(ζ))KacRc
}

d2V

=
Rn−1

S

8π

∮

S
P′

n(ζ)K̄ab ϕaRb d2V (3.18)

where P′
n(ζ) = dPn(ζ)/dζ. We have used equation (3.16)

to obtain the final expression for Jn above. This form
clarifies the relation of Jn to the angular momentum and
also demonstrates the gauge invariance of Jn when ϕa is
divergence free. Using the Gauss-Bonnet theorem, it is
trivial to check that M0 = MS and J1 = JS. J0 vanishes
because we do not consider any topological defects. Fur-
thermore, these expressions are well suited for numeri-
cal computation because they involve only quantities on
the Cauchy surface and an integral over the MOTS.

D. The energy and angular momentum fluxes

Hawking’s area theorem shows that if matter satis-
fies the null energy condition, then the area of the event
horizon can never decrease. This is one of the central
results of black hole physics, and it leads to the classical
picture of the black hole growing inexorably as it swal-
lows matter and radiation. Therefore, one might expect
there to be a balance law relating the increase in area to
fluxes of matter and radiation crossing the event hori-
zon. However, the teleological nature of event horizons
is again a problem; there cannot exist any such local bal-
ance law for the area of the event horizon. A clear ex-
ample is seen in the Vaidya spacetime where the event
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horizon is formed in flat space and its area increases in
anticipation of matter falling into the black hole at a later
time; see figure 1.

For DHs, it is possible to obtain an exact balance
law for the area increase [14, 15]; i.e., given two cross-
sections S1 and S2 with radii R1 and R2 respectively, and
with S2 lying to the outside of S1, the increase in the ra-
dius is given by the sum of the energy flux due to matter

(F (m)) and gravitational radiation (F (g)), both of which
are manifestly positive.:

R2 − R1

2
= F (m) + F (g) , (3.19)

where

F (m) =

∫

H

√
2Tabτ̂a

ℓ
bdR d2V , (3.20)

F (g) =
1

8π

∫

H

{

|σ(ℓ)|2 + |ζ|2
}

dR d2V . (3.21)

Here |σ(ℓ)|2 := σ(ℓ)abσab
(ℓ), |ζ|2 := ζaζa where ζa is a vector

on S defined as

ζa :=
√

2q̃abr̂c∇cℓb , (3.22)

and d2V is the natural geometric volume element on H.

The extra factors of 2 and
√

2 in the above equations as
compared to the corresponding equations in [15], arise
because of our normalization convention ℓ · n = −1; [15]
uses ℓ · n = −2.

See [15] for additional reasons why F (g) has the right
properties to be viewed as the flux of gravitational radi-
ation. Equation (3.19) is an exact statement about black
holes in full non-linear general relativity, and it is the
analog of the Bondi mass balance law at null infinity.

From a numerical point of view, F (g) is inconve-
nient to calculate, especially when the horizon is settling
down and is close to being null. First of all, we have di-
rect access only to the fiducial null normals (ℓ̄a, n̄a) de-
fined in eq. (2.11) and not to (ℓa, na) themselves. The
two sets of null normals are related to each other by a

boost transformation ℓa = f ℓ̄a, n = f−1n̄a. Under this
transformation, σℓ = f σℓ̄. Similarly, it is easy to show
that

ζa = f 2κ̄a − ω̄a , (3.23)

where

κ̄a = q̃ab
ℓ̄

c∇c ℓ̄b and ω̄a = q̃abn̄c∇c ℓ̄b . (3.24)

Here κ̄a and ω̄a are tangent to the cross-sections of the
DH. When the DH approaches equilibrium, f → ∞.

However, the value of F (g) itself remains finite. All
fields with a bar remain finite even when the horizon
becomes null even though f diverges While this is not
a problem analytically, this does cause numerical errors
in the transition to equilibrium when we multiply a very

small quantity on the horizon with a very large one. This
is consistent with the results of [38] where it is found
that |σ(ℓ̄)|2 is the most important when the horizon is

close to equilibrium.
Let t be the time coordinate used to label the Cauchy

surfaces. Using this coordinate, we can identify the di-

vergence of various terms appearing in F (g). We start

by rewriting F (g) as:

F (g) =
1

8π

∫

H

{

|σ(ℓ)|2 + |ζ|2
} dR

dt
d2V dt . (3.25)

The integrand on the right hand side can be expanded
as

(

|σ(ℓ)|2 + |ζ|2
)

Ṙ =

Ṙ f 4|κ̄|2 + Ṙ f 2(|σ(ℓ̄)|2 − ω̄ · κ̄) + Ṙ|ω̄|2 . (3.26)

Let us look at the various terms in this expression. First,
ω̄a can be shown to be equal to the angular momentum
current; for an axial symmetry vector ϕa, the angular
momentum is simply the integral of ϕaω̄a over the cross
section of the MTT. Thus, ω̄a need not vanish even when
the MTT becomes an isolated horizon. The |ω̄|2 term in
the flux can, in some sense, be viewed as the flux of ro-
tational energy entering the horizon. Now consider κ̄a.

