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Darin besteht das Wesen der 
Wissenschaft: 

 Zuerst denkt man an etwas, das wahr sein könnte. 
 Dann sieht man nach, ob es der Fall ist 

 und im Allgemeinen ist es nicht der Fall. 
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Summary 

Summary 

Mate choice, based on secondary sexual traits is a common 

phenomenon in many animal species. These traits are exhibited by one of the 

partners, usually the male. If the traits reflect the ability of a mating partner to 

contribute direct or indirect benefits to the offspring, individuals (usually 

females) are able to increase their fitness by choosing these traits. Parasite 

load and parasite resistance are only two aspects of an animal that can be 

signalled by such traits. To investigate the effect of parasites and the MHC 

(Major Histocompatibility Complex) genetic background that is important for 

parasite resistance, on different male traits, I used the three-spined stickleback 

(Gasterosteus aculeatus) as a model organism.  

In most cases, invasion of a host by a parasite is followed by a reaction 

of the host’s’ immune system. Distinct parasite species have a different impact 

on their host which might result in different physiological effects. In Chapter I it 

was shown, in a controlled infection experiment, that two nematode parasites 

(Camallanus lacustris and Anguillicola crassus) differed in prevalence in their 

stickleback host. The corresponding immune reaction of the fish was also found 

to be different, which generally could result in alterations of male traits. 

The immune reaction of the host does not only depend on parasite 

species, but also on its own immuno-genetic background. The specific, adaptive 

immune system in vertebrates is represented by MHC alleles (class I and class 

IIB). Do male traits also signal direct information about the MHC background of 

the fish irrespective of parasite load and do females base their mating decision 

on such traits? In Chapter II two sexually selected male traits, the red breeding 

colouration and nest quality were correlated to MHC allele number. We found 

that males with intermediate number of MHC class II alleles built nests that 

should be more attractive for females, while redness correlated positively with 

number of MHC I alleles. 

Visual traits such as red colouration or nest quality seem to reflect 

parasite resistance of male sticklebacks. Laboratory experiments showed that 

females also choose mating partners for odour cues that are related to the MHC 

genetic background. If visual and olfactory cues do not carry the same 
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Summary 

information, e.g. different aspects of a males’ condition, this raises the question 

of female preference in situations where visual and olfactory traits are available 

at the same time. Through mate choice experiments (Chapter III) it was shown 

that, in this situation, females seem to use a combination of visual and olfactory 

traits. While they choose the redder male in the visual test and the best fitting 

one in the olfactory test, no choice for either the one or the other was found 

when both choice situations were combined. The females then preferred males 

for their overall condition, which was not reflected solely by either of the male 

traits investigated.  

In order to test whether the results from my laboratory experiments are 

applicable to the natural situation in the field, outdoor enclosures were stocked 

with fish of known MHC background (Chapter IV). Parenthood analysis was 

performed for eggs collected from the males’ nests. Reproductive success was 

estimated for males and females in combination with measurements of male 

traits and parasite load. Since it was not possible to identify a certain male trait 

the females always preferred, choice for a combination of traits also seems 

most probable in the field. 
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Zusammenfassung  

Zusammenfassung 
Wählerisches Verhalten von Weibchen bei der Partnerwahl ist im 

Tierreich weit verbreitet und basiert auf sekundären Geschlechtsmerkmalen der 

Männchen. Wenn solche Merkmale Informationen darüber tragen, ob der 

Partner direkt oder indirekt einen Beitrag zur Fitness der Nachkommen leisten 

kann, können Weibchen durch Verpaarungen anhand dieser Merkmale ihre 

Fitness steigern. Beispielsweise können Informationen über Parasitenbelastung 

oder Parasitenresistenz eines Männchens in Form solcher Merkmale übermittelt 

werden. Um den Einfluss von Parasitierung und Resistenzgenen, hier in Form 

von MHC (Haupt Gewebekompatibilitäts Komplex), auf Männchenmerkmale zu 

untersuchen, habe ich den Dreistachligen Stichling (Gasterosteus aculeatus) 

als Modelorganismus verwendet. 

Auf das Eindringen eines Parasiten in einen Organismus folgt in der 

Regel eine Immunantwort des Wirtes. Bestimmte Parasitenarten können dabei 

unterschiedliche physiologische Effekte in ihren Wirten auslösen. In Kapitel I 

wird anhand eines kontrollierten Infektionsexperimentes gezeigt, dass zwei 

parasitische Nematoden, Camallanus lacustris und Anguillicola crassus, sich in 

ihrer Prävalenz im Stichlingswirt unterscheiden. Auch die Immunreaktion des 

Fisches war in diesem Zusammenhang unterschiedlich, was zu einer 

Veränderung von Merkmalen bei Männchen beitragen könnte. 

Die Immunreaktion eines Wirtes hängt aber nicht nur von der 

Parasitenart, sondern auch von seinen Resistenzgenen ab. Bei vertebraten 

Wirten wird diese spezifische, angepasste Immunantwort durch MHC der 

Klasse I und Klasse II repräsentiert. Können nun Merkmale von Männchen auch 

direkte Information über den MHC übermitteln? In Kapitel II zeigen wir anhand 

einer korrelativen Analyse, dass sowohl die rote Balzfärbung der Männchen als 

auch bestimmte Qualitätsmerkmale ihrer Nester tatsächlich im Zusammenhang 

mit der Anzahl von MHC Allelen stehen. Männchen, die eine mittlere Anzahl 

von MHC II Allelen trugen, bauten Nester, die für Weibchen attraktiver sein 

sollten. Darüber hinaus war ihre Balzfärbung positiv mit der Anzahl von MHC I 

Allelen korreliert.  
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Zusammenfassung 

Visuelle Merkmale von Männchen, wie die Balzfärbung oder Nestqualität, 

reflektieren demnach offensichtlich Resistenzgene beim Stichling. Aus früheren 

Laborstudien ist bekannt, dass auch olfaktorische Merkmale, auch im 

Zusammenhang mit MHC, von Weibchen für die Auswahl eines Partners 

herangezogen werden. Das wirft die Frage auf, an welchem Merkmal die 

Weibchen ihre Wahl orientieren, wenn visuelle und olfaktorische Merkmale nicht 

die gleiche Information beinhalten, aber gleichzeitig zu Verfügung stehen. In 

Kapitel III wurde mit Wahlexperimenten an weiblichen Stichlingen gezeigt, dass 

in diesem Fall visuelle und olfaktorische Merkmale für ihre Wahl kombiniert 

werden. Während im visuellen Test das rötere und im olfaktorischen das besser 

zu ihrem MHC passende Männchen bevorzugt wurden, konnte in der 

kombinierten Wahlsituation keine eindeutige Präferenz für eines der Merkmale 

gefunden werden. In diesem Fall wählten Weibchen solche Männchen, die eine 

bessere Gesamtkondition aufwiesen, was wiederum nicht eindeutig nur von 

einem Merkmal reflektiert wurde. 

Um zu überprüfen, ob sich die im Labor gewonnenen Ergebnisse auf die 

natürliche Lebenssituation der Fische im See übertragen lassen, besetzten wir 

Außenkäfige mit Fischen, die einen bekannten MHC aufwiesen. 

Elternschaftsanalysen der gesammelten Eier, zusammen mit Analysen der 

Merkmale der Männchen und deren Parasitenbelastung sollten Aufschluss über 

ihren Fortpflanzungserfolg geben. Obwohl es uns nicht möglich war die Wahl 

der Weibchen einem bestimmten Merkmal der Männchen zuzuordnen, scheint 

auch im natürlichen Lebensraum die Nutzung einer Kombination von 

Merkmalen eine Rolle zu spielen.  
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Introduction  

Introduction 

Sexual selection 

In many animal species, males and 

females are phenotypically dimorph, e.g. 

the Ruff (Fig. 1). Darwin (1871) wondered 

about how this dimorphism might have 

evolved, and what the role and the origin 

of the, in some cases eye-catching traits 

could be. An intersexual conflict, based 

on anisogamy, was stated as one 

possible reason by Bateman (1948). 

Females produce few large eggs, 

enriched with nutrients, in contrast to 

males that have many small sperm. The 

gender with the lower potential 

reproductive rate, usually the females, 

should be more selective about the 

mating partner since it faces higher costs of few or low quality offspring (Shuster 

& Wade 2003). Individuals of the other gender, usually the males, compete 

among each other for mating and exhibit traits to attract females. As a result, 

fuelled by choice and competition, sexual selection evolved (Andersson 1994). 

Males can enlarge their reproductive success by fertilisation of as many eggs, 

of different females, as possible, while females have to choose a male that 

provides direct or indirect benefits for the offspring (Clutton-Brock & Vincent 

1991). Females use different male traits to judge a male for its ability to provide 

such benefits. For example a large territory or good nuptial gifts provide direct 

benefits that the female might be able to evaluate easily by inspection. Indirect 

benefits that are based on heritable, genetic advantages, such as parasite 

resistance, might be more difficult to detect and evaluate.  

Figure 1: female and male ruff 
(Philomachus pugnax), from Naumann, 
Naturgeschichte der Vögel Mitteleuropas, 
Band VIII, Tafel 23 Gera, 1902 

Preference for traits that indicate such indirect benefits could have evolved 

in at least three different ways (summed up in Stearns & Hoekstra 2005): 
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1. ‘Honest signal’ hypothesis: Costly, ‘honest’ male traits signal ‘good 

genes’ that promise better survival or other fitness benefits (e.g. 

Pomiankowski et al. 1991, Iwasa et al. 1991). If the costs for the 

exhibition of a trait are high, and only superior males can invest without 

suffering, these traits are called ‘handicaps’ (Zahavi 1975). This is 

especially true for signals that reflect parasite resistance (Hamilton & Zuk 

1982). Such ‘indicator mechanisms’ (Andersson 1994) are for instance 

colour patterns in many birds or fish (e.g. Hill 1991). 

2. Fishers’ runaway selection (Fisher 1930): Females prefer males for a 

certain trait (e.g. exaggerated tail feathers). The resulting male offspring 

faces the benefit that it shows the trait and is preferred by females. The 

female offspring inherits the genes for this preference. The correlation of 

female choice and male trait could force evolution of exaggerated traits 

that might be disadvantageous but persist only because of the females’ 

preference (Bakker 1993).  

The ‘honest signal’ and Fishers’ runaway hypothesis are not mutually exclusive 

and may partly act on mate choice depending on the costs for trait and 

preference (Kokko 2002). However, there is a third theory of how preference 

and traits might have evolved, which might also build the basis for preferences 

in general. 

3. ‘Sensory bias’ hypothesis: Male traits show a normally distributed 

variation in the population. Females differ in their preference for the trait 

due to differences in their sensory system. Some females are able to 

detect traits only on the one end of the distribution and therefore prefer 

this trait while others might prefer those on the other end for the same 

reason. This preference is only based on the natural sensory bias of the 

females (Ryan 1985).  

For many male traits it is difficult to disentangle which of these mechanisms 

might govern the corresponding preference. In most cases it is probably a 

combination of all of them.  

Even though males face costs for production and exhibition of sexually 

selected traits only one successful mating can ensure their fitness. The costs for 

females are even more pronounced, not only due to the inter-sexual conflict, but 
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also due to the concern of low quality offspring. Mating an inferior male is better 

than not mating at all since it is not always clear whether a second mate will 

appear. Costs of female choice could decrease if male traits are reliable and 

less likely (since more costly) to be cheated. This is discussed as one reason 

for the evolution of multiple ornaments in mate choice.  

