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Nonlinear perturbations of the Kaluza-Klein monopole
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We consider the nonlinear stability of the Kaluza-Klein monopole viewed as the static solution of
the five dimensional vacuum Einstein equations. Using both numerical and analytical methods we
give evidence that the Kaluza-Klein monopole is asymptotically stable within the cohomogeneity-
two biaxial Bianchi IX ansatz recently introduced in [3]. We also show that for sufficiently large
perturbations the Kaluza-Klein monopole loses stability and collapses to a Kaluza-Klein black hole.
The relevance of our results for the stability of BPS states in M/String theory is briefly discussed.

INTRODUCTION

The Taub-NUT instanton is the complete Riemannian
Ricci-flat 4-manifold with the metric [1]

ds2 =

(

1 +
m

ρ

)

dρ2 +

(

1 +
m

ρ

)

ρ2(dθ2 + sin2 θdφ2)

+m2

(

1 +
m

ρ

)

−1

(dψ + cos θdφ)2 , (1)

where ρ ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π and
m > 0 is a free parameter which sets the scale. The Taub-
NUT instanton is topologically R4 with the surfaces of
constant ρ being the squashed three-spheres. Although
complete, the metric (1) is not asymptotically Euclidean
because the S1 fibers approach a constant circumference
at infinity (rather than growing like ρ). This kind of
asymptotic behavior is called asymptotically locally flat.

By adding the trivial term −dt2 one obtains from (1)
the regular static solution of the five dimensional vacuum
Einstein equations

ds2 =−dt2+

(

1 +
m

ρ

)

dρ2+

(

1 +
m

ρ

)

ρ2(dθ2 + sin2 θdφ2)

+m2

(

1 +
m

ρ

)

−1

(dψ + cos θdφ)2 . (2)

This metric has been used in the past to obtain the four-
dimensional magnetic monopole via a Kaluza-Klein re-
duction along the coordinate ψ [2] and since then it is
usually called the Kaluza-Klein (KK) monopole. To the
best of our knowledge, the role of the KK monopole in
the dynamics of non-asymptotically flat initial data, and
in particular its nonlinear stability, has not been stud-
ied, probably because this problem appeared to require
an analysis of the full five dimensional Einstein equations
which is beyond currently available numerical tools, let
alone the analytic ones. This situation has changed re-
cently with the introduction of a new cohomogeneity-two
symmetry reduction of the five dimensional vacuum Ein-
stein equations (referred to below as the BCS ansatz [3])
which provided a framework for investigating the dynam-
ics in a simple 1 + 1 dimensional setting. Since the KK

monopole falls within the BCS ansatz, the question of
its nonlinear stability now becomes tractable and is the
subject of this paper.

The KK monopole plays an important role in M/String
theory. For example, its metric product with six flat Eu-
clidean dimensions gives a Ricci-flat eleven dimensional
Lorentzian metric, which when reduced to ten spacetime
dimensions may be interpreted as a D6-brane solution of
Type IIA String theory [4]. As such, it is an example of
what is called a supersymmetric or BPS solution. BPS
solutions of supergravity theories are widely believed by
many string theorists to be absolutely stable, both classi-
cally and quantum mechanically. However until now, this
belief has never been tested in a fully non-linear setting.
As we shall see, our results show that the classical stablity
is not absolute since for sufficiently large perturbations a
gravitational collapse to a black hole is possible. The im-
plications of our results for BPS states will be discussed
briefly in the conclusions.