For an isolated horizon, ℓ̄b∇b ℓ̄
a ∝ ℓ̄a because in this case

ℓ̄a is guaranteed to be geodetic. This implies κ̄a = 0.
On the dynamical horizon side, we can choose suitable
extensions of ℓ̄a (and n̄a) away from the MTT so that
κ̄a = 0. The shear σ(ℓ̄) on the other hand contains most

of the non-trivial information about the radiation falling
into the black hole. It vanishes on an isolated horizon
as it should, and it is independent of any extensions of
ℓ̄a, n̄a away from the MTT. Therefore, in the examples of
section IV, we shall usually plot σ(ℓ̄) to show the energy

flux falling into the horizon.
The angular momentum also obeys a balance law sim-

ilar to equation (3.19):

J2 − J1 = J (m)
ϕ + J (g)

ϕ (3.27)

where

J (m)
ϕ = −

∫

∆H
Tabτ̂aϕbd3V , (3.28)

J (g)
ϕ = − 1

16π

∫

∆H
PabLϕqabd3V (3.29)

where Pab := Kab − Kqab. Unlike the energy flux F (g),

the angular momentum flux J (g) is not positive definite.

Also, J (g) vanishes when ϕa is an axial Killing vector
on H. Thus, angular momentum is conserved in the ax-
isymmetric vacuum case, as it should be.

IV. EXAMPLE NUMERICAL SIMULATIONS

In this section, we apply the ideas discussed in the
previous sections to three concrete numerical simula-
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tions: i) A head-on collision of two black holes starting
with Brill-Lindquist initial data; ii) A non-axisymmetric
black hole collision using puncture initial data with non-
vanishing linear momentum and iii) Axisymmetric col-
lapse of a neutron star. Each of these three cases is quite
well known in the numerical relativity literature, and all
have been well studied. This section aims to further ex-
plore these examples using the tools described in Sec-
tion III.

A. Head-on collision with Brill-Lindquist data

1. Brill-Lindquist data

Let us first briefly review the Brill-Lindquist initial
data and the conformal method of solving the con-
straints. For vacuum general relativity, the initial data
on a manifold Σ embedded in a four dimensional space-
time consists of the induced Riemannian metric q̄ab, and
the extrinsic curvature K̄ab; as before, barred quantities
refer to the physical fields on a Cauchy surface Σ. If D̄a

is the derivative operator on Σ compatible with q̄ab, then
the constraint equations are:

D̄aK̄ab − D̄aK̄ = 0 , (4.1)

R̄ + K̄2 − K̄abK̄ab = 0 . (4.2)

The data is assumed to be asymptotically flat so that in
the exterior of a compact ball in Σ, i.e., in the asymptotic
region, we have the fall-off conditions

q̄ab =

(

1 +
2m

r̃

)

δab + O(r̃−2) , (4.3)

K̄ab = O(r̃−2) , (4.4)

where r̃ is a the radial coordinate in a flat coordinate sys-
tem in the asymptotic region. In the conformal method
of solving the initial value constraints [51, 52], we start
by defining the conformal metric and extrinsic curva-
ture

(c)hab = ψ−4q̄ab , (c)Kab = ψ10K̄ab . (4.5)

Quantities with the superscript (c)(· · · ) are meant to be
conformally rescaled quantities. We shall restrict our-
selves to conformally flat initial data in this article so
that (c)hab = δab. In this section we also take the data
to be maximal, i.e., K̄ = 0. In terms of the confor-
mally rescaled quantities, the constraint equations then
become

∂a (c)Kab = 0 , (4.6)

∂a∂aψ = −1

8
(c)Kab

(c)Kabψ−7 . (4.7)

The Brill-Lindquist data consists of taking the manifold

Σ to be R
3 with n points removed (the punctures) and

assuming that the data is time symmetric, i.e., K̄ab = 0.
The number of punctures is equal to the number of black
holes. The only equation to be solved is the flat space
Laplace equation for the conformal factor:

∆ψ = 0 . (4.8)

Let x(i) (i = 1, 2, 3) be Cartesian coordinates on Σ such

that in these coordinates hab = diag(1, 1, 1). We consider
the case of two punctures located at the points ~x(1) and
~x(2). The solution satisfying the fall-off conditions at in-
finity is

ψ = 1 +
2

∑
i=1

α(i)

2|~x − ~x(i)|
, (4.9)

where α(i) characterizes the mass of the ith black hole
and ~x(i) is its location. We shall denote the distance be-

tween the two punctures as d = |x(1) − x(2)|. Note that d
is the distance as measured with respect to the fictitious
flat background metric; the physical distance between
the punctures is actually infinite. It was shown in [53]
that each of the punctures is actually an asymptotically
flat region. As shown in [53], the total ADM mass of the
common asymptotic region is

mADM = 2α(1) + 2α(2) , (4.10)

and the ADM masses of the two punctures are

mADM

(1) = 2α(1) +
2α(1)α(2)

d
(4.11)

mADM

(2) = 2α(2) +
2α(1)α(2)

d
. (4.12)

(4.13)

These are exact results, irrespective of the distance d be-
tween the punctures. In the next two sub-sections, we
look at two different regimes (i) the far limit when d is
large and (ii) the merger of the two holes starting from
relatively small values of d.