Multiple sexual traits 

In most species, females base their mating decision not only on one, but 

on a variety of traits. The evolution of such multiple traits, and their use in mate 

choice, has been discussed from many points of view and the main theories are 

reviewed by Møller & Pomiankowski (1993) and Candolin (2003). Females 

should avoid costs of mating an inferior male and use multiple, and thus more 

reliable, traits to avoid cheating. Some traits could act together as multiple 

messages reflecting different aspects of one individual (Johnstone 1996, 

McGraw & Hill 2000). The actual condition of a male might, for example, be 

reflected by one trait, while the investment into reproduction is reflected by 

another. Under limiting conditions with restricted resources, only superior males 

might be able to invest into both. Other males have to allocate the limiting 

resources into only one trait. Hence, females would mate the best male if they 

take both traits into account.  

Other traits could act as redundant signals that signal information about 

the same aspect of a given male. Taken together, they function as a more 

reliable message for the female signalling e.g. the condition of a possible 

mating partner (Johnstone 1996, Møller & Petrie 2002, Partan & Marler 2005). 

However, male traits do not always carry information about the males’ condition 

or possible direct and indirect benefits to the offspring. Some traits might also 

be uninformative with respect to the individual male but facilitate e.g. species 

detection or signal assessment (Pomiankowski & Iwasa 1993, Iwasa & 

Pomiankowski 1994, Candolin 2003). These and other theories are highly 

discussed, but since they are not mutually exclusive a concrete determination of 

the role of a signal might not be possible in every single case.  

The variety of male ornaments is high between species. Anderson (1994) 

analysed 232 studies on 186 species that investigated sexually selected traits 
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ranging e.g. from insects, fish and birds and mammals. In some cases it might 

be difficult to disentangle traits used during mate choice or for male contest. 

This difficulty could result in overlooking traits that play no role for female choice 

but are important for successful male-male competition. However, in Andersons’ 

table, the most prominent male traits that were used by females for mate choice 

are acoustic signals that carry information about the males’ condition, like songs 

and calls in birds, amphibians and insects. In addition, some species, especially 

e.g. birds, show exaggerated or colourful cues (e.g. Hill 1991) which can reflect 

parasite resistance. Also, the female choice for olfactory signals was discovered 

in mice (e.g. Yamazaki 1976) and humans (e.g. Wedekind et al. 1995). Here, 

odour cues can signal e.g. hormone status (Willis & Poulin 2000), parasitation 

(Penn & Potts 1998) or immuno-genetic background (Wedekind 2004, Boehm 

2006).  

Parasites in sexual selection  

Price (1980) stated that parasites affect life and death of practically every 

organism. They have a strong impact on their host’s fitness due to various 

effects, e.g. direct pathology or alteration of host behaviour (reviewed in Barber 

et al. 2000). For the latter, it is not always clear whether the effects are induced 

by parasite manipulation, or as a by-product of the infection (Poulin 1995). Due 

to the parasite’s profound negative effects on its host, information about 

parasite load or resistance seems likely to be mediated by sexually selected 

traits. Females benefit from this information about the males and thus avoid the 

costs of mating inferior males.  

Most of the effects that parasites cause on hosts are due to the defence 

mechanisms against the invading parasite. Parasites counter evolve 

mechanisms to circumvent this defence and better exploit the host. The 

interaction of host and parasite with evolving adaptation and counter adaptation 

was compared with an arms race termed the ‘Red Queen hypothesis’ (e.g. van 

Valen 1973). This analogy was adopted from Carrols’ (1871) ‘Through the 

looking glass’ where the Red Queen explains to Alice that it takes ‘all the 

running you can do to stay in the place you are’. Sexually reproducing hosts are 

able to evolve more rapidly than asexual ones (Lively 1996). The resulting 
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faster evolution of adaptations is discussed as one of the major reasons for the 

maintenance of sexual reproduction (Lively 1992) since mate choice enables 

reproduction with a high quality partner that provides good parasite resistance 

resulting in better adapted offspring and higher fitness.  

The model system 

Three-spined sticklebacks 

The model organism I used in my investigations is the three-spined 

stickleback (Gasterosteus aculeatus, L.). This small, promiscuous fish inhabits 

brackish and fresh waters as well as the sea on the northern hemisphere. The 

reason why sticklebacks became a pet to scientists of many different fields in 

biology might have been due to the eye-catching behaviour and conspicuous 

colouration of the males (Fig. 2, right).  

 

 
Figure 2: left: a schoal of female three-spined sticklebacks (Gasterosteus aculeatus), right: 
male three-spined stickleback with red breeding colouration in front of its nest. (pictures from: 
SWR, www.kindernetz.de) 
 

The start of the breeding season in early spring depends on temperature 

and photoperiod (e.g. Wootton 1976, 1984a, Mori 1985). During this time, males 

exhibit a typical breeding colouration with a red throat and blue eyes. They 

establish territories in the shallow water of lakes and small rivers where they 

build nests on the ground using plant material. To fix the nest, males use 

Spiggin which is produced by the trunk kidney and released via the urinary 

bladder (van Iersel 1953). At the same time, females’ eggs begin to mature, and 

are then spawned (Fig. 2, left) into the nest of a well chosen male. The 

spawning behaviour follows a discrete scheme (Fig. 3) starting with the female 

approaching the male at his nesting site, with the so-called head-up posture, 
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presenting her egg packed belly. The male reacts with a zig-zag courtship 

dance (Tinbergen 1951) and finally, sometimes only seconds later, leads the 

female to the entrance of his nest. When the female has entered the nest, the 

male encourages the spawning by hitting the base of the female’s tail fin, then 

banishes her and swims through the nest release the sperm. After collection of 

3-6 egg clutches from different females, the male cares for the eggs. He fans 

water through the nest and removes moulded eggs until the fry hatch after 5-8 

days, depending on the temperature.  

Apart from collecting clutches 

into his own nest, another not 

mutually exclusive strategy of male 

sticklebacks to gain fertilisations is 

through sneaking behaviour (van den 

Assem 1967, Kynard 1978a). 

Sneaker males can have their own 

territory and nest. They manage to 

change their colouration suddenly to 

mimic females and then swim near 

the bottom close to the nest of a 

neighbouring male that recently 

received eggs from a female. The 

sneaker swims through the foreign 

nest, sometimes even before the 

nest owner himself and adds his 

sperm. Thereby sneaking males gain 

additional fertilisations without having th

 

Male traits in sticklebacks 

Female sticklebacks base their

olfactory male traits. Redness (Bakker 

1992, Bakker 1993, Bakker & Mundwile

al. 2001b), symmetry (Mazzi et al. 20

(Rowland 1995, Bronseth & Folstad 199
Figure 3: Mating behaviour of the three-
spined stickleback. (picture from Linder 
Biologie, Metzler Schulbuchverlag GmbH, 
20.Auflage, Stuttgart, 1992) 
e costs of brood care.  

 mating decision on both, visually and 

& Milinski 1991, Milinski & Bakker 1990, 

r 1994, Wedekind et al. 1998, Barber et 

03, 2004) and zig-zag courtship dance 

7, Ishikawa & Mori 2000) are only some 
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of the visual traits that were shown to play a role in female mate choice. The 

typical red breeding colouration of the males is based on carotenoids (Brush & 

Reisman 1965). Carotenoids are not only used for colouration but also as 

radical scavengers during innate immune reactions (e.g. Kurtz 2003). Since 

carotenoids are limited in the diet of the stickleback, redness might reflect the 

physical condition of the male especially according to the parasite defence 

ability. Female sticklebacks spent more time in front of the redder male when 

presented two alternatives (Milinski & Bakker 1990) and they are able to 

distinguish even small differences in colouration (Künzler & Bakker 1998). 

Another colour trait that might play a role for female mate choice is the blue iris 

of the male, but investigations on this are sparse (Rowland 1984, McLennan & 

McPhail 1989). In addition to colouration, other traits are also important for 

visual mate choice e.g. nest characteristics. Females choose mating partners 

for nest organisation, visibility of the entrance or loose ends of used plant 

filaments (Barber 2001a, Östlund-Nilsson & Holmlund 2003) and they are more 

likely to spawn into nests that already contain eggs (Belles-Isles et al. 1990). 

Clutches spawned in high quality nests might face higher survival due to good 

male broodcare. 

However, in G. aculeatus female choice could be demonstrated not only 

for visual, but also for olfactory traits (Reusch et al. 2001, Aeschlimann et al. 

2003, Milinski et al. 2005, McLennan 2003). Here, chemical cues associated 

with genes of the major histocompatibility complex (MHC) caught most 

attention. MHC genes play a major role in initiating the acquired immune 

response by presenting peptides derived from pathogens (Klein 1994) and 

contain the most polymorphic gene loci known in vertebrates (e.g. Janeway et 

al. 2001). In sticklebacks, there are probably six loci of MHC class IIB and 

twelve loci of MHC class I (Sato et al. 1998). Evidence for the existence of an 

optimal rather than a maximal (i.e. 12 alleles) individual MHC class IIB diversity 

is mounting. In sticklebacks, females use a self-referential process, signalled by 

peptide ligands, to assess MHC class IIB alleles of a possible mating partner 

(Milinski et al. 2005). They choose the male, optimal with respect to their own 

MHC, leading to an intermediate number of around 5-6 MHC sequence alleles 

in their offspring (Aeschlimann et al. 2003, Reusch et al. 2001, Milinski et al. 
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2005). Fish with an intermediate number of MHC sequence alleles have a clear 

fitness advantage, because they are less likely to get infected under 

experimental conditions as well as in the wild (Wegner et al. 2003a, b), and 

suffer less from the infection (Kurtz et al. 2004). This suggests that a link exists 

between female mate choice and parasite resistance. From mice it is known 

that females can smell a possible parasitation directly in the odour marks of the 

male (Kavalier & Colwell 1995). This ability to detect infection might also play a 

role in sticklebacks. Further information signalled via the odour of a male could 

include e.g. hormones or immune parameters but more research is necessary 

to disentangle different odour contents and their role in the context of mate 

choice (Ferkin & Zucker 1991, Westneat & Birkhead 1998).  

 

Parasites in sticklebacks 

Among the various macro parasites that can be found in the three-spined 

stickleback, I chose the three most abundant species in the lakes around Plön, 

Northern Germany. Namely, these were the two nematodes Camallanus 

lacustris and Anguillicola crassus and the trematode Diplostomum 

pseudospathaceum. 

 C. lacustris and A. crassus are transmitted when sticklebacks prey upon 

copepods. Copepods, which are first intermediate hosts (Moravec 1994), 

become infected by ingesting parasite larvae. In both parasites’ life cycles 

sticklebacks serve as paratenic hosts until a more suitable host preys upon it. 

Several predatory fish species like pike (Esox lucius) or perch (Perca fluviatilis) 

(Moravec 1969) are final hosts of C. lacustris, whereas in Europe A. crassus 

reproduces only in the eel (Anguilla anguilla).  
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C. lacustris (Fig. 4) is a long-established parasite in lakes of Northern Germany 

that, after trophical transmission, stays in the anterior part of the intestine of the 

fish host. There, C. lacustris anchors in the intestinal mucosa and feeds on 

blood and tissue (Stumpp 1975, Lodes & Yoshino 1985, Meguid & Eure 1996).  

