日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Null-stream veto for two co-located detectors: Implementation issues

MPS-Authors

Ajith,  P.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40525

Hewitson,  Martin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

0604004.pdf
(プレプリント), 253KB

付随資料 (公開)
There is no public supplementary material available
引用

Ajith, P., Hewitson, M., & Heng, I. S. (2006). Null-stream veto for two co-located detectors: Implementation issues. Classical and Quantum Gravity, 23, S741-S749.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-4BE7-B
要旨
Time-series data from multiple gravitational wave (GW) detectors can be linearly combined to form a null-stream, in which all GW information will be cancelled out. This null-stream can be used to distinguish between actual GW triggers and spurious noise transients in a search for GW bursts using a network of detectors. The biggest source of error in the null-stream analysis comes from the fact that the detector data are not perfectly calibrated. In this paper, we present an implementation of the null-stream veto in the simplest network of two co-located detectors. The detectors are assumed to have calibration uncertainties and correlated noise components. We estimate the effect of calibration uncertainties in the null-stream veto analysis and propose a new formulation to overcome this. This new formulation is demonstrated by doing software injections in Gaussian noise.