2. The far limit

Before presenting the results from the numerical evo-
lution of this data, it is instructive to look at a special
case which is amenable to analytic treatment, namely,
in the far limit where the separation between the holes
is very large: d ≫ α(1), α(2). In this case, there are
two MOTSs surrounding each of the punctures with-
out any common MOTS surrounding them. The angu-
lar momenta of the two black holes are trivially zero
because the extrinsic curvature vanishes. What about
the mass? Should mADM

(1) and mADM

(2) be identified with the

masses of the black holes? There are three difficulties
with this. First, these ADM masses also include contri-
butions from radiation present in the respective asymp-
totic regions. Secondly, if this identification is correct,
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mADM

(i) (i = 1, 2) is supposed to be the mass of the black

hole for all values of d, even when the two black holes
are very close to each other. Shouldn’t the mass of the
black holes in this regime also include, say, contribu-
tions from the tidal distortions produced by the other
hole? Finally, the strategy of using the asymptotic re-
gions to define black hole masses is not applicable gen-
erally, say in the case when there are matter fields and

the topology of Σ is just R
3, or in Misner data [54] where

the two black holes do not have their own individual
asymptotic regions.

From the isolated/dynamical horizon perspective,
since the black holes have zero angular momentum,
from equation (3.10), the irreducible mass is the correct

measure of mass in this case: m(i) =
√

a(i)/16π where

a(i) is the area of the MOTS around each of the punc-
tures. Let us then calculate the mass of the black holes as
a power series in 1/d. To simplify calculations, put the
origin of coordinates at the location of the first puncture
and the other puncture on the z-axis at (0, 0, d). Intro-
duce the usual spherical coordinates (r, θ, φ) so that the
conformal factor becomes explicitly

φ(r, θ) = 1 +
α(1)

r
+

α(2)

r

(

1 − 2d cos θ

r
+

d2

r2

)− 1
2

.

(4.14)
We see that due to axisymmetry, there is no dependence
on φ. Let the surface of the FMOTS around the origin be
given by the equation r = h(θ). In the limit when d →
∞, the initial data reduces to Schwarzschild in isotropic
coordinates so that the horizon is located at r = α(1).

Higher order effects can also be explicitly calculated.

It turns out [55] that up to O(d−3), the location of the
MOTS is given by

r = α(1) −
α(1)α(2)

d
+

α(1)α(2)

d
(α(2) − α(1) cos θ)

−
α(1)α(2)

3

(

α2
(2) − 3α(1)α(2) cos θ

+
5

7
α2

(1)P2(cos θ)

)

+ O(d−4) (4.15)

where P2 is the second Legendre polynomial. Using this

result, the horizon mass m(i) =
√

a(i)/16π can be calcu-

lated and, somewhat surprisingly, the mass is the same
as the ADM mass even up to third order:

m(1) = 2α(1) +
2α(1)α(2)

d
+ O(d−4) . (4.16)

This relation was verified numerically for a sequence of
BL data with different values of d. However, we did not
have sufficient resolution to estimate the leading order
deviation between m(1) and mADM

(1)
. Similarly, the shear

of the horizon vanishes up to third order indicating that
the individual horizons are isolated to an excellent ap-
proximation. As we shall see below, the individual hori-
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FIG. 5: Coordinate shapes of the horizons at t = 1 in the xz
plane. A common horizon has formed, and the inner and outer
common horizons have already separated. Compare figure 4.

zons are isolated even for relatively small values of d
once the common MOTS has formed.

3. Numerical results for the merger phase

We performed a numerical evolution starting with
Brill-Lindquist initial data. Working in units where
the total ADM mass is unity, the punctures were lo-
cated at z = ±0.5, and the individual black holes had
equal masses. Thus 2α(1) = 2α(2) = 0.5. The domain
had an explicit octant symmetry and extended up to
x, y, z = 96. Near the outer boundary the spatial res-
olution was h = 1.6, and near the punctures we used
mesh refinement to increase the resolution successively
up to h = 0.0125, so that the individual horizon diam-
eters contained initially 32 grid points. We used fourth
order accurate spatial differencing operators, and a third
order Runge–Kutta time integrator.

We excised [56] coordinate spheres with a radius of
re = 0.0625 about the punctures from the domain, cor-
responding to a diameter of 10 grid points. We used
the AEI BSSN formulation [56, 57] for time evolution,
using the boundary conditions also described in [56].
These boundary conditions are known to be incompati-
ble with the Einstein equations. We used a 1 + log slic-
ing condition [58] starting from α = 1, and a zero shift.
This makes both the individual and the outer common
horizon grow in coordinate space. We used the Cactus
framework [59, 60], the Carpet mesh refinement driver
[61, 62], and the CactusEinstein infrastructure. We lo-
cated the apparent horizon surfaces with J. Thornburg’s
AHFinderDirect [46].

In this setup, the apparent horizon has two discon-
nected components in the initial data, and a common
MOTS forms shortly after t = 0.5. As discussed in sec-
tion III A 1 and figure 4, the common MOTS appears
as a pair: an outer horizon which is strictly-stably-
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FIG. 6: Determinant of the horizon world tube’s three-metric
vs. latitude θ at t = 0.6 and t = 1. The individual MTTs are
null, i.e., det q̃ = 0 (up to numerical errors). The common
outer MTT is spacelike (i.e., det q̃ > 0) and it tends to null
at late times. The inner common MTT is partially timelike at
t = 0.6; later it becomes completely timelike.