 

 
Figure 4: left: Camallanus lacustris adults in the intestine of a stickleback, right: head capsule of 
a C. lacustris larvae. (pictures: M. Kalbe) 
 

 A. crassus (Fig. 5) was introduced to Germany recently in 1982 

(Neumann 1985). It came from Japan where it is a common parasite of the 

Japanese eel (Anguilla japonica). It penetrates the intestine before it migrates 

through the body cavity into the wall of the swim-bladder. There, it feeds on 

blood and can cause major damage to the tissue (Würtz & Taraschewski 2000).  

 

 
Figure 5: left: Anguillicola crassus adults in the swim bladder of an European eel (Anguilla 
anguilla) (picture from: www.abo.fi/instut/fisk/Swe), right: A. crassus larvae (picture: M. Kalbe). 
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The digenean trematode D. pseudospathaceum (Fig. 6) is not 

transmitted to the stickleback by ingestion of an intermediate host. Free-

swimming larvae, released from Lymnaea stagnalis snail hosts, penetrate the 

skin of the fish. Thereafter, they migrate into the eye-lenses of the fish (‘eye-

fluke’) to evade the immune system (Chappell et al. 1995). Sight ability is 

reduced in infected fish that therefore face higher predation risk or decreased 

prey finding ability (Crowder & Broom 1980, Owen et al. 1993). The fish is then 

preyed upon by the definitive host (gull), in which D. pseudospathaceum 

matures and finally releases its eggs into the water. 

 

fish eating bird 

egg 

metacercaria 
in eye lense 

fish 

miracidium 

freshwater snail:  
Lymnaea stagnalis 

cercaria  
Figure 6: Life cycle of D. pseudospathaceum including Lymnaea stagnalis as specific first 
intermediate host, a fish as second intermediate host and a fish eating bird as final host. 
Denomination of life stages is given within the pictures (pictures by M. Kalbe, lifecycle by W. 
Haas).  
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Outline 
This thesis is divided into four chapters. The chapters represent independent 

studies and are structured into abstract, introduction, methods, results and 

discussion. In Chapter II results and discussion are combined. The first two 

chapters address the effect of parasites and immuno-genetic background on 

physiology and male traits of three-spined sticklebacks. Both aspects were 

incorporated in a laboratory mate choice experiment (Chapter III) which was 

supported by data from a field enclosure experiment (Chapter IV). This outline 

gives a short overview of the motivation for the distinct experiments. 

 

Contribution to the chapters: 
My contribution to the single chapters was as follows: Chapter I: 

experiment performance, data analysis, and manuscript preparation. Chapter II: 

photographs of the fish, analysis of redness, and help with manuscript. Chapter 

III: performance and analysis of experiment, preparation of manuscript, Chapter 

IV: help during data collection, analysis of the data, and preparation of the 

manuscript. 

 

Chapter I: Infection dose experiment  
To use parasites in laboratory infections, it is important to know about 

their infection ability and the immune reaction they activate. This is especially 

true for my experiments including sexually selected traits that might reflect 

parasite load or resistance. In the first chapter of this thesis, it was therefore 

investigated whether two different nematode parasites elicit different immune 

reactions in their paratenic stickleback host. Therefore, sticklebacks were 

exposed to different doses of C. lacustris and A. crassus and immune activation 

was measured at a specific time point 18 weeks after exposure. As expected 

the two parasite species varied in the immune response of the host, possibly 

either because they have different target organs, or due to different duration of 

their host-parasite co-evolution.  
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Chapter II: Correlation of MHC to male and female traits 
As showed in Chapter I, different parasites cause different reactions in their 

stickleback host. This might be due to the immuno-genetic background of the 

fish. In Chapter II, it was investigated whether male traits, namely red breeding 

colouration and nest quality, were thus correlated to the MHC class I and class 

IIB allele number of the fish. Both male traits are known to be involved in mate 

choice and might enable females to evaluate possible mating partners not only 

for parasitation, but also for the MHC background, and according parasite 

resistance.  

 

Chapter III: Laboratory mate choice experiments  
On the basis of the two former chapters, mate choice of female 

sticklebacks for parasitation and MHC class IIB alleles of males (Chapter III) 

was experimentally tested. For this purpose, a set-up was developed that tested 

visual and olfactory female preference separately or in combination.  

Apart from preference for males that are MHC optimal with respect to 

their own MHC background in the olfactory choice situation, we expected 

females to choose non-parasitised males. In visual choice situations this might 

be due to changes in red colouration, while nothing is known for parasite 

induced changes in olfactory choice in sticklebacks so far. Although several 

traits might have evolved for different functions, females probably include 

multiple traits into their mating decision to obtain a reliable overall picture of the 

males’ condition and parasite resistance. Therefore, this experimental approach 

with a combined choice situation resembles the natural situation where females 

are confronted with visual and olfactory cues at the same time.  

 

Chapter IV: Field enclosure experiments 
In Chapter IV of this thesis, I present a field enclosure experiment that 

was performed to verify the results and conclusions from the laboratory 

experiments. The experiments were performed with a controlled stocking of fish 

that were selected for their MHC background. After final dissection and parasite 

determination, male traits, parasite load and MHC class IIB alleles were 

correlated to the number of eggs the males had collected. Using parenthood 
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analysis it was possible to determine which males were chosen by the females, 

and whether the visual and olfactory male traits, or their MHC background, 

might have played a role for this decision. How these traits, as well as 

parasitation of the males, might influence the female reproductive success can 

only be assumed. However, the results point in the same direction as those 

from laboratory experiments: also in the field, females base their mating 

decision on multiple visual and olfactory traits to increase their fitness.  
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Chapter I  

The nematode parasites, Camallanus lacustris and 
Anguillicola crassus, operate differently in a paratenic 
host, the three-spined stickleback (Gasterosteus 

aculeatus) 
 

Abstract 
Three-spined sticklebacks (Gasterosteus aculeatus) are frequent 

paratenic hosts of the nematode parasites Anguillicola crassus and Camallanus 

lacustris. Both parasites feed on blood and tissue, A. crassus in the wall of the 

swim bladder, and C. lacustris on the intestinal mucosa. The latter is a long time 

established parasite in freshwater fish stocks of Europe, but A. crassus was 

introduced to Europe recently, about 20 years ago. This implicates a potential 

difference in host-parasite adaptation, which might influence the infection ability. 

In the present study, a paratenic host of the two parasites, G. aculeatus, was for 

the first time infected under controlled laboratory conditions. Exposure to doses 

of 6, 12, 18 and 24 parasites resulted in significantly higher infection rates (18-

49%) for C. lacustris compared to A. crassus (4-14%). Highest infection rate 

was observed in sticklebacks exposed to 12 C. lacustris larvae. Exposure to 18 

C. lacustris larvae did not increase the infection rate and it even decreased in 

fish exposed to 24 C. lacustris larvae. In A. crassus infected sticklebacks, no 

significant effect of administered parasite dose on infection rates was observed. 

Respiratory burst activity and lymphocyte proliferation of head kidney 

leukocytes did not show any alteration by either parasite or exposure dose 18 

weeks post exposure, indicating that the infections might have entered a 

chronic phase. 

 

Keywords 
Anguillicola crassus, Camallanus lacustris, Gasterosteus aculeatus, infection 

dose, neozoic parasite, immune response, G/L ratio, respiratory burst, 

lymphocyte proliferation 
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Introduction  
 In natural habitats animals are exposed to a variety of parasite species 

that can cause inflammation, drainage of nutrients and even changes in the 

hosts’ behaviour. The possible effects often vary between parasite species 

(Combes 2001, Moore 2002, Hoole et al. 2003). Characteristics of the immune 

defence of the hosts may depend on infection route, target organ and 

pathogenicity of the invading parasite species (Buchmann et al. 2001, Tully & 

Nolan 2002, Wiegertjes et al. 2005, Roberts et al. 2005, Reite & Evensen 

2006).  

 The three-spined stickleback (Gasterosteus aculeatus) is intermediate, 

paratenic or final host for several parasite species and is investigated as a 

model organism for host-parasite interaction. Two of the most abundant 

parasites in sticklebacks in northern Germany are the nematodes Camallanus 

lacustris and Anguillicola crassus (Kalbe et al. 2002). Both parasites are 

transmitted by various copepod species, as first intermediate hosts (Moravec 

1994). For C. lacustris final hosts are predatory fish like pike (Esox lucius) or 

perch (Perca fluviatilis) (Moravec 1969b), whereas in Europe A. crassus 

reproduces only in the eel, Anguilla anguilla (Moravec & Taraschewski 1988). 

Direct transmission to final hosts is possible but frequently small planctivorous 

fish (e.g. sticklebacks) are paratenic hosts in which both parasite species 

persist without reproduction.  

 In the final as well as in the paratenic host, C. lacustris stays in the 

anterior part of the intestine where it anchors in the mucosa, feeds on blood and 

tissue, and causes inflammatory reactions (Stumpp 1975, Lodes & Yoshino 

1985, Meguid & Eure 1996). A. crassus penetrates the intestine of its fish host, 

migrates into the wall of the swim-bladder where it feeds on blood. In its final eel 

host A. crassus causes serious damage to the swim bladder tissue 

(Taraschewski et al. 1988, Molnar et al. 1995, Würtz & Taraschewski 2000) and 

elicits cellular and humoral immune responses (e.g. Haenen & Van Banning 

1990, Knopf et al. 2000, Mulcahy et al. 2005).  

 The three-spined stickleback G. aculeatus, among several fish species, 

is a frequent paratenic host for A. crassus (Haenen & Van Banning 1990, 
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Thomas & Ollevier 1992); a constitutive route of infection next to direct 

transmission by crustaceans (Haenen & Van Banning 1990). Abundance of A. 

crassus larvae varied among possible paratenic host fish species, but higher 

prevalence was observed in physoclist fish (Thomas & Ollevier 1992). Among 

these more susceptible fish (e.g. river goby, common perch) were distinguished 

from not susceptible fish (several cyprinids). The latter are more effective in a 

cellular immune response against A. crassus, resulting in encapsulation of 

invading larvae and formation of granulomas in which the parasites are killed 

(Székely et al. 1996). The capability of paratenic hosts to control their parasite 

load thus can significantly influence infection pressure of parasites to their final 

host.  

 C. lacustris is a long-established parasite in lakes of northern Germany, 

probably since the last glacial phase, whereas A. crassus was introduced to 

Germany in 1982 (Neumann 1985). The two parasites might perform differently 

when infecting three-spined sticklebacks as paratenic hosts. In wild caught 

sticklebacks indeed lower abundance of A. crassus compared to C. lacustris 

was found (Kalbe et al. 2002). If this is due to differences in the infection 

pressure in wild populations is not clear yet. Furthermore differences in the 

immune response of stickleback against the two parasites might play a role. 

However, information about possible effects of infection dose and dynamics of 

host-parasite interaction of C. lacustris and A. crassus in paratenic hosts is 

limited at the moment.  

 A major part of innate immune defence of fish hosts against helminth 

parasites is the activation of granulocytes (Whyte et al. 1989, Zapata et al. 

