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Finite di�erene shemes for seond order systems desribing blak holesMohammad Motamed1,2, M. Babiu2,3, B. Szilágyi2, H-O. Kreiss1,2, and J. Winiour2,3
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2Albert Einstein Institute, Max Plank Gesellshaft, Am Mühlenberg 1, D-14476 Golm, Germany

3Department of Physis and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260(Dated: Mar. 19)In the harmoni desription of general relativity, the priniple part of Einstein's equations reduesto 10 urved spae wave equations for the omponents of the spae-time metri. We present theoremsregarding the stability of several evolution-boundary algorithms for suh equations when treated inseond order di�erential form. The theorems apply to a model blak hole spae-time onsistingof a spaelike inner boundary exising the singularity, a timelike outer boundary and a horizonin between. These algorithms are implemented as stable, onvergent numerial odes and theirperformane is ompared in a 2-dimensional exision problem.PACS numbers: 04.25.Dm, 04.20.Ex, 04.30.Db, 95.30.LzI. INTRODUCTIONA primary goal of numerial relativity is the omputation of gravitational radiation waveforms from binary blakholes. Radiation produed in the inspiral and merger of binary blak holes is expeted to provide a strong signal forgravitational wave observatories. However, the simulation of blak holes has proved to be a di�ult omputationalproblem. The importane of this hallenging problem has reently spurred a fertile interation between numerialrelativity and omputational mathematis. The lassi omputational treatment of hyperboli systems has beendireted at �uid dynamis and has been based upon �rst di�erential order systems. Certain formulations of Einstein'sequations take a more natural seond order form, notably the harmoni formulation [1, 2℄ for whih well-posedness ofthe Cauhy problem was �rst established [3℄. Here we present theorems regarding the stability of several evolution-boundary algorithms for suh seond order systems whih have diret appliation to the blak hole problem.Harmoni oordinates xα = (t, xi) = (t, x, y, z) have only reently been used in designing numerial odes [4, 5, 6,7, 8, 9, 10, 11, 12℄. They satisfy the urved spae wave equation
2gx

µ :=
1√−g

∂α(
√−ggαβ∂β xµ) = 0. (1.1)In harmoni oordinates, Einstein's equations redue to 10 quasilinear wave equations for the omponents of themetri,

2gg
µν = Sµν , (1.2)where Sµν are nonlinear terms whih do not enter the priniple part. Thus the salar wave equation

gαβ∂α∂βu = 0, (1.3)whih has the same priniple part, provides a fundamental testing ground for designing algorithms to treat thenonlinear gravitational problem (1.2). In a previous study [13℄, we used this salar equation to develop evolution andboundary algorithms for a model one dimensional blak hole exision problem. Here we extend these results to twodimensions. While the extension to 2D involves substantial new features, the generalization from 2D to 3D is quitestraightforward. Thus our results are immediately appliable to algorithms for the harmoni gravitational equations(1.2), as well as their generalization to inlude harmoni gauge foring terms [14℄ and other related generalizationssuh as the Z4 formulation [15℄.We treat (1.3) in the seond order di�erential form, whih has advantages for both omputational e�ieny andauray over �rst order formulations [16, 17℄. Although the system an be redued to �rst order symmetri hyperboliform [18℄, this has the disadvantage of introduing auxiliary variables with their assoiated onstraints and boundaryonditions. The seond order form is also best suited to the analogous wave equations governing elastiity andaoustis. Elastiity theory is governed by a oupled system of wave equations whih for simple ases is similar to(1.3), in whih the spatial omponents gij are determined by the elasti moduli. In fat, some of the tehniques utilizedhere have been developed in a reent omputational study of the wave equations governing an elasti body [19℄. Thenew ingredient introdued in the wave equation (1.3) arises from the non-vanishing mixed spae-time derivativesarising from the omponents git. Suh terms do not ordinarily appear in the wave equations governing elastiity



2theory beause they are treated in the rest frame of the body but they would neessarily arise in treating aoustiwaves propagating in a medium with nonuniform marosopi motion. In general relativity, these mixed spae-timeomponents of the metri orrespond to a non-vanishing �shift�, whih is an essential feature of the blak hole problem.In the standard 3+1 desription of spae-time [20℄, the Cauhy hypersurfaes t = constant are required to be spaelikeso that they have a length element with Eulidean signature
dℓ2 = hijdxidxj . (1.4)The inverse spatial metri hij , satisfying hijhjk = δi
k, is related to the spatial omponents of the 4-metri determiningthe wave operator by

hij = gij − 1

gtt
βiβj , (1.5)where βi are the omponents of the shift. Here, the spaelike harater of the Cauhy hypersurfaes requires that

gtt < 0.The wave equation with shift has not reeived a great deal of attention outside of reent work in general relativity [6,10, 13, 21, 22, 23℄. Even before the omputational problem is attempted, new mathematial features introdued bythe shift must be inorporated into the formulation of a well-posed initial-boundary value problem. The operator
hij∂i∂j is by onstrution an ellipti operator de�ned by the spatial metri of the Cauhy hypersurfaes. However,the operator gij∂i∂j is ellipti only when the shift is su�iently small. The ellipti ase arises when the operator ∂tis timelike, i.e. when the evolution proeeds in a timelike (subluminal) spaetime diretion.Without loss of generality, we set gtt = −1 and write the 2D version of (1.3) as

(

∂2
t − 2(βx∂x + βy∂y)∂t − (a1 − βxβx)∂2

x − (c1 − βyβy)∂2
y − 2(b1 − βxβy)∂x∂y

)

u = 0, (1.6)where hxx = a1, hxy = b1 and hyy = c1 . The Eulidean property of hij requires
a1 > 0 , c1 > 0 , a1c1 − b2

1 > 0. (1.7)The omponents of gij are gxx = a = a1 − βxβx, gyy = c = c1 − βyβy and gxy = b = b1 − βxβy. In the subluminalase when gij∂i∂j is an ellipti operator, the simplest seond order aurate di�erene approximation to (1.6) is
W :=