outermost, and an inner one which becomes strictly un-
trapped on being deformed inwards. Figure 5 shows the
shapes of the individual and the inner and outer com-
mon MOTSs at time t = 1, where the inner and outer
common MTTs have already noticeably separated. The
individual horizons are null up to numerical errors (con-
sistent with the result on the smallness of σ(ℓ) in the far
limit), and their masses are essentially constant up to
numerical error. The common horizons form at the same
time as a single surface and then split into two MTTs.
As expected, the outer MTT is purely spacelike while
the inner MTT, being spacelike initially, becomes partly
timelike quickly. Figure 6 shows the horizon world tube
metric signature at t = 0.6 and t = 1. At later times,
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FIG. 7: Irreducible mass vs. time for the individual and the
common MTTs. The outer common MTT grows and accretes
mass, while the inner MTT shrinks and loses mass.

the outer MTT tends to become null (as expected), while
the inner MTT becomes completely timelike, and then
becomes so distorted at about t = 1.2 that it cannot be
reliably tracked any more. This coordinate distortion is
already evident in figure 5, and the horizon discretisa-
tion used in the apparent horizon finder is inaccurate
near the neck of the inner horizon [46]. Figure 7 shows

the time evolution of the masses M =
√

AS/16π of the
individual and the common horizons (in this case, the
angular momentum vanishes identically). If M∞ is the
asymptotic value of the mass of the outermost horizon
at late times, then MADM − M∞ is, in principle, a reliable
way of estimating the amount of energy radiated away
to infinity in the form of gravitational waves. This dif-
ference could be used as a consistency check on other es-
timates using the extracted waveforms at large distances
from the black holes. However, our emphasis in this pa-
per is on the dynamics of the merger and not on long
duration stable evolutions. Our simulations do not last
long enough to estimate M∞ reliably.

Another feature of the horizons, shown in figure 7, is
that while the common outer MTT increases in area as
expected, the area of the common inner MTT decreases
monotonically. This is explained as follows. Initially,
when the common MOTS is just formed, by continu-
ity with the outer MTT, the inner MTT is spacelike for a
very short duration (much before t = 0.6) and it is thus
a DH for this duration. However, this DH is being tra-
versed in the inwards direction (i.e., along −r̂a) so that its
area appears to decrease. Shortly after its formation, the
inner MTT becomes partly timelike and later fully time-
like. Recall that for a TLM, the area decreases if Θ(n) < 0.
Thus, both the spacelike and timelike portions of the in-
ner MTT contribute to its monotonic area decrease. This
behavior of the outer MTT is roughly similar to what
was found in [43] for spherically symmetric horizons;
however due to spherical symmetry, the horizons in [43]
did not have any cross sections of mixed signature.
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vs. time. The shear vanishes at the poles and the black hole
settles down exponentially.

Figure 8 demonstrates how the common outer ap-
parent horizon grows. The energy flux vanishes at the
poles, and the shear (but not the total flux) is maximum
at the equator. The horizon is spacelike all the time,
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FIG. 9: Some mass multipole moments vs. time for the inner
and outer MTTs for the head-on collision. The multipole mo-
ments for the outer horizon all approach their Schwarzschild
values (i.e., 0) but the inner horizon does not seem to do so.

but it becomes exponentially “more and more null”
at late times in the sense that det q becomes smaller
and smaller, and the flux also becomes correspondingly
smaller.

Let us now consider the higher mass multipoles Mn

(all the Jns vanish identically). Here, since all quanti-
ties are symmetric with respect to a reflection about the
equatorial plane, Mn = 0 for odd n. Figure 9 plots the
mass quadrupole moment M2 and also M4 and M6 of
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the outer and inner common MTTs as a function of time.
We expect that the black hole should eventually settle
down to a Schwarzschild solution by radiating away all
of its higher multipole moments. Clearly, for the outer
MTT, M2, M4 and M6 all become smaller with time, ap-
proaching zero. However, the run did not last long
enough for us to obtain the asymptotic fall-off rate. It
is interesting to note that, as far as we can tell, the mul-
tipole moments for the inner MTT do not vanish asymp-
totically. This tells us that the spacetime near the inner
MTT is not close to Schwarzschild even at late times.
At even later times, all the inner horizons presumably
cease to exist (see next paragraph) and the spacetime ap-
proaches Schwarzschild everywhere.

We conclude this section with some remarks on the
eventual fate of the inner MTT. First of all, as expected,
the outer MTT eventually settles down and approaches
future timelike infinity. The inner MTT shrinks and ap-
proaches the two individual horizons which are essen-
tially stationary. It is interesting to speculate on how, if
at all, the inner MTT will merge with the two individual
MTTs. Does the inner MTT “pinch off” into two indi-
vidual horizons? If the inner MTT is indeed the one pre-
dicted by [49], then it has a priori curvature bounds. If
these curvature bounds are maintained in the limit, then
the inner horizon cannot pinch off. It is more likely that
the two individual MTTs merge first with each other and
then later, perhaps also with the inner MTT. It would
be interesting to investigate this question further. If
the inner MTT does indeed merge smoothly with the
two individual MTTs, then the set of all MTTs in this
case would form one single smooth 3-manifold. Fur-
thermore, the area of the cross-section of this manifold
would be monotonic in the outward direction – travers-
ing this manifold in the outward direction means going
forward in time on the individual and outer MTTs, and
backward in time on the inner MTT.

We are not able to settle these issues numerically in a
conclusive manner because the inner MTT becomes so
distorted at late times that the AH tracker is no longer
able to track it. This is because the AH tracker can only
locate star-shaped surfaces and, as is clear from figure
5, the inner MTT will not necessarily be star-shaped at
later times. Furthermore, our gauge choice in which we
allow the outer MTT to grow in coordinate space, makes
the inner MTT shrink and therefore harder to resolve at
later times.