1996, Nie & Hoole 2000, Kurtz 2004, Scharsack et al. 2004). In addition to the 

innate line of defence (Jones 2001) fish hosts possess adaptive immunity that 

produces specific antibodies against parasite antigens (Roberts et al. 2005, 

Wiegertjes et al. 2005). Clonal expansion of lymphocytes is a fundamental part 

in a specific immune response of fish (Rijkers et al. 1980) and lymphocyte 

proliferation is used as a measure for activation of the specific immune system 

against helminth (Nie et al. 1996) and protozoan (Hamers & Goerlich 1996, 

Scharsack et al. 2000) parasites. To determine the relative activity of the innate 
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versus the adaptive immunity, the ratio of granulocytes to lymphocytes (G/L 

ratio, Birkhead 1998, Kurtz 2004) is assessed.  

 In the present study, we exposed sticklebacks to infective stages of A. 

crassus and C. lacustris respectively under laboratory conditions, in order to 

determine differences in infection ability between the two parasite species. 

Infection was allowed to persist for 18 weeks for a strong discriminatory power 

on parasite survival. Varying infection doses were used for exposure to check 

for a threshold in parasite number for optimal infection success. Body condition 

of infected fish was recorded and activation of their cellular immune system was 

measured. Furthermore, respiratory burst activity, proliferation of lymphocytes 

and G/L ratio was used to quantify activation of innate and adaptive immunity. 

We intended to detect differences in performance of the neozoic A. crassus and 

the long established parasite C. lacustris in the three-spined stickleback. 
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Methods 
Parasites  

A. crassus and C. lacustris parasites used for the infection experiments 

originated from host fish caught in the Grosse Plöner See (Germany) in autumn 

2003 and spring 2004. A. crassus (L2) larvae were washed out from freshly 

isolated swim bladders of eels (Anguilla anguilla) with PBS buffer and C. 

lacustris larvae were dissected from gravid female parasites collected from the 

intestinal blind sacks of perch (Perca fluviatilis). All infective stages were stored 

overnight in glass petri dishes with 0.64% NaCl at 6°C.  

 

Infection of copepods 

Macrocyclops albidus copepods were obtained as intermediate hosts 

from a parasite free laboratory culture and prepared for infection as described in 

Hammerschmidt & Kurtz (2005a). On the day of infection, each copepod was 

assigned to either C. lacustris or A. crassus treatment and was offered six 

actively moving larvae of the respective parasite. Infected copepods were kept 

singly in wells of 24-well micro-titre plates at 18°C under a 16:8h light: dark 

cycle for 3 weeks. They were fed three times a week with 5 living Artemia 

nauplia. One week before they were fed to the fish, the number of parasites in 

the body cavity of each copepod was counted using a microscope. Copepods 

infected with six living (moving) parasites were exclusively selected for the fish 

exposure. 

 

Infection of sticklebacks 

Three-spined sticklebacks were caught in the Grosse Plöner See in 

2003. For the infection experiments, six fish families were bred from these 

parental fish under parasite free laboratory conditions and raised for 7 months 

within their family groups. The groups were maintained in separate tanks (16L) 

with continuous water supply and aeration at 18°C under a 16:8h light: dark 

cycle. After initial feeding with living Artemia nauplia, the fish were fed ad libitum 

three times a week with a mix of frozen chironomid larvae and daphnids. 
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Prior to exposure fish were marked according to their infection dose (by 

clipping 0 to 2 spines: 1st dorsal spine- 6 parasites, 2nd dorsal spine- 12 

parasites, both dorsal spines- 18 parasites, one dorsal and one pectoral spine- 

24 parasites and no spine for control fish). Wedekind & Little (2004) found an 

effect of spine clipping on infection rate and if so, we would expect an increase 

in immune reaction for the fish with one or more spines clipped. Since we found 

no significant difference in hepatosomatic index or G/L ratio between the control 

and the fish which had at least one spine cut (ANOVA: both P>0.2) we conclude 

that the clipping had no effect in our experiment. To enhance the consumption 

of the respective number of copepods the marked fish were put individually in 

aquaria with 1L of water and starved for three days. From each family we draw 

blind 20 individuals of which we assigned 10 to C. lacustris treatment and 10 to 

A. crassus. Within each of these groups, two fish were offered 1, 2, 3 or 4 

copepods (each containing six parasite larvae) respectively, according to the 

infection dose they were assigned to and formerly marked for. This procedure 

resulted in 8 exposed fish per group and the remaining two fish served as 

controls that were fed no copepods. The groups of 10 fish were kept together in 

16L aquaria until dissection.  

 

Dissection of the sticklebacks 

Of the 120 experimental fish, 14 died during the experiment due to 

technical problems with the water supply of two aquaria. In total, 106 fish were 

available for dissection with N=46 in the A. crassus, N=40 in the C. lacustris 

treatment group and N=20 controls. For each parasite group and the controls 

from the same aquaria, dissection took place on two consecutive days 18 

weeks post exposure. Fish were weighed and measured for length and then 

dissected. Livers were removed and weighed to calculate the hepatosomatic 

index (Wliver/Wfish)*100 where W is the fish wet weight. The hepatosomatic index 

is a measure for the fish’s metabolic condition including fat reserves and 

carbohydrates (Chellappa et al. 1995). At the same time head kidneys, the 

major lymphatic organs in teleost fish (Press & Evensen 1999) were prepared 

for immunological assays (see below). To count infested A. crassus parasites, 

the fish’s swim bladder was removed and placed on a glass slide for 
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microscopic examination. For the C. lacustris treatment group the guts of the 

fish were squeezed between two glass plates and screened for parasites under 

a dissection microscope. Individual infection rate was calculated as the number 

of successfully established relative to the number of offered parasites. Since the 

absolute number of parasites found in the fish did not show any significant 

effect on any of the investigated traits we included only the parasite dose we 

used for exposure into the statistics. 

 

Immunological assays 

Leukocytes were isolated from the head kidney of all dissected 

sticklebacks (N=106) as described in Kurtz et al. (2004). Numbers of viable 

leukocytes (exclusion of propidium iodide positive cells) were enumerated by 

means of flow cytometry (FACSCalibur, Becton and Dickinson, USA). Total cell 

numbers in head kidney leucocyte (HKL) suspensions were determined with the 

standard cell dilution assay (SCDA, Pechhold et al. 1994) in a modified form 

(Scharsack et al. 2004; Kurtz et al. 2004). Propidium iodide (2 mg/L) and green 

fluorescent standard particles (3 x 104, 4µl, Polyscience, USA) were added to 

the suspensions to discriminate standard particles (green fluorescence positive) 

from viable HKL (propidium iodide-negative, green fluorescence negative). 

Distinct leukocyte sub-sets were identified according to their characteristic 

FSC/SSC (forward scatter/side scatter) profiles as described by Scharsack et 

al. (2004) and analysed as described in Hammerschmidt & Kurtz (2005a). 

Proportions of granulocytes (FSC/SSChigh) and lymphocytes (FSC/SSClow) of 

total viable cells in individual HKL samples were used to calculate 

granulocyte/lymphocyte ratio (G/L-ratio) for each fish.  

As an important effector-mechanism of the innate immune system 

respiratory burst activity of HKL was quantified in a lucigenin-enhanced chemi-

luminescence assay. The assay was modified after Scott & Klesius (1981) and 

cell densities were adjusted as described by Kurtz et al. (2004). Cell 

suspensions (160µl/well with 2 x 105 HKL) were added to 20µl lucigenin solution 

(2.5mg/ml PBS) per well in 96-well flat bottom micro titre plates and incubated 

for 30min at 18°C for lucigenin uptake of the cells. Phagocytosis and production 

of reactive oxygen species was initiated by addition of 20µl zymosan 
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suspension (7.5mg/ml PBS). Control cultures received 20µl of PBS without 

zymosan. Plates were measured for 3 h at 20°C using a micro titre plate 

illuminometer (Berthold, Germany). Relative luminescence was calculated as 

relative luminescence units (RLU) for each sample using the WinGlow software.  

As a parameter for activation of the adaptive immune system, we 

determined the relative number of proliferating lymphocytes in the S and G2-M 

phase of the cell cycle by quantification of DNA content. HKL were fixed with 

ethanol (100µl cell suspension, 1.25 x 106/ml, as described above in 900µl ice 

cold Ethanol 98%) and stored at 4°C. Cells were centrifuged (550 x g, 10min, 

4°C) and supernatant ethanol was removed. Re-suspended HKL were 

incubated with RNAse (500 µg/ml PBS) for 10min at room temperature to 

remove background labelling of RNA. Propidium iodide (Sigma Aldrich) was 

added to a final concentration of 7.5 µg/ml and cells were incubated for 10min 

at room temperature. For individual samples, events were measured for three 

minutes or up to 30.000 events with a flow cytometer (Becton Dickinson 

FACSCalibur). Red fluorescence (propidium iodide) was measured in linear 

mode. Data were evaluated with the CellQuest Pro 4.02 software. Lymphocytes 

were identified according to their characteristic FSC/SSC profile. Doublet cells 

were subtracted from single cells as described by Wersto et al. (2001). 

Frequencies of lymphocytes in G0-1, S and G2-M phase were acquired by DNA 

content analysis of red fluorescence intensity (propidium iodide labelling) of 

single cells from the lymphocyte gate.  

 

Statistical analysis 

We analysed the differences in infection rate and the immune parameters due 

to parasite species and infection dose. For all analyses, residuals were used to 

eliminate possible effects of fish family and fish gender. Since the residuals 

were not normally distributed, we transformed the raw data of infection rate 

logarithmically, RLU was square-root transformed and for G/L ratio and 

hepatosomatic index Box-Cox transformation was used. 

We used full-factorial ANOVA models with parasite species and infection dose 

as independent variables. We also tested for differences between the infection-

treatments (C. lacustris, A. crassus and control). Interactions between factors 
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were not found to be significant in any of the models and were therefore 

excluded from the analyses. The post-hoc Tukey-Kramer HSD test was used to 

detect within-group differences in cases where the ANOVA was significant. All 

tests were performed as two-tailed tests using JMP v.5.0.1.2 (SAS) with a 

significance level of P<0.05.  
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Results 
Out of 86 surviving fish exposed to doses of 6-24 of either A. crassus or 

C. lacustris infective larvae, 56 were found to be infected 18 weeks post 

exposure. In the A. crassus group 22 fish were exposed but not infected 

(47.8%), whereas in the C. lacustris group only 8 fish were not infected (20%). 

We found no significant difference in any of the investigated traits 

(hepatosomatic index, G/L ratio, RLU and S+G2M lymphocytes) between 

exposed but not infected, and infected fish for both parasite species (t-test: 

N=105, all P=0.216). Infection with A. crassus resulted in a maximum number of 

6 parasites per fish, whereas a maximum number of 17 parasites per fish were 

found for C. lacustris. Over all infection doses the number of infested C. 

lacustris was significantly higher compared to A. crassus (χ² test: χ1² = 21.5, 

P<0.001). In the A. crassus group the average number (Fig. 7a) of parasites per 

fish did not vary significantly between infection doses (effect of infection dose: 

F42,3=0.7541, P=0.5262). In C. lacustris, the number of infested parasites 

tended to increase for exposure to 6, 12 and 18 parasites respectively, but 

tended to decrease for the dose with 24 parasite larvae (Fig. 7a) (effect of 

infection dose: F3,36=2.2096, P=0.1038). 

The infection rates (Fig. 7b) differed significantly between the two 

parasite species (effect of parasite species: F1,54=6.5923, P=0.0130). 