(

∂2
t − 2(βxD0x + βyD0y)∂t − aD+xD−x − cD+yD−y − 2bD0xD0y

)

u = 0. (1.8)(Here D0i, D+i and D−i are, respetively, the entered, forward and bakward di�erene operators in the xi-diretionde�ned in Se. III). This leads to stable evolution-boundary algorithms for Dirihlet, Neumann, Sommerfeld or otherdissipative boundary onditions. Stability was established for the 1D ase using a semi-disrete energy norm in [13℄,and this was generalized using the disrete energy method to the full 3D ase in [10, 12℄.The W -algorithm (1.8) is unstable when the shift is su�iently large so that gii ≤ 0 (for any diagonal omponent).This ours in one of the strategies for avoiding problems with the singularity whih ultimately forms inside a blakhole. In this strategy, the singularity is �exised� by surrounding it with a spaelike inner boundary. The evolutiondiretion whih is adopted to this spaelike boundary is superluminal, so that gij no longer has Eulidean signature. InSe. III, we establish the stability of several di�erent seond order, evolution-boundary algorithms for this superluminalase. For the Cauhy problem, we establish stability for a general system of wave equations in s spatial dimensionsso that the results may be immediately applied to other seond order systems suh as elastiity theory or aoustis.For the boundary, we speialize our treatment to salar equations in 2D in order to simplify the notation, but theextension to general systems in sD is straightforward. In partiular, our results apply diretly to the 3D harmonievolution of blak holes.The analysis of the initial-boundary problem for (1.6) in Se. III makes evident that the above geometri propertiesof the wave equation have a mathematial analogue whih results independently from a onsideration of the well-posedness of the problem. The geometrial and analytial approahes are omplementary and provide a good meetingground for the ideas of numerial relativity and omputational mathematis. While the main onern of numerialrelativity is the blak hole problem, the stability theorems for the �nite di�erene algorithms developed for the modelproblems onsidered here provide a �rm basis for attaking this problem with the harmoni Einstein system (1.2).In Se. IV, we ompare the performane of the algorithms for the superluminal ase in a problem without boundaries.In Se. V, we simulate a simple 2D model of the exision problem in whih the inner boundary S is spaelike and theouter boundary T is timelike. Between the boundaries the operator gij∂i∂j goes from non-ellipti to ellipti along a



3urve H where det(gij) = 0. The metri is hosen so that no harateristis an leave the inner region between S and
H, so that H mimis the role of a horizon. The global simulation of (1.6) in the region bounded by T and S is ahievedwith a blended evolution algorithm. A stable superluminal algorithm is used in an inner region between S and H.In the exterior region, this superluminal algorithm is blended to the W -algorithm (1.8), so that the W -algorithm isused to treat the outer boundary T . This model exision problem involves many of the mathematial di�ulties inthe full gravitational ase. We begin in Se. II with some simple examples whih illustrate the problem, its potentialpitfalls and how to avoid them.II. SOME SUBTLETIES ASSOCIATED WITH THE WAVE EQUATION WITH SHIFTIn an inertial oordinate system x̂α = (t̂, x̂i) (in units where the veloity of light c = 1), the wave equation whihgoverns speial relativisti physis,

(

∂2

t̂
− δij∂î∂ĵ

)

u = 0, (2.1)does not ontain a shift. The invariane of the veloity of light results from the property that this wave equationretains the same form (2.1) under a Lorentz transformation,
t′ =

1
√

1 − β2
(t̂ − δijβ

ix̂j)

x′i =
1

√

1 − β2
(x̂i − βi t̂)

β2 = δklβ
kβl, (2.2)to another inertial oordinate system with relative motion. In this way speial relativity resolves the dilemma withexperiment that under a Galilean transformation,

t = t̂

xi = (x̂i − βi t̂), (2.3)(2.1) gives rise to the shifted wave equation
(

∂2
t − 2βi∂i − (δij − βiβj)∂i∂j

)

u = 0 (2.4)whose solutions propagate with oordinate speeds in the range |1±β| (where β2 = δijβ
iβj). This raises the question:why does the wave equation with shift arise in general relativity?In fat, although there are no preferred inertial oordinates in general relativity, in any su�iently small spaetimeregion it is always possible to introdue Gaussian oordinates in whih the wave equation (1.3) redues to the shift-freeform

(∂2
t − hij∂i∂j)u = 0. (2.5)The problem here is that in Gaussian oordinates the worldlines xi = constant are geodesis, i.e. the worldlines offreely falling observers, whih an be foused by the attrative nature of gravity to produe oordinate singularities.This an our on a short time sale in a strong gravitational �eld.Another reason for introduing a shift is the simpliity of harmoni oordinates in reduing Einstein's equationsinto the hyperboli form (1.2). Sine the shift omponents git satisfy a oupled system of nonlinear wave equations,even if they were initialized with vanishing Cauhy data they would in general evolve to be non-zero. This annotbe avoided by introduing a harmoni gauge foring term, of the form 2xα = Fα, without hoosing the foring term

Fα to depend upon the derivatives of the metri ∂µgαβ. This in turn jeopardizes the hyperboli form of the reduedEinstein equations and the well-posedness of the Cauhy problem [14℄.Another reason for introduing a shift arises in the simulation of blak holes. One a blak hole of mass M hasformed there is at most a proper time of order M (in gravitational units) until a physial singularity is enountered.On the other hand, a simulation whih provides gravitational waveforms of physial interest typially requires anevolution for a proper time of more than 100M in the exterior region. One strategy for aomplishing this is to exise



4the singularity by surrounding it with a spaelike inner boundary for the simulation domain, i.e. an inner boundarywhih moves at superluminal speed. If the evolution traks the inner boundary then a superluminal shift must beused.This an be illustrated by a spherially symmetri Shwarzshild blak hole for whih the wave equation (1.3)beomes
(

(1 +
2M

r
)∂2

t − 4M

r
∂t∂r − (1 − 2M

r
)∂2

r − 1

r2
(∂2

θ +
1

sin2 θ
∂2

φ)

)

u = 0, (2.6)in ingoing Eddington-Finkelstein oordinates. Here the evolution takes plae on the spaelike Cauhy hypersurfaes
t = const whih are non-singular for r > 0. The blak hole is loated at r = 2M , whih is a harateristi hypersurfaewith the horizon property that no harateristis leave the region r ≤ 2M . The singularity is exised by evolving ina domain R1 ≤ r ≤ R2, where 0 < R1 < 2M and R2 >> 2M . The shift has the radial omponent

βr =
1

1 + r
2M

> 0. (2.7)The hange in sign of the oe�ient of ∂2
r in passing inside the horizon does not hange the hyperboliity of the waveequation but it hanges its mathematial properties. Outside the horizon, the urves of onstant (r, θ, φ) are timelike,as well as the outer boundary r = R2. In the outer region 2M < r ≤ R2, the W -algorithm (1.8) provides a stableseond order evolution-boundary algorithm for the wave equation [10, 12, 13℄.Inside the horizon, the t-diretion, as well as the inner boundary r = R1 is spaelike, i.e. evolution on a grid withonstant (r, θ, φ) proeeds outside the light one. This e�ets the mathematial properties of the wave equation. Asa result, in this domain, the W -algorithm is unstable. The alternative algorithms presented in Se. III are stableinside the horizon. But the W -algorithm has better auray than these algorithms in the exterior region [10℄. In thesimulation of the model exision problem in Se. V, a stable algorithm for the superluminal regime is blended to the

