
Physics Letters B 639 (2006) 378–382

www.elsevier.com/locate/physletb

On AdS5 × S5 string S-matrix

G. Arutyunov a,∗,1, S. Frolov b,1

a Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht, The Netherlands
b Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany

Received 9 June 2006; accepted 28 June 2006

Available online 5 July 2006

Editor: L. Alvarez-Gaumé

Abstract

Recently two interesting conjectures about the string S-matrix on AdS5 × S5 have been made. First, assuming the existence of a Hopf algebra
symmetry Janik derived a functional equation for the dressing factor of the quantum string Bethe ansatz. Second, Hernández and López proposed
an explicit form of 1/

√
λ correction to the dressing factor. In this Letter we show that in the strong coupling expansion Janik’s equation is solved

by the dressing factor up to the order of its validity. This observation provides a strong evidence in favor of a conjectured Hopf algebra symmetry
for strings in AdS5 × S5 as well as the perturbative string S-matrix.
© 2006 Elsevier B.V. All rights reserved.
The S-matrix of the quantum string Bethe ansatz [1] coin-
cides with the S-matrix of the asymptotic N = 4 SYM Bethe
ansatz [2,3] up to a scalar function called the dressing factor. It
appears to be universal for all sectors [4,5]. The leading form
of the dressing factor at large λ was determined by discretizing
the integral equations [6] which describe the spectrum of spin-
ning strings in the scaling limit of [7]. The analysis of one-loop
corrections to energies of spinning strings [8] revealed that the
dressing factor acquires 1/

√
λ corrections [9–11]. The explicit

form of these corrections was then conjectured in [12].
Recently Janik put forward a proposal [13] that a gauged-

fixed string sigma model on a plane exhibits a Hopf alge-
bra symmetry which allows one to derive a set of functional
equations on the dressing factor. The action of the Hopf alge-
bra antipode is an analog of the particle-to-antiparticle trans-
formation in relativistic field theory [14]. Implementing the
antipode action in a given representation of the Lie algebra
su(2|2) ⊕ su(2|2) leads to nontrivial relations for the corre-
sponding S-matrix. These relations are analogous to the cross-
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ing symmetry relations which arise in relativistic integrable
models [15].

The construction of [13] implicitly assumes that the string
sigma model is quantized in a gauge preserving the invari-
ance under the su(2|2)⊕ su(2|2) subalgebra of psu(2,2|4), the
latter being the symmetry algebra of the string sigma model
on AdS5 × S5. The two copies of su(2|2) subalgebra share
the same central element which is the string Hamiltonian in
the gauge chosen. For instance, one can consider the string
sigma model in the temporal gauge t = τ , pφ = J , where pφ

is the canonical momentum conjugate to an angle variable φ of
S5 [16]. Another example is given by the uniform light-cone
gauge x+ = τ and p+ = const [17]. In these type of gauges the
string Lagrangian depends on two parameters, e.g. in the tem-
poral gauge, it depends on the string tension

√
λ and J . For

finite λ and J the gauged-fixed theory is a two-dimensional
model on a cylinder and by this reason the notion of the S-
matrix is not defined. On the other hand, at infinite J with λ

finite the gauge-fixed string sigma model is described by a two-
dimensional field theory on a plane because the J -dependence
of the string Lagrangian can be absorbed into rescaling of
the world-sheet σ -coordinate [18]. The rescaled range of σ is
−πJ � σ � πJ , and in the limit J → ∞ one gets a model
on a plane. The S-matrix for the model can be determined by
using the symmetry algebra (and choosing properly its repre-
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sentation) up to a scalar factor [5]. The functional equations
of [13] might be further used to fix the scalar factor. Different
solutions of the functional equations would correspond to dif-
ferent gauge choices respecting the residual su(2|2) ⊕ su(2|2)

symmetry.
The resulting S-matrix is the main building block to derive a

set of Bethe equations along the lines of Ref. [5]. However, the
following is to be mentioned. First, the Bethe equations aris-
ing in this way are asymptotic and they hardly capture the exact
spectrum of strings at finite J . In fact, additional exponential
corrections of the form e−J/

√
λ, which are due to finite-size ef-

fects, are expected [19]. Second, it is possible that at finite J and
λ the Bethe equations should be abandoned for direct diagonal-
ization of a short-range Hubbard type Hamiltonian [20]. Third,
it is presently unclear if and how the string Bethe equations
turn into the gauge theory asymptotic Bethe equations [3] in
the weak coupling limit λ → 0, J fixed. One of the possibilities
here is that starting at 4-loop order of weak coupling pertur-
bation theory the dressing factor could lead to violation of the
BMN [21] scaling. In this respect we note that the breakdown of
the BMN scaling was indeed observed in the plane-wave matrix
models [22].