Comparison of the least square means for the C. lacustris group showed that 

the infection rate tended to be highest for 12 parasites (mean 48.8%) and 

lowest for the 24 parasite dose (effect of infection dose: F1,17=3.7114, 

P=0.0709). In the A. crassus group no significant difference of infection rate 

between infection doses could be detected (effect of infection dose: 

F3,42=1.3313, P=0.2770).  
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Figure 7: Absolute (mean ± SE) number of parasites (a) and infection rate (b) found in 
laboratory infected sticklebacks 18 weeks post exposure to four different doses of either C. 
lacustris (black bars) or A. crassus (grey bars). In all infection doses, C. lacustris shows 
significantly higher infection rates and higher total numbers than A. crassus (ANOVA: 
F1,54=6.5923, P=0.0130). Error bars represent standard errors. 
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Figure 8: Granulocyte to lymphocyte ratio (G/L ratio, mean ± SE) for fish exposed to four 
different doses of both A. crassus or C. lacustris and the non-exposed control group. 
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To determine the relative activation of innate vs. adaptive immune 

system, the granulocyte to lymphocyte ratio (G/L ratio) in head kidney 

leukocytes was measured. The C. lacustris group had lower G/L ratios than 

both the A. crassus and the control group for the treatments with 6, 12 and 24, 

but not for 18 parasites administered (Fig. 8). Within the C. lacustris group 

infection with 18 parasites showed a higher G/L ratio than the other parasite 

doses which was significant for 6 and 12 offered parasites (effect of infection 

dose: F3,36=4.2629, P=0.0113, post-hoc test significant). In the A. crassus 

group, no effect on the G/L ration of the parasite dose was observed (effect of 

treatment: F3,42=1.3313, P=0.2770).  

The innate immune responses of sticklebacks against A. crassus and C. 

lacustris were tested using the respiratory burst activity (Tab.1, RLU) of head 

kidney leukocytes. All fish showed elevated respiratory burst activity in cultures 

with zymosan stimulation compared to not stimulated controls. No significant 

differences in respiratory burst activity (including spontaneous (no zymosan) 

and zymosan-induced reaction) were detected for the control group and the two 

parasite treatment groups (effect of treatment: F3,74=0.5291, P=0.6636). Also, 

no effect was found between the different infection doses (A. crassus: 

F3,41=1.4683, P=0.2373, C. lacustris: F3,33=0.5181, P=0.6728). Proliferation of 

head kidney lymphocytes (% S+G2M lymphocytes) did not show significant 

differences between treatment groups either (Tab. 1). Absence of significant 

effects of the parasite infections on respiratory burst activity and lymphocyte 

proliferation might indicate that the infection had entered a chronic phase after 

18 weeks post exposure. 

As a measure for energy stored by the fish we determined their 

hepatosomatic index. There was no significant difference in energy status 

between the control and the A. crassus and C. lacustris groups (effect of 

treatment: F2,102=0.5573, P=0.5745). Exposure to different parasite doses had 

no significant effect on the condition of the fish independently of parasite 

species (Fig. 9, effect of treatment: F4,100=1.3657, P=0.2513). However, 

although not significant in the ANOVA model, fish with the highest parasite load 

in the group of C. lacustris (18 parasites offered, infested: mean: 7 ± 1.66) 

tended to have the lowest body condition.  
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Figure 9: Fish condition as calculated by the hepatosomatic index (mean ± SE) for fish exposed 
to four different doses of either C. lacustris or A. crassus and the non-exposed control group. 
 
Table 1: Mean values (mean ± SE) of the investigated immune traits respiratory burst reaction 
(RLU, x105) and S+G2M lymphocytes (% of total lymphocytes). Significant P values for the 
ANOVA models were not detected. 
 
 

 

Immune trait Number of exposed parasites: ANOVA 

  control      6     12 18 24   F df/error P 

RLU  43.02 
± 4.68 

44.10 
±8.15 

47.48 
±4.87 

49.13 
±6.55 

42.10 
±7.68 0.518 3/33 0.673 

C
. l

ac
us

tri
s 

lym S+G2M
3.46 

± 0.60 
3.21 

± 0.64 
3.12 

± 0.50 
3.49 

± 0.48 
3.22 

± 0.64 0.536 4/34 0.711 

RLU   47.66 
±6.840 

45.57 
±7.66 

34.39 
±3.90 

43.52 
±4.49 1.468 3/41 0.237 

A
. c

ra
ss

us
 

lym S+G2M  3.80 
± 0.75 

3.80 
± 0.91 

2.73 
± 0.53 

2.65 
± 0.65 1.067 4/42 0.385 
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Discussion 

We investigated the infection of three-spined sticklebacks (Gasterosteus 

aculeatus) with the helminth parasites Camallanus lacustris and Anguillicola 

crassus under defined laboratory conditions in a dose depended manner. In the 

laboratory, infection total numbers of infested A. crassus (Haenen & van 

Banning 1990, Thomas & Ollevier 1992) and C. lacustris (Kalbe et al. 2002) 

were in the range observed in wild stickleback populations. In our experiment, 

exposure to equal doses of the two parasites resulted in significantly higher 

numbers of infested C. lacustris than A. crassus. Thus, higher numbers of 

infested C. lacustris than A. crassus observed in wild caught stickleback (Kalbe 

et al. 2002) are probably not caused by differences in the infection dose. In C. 

lacustris infected sticklebacks, infection rate and total number of infested 

parasites showed dose depended maxima at 12 and 18 exposed parasites 

respectively. In the A. crassus group, infection rate was low and dose effects 

were not detectable. The immune reaction of the stickleback host seems to be 

dose dependent in the case of C. lacustris, whereas effects of infection dose 

were not observed in A. crassus infected fish. In C. lacustris infected 

sticklebacks highest G/L ratio was detected in the group exposed to18 parasites 

with the highest total number of infested parasites. Both parasite infections had 

no significant effect on respiratory burst activity when tested in head kidney 

leukocytes 18 weeks post exposure (Tab. 1). The observed elevated G/L ratio 

in the C. lacustris 18 group did not result in increased respiratory burst capacity 

as relatively higher numbers of granulocytes were used in the in vitro tests. 

Thus, increase of the G/L ratio could be due to an increase of premature 

granulocytes in the head kidney, due to elevated consumption of granulocytes 

at sites of infestation in the gut. Analysis of total cell counts in head kidney 

leukocytes did not reveal significant differences between treatment groups (data 

not shown). 

At the relatively late time point (18 weeks p. e.) we investigated, the 

infection had probably come to a chronic stage in which innate immunity was 

levelled out. Influence of either parasite, or infection dose on the trait of 

adaptive immunity recorded, the lymphocyte proliferation, was not detectable. 
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Again, the late (18 weeks p. e.) sampling time point has to be taken into 

account here. In fish, depending on the environmental temperature, peak 

antibody response is present two to several weeks after an infection (Rijkers et 

al. 1980). Thus, in the present experiment, lymphocyte proliferation already 

might have decreased again. Analysis of immune parameters at earlier time-

points during both infections is necessary to reveal the underlying mechanisms 

and kinetics. However, European sticklebacks are new paratenic hosts for A. 

crassus, but seem to be more successful defending the neozoic parasite than 

the established C. lacustris.  

 Comparisons of pathological effects of C. lacustris and A. crassus are 

however not unequivocal because the parasites inhabit different organs of the 

fish. Furthermore, competition for energy resources between parasite larvae 

might play an important role for infection success in the different hosts. The 

copepods we used were chosen with an infection rate of six parasites per 

copepod, which is a high parasite number compared to the much lower natural 

infection rates (~ 1, Sysoev 1985). However, for higher infection doses more 

than one copepod was fed to the fish, but we did not find proportionally higher 

infection rates and thus, competition within the copepod seems rather unlikely. 

Limitation of resources and also direct interaction between parasites could 

shape the development of simultaneously infecting parasite larvae as Lello et al. 

(2004) state for inter-species interaction. Paterson & Viney (2002) suggest 

density dependent effects of intraspecific competition to regulate nematode 

infections. In addition to living A. crassus larvae, dead parasites can be found in 

the swim bladder of infected fish (Haenen & van Banning 1990). Although we 

did not distinguish dead and alive parasites, parasite-parasite interactions might 

also have occurred in our experiment. Low infection rates and absence of dose 

effects in the A. crassus group indicate that with 3-4 infested larvae already a 

maximum is reached. In wild caught stickleback up to 15 infested A. crassus 

were found in single individual stickleback (Kalbe, unpublished), suggesting that 

in the laboratory infection immune defence is responsible for low infection rates 

of A. crassus.  

Knopf & Mahnke (2004) investigated the infection success of A. crassus 

in its natural final host, the Japanese eel (Anguilla japonica) and the recently 
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affected European eel (Anguilla anguilla). They found the latter, new host to be 

more susceptible to A. crassus infection than the Japanese eel. This might 

indicate, together with our observations, that A. crassus has evolved strategies 

to evade the immune response of its final eel host, but not to such a high intend 

of its paratenic stickleback host.  
Although we found changes in innate immune parameters that indicate 

activation of the immune system of the C. lacustris infected fish, there was no 

significant difference in body condition due to exposure or infection. We 

expected a decrease in the condition of the stickleback since immunity is 

supposed to be costly (Moret & Schmidt-Hempel 2000, Kurtz et al. 2006). 

Sticklebacks face a variety of parasite species and limited resources in the field, 

whereas laboratory reared fish might be able to compensate for the impact of 

an infection under less restricted conditions e.g. with ad libitum feeding 

(Candolin & Voigt 2001). In contrast, Wegner et al. (2003b) found a condition 

decrease in highly parasitised sticklebacks in the field. In summary, the neozoic 

A. crassus was less successful infecting its paratenic host the three-spined 

stickleback compared to the established C. lacustris. A. crassus appears to be 

specialised in adaptation to its final host, the eel and therefore might lack the 

ability to be adapted to a broad range of paratenic hosts too. For C. lacustris 

however, the high infection rate and the dose response observed in our 

experiments suggest a high degree of adaptation to the stickleback as paratenic 

host.  
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Chapter II  

Individual MHC class I and MHC class IIB diversity are 
associated with male and female fitness traits in the 
three-spined stickleback 
 

Abstract 
Genes of the major histocompatibility complex (MHC) play a major role in 

pathogen resistance. Sexual selection combined with an ever-changing 

pathogen community has been hypothesized to maintain the striking 

polymorphism of those genes. In the three-spined stickleback (Gasterosteus 

aculeatus) there is strong evidence that an intermediate rather than a maximal 

individual MHC class IIB allele diversity is optimal with regard to parasite 

resistance. Here, we related individual MHC diversity to fitness traits likely to be 

affected by parasitization, namely the number of egg clutches laid by a female, 

male nest quality and the intensity of male breeding colouration. For the first 

time, MHC class I was investigated in three-spined sticklebacks as well. The 

sticklebacks under investigation were subjected to either high or low food 

conditions. The number of egg clutches as well as male nest quality was 

significantly higher under good food conditions. Whereas for male nest quality 

an optimum concerning MHC class IIB diversity was found, male breeding 

colouration was most intense at a maximal MHC class I diversity. Two MHC 

class I alleles were not only associated with a higher intensity of red colouration 

but were also more likely to be carried by individuals with a higher allele 

diversity, possibly explaining the positive correlation. It seems likely that these 

alleles confer resistance to a specific and presumably common intracellular 

pathogen.
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Introduction 
The major histocompatibility complex (MHC) has received much attention 

with respect to important questions of evolutionary ecology like parasite-

mediated selection (e.g. Doherty and Zinkernagel 1975; Hedrick and Kim 1999; 