W -algorithm in the exterior.The Shwarzshild horizon has the property that harateristis an not exit from inside, but an enter from theoutside. Near the horizon, the radial part of Shwarzshild wave equation (2.6) has the same qualitative features asthe wave equation
(∂t − ∂x)(∂t + x∂x)u = 0, (2.8)whih has a horizon x = 0. One set of harateristis of (2.8) ross the horizon at x = 0 in the negative x-diretion.The other set of harateristis are tangent to the horizon and diverge away on either side. An observer at x > 0annot see beyond the horizon at x = 0. This is the situation whih we dealt with in a model 1D exision problem [13℄whose treatment we generalize to 2D in Se. V. However, it should be emphasized that the related equation
(∂t − ∂x)(∂t − x∂x)u = 0 (2.9)has a di�erent mathematial harater. Although (2.9) is also hyperboli and has a well-posed Cauhy problem, oneset of harateristis onverge toward the horizon at x = 0. These harateristis approah eah other exponentiallyfast and, in general, the gradients beome exponentially large near x = 0. This would lead to the fousing of a waveinto formation of a shok. Although we do not treat this ase in this paper, it is important to bear in mind that itwould require di�erent methods.Boundaries introdue additional subtleties. First onsider a timelike boundary, similar to the outer boundary

r = R2 > 2M for the Shwarzshild wave equation (2.6). Sine the evolution is timelike in the neighborhood of theboundary, the W -algorithm an be used. The stability of dissipative boundary onditions for the W -algorithm wasestablished for 1D in [13℄ and extended to 3D in [12℄ by means of a semi-disrete energy method. However, suhan energy estimate does not prelude exponential growth of a wave traveling between two boundaries. A simpleexample [7℄ arises from the repetitive blue shifting of a wave paket in speial relativity re�eting bak and forthbetween two plane boundaries, whose veloities ±v are ontrolled to be always toward the paket during re�etion.After many re�etions the wave paket shrinks in size and its energy grows by a fator e4αT , where T is measuredin units of the rossing-time between re�etions and v = tanhα. Dissipation must be used to ontrol suh growth ofshort wavelength error.It is instrutive to interpret the boundary onditions on a wave in speial relativity in the shifted oordinate system(2.3) where the boundary has �xed loation but moves relative to the t = const Cauhy hypersurfaes. In the 1Dase, this gives rise to the half-plane problem
(

∂2
t − 2β∂x∂t − (1 − β2)∂2

x

)

u = 0, (2.10)



5in the region x ≤ 0 (where we now write βx = β). There are two di�erent frames in whih the energy of the wave anbe onsidered - the rest frame of the boundary and the rest frame intrinsi to the Cauhy hypersurfaes. In the restframe of the boundary, the energy is
E =

1

2

∫ 0

−∞

dx

(

(∂tu)2 + (1 − β2)(∂xu)2
) (2.11)and satis�es

∂tE = ∂tu

(

(1 − β2)∂x + β∂t

)

u|x=0. (2.12)In the ase β2 < 1, this energy provides a norm and the semi-disrete version of the �ux-onservation law ( 2.12)provides the basis for establishing stable evolution-boundary algorithms for the W -algorithm (1.8). Note the signof β is important here in formulating a stable Neumann boundary ondition. A homogeneous Neumann boundaryondition takes the dissipative form
(

(1 − β2)∂x + β∂t

)

u = 0. (2.13)The familiar form ∂xu = 0 implies ∂tE ≤ 0 and thus guarantees a well-posed problem only when β > 0, i.e. onlywhen the motion of the boundary is outward relative to the Cauhy hypersurfaes.The energy intrinsi to the Cauhy hypersurfaes,
E0 =

1

2

∫ 0

−∞

dx

(

(∂tu − β∂xu)2 + (∂xu)2
)

, (2.14)provides a norm even in the superluminal ase when β2 > 1. It satis�es
∂tE0 =

(

β

2
(∂tu − β∂xu)2 +

β

2
(∂xu)2 + (∂tu − β∂xu)∂xu

)

|x=0. (2.15)Thus, in the absene of a boundary, (2.15) would redue to ∂tE0 = 0 so that the Cauhy problem is well-posed forany β. The energy analogous to E0 is used in Se. III to establish well-posedness of the Cauhy problem and thestability of superluminal algorithms in the general multi-dimensional ase.When β < −1, i.e. when the motion of the boundary is superluminal and direted toward the Cauhy hypersurfaes,it is easy to verify that (2.15) implies ∂tE0 < 0 so that there is always a loss of energy through the boundary. Thisis the ase of a spaelike boundary through whih all the harateristis leave, i.e. a pure �out�ow� boundary.Stable algorithms for suh a boundary are also given in Se. III for the higher dimensional ase. Note that for
β > 1 the boundary is also spaelike but now (2.15) implies ∂tE0 > 0. This is the pure �in�ow� ase, in whih all theharateristis enter the boundary. This should not be onsidered in the ontext of an initial-boundary value problem,but as a pure Cauhy problem where the boundary represents a non-smooth extension of the Cauhy hypersurfae.Further subtleties arise in treating o-orbiting, binary blak holes. One strategy for the binary problem is to use arotating oordinate system whih o-orbits with the blak holes. In the Shwarzshild ase, the use of a oordinate
ϕ = φ − ωt rotating with angular veloity ω transforms the wave equation (2.6) into

(

(1 +
2M

r
)(∂t + ω∂ϕ)2 − 4M

r
∂t∂r − (1 − 2M

r
)∂2

r − 1

r2
(∂2

θ +
1

sin2 θ
∂2

ϕ)

)

u = 0. (2.16)Now the t-diretion beomes spaelike in the region
(1 +

2M

r
)r2ω2 sin2 θ > 1, (2.17)whih intersets the outer boundary r = R2 if R2 is su�iently large. In that ase, although the boundary remainstimelike the evolution is superluminal so that the W -algorithm is no longer stable. A stable algorithm for suh aboundary problem has been established in the 1D ase [23℄. We will not onsider the 2D version of this problem here.A ommon strategy for treating the binary blak hole problem is to use a grid based upon Cartesian oordinates.This poses a problem in dealing with inner and outer boundaries with the spherial shapes natural to the problem. Inother seond order wave problems, suh urved boundaries have been suessfully treated by the embedded boundarymethod [19, 24℄. Another approah being explored in general relativity is to use multi-blok grids [25, 26, 27, 28℄.This is another problem whih we defer to future work and do not onsider here.



6III. ALGORITHMS FOR THE 2D SUPERLUMINAL PROBLEMIn this setion, we study a lass of seond order hyperboli systems with shift whih we will use in Se. V toonstrut stable algorithms for a model 2D blak hole exision problem. The exision problem is a strip problemwith spaelike and timelike boundaries and a horizon in between. In the region where the shift is superluminal, theboundary is spaelike and where the shift is subluminal, the boundary is timelike. We replae this problem by Cauhyand half-spae problems. The strip problem is well-posed if the orresponding Cauhy and half-spae problems arewell-posed [30℄.For the Cauhy problem, we onsider general systems of equations in s spae dimensions to demonstrate that theresults have appliability beyond numerial relativity. For the half-spae problems, we only onsider salar equations in2D to simplify the notation. The generalization from salar equations in 2D to systems in sD is quite straightforward.Here, we onsider systems with onstant oe�ients. Systems with variable oe�ients an be redued to systemswith onstant oe�ients by freezing the oe�ients at all points. The problem with variable oe�ients is stronglywell-posed if the Kreiss ondition holds uniformly for all problems with onstant oe�ients [31℄.In order to analyze and establish stable approximations we use the method of lines and redue the system ofpartial di�erential equations to a system of ordinary di�erential equations in time on a spatial grid. We then applytwo standard tehniques: the energy method and mode analysis. The stability of the semi-disrete approximationimplies the stability of the totally disretized method for most standard methods of lines [32℄, e.g. with the use of aRunge-Kutta time integrator. A. The Cauhy ProblemWe onsider the Cauhy problem for a seond order system with onstant (possibly omplex) oe�ients in s spaedimensions,
utt =