PRELIMINARIES

The BCS ansatz has the form [3]

ds2 = −Ae−2δdt2 +A−1dr2 + 1
4
r2e2B(dθ2 + sin2 θdφ2)

+ 1
4
r2e−4B(dψ + cos θdφ)2 , (3)

where A, δ, and B are functions of t and r. In contrast
to spherical symmetry, this ansatz possesses a dynami-
cal degree of freedom, the field B, which measures the
deformation of sphericity of the angular part of the met-
ric. Substituting the metric (3) into the vacuum Einstein
equations one gets the following system of equations

A′ = −2A

r
+

2

3r

(

4e−2B−e−8B
)

−2r
(

e2δA−1Ḃ2+AB′2
)

(4a)

Ȧ = −4rAḂB′ , (4b)

δ′ = −2r
(

e2δA−2Ḃ2 +B′2
)

, (4c)

(

eδA−1r3Ḃ
)

·

−
(

e−δAr3B′
)′

+
4

3
e−δr

(

e−2B − e−8B
)

= 0 ,

(4d)
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where primes and dots denote derivatives with respect to
r and t, respectively. The initial value problem for this
system was investigated in [3] in the case of asymptot-
ically flat initial data. Here we consider asymptotically
locally flat solutions.

The KK monopole (2) expressed in terms of the ansatz
(3) takes the form

B0 =
1

3
ln

(

1 +
ρ

m

)

, A0 =
(1 +

4ρ

3m
)2

(1 +
ρ

m
)8/3

, e2δ0 = A0 , (5)

where

r = 2m1/2ρ1/2
(

1 +
ρ

m

)1/6

. (6)

Note that scaling invariance excludes the existence of
nontrivial solutions which are everywhere regular and

asymptotically flat. The KK monopole is the unique non-
trivial regular static solution of the system (4). To see
this note that static solutions which are analytic at the
origin form a one-parameter family with the following
asymptotic behavior for r → 0

B(r) ∼ br2, A(r) ∼ 1 − 4b2r4, δ ∼ −2b2r4 , (7)

where b is the shooting parameter. Since the system (4)
is scale invariant, it follows from the uniqueness of solu-
tions of ordinary differential equations that, up to scaling,
there is only one static solution which is analytic at the
origin. It is easy to verify that the solution (5) satisfies
the regularity conditions (7) with b = 1/(12m2). For
convenience, hereafter we choose units in which m = 1.

LINEAR STABILITY

Before discussing numerical results, we first demon-
strate that the KK monopole is linearly stable within our
ansatz. To this end, following the standard procedure we
seek solutions of the system (4) in the form

B(t, r) = B0(ρ) +B1(t, ρ), A(t, r) = A0(ρ) +A1(t, ρ),

δ(t, r) = δ0(ρ) + δ1(t, ρ) , (8)

where ρ is a function of r determined implicitly by (6).
Substituting the expansion (8) into the system (4), lin-
earizing and separating the time dependence B1(t, ρ) =
exp(−iλt)vλ(ρ), after a straightforward but tedious cal-
culation we get the eigenvalue equation for the spectrum
of small perturbations around the KK monopole

Avλ = λ2vλ, (9)

A = − 1

ρ(1 + ρ)

d

dρ

(

ρ2 d

dρ

)

+
18

ρ(1 + ρ)(3 + 4ρ)2
.

Although this equation cannot be solved analytically in
general, there is an explicit solution for λ = 0

v0 =
ρ

3 + 4ρ
. (10)

This is the zero mode corresponding to the scaling free-
dom - it can be obtained by the action of the scaling
generator r d

dr onB0(ρ(r)). The zero mode (10) has no ze-
ros which implies by the standard Sturm-Liouville theory
that the operator A has no negative eigenvalues. Thus,
the KK monopole is linearly stable within our ansatz.
Note that the zero mode is not a genuine eigenfunction
because it is not square integrable. More precisely, on the
Hilbert space L2 ([0,∞), ρ(1 + ρ)dρ) the self-adjoint op-
erator A has the purely continuous spectrum λ2 ∈ [0,∞).

Nota bene, the Taub-NUT instanton (1) is known to be
linearly stable against transverse traceless perturbations.
This follows from the work of Hawking and Pope [5], who
showed, using two linearly independent covariantly con-
stant spinors which the Taub-NUT metric admits, that
the spectrum of the Lichnerowicz operator, which gov-
erns the linearized transverse traceless perturbations, is
the same (apart from zero modes) as for the scalar Lapla-
cian, and therefore non-negative.