Wegner et al. 2003a, b) and sexual selection (e.g. Yamazaki et al. 1976; Potts 

et al. 1991; Reusch et al. 2001; Bonneaud et al. 2006; reviewed in Penn and 

Potts 1999; Milinski 2006). The MHC is central to the specific antibody-based 

responses of the adaptive (or acquired) immune system of vertebrates and 

contains the most polymorphic gene loci known in vertebrates (e.g. Janeway et 

al. 2001). MHC molecules are involved in pathogen recognition by presenting 

pathogen-derived peptides to T-cells that subsequently initiate an immune 

response. There are two classes of MHC molecules, class I and II. While MHC 

class I molecules bind peptides derived from intracellular pathogens, e.g. 

viruses, MHC class II molecules recognize peptides from extra cellular 

pathogens. The striking polymorphism within those genes might be attributed to 

the balancing selection of an ever-changing pathogen community (Takahata 

and Nei 1990; Slade and McCallum 1992). In order to be able to fight a broad 

range of pathogens, one would expect selection to favour individuals with a high 

individual MHC diversity, i.e. high individual MHC heterozygosity. However, an 

increased number of MHC variants may not only bind more foreign antigens but 

also a greater variety of self-derived peptides, which may lead to an elevated 

risk to initiate an autoimmune response. T-cell clones that recognize self-

peptides bound to MHC molecules are eliminated from the initially highly 

variable repertoire, thereby reducing the T-cell clone repertoire that is finally 

available for parasite recognition (Goldrath and Bevan 1999). A balance 

between the two opposing selective forces of broader pathogen resistance on 

one hand and increased T-cell clone elimination on the other hand might lead to 

an optimal rather than a maximal individual MHC diversity (Nowak et al. 1992; 

De Boer and Perelson 1993; Milinski 2006; but see Borghans et al. 2003). 

The three-spined stickleback (Gasterosteus aculeatus) has been in focus 

of many MHC related investigations (e.g. Reusch et al. 2001, Aeschlimann et al. 

2003, Wegner et al. 2003a,b; Kurtz et al. 2004; Kurtz et al. 2006; Wegner et al. 
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2006). There are probably six loci of MHC class IIB and twelve loci of MHC 

class I (Sato et al. 1998). Unlike in other vertebrates, the MHC class I and class 

II regions are not linked in teleost fish (Sato et al. 2000). In the stickleback, 

evidence for the existence of an optimal rather than a maximal (i.e. 12 alleles) 

individual MHC class IIB diversity is mounting, whereby the optimal number of 

variants seems to be around six alleles. The mean individual diversity in a 

natural population was found to be 5.8 alleles (Reusch et al. 2001). Correlating 

individual MHC diversity of wild caught sticklebacks with their parasite load 

revealed a minimal parasite burden in fish with 5.2 MHC class IIB alleles 

(Wegner et al. 2003a). This correlative observation was later confirmed in two 

experimental studies, in which individuals with an intermediate number of MHC 

class IIB alleles (i.e. 5-6 alleles) suffered least from parasite infection and were 

able to reduce parasite growth (Wegner et al. 2003b; Kurtz et al. 2004). As yet, 

MHC related studies in the stickleback were restricted to MHC class IIB, thereby 

missing out on the whole range of intracellular pathogens. 

As in many other vertebrate taxa (e.g. reviewed in Penn and Potts 1999 

and Penn 2002; Bonneaud et al. 2006) mate choice in the three-spined 

stickleback has been shown to be related to MHC (Reusch et al. 2001; 

Aeschlimann et al. 2003; Milinski 2003). In contrast to many other studies, 

which found disassortative mating preferences (e.g. Yamazaki et al. 1976; 

Wedekind et al. 1995; Olsson et al. 2003; Richardson et al. 2005), stickleback 

females did not prefer MHC dissimilar mating partners to MHC similar ones 

(Reusch et al. 2001). Rather they chose partners such that, in self-reference to 

the number of her own alleles, the mean MHC IIB allele diversity of the offspring 

would be 5.2 (Aeschlimann et al. 2003). So far, MHC based female mating 

preference has only been related to odour signals. However, stickleback mate 

choice possibly depends on numerous male secondary sexual traits like 

breeding colouration (Milinski and Bakker 1990; Bakker and Milinski 1991; 

Milinski and Bakker 1992), nest quality (Barber et al. 2001a) and zigzag dance 

(Rowland 1995). Females are expected to assess their mates by traits honestly 

reflecting their condition (Zahavi 1975; Hamilton and Zuk 1982). Indeed, the 

intensity of the male red breeding colouration has been shown to reveal 

condition and parasitization, and females chose, as expected, the redder 
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unparasitised male (Milinski and Bakker 1990). Despite this close connection 

between the immune status of a male and its breeding colouration, male 

redness has not been related to MHC based pathogen resistance yet. Similarly, 

other fitness related traits like the male secondary sexual traits mentioned 

above or female traits such as the number of egg clutches might reflect an 

individual’s immune status.  

MHC based pathogen resistance might be more important under poor 

food conditions since trade-offs are often weaker or sometimes not even visible 

at all under good environmental conditions (Stearns 1992). If food is limited, a 

potentially costly immune response can possibly not be compensated by a 

higher food intake. 

 In the present study, we related individual diversity of MHC class IIB and 

MHC class I to relevant fitness traits of the three-spined stickleback, namely the 

number of egg clutches laid by a female, male nest quality and the intensity of 

male breeding colouration. This is the first study to investigate MHC class I in 

the three-spined stickleback. Investigating sticklebacks under high and low food 

conditions might enable us to evaluate the relative importance of MHC diversity 

for individual fitness. 
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Materials and Methods 
Study animals 

Three-spined sticklebacks were caught in the Große Plöner See 

(Northern Germany) in December 2003. In the laboratory, they passed through 

spring temperature and light conditions before they were kept under summer 

conditions (18°C, 16:8 h light: dark cycle) for the rest of the time. Each fish’s 

length (to the nearest mm) and weight (to the nearest mg) was measured about 

six weeks after catching (when the fish were transferred from spring to summer 

conditions). A body condition factor was calculated as 100 x W
Lb  where W is the 

fish weight in g, L the fish length in cm and b the regression coefficient 

calculated from the logarithm-transformed values of length and weight 

(Frischknecht, 1993). In the following, this body condition index is referred to as 

initial body condition. Under summer conditions, fish were fed ad libitum with 

frozen chironomid larvae and additional live food every day (well-fed group) or 

only frozen chironomid larvae every second day (poorly fed group). Individual 

fish were randomly assigned to the two food groups. 

 

MHC class I and class II genotyping 

Genomic DNA was extracted from a single dorsal spine with a DNA extraction 

kit (Invitek, Germany) from each individual fish. The MHC class IIB exon 2 (β1 

domain) diversity was determined by using capillary electrophoresis (CE) single 

strand conformation polymorphism (SSCP) as described in Binz et al. (2001). 

Recently, CE-SSCP genotyping has been extended to determine individual 

MHC class I exon 2 (α1 domain) diversity in the three-spined stickleback 

(Schaschl & Wegner in press). In brief, PCR was carried out by using the MHC 

class I forward primer GAAC3 (Sato et. al. 1998) and the following three class I 

sequence-specific reverse primers (primers were differently labelled on the 5’ 

end with either FAM, HEX or TET): GaIRo01 (5’-AGT TTG GTT GAA GCG TTG 

TTT TGC-3’), GaIRo02 (5’-AGT TTG GTT GAA GCG TYG TTT CAC-3’), and 

GaIRo03 (5’-TTG GTT GAA GCG TYG TTT TAG-3’). The forward primer 

GAAC3 was used in combination with the dye labelled primer GaIRo01 in a first 

PCR reaction and with a GaIRo02/GaIRo3 primer mix in a second one. The 
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thermal cycling profile for both PCRs was: initial heating at 95°C for 15 min (hot-

start polymerase activation), followed by 30 cycles of denaturation at 94°C for 

35 s, annealing at 56°C for 35 s, extension at 72°C for 1 min and ending with a 

10 min extension step at 72°C. Fluorescent-labelled PCR samples were 

prepared for electrophoresis by combining 1µl PCR product with 9 µl loading 

mix (8.35 µl Hi-DI formamide, 0.35 µl Genescan ROX 350 standard (Applied 

Biosystems) and 0.3 µl 0.3N NaOH). The mixture was heated for 5 min at 92°C 

to separate the complementary DNA strands, chilled on ice and analysed by 

capillary electrophoresis on an ABI PRISM® 3100 automated DNA Sequencer 

(Applied Biosystems). The separation of the class I allelic variants was achieved 

under native capillary electrophoresis by a run temperature of 22°C. The 

retention times of the MHC allelic variants were identified relative to the ROX 

350 standard. The GeneScan and Genotyper software packages (Applied 

Biosystems) were used to process the obtained SSCP data. 

 

Number of egg clutches, nest quality and male breeding colouration 

During 25 days, starting approximately four weeks after fish had been 

moved to summer conditions, each female’s gravidity was assessed every day 

except day 15 and 20. A female was assumed to have spawned when 

assessed as being very ripe on one day but not on the following. When ripe, 

female sticklebacks eventually spawn their eggs even if no male is available. 

Assessment of male nest quality took place on day 25, the last day of 

female assessment. Nests were classified according to five categories: 0 – no 

nest; 0.5 – nest messy, no visible entrance; 1 – nest messy, entrance vaguely 

visible; 1.5 - nest neatly glued, but entrance only vaguely visible; 2 - nest neatly 

glued and entrance clearly visible. The rationale behind this classification was to 

assess how well the nest was maintained, i.e. if it was glued regularly, also by 

the male creeping through. An only vaguely visible entrance represents an 

opening that is not regularly used and glued. All nests were assessed by the 

same person. 

The red breeding colouration was analysed about one week after the 

assessing period. For that, males were photographed ventrally after having 
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been stimulated with a ripe female for 15 min the day before. The males were 

gently fixed with a sponge in a water-filled plastic box, which had a window of 

filter glass (high resolution skylight filter, Hama, Germany) to ensure that the 

whole colour spectrum was transmitted. The pictures were taken within a dark 

box using a digital camera (Olympus E20-p) with a 36 mm macro-objective. 

Closing time of the lens was 1/60 sec with aperture 7. For illumination, we used 

4 cold lights (KL 1500 LCD, Leica) with 3300 K colour temperature according to 

daylight illumination. Intensity analysis of the red colouration was performed 

with IP Lab 3.6.2 for Mac OS 9.2.2 (Scanalytics, Inc.). On each picture, we 

selected an area of the throat covering the majority of the red parts (ROI, region 

of interest). The mean red intensity was determined using the R/RGB model (8-

bit red-green-blue colour model, Frischknecht 1993). All pictures were 

measured twice in random order, on two consecutive days. The marking of the 

area and the resulting red values were highly repeatable: 95.9% for the marked 

area as well as 99.98% for the mean colouration.  
 