s
∑

j,k=1

Ajk
∂

∂x̃j

∂

∂x̃k
u := P0(∂/∂x̃)u, x̃ = (x̃1, . . . , x̃s) ∈ R

s, t ≥ 0, (3.1)with the initial onditions
u(x̃, t = 0) = f(x̃), ut(x̃, t = 0) = g(x̃), u, f ,g ∈ C

n. (3.2)(We abbreviate ∂αu = uα where onfusion does not arise.) Here, for eah (j, k), Ajk are onstant Hermitian matries
∈ Cn,n, and the data f = f(x̃) and g = g(x̃) are smooth and 1-periodi in eah x̃j , j = 1, . . . , s. The solution
u = u(x̃, t) is then smooth and 1-periodi in eah x̃j . Moreover, we onsider solutions with ∫

Rs u dx̃ = 0.We assume that the Hermitian operator P0 in (3.1) is ellipti, i. e. there exists a positive onstant δ suh that
s
∑

j,k=1

Ajkξjξk ≥ δ|ξ|2I (3.3)for all vetors ξ ∈ Rs. Here I is the n × n identity matrix.We introdue a shift by
x̃ = x + β̄ t, x = (x1, . . . , xs) ∈ R

s, β̄ = (β1, . . . , βs) ∈ R
s, βj > 0,and obtain the shifted system

utt = 2P1(∂/∂x)ut − P 2
1 (∂/∂x)u + P0(∂/∂x)u. (3.4)Here P1 is a salar operator,

P1(∂/∂x) =

s
∑

j=1

βj ∂

∂xj
.Theorem 1. The Cauhy problem for (3.4) is well-posed.



7Proof. If we set v = ut − P1(∂/∂x)u, we get the �rst order system
(

u

v

)

t

= P1(∂/∂x)

(

u

v

)

+

(

0 I
P0(∂/∂x) 0

)(

u

v

)

. (3.5)We Fourier transform (3.5) and get
(

û

v̂

)

t

= P̂1(iω)

(

û

v̂

)

+

(

0 I

−P̂0(ω) 0

)(

û

v̂

)

, ω 6= 0, (3.6)where ω = (ω1, . . . , ωs) ∈ Rs and P̂1(iω) = i
∑s

j=1
βjωj and P̂0(ω) =

∑s
j,k=1

Ajkωjωk. Sine P0 is ellipti, we have
P̂0 = P̂0

∗ ≥ δ0|ω|2I, for some δ0 > 0. We an then introdue new variables
ŵ = T

(

û

v̂

)

, T =

(

I 0

0 P̂0

−1/2

) (3.7)and, sine T and P̂1 ommute, we obtain from (3.6)
ŵt = P̂1(iω)ŵ +

(

0 P̂0

1/2

(ω)

−P̂0

1/2

(ω) 0

)

ŵ := Sŵ. (3.8)Sine the matrix S is skew Hermitian, S∗ = −S, we obtain
∂

∂t
||ŵ||2 = (Sŵ, ŵ) + (ŵ, Sŵ) = (ŵ, (S∗ + S)ŵ) = 0.Therefore, by Parseval's relation, there is an energy estimate and the Cauhy problem is well-posed [30℄. 2Now we show how to onstrut stable �nite di�erene approximations to (3.4). We leave time ontinuous and usethe method of lines. For brevity, we treat the ase βj > 0.Let hj = 1/Nj, j = 1, . . . , s, denote spatial gridlengths, where Nj are natural numbers. For any multi-index

ν = (ν1, . . . , νs) ∈ Zs, let xν = (h1ν1, . . . , hsνs) denote the orresponding gridpoint. We onsider gridfuntions
uν := uν(xν , t) approximating u(xν , t) and introdue a translation operator Ej in the j-th oordinate by

Ep
j uν = uν(xν + phjej , t), p ∈ Z,where ej = (0, . . . , 0, 1, 0, . . . , 0) is the vetor ontaining a 1 in the j-th position and zeros elsewhere. We then de�nethe forward, bakward, and the entral di�erene operators in the j-th oordinate diretion by

hjD+j = E1
j − E0

j , hjD−j = E0
j − E−1

j , 2D0j = D+j + D−j .We approximate (3.4) by
uνtt = 2p1(D)uνt − p2

1(D)uν + p0(D)uν , (3.9)where p0(D) is the entered approximation
p0(D) =

s
∑

j=1

AjjD+jD−j +

s
∑

j 6=k=1

AjkD0jD0k, (3.10)and p1(D) is any one of the following approximations:1) Centered approximation,
p1(D) =

s
∑

j=1

βjD0j , (3.11)2) First order aurate one-sided approximation,
p1(D) =

s
∑

j=1

βjD+j , (3.12)



83) Seond order aurate one-sided approximation,
p1(D) =

s
∑

j=1

βjDpj , (3.13)where
Dpj = D+j −

hj

2
D2

+j . (3.14)Remark. It is not neessary to assume that βj > 0 in (3.11)-(3.13). In general, we an use βj
+|βj|
2

D+j+
βj−|βj|

2
D−j in(3.12). For the seond order one-sided approximation (3.13), we replaeD+j and D−j by Dpj andDmj = D−j+
hj

2
D2

−j ,respetively.Theorem 2. The approximation (3.9) is stable.Proof. As in the ontinuum ase, we write (3.9) as a �rst order system and Fourier transform to get
(

û

v̂

)

t

= p̂1

(

û

v̂

)

+

(

0 I
−p̂0 0

)(

û

v̂

)

, (3.15)where
p̂0 =

s
∑

j=1

Ajj
4

h2
j

sin2 ξj

2
+

s
∑

j 6=k=1

Ajk
1

hjhk
sin ξj sin ξk, ξj = ωjhj , |ξj | ≤ π, (3.16)and p̂1 is one of the following:

p̂1 =
s
∑

j=1

βj 1

hj
i sin ξj , (3.17)

p̂1 =

s
∑

j=1

βj 1

hj

(

i sin ξj − 2 sin2 ξj

2

)

, (3.18)
p̂1 =

s
∑

j=1

βj 1

hj

(

i sin ξj(1 − 2 sin2 ξj

2
) − 4 sin4 ξj

2

)