B. Non-axisymmetric black hole collision

1. The initial data

The head-on collision described above does not incor-
porate any effects of angular momentum. In this sec-
tion, we remove the restriction of axisymmetry by tak-
ing initial configurations in which the black holes are
orbiting around each other. Perhaps one of the simplest

kinds of initial data incorporating this are the so called
“puncture” data introduced by Brandt and Brügmann
[63], which is a generalization of the Brill-Lindquist con-
struction.

The data is still taken to be conformally flat, but now
no longer assumed to be time symmetric, i.e., K̄ab does
not necessarily vanish. We therefore need to solve the
momentum constraint equation (4.6). For a single black
hole, such a solution has been found explicitly by York
[52]:

(c)K
(i)
ab =

3

2r2

{

2P(anb) − (gab − nanb)Pcnc

}

+
6

r3
n(aǫb)cdScnd . (4.17)

Here, Pa and Sa characterize respectively the linear and
angular momenta of the black hole. Since the momen-
tum constraint equation (4.6) is linear, the solution for
multiple black holes is found by a linear superposition:

(c)Kab =
n

∑
i=1

(c)K
(i)
ab . (4.18)

The puncture data consists of substituting this extrinsic
curvature into the momentum constraint equation (4.7)
and solving the resulting elliptic equation for the con-
formal factor.

2. Numerical results

We performed a numerical evolution of puncture ini-
tial data corresponding to the innermost stable circular
orbit as predicted in [64], which applies the effective po-
tential techniques of [65]. This model was also studied
as “QC-0” with the Lazarus perturbative matching tech-
nique [66, 67] and later in [2, 3, 5, 6, 68]. In our setup,
the punctures were located at x = ±1.168642873, and
their mass parameters were m = 0.453, and their mo-
menta were py = ±0.3331917498. The domain had an
explicit rotating quadrant symmetry and extended up
to x, y, z = 10. Near the outer boundary the spatial res-
olution was h = 0.4, and near the punctures we used
mesh refinement to increase the resolution successively
up to h = 0.025, so that the individual horizon diam-
eters contained initially 16 grid points. We used fourth
order accurate spatial differencing operators, and a third
order Runge–Kutta time integrator.

We excised [56] coordinate spheres with a radius of
re = 0.075 about the punctures from the domain, corre-
sponding to a diameter of 6 grid points. We used again
the AEI BSSN formulation [56, 57] for time evolution, a
1 + log slicing condition [58] starting from a lapse that is
one at infinity and zero at the punctures, and a Γ driver
shift condition, starting from a rigid co-rotation with an
angular velocity of ω = 0.06. We also used a drift cor-
recting shift term similar to [69, 70] to keep the individ-
ual horizons centered about their initial locations.
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FIG. 10: Coordinate shapes of the MOTSs at t = 18 for the
non-axisymmetric black hole collision. Note that the individ-
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FIG. 11: Determinant of the MTT three-metric at t = 18. As
in the head-on case, the outer MTT is purely spacelike while
the inner MTT is partly spacelike and partly timelike. At later
times, it becomes purely timelike. The individual MTTs are
null at this time.

As previously, we used the Cactus framework [59, 60],
the Carpet mesh refinement driver [61, 62], and the
CactusEinstein infrastructure. We solved the initial
data equation with M. Ansorg’s TwoPuncture solver
[71], and we located the apparent horizon surfaces with
J. Thornburg’s AHFinderDirect [46].

This setup contains two initially separated horizons
that rotate around each other for a fraction of an orbit
before a common horizon forms [66, 68]. Its ADM mass
is MADM = 1.00788, the initial proper horizon separation
is L ≈ 4.99 MADM, and the horizons have initially the an-

gular momentum J ≈ 0.78 M2
ADM

and angular velocity
Ω ≈ 0.17/MADM. The common apparent horizon forms
at about t = 17.5, which we verified through pretracking
[72].

Figure 10 shows the shape of the various MOTSs at
a time t = 18, a short while after the common hori-
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FIG. 12: A plot of the irreducible mass Mirr =
√

A/16π as
a function of time for the outer an inner MTTs in the non-
axisymmetric black hole collision. As expected, the outer MTT
has increasing area while the inner MTT shrinks.

zon has formed. As before, there is a pair of common
MOTSs, an outer and an inner one, surrounding the in-
dividual horizons. The inner and outer common MOTSs
have already separated significantly. The outer MOTS
is strictly-stably-outermost, and the MTT formed by the
outer horizons is spacelike, as expected. See figure 11.
As before, the inner MTT is timelike and not strictly-
stably-outermost. The behavior of the MTTs is quali-
tatively similar to what was observed in the head-on
case. Thus, the inner MTT is initially spacelike for a very
short duration after which it becomes partly timelike
and, eventually, fully timelike. The MTTS for the two
individual horizons are null (up to numerical errors).

Figure 12 shows the irreducible mass of the outer and
inner MTTs as a function of time. Again, the behavior
is qualitatively the same as we saw in the head-on col-
lision. The outer MTT increases in area while the inner
one has decreasing area.