In this Letter we analyze the dressing factor taking into ac-
count the 1/

√
λ correction suggested in [12], and show that it

satisfies the functional equation in the large λ limit up to the
second order of perturbation theory. This result can be consid-
ered as a nontrivial test of the both proposals of [12] and [13].

To formulate the string and gauge theory Bethe equations it
is convenient to use the variables x± introduced in [23], which
satisfy the following equation

x+ + λ

16π2x+ − x− − λ

16π2x− = i.

The momentum p of a physical excitation is expressed via x±
as eip = x+

x− .
To study the strong coupling expansion it is useful to rescale

x± as follows

x± →
√

λ

4π
x±.

Then the rescaled x± satisfy the relation

x+ + 1

x+ − x− − 1

x− = i
4π√

λ
= 2iζ,

where we introduced the notation ζ = 2π√
λ

. In fact 1/ζ is equal
to the effective string tension. We choose the following parame-
trization of x± in terms of a unconstrained variable2 x

(1)x±(x) = x

√
1 − ζ 2

(x − 1
x
)2

± iζ
x

x − 1
x

.

The momentum p is related to x through

sin
p

2
= ζ

x − 1
x

,

2 This variable should not be confused with the variable x used in [23].
and the energy of a physical excitation is

e(x) = x + 1
x

x − 1
x

.

An interesting feature of the above formula is that in this para-
metrization the energy does not explicitly depend on the cou-
pling constant ζ . A dependence on the coupling will arise upon
solving the Bethe equations to be discussed below. Also, as we
will see later on, the obvious singularity of these formulae at
x = 1 is related to the branch cut singularity of the perturbative
string S-matrix. It is not difficult to verify that the particle-to-
antiparticle transformation, x± → 1/x±, is just the inversion
x → 1/x

x±(1/x) = 1/x±(x)

and it transforms e(x) to −e(x).
To fix the conventions we write down the Bethe ansatz equa-

tions for rank-one sectors

(2)eipj L =
M∏

k �=j

S(xj , xk).

Here the string S-matrix is given by

(3)S(xj , xk) =
(

x+
j − x−

k

x−
j − x+

k

)s 1 − 1
x+
j x−

k

1 − 1
x−
j x+

k

σ (xj , xk)

and M is a number of excitations (Bethe roots), L = J + s+1
2 M ,

where J is a u(1)-charge, and s = 1,0,−1 for su(2), su(1|1)

and sl(2) sectors respectively. We point out that the S-matrix
describes the scattering of string states in the temporal gauge
t = τ and pφ = J in the limit J → ∞ with λ kept fixed.

Finally, the function σ(xj , xk) appearing in the string
S-matrix is called the dressing factor. Being universal to all
sectors, it cannot be fixed by psu(2,2|4) symmetry and there-
fore is supposed to encode dynamical information about the
model. The dressing factor depends on the coupling constant
λ and, according to the AdS/CFT correspondence, should be
equal to one at λ = 0 to recover the perturbative gauge theory
results. On the other hand, at strong coupling the dressing fac-
tor can be determined by studying the spectrum of string theory
states in the near plane-wave limit or, alternatively, the spec-
trum of semi-classical spinning strings. This analysis leads to
the following structure of the dressing factor σ(j, k)

(4)σ(xj , xk) = eiθ(xj ,xk),

where the dressing phase is a bilinear form3 of local excitation
charges qr

θ(xj , xk) = 1

ζ

∞∑
r=2

∞∑
n=0

cr,r+1+2n(ζ )
(
qr(xj )qr+1+2n(xk)

(5)− qr(xk)qr+1+2n(xj )
)
.

3 This functional form of the dressing factor was found by analyzing the most
general long-range integrable deformations of XXX spin chains [24].
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The local charges are defined as follows

(6)qr(xk) = i

r − 1

((
1

x+
k

)r−1

−
(

1

x−
k

)r−1)
,

and the functions cr,s can be expanded in power series in ζ ,
where the first two terms of this expansion are

(7)cr,s(ζ ) = δr+1,s − ζ
4

π

(r − 1)(s − 1)

(r + s − 2)(s − r)
+ · · · .

Here the leading term was found [1] by discretizing the inte-
gral equations describing the finite-gap solutions of the classical
string sigma-model [6]. The subleading term was recently pro-
posed in [12] by studying the one-loop sigma model corrections
to circular spinning strings. It is worth noting that the expan-
sion for the dressing phase is not strictly speaking an expansion
in ζ because the charges qr have non-trivial dependence on ζ .
Therefore, the strong coupling expansion requires also expand-
ing the charges qr .