, (3.19)orresponding to (3.11)-(3.13).Sine
sin2 ξ = 4 sin2 ξ

2
cos2

ξ

2
= 4 sin2 ξ

2
− 4 sin4 ξ

2
, (3.20)we have

p̂0 =

s
∑

j,k=1

Ajk
1

hjhk
sin ξj sin ξk +

s
∑

j=1

Ajj
4

h2
j

sin4 ξj

2
. (3.21)From the elliptiity ondition (3.3) it follows that p̂0 is positive. As ξj → 0 we have sin ξj/hj → ωj . Therefore, the�rst sum in (3.21) is stritly positive. When |ξj | = π, the �rst sum in (3.21) is zero but the seond sum is not beause

sin
ξj

2
6= 0. Therefore p̂0 is positive de�nite, and we an use the same transformation as in (3.7) and write (3.15) as

ŵt = p̂1ŵ +

(

0 p̂
1/2

0 (ω)

−p̂
1/2

0 (ω) 0

)

ŵ. (3.22)



9The seond term on the right hand side of (3.22) is again skew Hermitian and has no in�uene on the stability.Thus, we need only onsider
ŵt = p̂1ŵ,whih onsists of di�erene approximations of salar equations of the above type. To show that the approximations(3.11)-(3.13) are stable, we set û = eλtû0 and get λ = p̂1. By (3.17)-(3.19), we have ℜλ ≤ 0 and there are noexponentially growing modes. 2The approximation (3.9) involves a wide stenil. Therefore extra boundary onditions (ghost points) are requiredand the resulting auray is less than with a more ompat stenil. In order to investigate other approximationswith a more ompat stenil, we write (3.4) as

utt = 2P1(∂/∂x)ut + P (∂/∂x)u, P (∂/∂x) = P0(∂/∂x) − P 2
1 (∂/∂x) (3.23)and approximate it by

uνtt = 2p1(D)uνt + p(D)uν , (3.24)where p1(D) is given by (3.11) and p(D) is the entered approximation
p(D) =

s
∑

j=1

(

Ajj − βj2
)

D+jD−j +

s
∑

j 6=k=1

(

Ajk − βjβk
)

D0jD0k. (3.25)Theorem 3. The approximation (3.24) is stable if Ajj − βj2
> 0.Proof. We write (3.24) as

uνtt = 2p1(D)uνt − p2
1(D)uν + q(D)uν , q(D) = p(D) + p2

1(D). (3.26)We use the relation D+jD−j = D2
0j −

h2
j

4
D2

+jD
2
−j and write

q(D) =

s
∑

j,k=1

AjkD0jD0k − 1

4

s
∑

j=1

(Ajj − βj2
)h2

jD
2
+jD

2
−j .In the same way as in the ontinuum ase, we write (3.26) as a �rst order system and Fourier transform to get

(

û

v̂

)

t

= p̂1

(

û

v̂

)

+

(

0 I
−q̂ 0

)(

û

v̂

)

, (3.27)where
q̂ =

s
∑

j,k=1

Ajk
1

hjhk
sin ξj sin ξk +

s
∑

j=1

(

Ajj − βj2
) 4

h2
j

sin4 ξj

2
, ξj = ωjhj, |ξj | ≤ π (3.28)and p̂1 is given by (3.17). By the elliptiity ondition (3.3), it is lear that q̂ is a positive de�nite matrix if Ajj−βj2

> 0.Therefore, we an use the same transformation as in (3.7) and write (3.27) as
ŵt = p̂1ŵ +

(

0 q̂1/2(ω)
−q̂1/2(ω) 0

)

ŵ. (3.29)The seond term on the right hand side of (3.29) is again skew Hermitian and has no in�uene on the stability.Thus, we need only to onsider
ŵt = p̂1ŵ,and the stability follows in the same way as in Theorem 2. 2



10Remark. If the operator P is ellipti, we have Ajj − βj2
> 0, and by Theorem 3 the approximation (3.24) is stable.However, it is possible to have Ajj − βj2

> 0 while P is non-ellipti. In this ase, the approximation (3.24) remainsstable when P is non-ellipti. In other words, the stability of (3.24) does not depend upon the oe�ients of mixedderivatives Ajk, j 6= k.Remark. In the salar ase, (3.24) redues to the W -algorithm (1.8).In the exision problem, we use the subluminal algorithm (3.24) in the subluminal region where Ajj − βj2
> 0. Inthe superluminal region where the shift βj is large so that Ajj − βj2 ≤ 0, we use the superluminal algorithm (3.9)instead. We need then a presription for swithing from one algorithm to the other. There are two distint ways todo this. One is to make a sharp swith between the algorithms where the transition from superluminal to subluminalregion takes plae. The other, used in [13℄, is to introdue a smooth, monotoni blending funtion and use a blendedalgorithm, whih turns into the superluminal algorithm inside the superluminal region and redues monotonially tothe subluminal algorithm in the outside. For this purpose, note that the superluminal algorithm remains stable inthe subluminal region.As a further alternative to the above approximations, we an approximate (3.23) by adding a fourth di�erentialorder term

uνtt = 2p1(D)uνt + p(D)uν − Q(D)uν , (3.30)where p1(D) is given by (3.11) and
Q(D) =

1

4

s
∑

j=1

αjh
2
jD

2
+jD

2
−j , αj ≥ 0. (3.31)The motivation for adding suh a fourth order term is to modify the matrix q̂ in (3.28) so that it beomes positivede�nite even if Ajj − βj2 ≤ 0. When Ajj − βj2

> 0, the matrix q̂ is positive de�nite and this added term isunneessary. We an take advantage of this by embedding the swith or blending funtion in the hoie of αj , with
αj = 0 in the outer region.Theorem 4. The approximation (3.30) is stable if Ajj + αjI ≥ βj2

I.Proof. We use the relation D2
0j = D+jD−j +

h2
j

4
D2

+jD
2
−j and write

p(D) =

s
∑

j,k=1

(Ajk − βjβk)D0jD0k − 1

4

s
∑

j=1

(Ajj − βj2
)h2

jD
2
+jD

2
−j

= −p2
1(D) +

s
∑

j,k=1

AjkD0jD0k − 1

4

s
∑

j=1

(Ajj − βj2
)h2

jD
2
+jD

2
−j.We an then write (3.30) as

uνtt = 2p1(D)uνt − p2
1(D)uν + q(D)uν , (3.32)where

q(D) =

s
∑

j,k=1

AjkD0jD0k − 1

4

s
∑

j=1

(Ajj − βj2
+ αj)h

2
jD

2
+jD

2
−j . (3.33)In the same way as before, we write (3.32) as a �rst order system and Fourier transform to get

(

û

v̂

)

t

= p̂1

(

û

v̂

)

+

(

0 I
−q̂ 0

)(

û

v̂

)

, (3.34)where
q̂ =

s
∑

j,k=1

Ajk
1

hjhk
sin ξj sin ξk +

s
∑

j=1

(Ajj − βj2
+ αj)

4

h2
j

sin4 ξj

2
.If Ajj + αjI ≥ βj2

I then, beause of elliptiity, q̂ is positive de�nite and stability follows in the same way as before.
2