Figure 13 shows the flux of GW energy falling into the
outer horizon at t = 18.4 and also the shear |σ(ℓ̄)|2 at the

same time, for the outer and individual horizons. The 2-
d contour plots of the shear |σ(ℓ̄)|2 and the total flux on

the horizon shows in detail how gravitational radiation
is falling into the horizon. Unlike in the head-on case
(fig. 8), the shear and the flux are now no longer axisym-
metric. Therefore, the flux is no longer constant along
the φ direction but its maxima still lie on the equator.
The shear on the other hand, now has its maximum on
the poles and its minima lie on the equator. It would be

interesting to further investigate the behavior of |σ(ℓ̄)|2
and the energy flux as a function of time and for differ-
ent physical situations to gain a better understanding of
how a black hole grows.

Let us now turn to the rotational vector ϕa on the
outer horizon and the quantities such as angular mo-
mentum, mass, and multipole moments associated with
it. The simulation presented here was run only up to



17

φ

Energy flux d2E / dA dt at t=18.4    0.01
  0.0075
   0.005
  0.0025

2π3π/2ππ/20
π

π/2

0

φ

Shear |σ|2 at t=18.4      0.1
   0.075
    0.05

   0.025

2π3π/2ππ/20
π

π/2

0

FIG. 13: Energy flux through the horizons and shear |σ ¯(ℓ)|2 on

the horizon at t = 18.4 in (θ, φ)-coordinates.

 0

 5

 10

 15

 20

ππ/20

θ

Lie derivative of the two-metric at t=18

|Lθ qab|
|qab|

FIG. 14: Lie derivative of the two-metric Lϕq̃ab at t = 18 on
the φ = 0 line. The two-metric q̃ab is also shown for compar-
ison. The quantity shown in the plots are actually the norms
√

∑ab(Lϕq̃ab)
2 and

√

∑ab(q̃ab)
2 in the coordinate system (θ, φ)

on the horizon. The vector field ϕ is Killing on the equator (see
main text), but not everywhere. This shows that the horizon is
not (yet) axisymmetric. We expect it to become axisymmetric
at later times. Note that we have only shown the plots along
the φ = 0 curve and we do not have axisymmetry here.

t ≈ 19.4, and the final black hole has not settled down
sufficiently, and has not attained axisymmetry at this
point. Figure 14 shows the Lie derivative of the 2-metric
Lϕ q̃ab on the horizon at t = 18, where ϕa is the Killing
vector candidate found by the algorithm presented in
[34]. It is clear that Lϕ q̃ab is very far from 0 at this time.
This means that the angular momentum, mass, and mul-
tipole moments associated with this ϕa are not mean-
ingful at this point. This is to be expected, since the fi-
nal black hole should attain axisymmetry only on a time
scale set by the quasi-normal mode ringdown, which
has a period of 15.9MADM in this case. It is interesting
to see that our Killing vector field candidate is indeed
Killing on the equator. This is by construction, since we
choose the Killing vector field candidate by an integral
along the equator; see [34]. However, the vector field ϕa

is far from Killing away from the equator.
A word of caution is due here regarding the Killing

vector finding algorithm of [34]. First of all, the algo-
rithm only produces a candidate for a Killing vector, and
an independent check is required to see whether Lϕ q̃ab
is sufficiently small or not. Furthermore, as mentioned
previously, this method reduces the problem of finding a
Killing vector on a sphere to diagonalizing a 3× 3 matrix
followed by integrating a 1-dimensional ODE. In partic-
ular, the method requires that one of the eigenvalues of
this matrix is sufficiently close to unity. While this is fine
when the horizon is exactly axisymmetric, the subtlety
arises when the horizon is only approximately axisym-
metric. It is not clear how close the eigenvalue must
be to unity for the horizon to be regarded as approxi-
mately axisymmetric. Work is in progress to understand
this better and to also investigate an alternate method of
finding an appropriate ϕa as discussed in section III B,
which is guaranteed to produce a divergence free vec-
tor.

C. Axisymmetric gravitational collapse

1. The initial configuration

Up to now, all of our examples have involved only
vacuum spacetimes. In this section, we present an exam-
ple of the gravitational collapse of a neutron star to form
a black hole in an axisymmetric spacetime. These sim-
ulations were performed using the Whisky code which
deals with the matter terms of the Einstein equations in
the framework of the Cactus toolkit. Thus, the Whisky

code solves the conservation equations for the stress en-
ergy tensor Tab and for the matter current density Ja:

∇aTab = 0 , ∇a Ja = 0 . (4.19)

For details about the Whisky code and the implementa-
tion of the above equations, we refer the reader to [73]
and references therein. Here we shall restrict ourselves
to describing the initial stellar configuration which is
one of the configurations studied in [73].
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The neutron star is modeled as a uniformly rotating
ball of perfect fluid. The equation of state is taken to be a
K = 100, Γ = 2 polytrope so that the pressure p and rest-

mass density ρ are related according to p = KρΓ. The
equilibrium configuration is determined by the mass
MNS, central density ρc, and the angular momentum
JNS; when necessary, the subscript NS is used in order to
avoid any confusion with previously defined symbols.
The model we take is the one denoted as “D4” in [73]
which has MNS = 1.86M⊙, ρc = 1.934× 1015 g cm−3, and

JNS = 0.543M2
NS

. This leads to a ratio of polar to equa-
torial coordinate radii of 0.65, a circumferential equa-
torial radius of 14.22 km, and a rotational frequency
of 1295.34Hz. This equilibrium configuration turns out
to be dynamically unstable. In practice, the instability
is induced by uniformly reducing the pressure slightly
throughout the star.