Parasites 

Only males were dissected and screened for parasites. Since not all 

dissections could be done on the same day, only parasite species for which we 

were sure that they could not be eliminated during that time or during the 

assessment period were taken into account: the three trematode species 

Diplostomum sp., Cyathocotyle prussica and Echinochasmus sp. as well as the 

nematode Contracaecum sp. Individuals of the respective parasite species were 

counted and an overall parasite load was calculated for each fish using the 

following approach (Rauch et al. 2006): for each parasite species, a relative 

number of individuals per fish was determined (number of individuals per fish 

divided by the maximum number of individuals of that respective species found 

on a single fish). The relative numbers of the four parasite species were 

summed up and averaged over the four species. 

 

Statistical analysis 

To analyse the influence of food group and individual diversity of MHC 

class I and MHC class IIB on the number of egg clutches, an analysis of 
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variance (ANOVA) was conducted. Parasite load could not be considered since 

there was no data available for the females. Their initial body condition was not 

taken into account either because it could not be excluded that some individuals 

had already developed eggs at the time of measurement.  

Males were tested for significant effects on nest quality with a 

generalized linear model (GLM) incorporating food group, number of MHC class 

I alleles, number of MHC class IIB alleles and parasite load as independent 

variables and initial body condition as a covariate. The same factors were 

considered with respect to male breeding colouration performing an analysis of 

covariance (ANCOVA). 

All interactions were initially included in the models and non-significant 

ones subsequently removed (at the 10% significance level) by performing 

backward elimination. Significant single factors that are also part of significant 

interactions are considered when a post-hoc test (t-test or Chi-square test) 

verified its sole significance.  

Chi-square tests - or two-tailed Fisher’s Exact Tests when sample sizes 

were too small - were used to test for significant differences in allele frequencies 

when comparing the reddest and dullest quarter of the test fish. To reveal 

whether the presence of the alleles identified by the above analyses increases 

with increasing individual allele diversity regression analyses were conducted. 

To account for the fact that only few individuals were available carrying allele 

numbers at the marginal ends of the allele range, the regression analyses were 

weighed by sample size. Finally, Oneway-ANOVAs were performed to test for 

significant effects of the presence of those alleles on male redness. A post-hoc 

test (Student’s t-test) was applied to obtain the respective significance level. 

 All statistical analyses apart from the GLM were performed using the 

software JMP 5.0.1.2 for Macintosh (SAS Institute Inc. 2003). The GLM was 

conducted in R statistical package version 2.1.1. 
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Results and Discussion 
Number of egg clutches 

Females under good food conditions laid significantly more egg clutches 

than poorly fed females (ANOVA, N = 75, df = 1, F = 43.04, P < 0.0001, Fig. 

10). Wootton (1994) and Fletcher and Wootton (1995) concluded that the 

number of clutches laid per breeding season is dependent on the current food 

supply, whereas clutch and egg size are a function of female size at the start of 

the breeding season, thereby being only little affected by food availability. This 

would mean that egg size and the number of eggs per clutch are fixed before 

the start of the breeding season on the basis of current condition and food 

shortages occurring afterwards are then traded off by reducing the number of 

spawnings. However, current food availability seems to have a higher impact on 

female fitness since reducing the number of clutches also reduced the total 

number of eggs spawned within a breeding season (Wootton 1994). The poor 

food conditions applied in this study are not insufficient and probably still better 

than the food conditions encountered in nature; nevertheless, we found a big 

difference between the two food groups. This clearly emphasizes the 

importance of diet on individual performance and proposes to cautiously think 

about the feeding regime when conducting laboratory experiments (see also 

Barber et al. 2000; Candolin and Voigt 2001). 
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Figure 10: Mean number of egg clutches laid by female sticklebacks during the 25-day-
assessment time in relation to individual MHC class IIB allele diversity. Sample sizes are given 
besides each data point. Error bars indicate one standard error. 
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It seems that it is not current food availability alone that determines the 

number of egg clutches a female lays. We found a significant interaction 

between food level and individual MHC class IIB diversity on the number of egg 

clutches (ANOVA, N = 75, df = 1, F = 11.10, P = 0.001, Fig. 10). It might be that 

the importance of parasite resistance provided by adaptive immunity is higher 

when current energy availability is low. Due to the high immuno-pathology 

caused by, for instance, oxidative stress, innate immune mechanisms are 

thought to be very costly (von Schantz et al. 1999; Graham et al. 2005). When 

MHC-based adaptive immunity is efficient, an individual could be able to down-

regulate the costly innate immune response (Kurtz et al. 2004; Kurtz et al. 

2006). While a non-optimal individual encountering good food conditions might 

still be able to compensate the costs of a higher innate immune response, it 

might have to re-allocate energy to the costly innate immune response under 

poor food conditions. Since the number of egg clutches is highly affected by 

current energy income (Wootton 1994) such re-allocation might result in a 

reduced number of clutches in females with a non-optimal number of MHC IIB 

alleles. This might explain the increase in clutch number at an intermediate 

number of MHC class IIB alleles (5 to 7 alleles) in the poorly fed group (Fig. 10). 

Considering the above hypothesis, one would not expect a decrease in clutch 

number at an intermediate allele number in the well-fed group (Fig. 10). 

However, the 25 days during which female clutches were surveyed do not 

represent a whole stickleback breeding season. It might be that individuals with 

non-optimal allele diversity, although being able to compensate costly innate 

immune responses, invest more in early reproduction, whereas individuals with 

an optimal number invest during the whole breeding season. 

 
Nest quality 

As in females, food condition significantly affected male performance. 

Well-fed males maintained a nest of significantly higher quality than poorly fed 

males (GLM, N = 72, df = 1, F = 5.88, P = 0.019). Maintaining a high quality 

nest involves regular glueing, which might require a higher glue production. The 

glue is produced in the males’ kidneys and they were significantly bigger in 
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males that owned a nest of high quality (Barber et al. 2001a) as well as in males 

that were kept under good food conditions (Wootton 1994). 

There was a significant effect of individual MHC class IIB diversity on 

nest quality (GLM, N = 72, df = 1, F = 5.82, P = 0.019). This effect is due to the 

fact that most of the individuals maintaining a high quality nest were carrying an 

intermediate number of MHC class IIB alleles, whereas most individuals with a 

low or high allelic diversity had nests of lower quality (Fig. 11). The optimum, i.e. 

the number of alleles at which the highest proportion of individuals owned a 

nest of the highest quality, was 6 alleles (Fig. 11). This is well in accordance 

with previous correlative and experimental studies that also found an optimal 

individual diversity of around six MHC class IIB alleles (Reusch et al. 2001, 

Aeschlimann et al. 2003; Milinski 2003; Wegner 2003a, b; Kurtz et al. 2004). 
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Figure 11: Proportion of male sticklebacks maintaining nests of different qualities ranging from 
0 (low nest quality) to 2 (high nest quality) in relation to individual MHC class IIB allele diversity. 
See text for details on how nest quality was assessed. Sample sizes are given at the bottom of 
the bars. 
 

Regarding MHC class I, there was a significant interaction between food 

level and allele diversity on nest quality (GLM, N = 72, df = 1, F = 4.99, P = 

0.029). However, the range of individual allelic diversity was much smaller in the 

poorly fed than in the well-fed group (a range of 6 – 10 different MHC class I 

alleles in the poorly fed versus a range of 4 – 12 different alleles in the well-fed 

group), Thus, this result should be treated with caution. Food level also 
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interacted significantly with parasite load on nest quality (GLM, N= 72, df = 1, F 

= 17.02, P < 0.001) and there was also a significant interaction with initial body 

condition and parasite load on nest quality (GLM, N = 72, df = 1, F = 6.69, P = 

0.012). It thus appears that factors affecting nest quality are more complex. A 

fish’s condition (initial and current), MHC class I diversity as well as its parasite 

load seem to have an influence. 

 

Male breeding colouration 

Data of the two food groups were pooled because an analysis of 

covariance showed no statistical difference between them (N = 73, df = 1, F = 

0.92, P = 0.341). We found a strong positive correlation of male breeding 

colouration with individual MHC class I diversity, i.e. the higher a male’s number 

of MHC class I alleles the redder it is (ANCOVA, N = 73, df = 1, F = 9.29, P = 

0.003, Fig. 12).  
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Figure 12: Intensity of male breeding colouration in relation to individual MHC class I allele 
diversity. 
 

Due to the hypothesis of the two opposing selective forces acting on the 

number of MHC alleles –increased pathogen recognition versus increased auto-

reactivity and thus increased de-selection of T-cell clones - we expected the 

males carrying an intermediate rather than a high number of  MHC class I 
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alleles to express the most intense colouration. However, this assumes the two 

selective forces to act on a purely quantitative basis, i.e. the number of alleles 

being selected regardless of the nature of the respective alleles. If there is, 

however, an allele providing strong resistance to a predominant pathogen, one 

could imagine a net benefit of having this allele even in individuals with a super-

optimal allele number. Since the likelihood to possess a specific allele should 

increase with the number of alleles per individual, we suspect that the males 

that are redder having a high diversity of MHC class might carry such alleles. To 

test this hypothesis and to potentially identify such specific alleles, we 

compared the reddest quarter of the test fish with the dullest quarter according 

to their MHC class I allele composition.  
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Figure 13: Mean intensity of male breeding colouration in relation to the presence of none (0), 
one (1) or both (2) of the identified specific MHC class I alleles. The two alleles were found to be 
carried significantly more often by individuals belonging to the reddest quarter when compared 
to the dullest quarter of the test fish. Sample sizes are given at the bottom of the bars. Error 
bars indicate one standard error. 
 

Two alleles were found to be present significantly more often in red 

males than in dull males. 65% of all red males carried Allele 16, while it was 

only 20% of the dull males (Chi-square test, N = 40, df = 1, χ2 = 8.29, P = 

0.004); Allele 31 was present in 60% of the red males as opposed to 20% of the 

dull males (Chi-Square test, N = 40, df = 1, χ2 = 5.01, P = 0.025). Interestingly, 
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when the data set was split up with respect to the two food groups, significance 

only remained in the poorly fed fish group (two-tailed Fisher’s Exact Test, Allele 

16: low food: N = 18, P = 0.009, high food: N = 22, P = 0.395; Allele 31: N = 18, 

P 0.0498, high food: N = 22, P = 0.67). Within all test fish, the presence of at 

least one of these alleles was related to a more intense colouration (ANOVA, N 

= 80, F2, 77 = 3.68, P = 0.03, Fig. 13). Again, after splitting up the data set, this 

relationship only remained significant for the fish under low food conditions 

(ANOVA, low food: N = 37, F2,34 = 3.44, P = 0.044; high food: N = 43, F2,40 = 

0.794, P = 0.459). Furthermore, for both alleles, the likelihood for an individual 

to carry them increased with increasing individual allele number (Weighed linear 

regression, N = 165, Allele 16: r2 = 0.83, F1,7 = 35.39, P = 0.0006; Allele 31: r2 = 