11B. Half-plane ProblemsWe onsider the salar wave equation with onstant oe�ients in two spae dimensions,
ut̃t̃ = a1 ux̃x̃ + 2b1 ux̃ỹ + c1 uỹỹ := P0u. (3.35)In the moving oordinate system, t = t̃, x = x̃− βx t̃, y = ỹ − βy t̃, with βx, βy > 0, we get the shifted wave equation,

utt = 2(βxuxt + βyuyt) + auxx + 2buxy + cuyy := 2P1ut + Pu. (3.36)Here the oe�ients a = a1 −βx2, b = b1 −βxβy, and c = c1 −βx2 are assumed to be onstant. Moreover, we assumethat the spae operator P0 in (3.35) is ellipti, namely a1 > 0 and c1 > 0 and b2
1 < a1c1. Therefore, by Theorem 1,the Cauhy problem for (3.36) is well-posed.We onsider (3.36) in the half-spae

0 ≤ x < ∞, −∞ < y < ∞, t ≥ 0and we assume that u is 1-periodi in y. The number of boundary onditions needed at x = 0 is equal to the numberof outgoing harateristis of the equation utt = 2βxuxt + auxx. We onsider two distint half-plane problemsdetermined by the oe�ients of the operator P .Half-plane problem I: If a > 0 and b2 < ac, then the operator P is ellipti and one boundary ondition is neededat x = 0. In the exision problem, this is the ase of subluminal shift with a timelike boundary.Half-plane problem II: If a < 0, then the operator P is non-ellipti. In the exision problem, this is thease of a superluminal shift with a spaelike boundary.1. Half-plane Problem I (Subluminal Case)This is the problem treated in [12℄ by the energy method. In the present ontext of (3.36), the energy is given by
E = ‖ut‖2 + a‖ux‖2 + 2b(ux, uy) + c‖uy‖2 (3.37)in terms of the L2 salar produt and the orresponding norm
(v, w) =

∫ 1

0

∫ ∞

0

v w dx dy, ‖v‖2 = (v, v). (3.38)If u solves (3.36), then integration by parts gives
∂tE = −2ut(β

xut + aux + buy)
∣

∣

∣

x=0

. (3.39)Any boundary ondition satisfying the dissipative ondition ∂tE ≤ 0 gives an energy estimate su�ient to establishthe well-posedness of the Cauhy problem, inluding the Dirihlet ondition
ut(0, y, t) = 0 (3.40)and the Neumann ondition

βxut(0, y, t) + aux(0, y, t) + buy(0, y, t) = 0 (3.41)for whih energy is onserved.As di�erene approximation for the half-plane problem, we use (3.24), whih in the present ase redues to the
W -algorithm (1.8). By introduing a disrete energy norm and using summation by parts, a disrete version of (3.39)has been used to establish stability of the �nite di�erene problem. For details we refer to [12℄.



122. Half-plane Problem II (Superluminal Case)To investigate the well-posedness of the ontinuum problem, we use mode analysis. We apply a Laplae transfor-mation in t and Fourier transformation in y.Theorem 5. The half-plane problem (3.36) with a < 0 is well-posed.Proof. By substituting u = û(x) est+iωy , s ∈ C, ω ∈ R, into (3.36) we obtain
aûxx + (2ibω + 2βxs)ûx + (2iβyωs − s2 − cω2)û = 0. (3.42)The general solution to the ordinary di�erential equation (3.42) is of the form û(x) = σ1e

κ1x + σ2e
κ2x, where κ1 and

κ2 are the solutions of the harateristi equation
aκ2 + (2biω + 2βxs)κ + 2iβyωs − s2 − cω2 = 0. (3.43)Without restrition we an assume a = −1. Moreover, sine the sign of ℜκ does not depend on ω, we set ω = 0.We then obtain

κ1,2 = βxs ±
√

(βx2 − 1)s2.For ℜs > 0, we have ℜκ1,2 > 0 and there is no bounded solution û. Therefore no boundary ondition is needed andthe problem is well-posed. 2As di�erene approximation for the half-plane problem, we an use either (3.9) or (3.30). We study the stability ofthe approximations by mode analysis. Below we show that (3.9) is stable with p1(D) in (3.12). The stability of theother approximations with p1(D) in (3.11) and (3.13) an be shown in the same way.On a uniform spatial grid Ωh = (νh, µh), ν = 0, 1, 2, . . . , µ = 1, 2, . . . , N , with spaing h, let v(t) := uνµ(t) be thegridfuntion approximating u(xν , yµ, t). We onsider the shifted wave equation (3.36) and approximate it by
vtt = 2(βxD+x + βyD+y)vt − (βxD+x + βyD+y)

2v + (a1D+xD−x + 2b1D0xD0y + c1D+yD−y)v, (3.44)for ν = 1, 2, . . . . For every �xed µ, we need one extra boundary ondition to determine u0µ. We use a third orderextrapolation
h3D3

+xu0µ = 0. (3.45)We onsider bounded solutions of type
uνµ(t) = est+iωµhϕν , ||ϕ||h < ∞. (3.46)Putting (3.46) into (3.44), we get the eigenvalue problem

ϕνs2 − 2
βx

h
(ϕν+1 − ϕν)s − 2

βy

h
(i sin ξ − 2 sin2 ξ

2
)ϕνs

+
βx2

h2
(ϕν+2 − 2ϕν+1 + ϕν) + 2

βxβy

h2
(ϕν+1 − ϕν)(i sin ξ − 2 sin2 ξ

2
) +

βy2

h2
(i sin2 ξ − 2 sin2 ξ

2
)2ϕν

− a1

h2
(ϕν+1 − 2ϕν + ϕν−1) −

b1

h2
i sin ξ(ϕν+1 − ϕν−1) + 4

c1

h2
sin2 ξ

2
ϕν = 0, ξ = ωh. (3.47)The approximation (3.44)-(3.45) is stable if and only if the Kreiss ondition is satis�ed, or equivalently if (3.47) hasno eigenvalue s with ℜs ≥ 0 [31℄. The onstant-oe�ient ordinary di�erene equation (3.47) has solution of the form

ϕν =

3
∑

j=1

σjκ
ν
j ,where κj are the three solutions of the harateristi equation

s2 − 2

(

βx

h
(κ − 1) +

βy

h
(i sin ξ − 2 sin2 ξ

2
)

)

s +

(

βx

h
(κ − 1) +

βy

h
(i sin ξ − 2 sin2 ξ

2
)

)2

− a1

h2

(κ − 1)2

κ
− b1

h2
(κ − 1

κ
)i sin ξ + 4

c1

h2
sin2 ξ

2
= 0. (3.48)



13By Lemma 12.1.6 of [31℄, for ℜs > 0 the harateristi equation (3.48) has no solutions with |κ| = 1 and there isexatly one solution with |κ| < 1. Roughly speaking, the number of left points in the di�erene stenil determinesthe number of solutions to the harateristi equation with |κ| < 1. We all this solution κ1 and write the boundedsolution as
uν(t) = est+iωµhσ1κ