2. Numerical results

We simulated the above system on a grid with an ex-
plicit rotating octant symmetry. The outer boundary
was at x, y, z = 150, and the grid spacing near the outer
boundary was h = 3. We used mesh refinement to in-
crease our spatial resolution in the center of the domain
to h = 0.375 at the initial time, and progressively intro-
duced more mesh refinement levels to increase the cen-
tral resolution up to h = 0.046875 as the neutron star
collapsed, based on the maximum density in the star
[74, 75]. We also apply third order Kreiss–Oliger dissipa-
tion [76] to the spacetime (but not the hydrodynamics)
variables.

We find an apparent horizon starting at about t = 130;
this time is mainly dependent on the details of how
the collapse is induced and has no intrinsic meaning.
The horizon is born with an irreducible mass of about
Mirr = 1.51 and an angular momentum of J = 0.89
(a = 0.38), giving it a total mass of MH = 1.54. Some
time after t = 185, a singularity forms in the spacetime,
and the simulation aborts because we do not use exci-
sion inside the apparent horizon. As before, a pair of
MOTSs is formed, an outer and an inner one. The outer
MTT is spacelike, has increasing area, and tends to null
at late times. In this case, the inner MTT remains space-
like. However, its area decreases because we are travers-
ing it in the inward direction; in other words, the time
evolution vector ta is such that at the inner MTT, t · r̂ < 0
so that that the area decreases along ta. Our gauge con-
ditions are such that the outer horizon grows in coordi-
nate space while the inner horizon shrinks. After about
t = 140, the inner horizon is so small that we do not
have enough resolution to track it beyond that time. See
figure 15. The areal radius of the outer MTT increases
but not as rapidly as the coordinate radius; it levels off
at later times. The area radius of the inner horizon de-
creases initially and shows an increase at later times, but
this is probably just a numerical artefact due to poor res-
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FIG. 15: The average coordinate radius and the area radius as
a function of time for the outer and inner MTTs for the neutron
star collapse. The inner horizon is not to be trusted after t ≈
140 due to lack of resolution, since its coordinate radius has
become very small by that time.

olution at later times.

Figure 16 shows the determinant of the metric on the
MTTs. The outer MTT is initially spacelike, which is con-
sistent with its growing, and exponentially approaches
null at late times. After about t = 160, the simula-
tion cannot distinguish the horizon world tube signa-
ture from null any more. As an example we also show
the determinant as a function of the latitude θ at t ≈ 138,
and the average value of the determinant over the hori-
zon as a function of time. The inner MTT is also space-
like and becomes more and more null at least as long as
we are able to track it reliably.

Figure 17 shows the outer horizon has grown at t =
155 to an irreducible mass of Mirr = 1.80 and an angu-
lar momentum of J = 1.93 (a = 0.55), giving it a total
mass of MH = 1.87. For comparison, the correspond-
ing ADM quantities are MADM = 1.86 and JADM = 1.88
(a = 0.54). Because the spacetime is axially symmet-
ric, gravitational waves cannot carry away angular mo-

mentum. That means that the spin a = J/M2 is ap-
proximately correct at late times. Unlike in the non-
axisymmetric black hole collision discussed earlier, the



19

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 130  140  150  160  170  180  190  200

av
er

ag
e 

of
 d

et
 q

t

Horizon metric determinant

outer horizon
inner horizon

 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.022
 0.024

ππ/20

de
t q

θ

Horizon metric determinant at t=138.24

outer horizon
inner horizon
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tube’s three metric vs. time, and vs. latitude θ at t = 138.24
for the inner and outer horizons for the neutron star collapse.

present case is explicitly axisymmetric and there are no
problems with locating the rotational symmetry vector.

Figure 18 shows the mass quadrupole moment M2

and the angular momentum octopole moment of the
outer and inner MTTs as a function of time. Given that
we know the asymptotic values of the area and angu-
lar momentum of these MTTs (the ADM values), we can
also calculate the expected values of M2 and J3 at late
times. The plots clearly show that the values of M2 and
J3 approach the Kerr values at later times (though this
matching is not exact, presumably due to numerical er-
rors). Also note that M2 is noisy. We have observed such
noise only in simulations that include matter, and we
find that this noise is much improved by using artificial
dissipation on the spacetime variables (which we do).
The angular momentum multipoles seem unaffected.

V. DISCUSSION

In this article, we have applied the dynamical hori-
zon formalism to numerical simulations of black hole
spacetimes. The main theme in this formalism is to
take trapped surfaces seriously as a way of describing
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FIG. 17: The total mass MH ,, and angular momentum J as a
function of time for the outer and inner MTTs for the neutron
star collapse.

black hole physics. Marginally trapped surfaces behave
more regularly that one might have expected previously,
and they are useful for extracting interesting physical
information about the horizon. We have shown how
the mass, angular momentum, multipole moments, and
the flux of energy due to in-falling gravitational radia-
tion of matter can be calculated in a coordinate indepen-
dent way (given a particular time slicing of our space-
time). We have implemented these ideas numerically
and shown three concrete examples. In these examples,
we see how the black hole is formed, how it grows, and
how it settles down to an isolated Kerr black hole. We
have also seen that the dynamical horizon formalism is
valuable for exploring the geometry of the trapped re-
gion. It allows us to classify various types of trapped
surfaces which might appear during the course of a
gravitational collapse or a black hole coalescence. Fi-
nally, these ideas can also be viewed as a set of diag-
nostic tools which allow us to keep track of what is go-
ing on during the course of a numerical simulation, and
whether numerical results make sense and satisfy some
basic, but non-trivial properties in the strong field re-
gion.