NUMERICAL RESULTS

Using a fourth-order accurate finite difference code we
have solved the system (4) numerically for several families
of regular initial data which represent various perturba-
tions of the KK monopole. The overall picture does not
depend on the specific choice of a family. The results
shown below were produced for initial data of the form
(using the momentum variable P = eδA−1Ḃ)

B(0, r) = B0(ρ(r)), P (0, r) = p
( r

R

)4

e−
(r−R)4

s4 , (11)

where the amplitude p was varied and the parameters R
and s were kept fixed. Note that although the perturba-
tion (11) is exponentially localized, the induced pertur-
bation of the function A has a 1/r2 tail as follows from
the hamiltonian constraint (4a).

Small perturbations

We have found that for small perturbations, that is for
small values of the control parameter p, the perturba-
tion is scattered off to infinity and the solution returns
to equilibrium, i.e., it settles down to the KK monopole
with the same parameter m. This is shown in Fig. 1.
One might wonder why the parameterm does not change
under perturbation. The reason is simple: the perturba-
tions considered by us have finite energy while a change of
m would require infinite energy. Here by energy we mean
the energy measured with respect to a given KK refer-
ence background as described by Deser and Soldate [6].
This energy is determined by the next to leading order
term in the asymptotic expansion at spatial infinity.

The qualitative picture of pointwise convergence to the
KK monopole is shown in Fig. 2. The details of this
process, in particular the role of quasinormal modes and
the rate of decay of a tail, will be pursued elsewhere.

We have found that a sufficiently strong kick may
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FIG. 1: Asymptotic stability of the Kaluza-Klein monopole.
For initial data (11) with a small amplitude (p = 0.1, R =
3, s = 1) we plot a series of snapshots of the function B(t, r)
(where t is central proper time). The dashed line shows the
unperturbed KK monopole. During the evolution the excess
energy of the perturbation is clearly seen to be radiated away
to infinity and the solution returns to equilibrium.
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FIG. 2: The convergence to the Kaluza-Klein monopole. For
the same initial data as in Fig. 1 we plot the time series
ln |P (t, r0)| at r0 = 2. The asymptotic power-law tail is seen
at late times.

destabilize the KK monopole. In order to understand
what is the fate of a strongly perturbed KK monopole
we need to make a digression.

Kaluza-Klein black holes

The KK monopole (2) is in fact a special case of the
two-parameter family of solutions of the vacuum Einstein

equations in five dimensions [7]

ds2 = − ρ

∆
dt2 +

Σ

ρ
dρ2 + ∆Σ(dθ2 + sin2 θdφ2)

+4P 2
∆

Σ
(dψ + cos θdφ)2 , (12)

where

∆ = ρ+3M−
√

M2 + 2P 2, Σ = ρ+M+
√

M2 + 2P 2.

Here ρ ≥ 0, the parameter M is positive and the pa-
rameter P (usually called the magnetic charge) has the
range 0 < P ≤ 2M . For P < 2M the metric (12) has the
regular horizon at ρ = 0, so after [7] we shall refer to this
solution as the Kaluza-Klein black hole. For P = 2M ,
the horizon degenerates to a point and one gets the KK
monopole (2) with m = 4M .

Translating (12) into the ansatz (3) we obtain

B =
1

3
ln

(

Σ

2P

)

, A =
ρr2(3Σ + ∆)2

36∆2Σ3
, e2δ =

∆

ρ
A , (13)

where

r = 42/3P 1/3Σ1/6∆1/2 . (14)

Note that the leading order asymptotic behavior for large
r does not depend on M and is determined only by P

A ∼ 43P

9r
, e2B ∼ r

4P
. (15)

Although the KK black holes are known in closed form,
for our purposes it is helpful to look at them from the
viewpoint of the shooting procedure. Assuming that
there is a non-degenerate horizon at r = rH , we obtain
from (4) the following behavior