ν
1 . (3.49)By substituting (3.49) into the boundary ondition (3.45), we get

σ1(κ1 − 1)3est+iωµh = 0. (3.50)Sine κ1 6= 1 for ℜs > 0, (3.50) has only the trivial solution σ1 = 0. Now, we let κ → 1 and investigate if there is anysequene {s} suh that ℜs → 0 with ℜs > 0. We then get from (3.48)
s̃2 − 2βy(i sin ξ − 2 sin2 ξ

2
)s̃ + βy2(i sin ξ − 2 sin2 ξ

2
)2 + 4c1 sin2 ξ

2
= 0, s̃ = sh, (3.51)and therefore

s̃ = βy(i sin ξ − 2 sin2 ξ

2
) ±

√

−4c1 sin2 ξ

2
. (3.52)Sine βy > 0 and c1 > 0, we have ℜs < 0 if ξ 9 0. In the ase where ξ → 0, we get from (3.48)

s2 − 2
βx

h
s(κ − 1) +

βx2

h2
(κ − 1)2 − a1

h2

(κ − 1)2

κ
= 0. (3.53)Letting s → 0, we then get from (3.53) that κ1,2 = 1 and κ3 = a1/βx2 < 1. Sine for ℜs > 0 there is no solution with

|κ| = 1, the only solution is κ3 whih is stritly less than 1 and does not onverge to 1. Therefore there is no positivesequene {s} suh that ℜs → 0 for |ξ| ≤ π. Now, we an prove the following theorem:Theorem 6. The approximation (3.44)-(3.45) is stable.Proof. Sine there is no eigenvalue s with ℜs ≥ 0 to the eigenvalue problem (3.47) giving bounded solutions (3.46),the Kreiss ondition is satis�ed and stability follows. 2IV. TESTS OF THE SUPERLUMINAL ALGORITHMSIn the subluminal ase where the evolution proeeds in a timelike diretion, the W -algorithm (1.8) provides anaurate, �ux-onservative, seond order treatment of the IBVP. This was proved for a 1D quasilinear wave equationin [13℄ using the disrete energy method. In [10, 12℄, the results were extended to the 3D ase and applied to theharmoni Einstein system (1.2). The semi-disrete onservation laws extend to the priniple part of the harmoniEinstein system and ontribute to exellent long term performane in test problems. We use this W -algorithm totreat the outer region of the model exision problem onsidered in Se. V.In this model problem, the inner boundary is hosen to be spaelike, orresponding to the strategy for exising aninterior singularity. The evolution near the inner boundary proeeds in a spaelike diretion (superluminal shift) sothat the spatial grid traks the boundary. For this superluminal ase, the W -algorithm is unstable and one of thealgorithms onsidered in Se. III must be used. These algorithms are either given by (3.9), with p1(D) given by oneof the approximations (3.11)-(3.13), or by (3.30).In the ase of the 2D shifted wave equation (1.6), the hoie (3.11) redues to the entered algorithm
V :=

(

(∂t − βxD0x − βyD0y)2 − a1D+xD−x − c1D+yD−y − 2b1D0xD0y

)

u = 0; (4.1)the hoie (3.12) redues to
V+ :=

(

(∂t − βxD+x − βyD+y)
2 − a1D+xD−x − c1D+yD−y − 2b1D0xD0y

)

u = 0, (4.2)in whih the shift terms are treated by �rst order aurate one-sided di�erene operators; the hoie (3.13) reduesto
Vp :=

(

(∂t − βxDpx − βyDpy)2 − a1D+xD−x − c1D+yD−y − 2b1D0xD0y

)

u = 0, (4.3)



14in whih the shift terms are treated by seond order aurate one-sided di�erene operators (3.14); and (3.30) isrelated to the subluminal W -algorithm (1.8) by
Vα := W +

h2

4

(

α1(D+xD−x)2 + α2(D+yD−y)2
)

u = 0, (4.4)where Theorem 4 guarantees stability provided the inequalities
α1 ≥ βx2 − a1 = −a , α1 ≥ 0, (4.5)
α2 ≥ βy2 − c1 = −c , α2 ≥ 0, (4.6)are satis�ed.The V -algorithm is related to the W -algorithm by the seond order aurate modi�ation

V = W +
h2

4

(

βx2

(D+xD−x)2 + βy2

(D+yD−y)
2

)

u = 0. (4.7)In the subluminal ase where the W and V algorithms an be ompared, tests show that the W -algorithm hasonsiderably better auray due to its more ompat stenil [10℄. Here we arry out a set of 2D superluminal teststo ompare the performane of the superluminal algorithms in a periodi test problem (smooth toroidal boundaryonditions) where the e�et of the boundary is eliminated. The �rst order aurate V+-algorithm (4.2) is highlydissipative and muh less aurate than the seond order aurate Vp version (4.3). For these reasons, we restrit ourtest omparisons to the V , Vp and Vα algorithms.The V -algorithm is a speial ase of the Vα-algorithm (4.4) where α1 = βx2 and α2 = βy2 . The auray ofthe Vα-algorithm might be expeted to depend on the relative weight of the higher order terms responsible for thestrethed stenil in (4.4). For example, the Vα-algorithm might be expeted to be most aurate for the minimumvalues, α1 = (|a| − a)/2 and α2 = (|c| − c)/2, whih are allowed by (4.5) and (4.6). This is true for the ase when aand c are positive, for whih α1 = α2 = 0 and the Vα-algorithm redues to the W -algorithm.When a < 0 is negative and c > 0, the optimal value for α2 remains 0 but the optimal value for α1 is not neessarilythe minimum allowed value α1 = −a. This value would result in approximating the a∂2
x term in the wave operator by

aD2
0x, whih deouples the even and odd grid points. Although the optimal hoie of α1 in this ase is not obvious,the ombination α1 = βx2 and α2 = 0 would give better auray than the V -algorithm. No general guidelines aresuggested by examining the trunation error in the Vα-algorithm, whih to order h2 is given by

τ =
h2

12

(

(a − 3α1)∂
4
x + (c − 3α2)∂

4
y + 4b(∂3

x∂y + ∂x∂3
y) + 4βx∂3

x∂t + 4βx∂3
y∂t

)

u. (4.8)Note that the values α1 = a/3 and α2 = c/3 orrespond to the fourth order aurate approximations to the terms
a∂2

x and c∂2
y in the wave operator. However, these hoies are not allowed in the superluminal regime, where stabilityrequires αi ≥ 0.As a test problem for omparing the auray of these evolution algorithms in the superluminal regime we pik aase where both a and c are negative. We onsider the wave equation

(

− ∂2
t + 4(∂x + ∂y)∂t − 3∂2

x − 3∂2
y − 8∂x∂y

)

u = 0. (4.9)whih arises from a 2D version of (2.4) with shift βx = βy = 2. With this superluminal hoie of shift, there are noharateristis in the (x > 0, y > 0) diretions. Waves propagating along the diagonal have the form
u = F [x + y + (4 +

√
2)t] + G[x + y + (4 −

√
2)t]. (4.10)In our test, we simulate the solution

u = sin

(

2π[x + y + (4 +
√

2)t]

) (4.11)