Some suggestions for future work:
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i. As mentioned in the text, the calculation of the ax-
ial vector ϕa for non-axisymmetric cases is not yet
satisfactory. We have used the method suggested
in [34] which works well enough at early and late
times, when the horizon is approximately axisym-
metric. However, in general, the result is not guar-
anteed to be divergence free and thus the angu-
lar momentum not guaranteed to be gauge invari-
ant. Furthermore, the resulting ϕa in these situ-
ations may be numerically ill-behaved and may
sometimes have discontinuities. This is particu-
larly problematic for calculating the angular mo-
mentum fluxes in the non-axisymmetric case. The
generalization described in section III B resolves
many of these issues, but requires greater numer-
ical resolution at the horizon because it requires
taking derivatives of the scalar curvature. We have
not yet implemented this satisfactorily, and this is
work in progress.

ii. The accuracy of the numerical examples that we have
shown decreases with time, and this is a common
feature of most present day black hole numerical

simulations. Thus, we have not been conclusively
able to prove that the black hole settles down to
Kerr (though there are strong indications that this
does happen). We have not been able to extract the
rate at which equilibrium is reached, thereby ex-
tending Price’s law (see [77] and e.g. [78]) to more
general situations, but this is, in principle possible
and requires more stable and accurate simulations.
Similarly, we have not been able to accurately cal-
culate the asymptotic value of the black hole mass
M∞. The difference MADM − M∞ is, in principle, a
reliable estimate of the amount of energy radiated
to infinity. While the ADM mass is hard to calcu-
late reliably during the simulation because of the
finite grid and low resolution in the asymptotic re-
gion, it can usually be calculated accurately from
the initial data itself. Calculating M∞ and under-
standing this estimate of the radiated energy re-
quires more accurate and stable runs, applied to
diverse and realistic initial data. The results of [38]
could also be used to study the approach to equi-
librium.

iii. It would be useful numerically to have a gauge con-
dition which ensures that the horizon stays at the
same coordinate location at all times. While such
conditions are not difficult to find in the isolated
case, dynamical situations are harder. Given the
location of an outer MOTS at a particular instant of
time, the results and methods of [33] can be used
to predict the location of the MOTS at the next in-
stant by solving an elliptic equation on the MOTS.
This could be used to construct appropriate gauge
conditions and evolution schemes which take the
horizon geometry into account [45, 79].

iv. The structure of the horizon can be used to con-
struct a wave extraction method. These methods
typically involve starting with a preferred cross-
section of the horizon and flowing it outwards, ei-
ther in the past along a null direction as in [20], or
outward along the Cauchy surface as in [80]. The
radiation is then encoded essentially in the shear
of the outgoing null normal.

v. What happens to the inner horizon of figures 4, 5, and
10? As described in section IV A 3, the eventual
fate of these inner MTTs and the two individual
horizons is not yet known, and would be inter-
esting to investigate further. This requires simu-
lations with higher resolution near the inner hori-
zons, different gauge conditions, and perhaps also
AH trackers capable of handling non-star-shaped
surfaces, and perhaps also higher genus surfaces.

vi. Can the methods of [33] be extended for MOTSs
which are not strictly-stably-outermost? In this re-
gard, it would be interesting to study the stabil-
ity operator LΣ introduced in [33]. For a strictly-
stably-outermost MOTS, the principle eigenvalue
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of LΣ turns out to be strictly positive and this is
an important ingredient in the existence results.
A numerical computation of the eigenvalues of
this operator, especially during the transition be-
tween inner and outer MTTs and for the inner non-
spacelike MTTs might lead to further insights.

vii. Do all the trapped surfaces (for a given time-slicing
of the spacetime) form a single smooth MTT? This
is suggested in [33]. In our examples, this is clearly
true of the two branches of the outer horizon. The
area decreases for the inner horizon and increases
for the outer one. Thus, if we traverse the MTT
outwards, i.e., backwards in time along the inner
horizon and forward on the outer, then the area
is monotonic. Thus, the irreducible mass of ev-
ery cross-section of this MTT is lesser than the
ADM mass, i.e., each of these trapped surfaces
satisfies the Penrose inequality [81, 82, 83]. Simi-
larly, if the scenario described at the end of IV A 3.
above is correct, and the inner horizon splits into
two and merges smoothly with the two individ-
ual horizons, then the area is monotonic on this
whole MTT representing the merger of two black
holes. The Penrose inequality is then valid for
all the MOTSs constituting this MTT. Can this ar-
gument be made more precise, and what are the
limits of its validity? Note that a counterexam-
ple to the Penrose inequality for apparent horizons
was found in [47] which relied on having an inner
horizon with increasing area. This requires a past
marginally trapped surface (Θ(n) > 0, Θ(ℓ) = 0)
and a discontinuous matter distribution.
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[12] J. Libson, J. Massó, E. Seidel, W.-M. Suen, and P. Walker,

Event horizons in numerical relativity: Methods and tests,
Phys. Rev. D 53, 4335 (1996), URL http://link.aps.org/

abstract/PRD/v53/p4335.
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