The functional equations of [13] were written for the func-
tion S0 which is related to the dressing factor (4) as follows4

(8)S0(xj , xk) = x−
j − x+

k

x+
j − x−

k

1 − 1
x+
j x−

k

1 − 1
x−
j x+

k

σ (xj , xk).

The functional equation to be satisfied by S0 is [13]

(9)S0(xj , xk)S0(1/xj , xk) = f (xj , xk)
−2,

where the function f (xj , xk) is

(10)f (xj , xk) =
1 − 1

x+
j x−

k

1 − 1
x−
j x−

k

x+
j − x+

k

x−
j − x+

k

.

It follows from Eq. (9) that S0 has to satisfy the consistency
condition

S0(xj , xk) = S0(1/xj ,1/xk).

By using this condition one can show that the Bethe equations
are invariant under the particle-to-antiparticle transformation
accompanied by changing the sign of the charge J .

Eq. (9) rewritten for the dressing factor (4) takes the follow-
ing form

(11)σ(xj , xk)σ (1/xj , xk) = h(xj , xk)
2,

where the function h is

(12)h(xj , xk) = x−
k

x+
k

(
1 − 1

x−
j x−

k

)
(x−

j − x+
k )(

1 − 1
x+
j x−

k

)
(x+

j − x+
k )

.

Here h is related to f as follows

h(xj , xk) = x−
k

x+
k

f (xj , xk)
−1.

4 It is worth mentioning that S0 is equal to the S-matrix for the sl(2) sector
(s = −1).
Eq. (11) admits different solutions which should correspond to
string S-matrices in different gauges preserving the SU(2|2) ×
SU(2|2) symmetry. This can be seen, for instance, by compar-
ing the string S-matrices in the temporal [16] and the light-cone
gauges [17,25]. The light-cone Bethe equations [25] have the
same form as Eq. (2) with L = P+ + s+1

2 M , where the light-
cone momentum P+ is defined as P+ = (E+J )/2. One can see
that the temporal and light-cone gauge string S-matrices differ
by dressing factors only; the ratio of the dressing factors satis-
fies Eq. (11) with h = 1.

In spite of an attractive picture of the Hopf algebra symmetry
leading to the tight constraints on the string S-matrix at present
we do not have any firm evidence that this is indeed the case.
Thus, we would like to confront Eq. (11) against the known
leading terms in the asymptotic (strong coupling) expansion of
the dressing factor.

The strong coupling expansion in the parametrization chosen
is simply an expansion in powers of ζ = 2π√

λ
with the variable

x kept fixed. It is more convenient to come to the logarithmic
version of Eq. (11) which reads as

(13)iθ(xj , xk) + iθ(1/xj , xk) = 2 logh(xj , xk).

Then expanding the function logh, we get

2 logh(xj , xk)

= −ζ
4ixk(xk + xj (−2 + xjxk))

(xj − xk)(xj xk − 1)(x2
k − 1)

(14)+ ζ 2
4x2

j x2
k (1 − 4xjxk + x2

j + x2
k + x2

j x2
k )

(x2
j − 1)(x2

k − 1)(xj − xk)2(xj xk − 1)2
+ · · · .

In order to make a comparison of this expansion with the one of
the l.h.s. of Eq. (13) we have first to perform the sums in Eq. (5)
defining the dressing phase. Substituting in Eq. (5) the explicit
form (6) of the charges we see that the dressing phase acquires
the following form

θ(xj , xk) = 1

ζ

[
χ

(
x−
j , x−

k

) − χ
(
x−
j , x+

k

) − χ
(
x+
j , x−

k

)
+ χ

(
x+
j , x+

k

) − χ
(
x−
k , x−

j

) + χ
(
x+
k , x−

j

)
(15)+ χ

(
x−
k , x+

j

) − χ
(
x+
k , x+

j

)]
,

where we have introduced

χ(x, y) = −
∞∑

r=2

∞∑
n=0

cr,r+1+2n(ζ )

(r − 1)(r + 2n)

1

xr−1yr+2n

(16)= χ0 + ζχ1 + · · · .
Using the explicit form of the coefficients cr,s we get for the
leading term

(17)χ0(x, y) = − 1

y
− xy − 1

y
log

(
xy − 1

xy

)
.

Using this formula we develop the expansion of the l.h.s. of (13)
up to the second order in ζ :
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iθ0(xj , xk) + iθ0(1/xj , xk)

(18)= −ζ
4ixk(xk + xj (−2 + xjxk))

(xj − xk)(xj xk − 1)(x2
k − 1)

+O
(
ζ 3).