15in the domain −.5 ≤ (x, y) ≤ .5, on a grid with N = 200 points, with periodi boundary onditions. For thispartiular solution, the symmetries ∂xu = ∂yu = ∂tu/(4 +
√

2) imply that the trunation error (4.8) has a minimumat α1 = α2 = αm, where
αm =

13 + 8
√

2

3
≈ 8.1045695. (4.12)Figure 1 plots the ℓ∞ norm of the numerial error in the salar �eld obtained in the simulation of (4.11) by evolvingthe wave equation (4.9) with the Vα-algorithm, for various values of α1 = α2 = α. The error for α = 8.1045695 isextremely small and the plots on�rm that αm is indeed the optimal value. The value α = 4 orresponds to the

V -algorithm, whih gives signi�antly larger error. The value α = 3, whih is the smallest value allowed by stability,gives even larger error.
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FIG. 1: The ℓ∞ norm of the error of the salar �eld obtained with Vα algorithm on a grid of 200 points is plotted vs time, inthe interval 0 ≤ t ≤ 1. For the value αm ≈ 8.1045695, the error is barely disernible and the plots learly indiate that αm isthe optimal value. The value α = 4 orresponds to the V -algorithm, whih has signi�antly larger error.The error in Fig. 1 is predominantly phase error. Figure 2 shows snapshots of u(t = 100, x) (100 rossing times)for the simulation of (4.11) using the V , Vp and Vα algorithms, with α = 8. The simulations are ompared with theanalytial solution at t = 100. The solution with the Vp- algorithm leads in phase while that with the V -algorithmlags in phase and it has slightly better auray. As expeted from the above error analysis, the Vα-algorithm, with
α = 8, is extremely aurate.
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FIG. 2: Snapshots of the salar �eld u(t = 100, x) obtained with the V , Vp and Vα algorithms, ompared with the analytisolution. The phase error with the Vp-algorithm is larger than with the V -algorithm. The Vα-algorithm, for α = 8, is extremelyaurate and barely distinguishable from the analyti solution.V. SIMULATION OF A MODEL 2D EXCISION PROBLEMIn this setion, we simulate a simple 2D model of the exision problem in whih the inner boundary S is spaelikeand the outer boundary T is timelike, with a horizon H in between. In the inner region between S and H, sine the



16shift is superluminal, the operator P in (3.23) is non-ellipti and both harateristis leave the inner boundary. In theouter region between H and T , sine the shift is subluminal, the operator P is ellipti and one harateristi leaves
T and the other enters T .To model a wave pulse propagating into a horizon, we onsider the shifted wave equation with a soure term F ,

utt = 2(βxuxt + βyuyt) + auxx + 2buxy + cuyy + F (x, y, t), (5.1)on the spatial domain (x, y) ∈ Ω = [−2, 2]× [−2, 2], and t ≥ 0. We set the oe�ients βx = βy = 2, a = 0.5(x−sin πy
2

),
b = 0.5 and c = 5, for whih the problem is well-posed. The spaelike boundary S at x = −2, the timelike boundary
T at x = 2 and the horizon H are shown in Fig. 3. The horizon satis�es ac − b2 = 0, whih determines the urve

x = 0.1 + sin
πy

2
. (5.2)

TH

ac−b2>0

ac−b2<0 

S

FIG. 3: Computational domain with the spaelike boundary S on the left, the timelike boundary T on the right and thesinusoidal shaped horizon H in between. The solution is periodi in the vertial y-diretion.For the smooth funtion
F (x, y, t) =

2

σ2

(

− (1 − 2βx − a)
(

σ − 2(t + x − x0)
2
)

− 4(βy + b)(t + x − x0)y + c(σ − 2y2)
)

e−
(t+x−x0)2+y2

σ , (5.3)the equation (5.1) has the solution
u(x, y, t) = e−

(t+x−x0)2+y2

σ , (5.4)whih is a left-traveling wave paket, initially entered about x0 = 0.5 outside the horizon and propagating towardsthe spaelike boundary. Here we set σ = 0.05. We uniformly disretize the spatial domain as xν = νh and yµ = µhwith ν, µ = 0,±1, . . . ,±N with the grid size h = 2

N .The global simulation of the model problem in the region between S and T is arried out by ombining thesuperluminal V -algorithms established in Se. III with the subluminal W -algorithm. The spaelike boundary and thesuperluminal region are treated with one of the V -algorithms. A region ontaining the timelike boundary is treatedby the W -algorithm.We onsider the following three global algorithms:� Algorithm 1. The superluminal region is treated by the V -algorithm (4.3). In the subluminal region we usethe W -algorithm. We introdue a ut-o� funtion φ whih is 0 when a > 0 and c > 0 and is 1 when a ≤ 0 or
c ≤ 0. Then we use the following approximation

φV + (1 − φ)W = 0.� Algorithm 2. This is similar to 1, exept the superluminal region is treated by the Vp-algorithm (4.3), whihis then blended to the W -algorithm in the same way as in 1.� Algorithm 3. We use the Vα-algorithm (4.4) with α1 = (|a| − a)/2 and α2 = (|c| − c)/2.



17The initial data and boundary ondition at x = 2 are hosen aording to the exat solution (5.4). In the �rstand third algorithms, we need two extra boundary onditions at ν = −N,−N + 1. In the seond algorithm, weneed only one boundary ondition at ν = −N . We use third order extrapolations as the extra boundary onditions.In the y-diretion we use periodi boundary onditions. For the integration in time, we use the standard 4th orderRunge-Kutta method.Figure 4 shows the initial wave pulse and the pulse at a later time t = 2 omputed by the third algorithm.
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(a) The initial wave pulse at t = 0. −2
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(b) The wave pulse at t = 2.FIG. 4: A pulse propagating aross the horizon. The left �gure shows the initial pulse in the region outside the horizon. Theright �gure shows the pulse at a later time, after it has rossed the horizon and is inident on the inner spaelike boundary.For the gridfuntion uνµ(t) approximating u(xν , yµ, t), we de�ne the disrete norm as
||uνµ||2h =

N
∑

ν,µ=−N

uνµh2, (5.5)where h = ∆x = ∆y is the gridlength. We then de�ne the onvergene fator by
C(t) = log2

( ||E(t)||h
||E(t)||h/2

)

, E(t) = u(xν , yµ, t) − uνµ(t), (5.6)where E(t) is the error at time t, and u(xν , yµ, t) is the exat solution omputed by (5.4).Figure 5 shows the norm of the error versus time for the three algorithms with h = 0.02 and ∆t = 0.001.
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FIG. 5: Norm of the error ||E||h versus time, with h = 0.02.Figure 6 shows the onvergene fator as a funtion of time for the three algorithms with h = 0.04 and ∆t = 0.001.It on�rms the seond order auray of the algorithms in spae. The jumps in the onvergene fator at about t = 2



18is a result of using third order extrapolations at the spaelike inner boundary, while we use seond order evolutionalgorithms. At this time the pulse reahes the spaelike boundary and an inrease in the order of auray, from 2 to3, is expeted.
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