B(r) ∼ β +
2(e−2β − e−8β)

4e−2β − e−8β

(

r

rH
− 1

)

,

A(r) ∼ 2

3
(4e−2β − e−8β)

(

r

rH
− 1

)

, (16)

hence for each rH > 0 there is a one-parameter family
of local solutions with a regular horizon parametrized by
β = B(rH) > 0. Shooting these local solutions towards
infinity we get the KK black holes (13) where

β =
1

3
ln
M +

√
M2 + 2P 2

2P
, (17)

r6H = 44P 2(M +
√

M2 + 2P 2)(3M −
√

M2 + 2P 2)3 .

Large perturbations

Now, we return to the discussion of numerical results.
We have found that for sufficiently large perturbations
the inner part of the KK monopole collapses and a hori-
zon forms at some r = rH > 0. Outside the horizon the
solution settles down to the KK black hole (see Fig. 3).



4

As we pointed out above, the perturbations considered
by us have finite energy and therefore they do not change
the leading order asymptotic behavior (15). In this sense
the magnetic charge P can be viewed as the constant of
motion. For the KK monopole P = 2M = m/2, so all our
configurations have the same magnetic charge P = 1/2
(recall that we use units in which m = 1) and the end-
states of evolution differ only by M .
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FIG. 3: Instability of the Kaluza-Klein monopole for large
perturbations. For initial data (11) with a large amplitude
(p = 0.3, R = 3, s = 1) we plot a series of snapshots of the
function A(t, r) (where t is central proper time). During the
evolution A(t, r) drops to zero at r = rH ≈ 1.68 which signals
the formation of an apparent horizon there. Outside the hori-
zon the solution relaxes to the Kaluza-Klein black hole (13)
(shown by the dashed line) with M = 0.502.

As we approach the threshold of collapse from above,
the parameter M decreases towards the limiting value
M = 1/4 corresponding to the KK monopole. At the
same time, as follows from (17), both β and rH tend
to zero. In this limit, close to the horizon the KK black
hole is very well approximated by the Schwarzschild black
hole. Near the threshold we observe the type II discretely
self-similar critical behavior governed by the same critical
solution as in the asymptotically flat situation [3] (see
Fig. 4). This is not surprising in view of the fact that
critical collapse is a local phenomenon, and, as such, does
not depend on the far field behavior.

CONCLUSIONS

We have shown that although it is classically stable
against small perturbations, the KK monopole is clas-
sically unstable against perturbations which are large
enough to allow gravitational collapse to form a black
hole. Classically, the black hole is probably stable. Quan-
tum mechanically one expects it to emit Hawking radia-
tion which can carry off energy but not magnetic charge.
In the long run therefore one might expect the system
to settle down to the original KK monopole. If this is
so, then the common intuition about BPS states would

be correct, provided one bears in mind that the stability
can only hold by virtue of quantum mechanical effects.
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FIG. 4: Critical behavior. For supercritical solutions we plot
the horizon radius vs. the distance to the threshold on the log-
log scale. The fit of the power law ln(rH) = (γ/2) ln(p−p∗)+
const yields γ ≈ 0.33 which agrees (up to numerical errors)
with the critical exponent obtained in [3]. The echoing period
∆ ≈ 0.47 (read off from the period of wiggles around the linear
fit above and computed independently from the spatial shift
between the echoes) is also the same.

Finally, we remark that, besides the KK monopole, the
BCS ansatz incorporates other non-asymptotically flat
solutions. In particular, an exact regular time dependent
solution is known [8]

ds2 =−dt2+
(

t

m
+
m

ρ

)

dρ2+

(

t

m
+
m

ρ

)

ρ2(dθ2 + sin2 θdφ2)

+m2

(

t

m
+
m

ρ

)

−1

(dψ + cos θdφ)2 . (18)

This solution can be viewed as the time evolving KK
monopole whose S1 fibers pinch off to a point for t →
∞. It would be interesting to determine the role of this
solution in dynamics.
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