The expression above literally coincides with the leading term
on the r.h.s. of Eq. (13). Note that the subleading term of order
ζ 2 is absent in this expansion!

Further, performing the sums in the first subleading correc-
tion we get

χ1(x, y) = 1

π

[
log

y − 1

y + 1
log

x − 1
y

x − y
+ Li2

√
y −

√
1
y√

y − √
x

− Li2

√
1
y

+ √
y

√
y − √

x
+ Li2

√
y −

√
1
y√

y + √
x

(19)− Li2

√
y +

√
1
y√

y + √
x

]
.

This formula was obtained under the assumption that |xy| > 1
and Re(

√
x
√

y) > 1. It is then analytically continued to the
complex planes of x and y variables. As the function of two
complex variables it has a rather complicated structure of sin-
gularities, in particular a branch cut singularity at y = 1.

Again substituting this function into the dressing phase and
expanding it up to the second order in ζ we find

iθ1(xj , xk) + iθ1(1/xj , xk)

= 4i
∂2

∂xj ∂xk

(
χ1(xj , xk) − χ1(xk, xj ) + χ1(1/xj , xk)

(20)− χ1(1/xk, xj )
)
δxj δxk,

where

δx = ζ
ix2

x2 − 1
.

Performing the differentiation and combining the logarithmic
terms we obtain the following result

iθ1(xj , xk) + iθ1(1/xj , xk) = i

π
W(xj , xk)δxj δxk,

where

W(xj , xk)

= 4
(1 − 4xjxk + x2

k + x2
j + x2

j x2
k )

(xj − xk)2(1 − xjxk)2

×
(

log
xj − 1

xj + 1
− log

1 − xj

1 + xj

)

− 2(1 + xjxk)√
xjxk(1 − xjxk)2

log
−1 +

√
xk

xj

1 +
√

xk

xj

+ 1 − √
xjxk√

xjxk(1 − √
xjxk)3

log
−xj + √

xjxk

xj + √
xjxk

− 1 + √
xjxk√

x x (1 + √
x x )3

log
xj + √

xjxk

−x + √
x x
j k j k j j k
−
(

2(xj + xk)

(xj − xk)2√xjxk

+ xj (−xk + √
xjxk)

xk(−xj + √
xjxk)3

)

× log
1 + √

xjxk

−1 + √
xjxk

− xj (xk + √
xjxk)

xk(xj + √
xjxk)3

(21)× log
−1 + √

xjxk

1 + √
xjxk

.

Note a non-trivial cancellation of all the terms which do not
involve logarithms. The expression for W(xj , xk) can be further
simplified to produce the following result:

W(xj , xk)

= 4
(1 − 4xjxk + x2

k + x2
j + x2

j x2
k )

(xj − xk)2(1 − xjxk)2

×
(

log
xj − 1

xj + 1
− log

1 − xj

1 + xj

)

(22)= 4πi
(1 − 4xjxk + x2

k + x2
j + x2

j x2
k )

(xj − xk)2(1 − xjxk)2
,

where we used the principle branch of log. Thus, we finally
arrive at

iθ1(xj , xk) + iθ1(1/xj , xk)

(23)= −4
(1 − 4xjxk + x2

k + x2
j + x2

j x2
k )

(xj − xk)2(1 − xjxk)2
δxiδxj .

One can now recognize that this expression perfectly matches
the ζ 2 term in the r.h.s. of Eq. (13). It is interesting to note that
if we would drop all Li2-functions in Eq. (19) keeping only the
logarithms we would still satisfy Eq. (13) at order ζ 2. However,
dilogarithmic functions are necessary for the dressing phase to
be expandable in Taylor series in local excitation charges. This
is clearly related to yet to be understood analytic properties of
the dressing phase.

To summarize, we have found that the perturbative string
S-matrix satisfies the equation (11) on the dressing factor aris-
ing upon requiring the existence of the Hopf algebra structure
up to two leading orders in the strong coupling expansion.

There are many open interesting questions. First of all it
is unclear what additional (analyticity) conditions one should
impose to restrict the space of solutions of the functional equa-
tion [13]. Second, one would like to understand how the repre-
sentation used in [5] to derive the S-matrix from the symmetry
algebra might appear by quantizing string theory in a particular
gauge. In particular, one should be able to recover the central
charges introduced in [5] in the symmetry algebra of gauge-
fixed string theory. The derivation of [13] was based on the
existence of a Hopf algebra structure of gauge-fixed string the-
ory. It is important to find an origin of the structure in string
theory. Finally, it would be interesting to establish a connection
of the approach used in [5,13] to that of [26].
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