0.61, F1,7 = 10.96, P = 0.013). It thus seems that certain alleles can indeed 

achieve such an importance that the advantage of carrying it outweighs the 

disadvantage of being above the optimal allele number. Various studies have 

found specific MHC alleles associated with resistance to a certain pathogen 

(e.g. Langefors et al. 2001, Grimholt et al. 2003, Bonneaud et al. 2005; 

reviewed in Milinski 2006) and also in the stickleback, four MHC class IIB alleles 

were found that were significantly associated with the resistance against one 

specific macroparasite species (Wegner 2004a). It seems likely that the two 

MHC class I alleles that correlate with intense breeding colouration provide 

resistance against a specific and presumably common pathogen. Since MHC 

class I is involved in the recognition of intracellular pathogens such as viruses, 

identification and quantification of the pathogens was not feasible. Male 

sticklebacks showing a higher MHC based resistance could have a lower 

demand for innate immune activity, thus be less prone to oxidative stress (von 

Schantz et al. 1999; Graham et al. 2005), and therefore be able to allocate the 

available antioxidants to the carotenoid-based breeding ornamentation (Brush 

and Reisman 1965) instead. Experimental evidence for the existence of such a 

trade-off comes from a study on blackbirds, in which males immunised with an 

antigen showed a significant decrease in the intensity of the carotenoid-based 

colour of their bill (Faivre et al. 2003). Also three-spined sticklebacks reduced 

their carotenoid-based red colouration after being exposed to parasites (Milinski 

and Bakker 1990). Furthermore, it has been shown that sticklebacks with an 
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optimal number of MHC class IIB alleles show the lowest respiratory burst 

reaction, an innate immune mechanism that generates reactive oxygen 

molecules to kill pathogens (Kurtz et al. 2004). Moreover, sticklebacks with a 

non-optimal MHC class IIB diversity have higher levels of MHC gene expression 

(Wegner et al. 2006), which correlates with increased oxidative stress (Kurtz et 

al. 2006). Hence, the above finding of males being redder when carrying at 

least one of the MHC class I alleles could be explained by the lower demand of 

radical scavengers due to decreased oxidative stress. The importance of the 

trade-off might, however, depend on the energy income of the fish as indicated 

by the fact that the allele associations only remained significant in the poorly fed 

group. As already discussed for the females, well-fed males that do not carry at 

least one of those specific alleles might still be able to compensate a higher 

innate immune response and nevertheless become red, whereas poorly-fed 

males might not. 

In conclusion, although just correlative, our study underlines the general 

importance of MHC allele diversity with respect to individual fitness. It does not 

only support the hypothesis of an allele optimum for MHC class IIB, which for 

the three-spined stickleback is at about six alleles, it also, for the first time, finds 

MHC class I diversity to be related to individual fitness. Two MHC class I alleles 

were identified potentially providing resistance to a specific and presumably 

common pathogen, possibly explaining the unexpected finding of a maximal 

instead of an optimal allelic diversity with relation to male breeding colouration. 

It has previously been shown that the red throat is an honest signal revealing a 

male’s health (Milinski and Bakker 1990). Our findings might take this a bit 

further in that not only a male’s condition but also the genetic value of its 

immune system is expressed by the intensity of the red ornamentation 

supporting the good-genes hypothesis (Hamilton and Zuk 1982). Females 

choosing the reddest male would then not only gain fitness benefits through a 

healthy mating partner taking care of the offspring, but also by ensuring that the 

offspring will be endowed with a good immune system. This is in accordance 

with the finding that offspring of brighter males were more resistant to infections 

with the cestode Schistocephalus solidus (Barber et al. 2001b). Furthermore, 

when redness can be linked to resistance against presumably common 
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pathogens, olfactoric mate choice based on MHC allele number could be 

improved by visual mate choice guaranteeing that not only the optimal MHC 

allele number but also relevant resistant alleles are provided for the offspring as 

had been suggested by Aeschlimann et al. (2003) and Milinski (2006). 
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Differences in female sticklebacks’ preference between 
visual, olfactory and combined mate choice situations 
 
Abstract 

We analysed mating preferences of female three-spined sticklebacks 

(Gasterosteus aculeatus) for non-infected versus infected males depending on 

their MHC classIIB variant number. With a new developed experimental setup 

we could test visual and olfactory choice independently. In addition, it was 

possible to combine the two and test the natural combination. We recorded 

several male traits that might play a role for the female mating decision such as 

redness, condition index, hepatosomatic index (HSI) and gonad index (GSI). In 

the visual choice situation, females significantly preferred the redder male of a 

given pair. However, females did not prefer males with respect to their infection 

status in either of the test situations. In the olfactory choice situation, females 

significantly preferred the males optimal according to their own MHC. These 

results underline those of earlier studies that found redness to be a mediator of 

male parasitisation, although redness was not correlated with infection in our 

experiment. In the combined choice situation, when the female could see and 

smell the two males, it significantly preferred the one with the higher HSI. HSI 

might be a reliable measurement of the overall condition of a male as we 

detected a correlation with condition, infection and via the GSI also with MHC 

allele number.  

 

Keywords 
mate choice, olfactory, visual, combined, multiple ornaments, parasitism, three-

spined stickleback
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Introduction 
Females prefer certain males that provide direct or indirect fitness 

benefits for the offspring and these benefits are often reflected by the males’ 

secondary sexual traits (Kirkpatrick & Ryan 1991, Anderson 1994). In the three-

spined stickleback, Gasterosteus aculeatus, many studies experimentally 

proved females’ preference for males’ secondary sexual traits. Among others, it 

was shown that in visual choice situations, females preferred redder males 

(Milinski & Bakker 1990, 1992, Bakker & Milinski 1991, Bakker 1993, Bakker & 

Mundwiler 1994, but see also Nilsson & Nilsson 2000). Male redness can reflect 

the parasite load of the males (Milinski & Bakker 1990, Folstad et al.  1994) and 

potentially signals detailed information e.g. male condition to females and 

competing males (Wedekind et al. 1998). Another visual trait females base their 

mating decision on is the pectoral spine symmetry (Mazzi et al. 2003, Mazzi et 

al. 2004) which is a measure for an individuals’ ability to persist environmental 

disturbances during development (van Valen 1962). Furthermore, the zig-zag 

courtship dance and the pectoral fin size reveal paternal quality (Künzler & 

Bakker 2000) and are traits the females use for their mating decision (Rowland 

1995, Bronseth & Folstad 1997, Bakker & Mundwiler 1999, Ishikawa & Mori 

2000, Barber 2001a). Only recently also UV reflectance was shown to affect 

female mate choice in sticklebacks (Rick et al. in press). 

But not only visual traits seem to be important for the female choice in 

sticklebacks, also olfactory mate choice could be detected (Reusch et al. 2001, 

Aeschlimann et al. 2003, Milinski 2003, McLennan 2003, Häberli et al. 2004). In 

this context, chemical cues associated with genes of the major 

histocompatibility complex (MHC) caught most attention (Yamazaki et al. 1976, 

Milinski et al. 2005). MHC molecules play a major role in initiating the acquired 

immune response by presenting peptides derived from pathogens (Klein 1994). 

Due to specific binding capacities of single MHC molecules, heterozygous 

individuals are able to detect more pathogens at the same time than others 

(Doherty & Zinkernagel 1975). Since mammalian females tend to increase MHC 

heterozygosity by choosing mates with MHC genotypes different from their own 

(Yamazaki et al. 1978, Wedekind & Furi 1997, Potts et al. 1991), one 
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hypothesis for the functional basis of MHC based mate choice is an increased 

parasite resistance in offspring (Wegner et al. 2003a, b, Kurtz et al. 2004). 

However, too many different MHC alleles within an individual could lead to an 

increased risk of autoimmune disease (Janeway 2001). Therefore, one would 

expect optimal rather than maximum MHC heterozygosity (Nowak et al. 1992, 

DeBoer & Perelson 1993, Borghans et al. 2003). In sticklebacks, females use a 

self-referential process signalled by peptide ligands to assess MHC class IIB 

variants of a possible mating partner (Aeschlimann et al. 2003, Milinski et al. 

2005) and choose that male with which they can reach an intermediate number 

of around 5-6 MHC alleles for their offspring (Reusch et al. 2001, Milinski 2003). 

Fish with an intermediate number of MHC sequence variants have a clear 

fitness advantage, because they are less likely to get infected under 

experimental conditions as well as in the wild (Wegner et al. 2003a, b, 2004a) 

and suffer less from the infection (Kurtz 2003, Kurtz et al. 2004). This suggests 

that a direct link exists between female mate choice and parasite resistance. In 

mice it was found that females can smell a possible parasitisation directly in the 

odour marks of males (e.g. Kavalier & Colwell 1995, Penn & Potts 1998, Zala et 

al. 2004) and this function might also play a role in sticklebacks. It is not yet 

clear which other information could be signalled via the odour of a male, but 

condition traits (Candolin 1999a) could also be involved or hormones as shown 

for humans (Rikowski & Grammer 1999).  

However, in most species females base their mating decision not only on 

one, but on different, multiple traits which also is hypothesised for sticklebacks 

(Kraak et al. 1999, Künzler & Bakker 2001). Such male traits need not always 

carry information they can also be uninformative with respect to the fitness of 

the bearer but facilitate for instance partner detection or signal assessment 

(Iwasa & Pomiankowski 1994, Candolin 2003). How the use of multiple traits 

evolved and what these traits indicate is a highly discussed topic in the area of 

mate choice resulting in three main theories (reviewed in Møller & 

Pomiankowski 1993, Candolin 2003):  

I) Evolution of multiple message cues (Johnstone 1996), which can apart 

reflect different components of the males’ condition or changes on a 

different time-scale. Some cues could reflect the general condition which 
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is important as a long-time reserve but others might reflect the actual 

condition as reaction to sudden changes of the environmental conditions.  

II) Multiple ornaments might have evolved as redundant signals correlated 

with condition and therefore serving in combination as more reliable cues 

for the female (Rowe 1999). This includes the decreased possibility of 

cheating, since it should be less costly to actively change one cue 

compared to changing more than one. 

III) At last, some signals might be unreliable and not used any more but 

maintained because they are not costly or they evolved by Fisher’s 

selection (Fisher 1930) 

Which of these hypotheses for ornaments and mate choice in sticklebacks is 

more likely has not been studied so far and they might not be mutually exclusive 

(Evans & Magurran 2000). One of the goals of our study was to test which of 

these theories is the most probable in our model organism.  

To our knowledge, this is the first study which tested in one experiment 

which male of a pair a certain female chooses if visual or olfactory traits are 

available exclusively and in combination. For that, we used a setup which 

enabled us to test the olfactory and visual choice independently but also in 

combination so that the female could see and smell the male at the same time. 

Furthermore, we were interested in whether the infection with a natural 

occurring parasite combination alters the ornamentation and if females thereby 

are able to detect the parasitisation. We recorded male traits that might play a 

role for the female mating decision such as redness, hepatosomatic index (HSI, 

Wootton 1977), gonad index (GSI, Stockley et al. 1997) and condition index 

(Bolger & Conolly 1989). With this comprehensive approach we want to shed 

more light into the complexity of female mate choice in general and their ability 

to use multiple traits in particular.  
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Methods 

Experimental animals 

Three-spined sticklebacks (Gasterosteus aculeatus) were laboratory bred 

offspring from 7 pairs of genetically different parents from the Grosser Plöner 

See population (Schleswig-Holstein, Germany) caught in 2003. After initial 

feeding of the fry with live Artemia, the fish were fed mixed frozen food 

(chironomids, Daphnia, Artemia) until the beginning of the experiment. Fish 

were maintained in full-sib groups of 20 fish in 16 L aquaria. To simulate a full 

season, fish were transferred to summer conditions (18°C, 18:6h light: dark 

cycle) after passing lab winter (6°C, 6:18h light: dark cycle) and spring 

conditions (12°C, 12:12h light: dark cycle), where they stayed until the end of 

the experiment. Under summer conditions, males were singly maintained in 16 

L aquaria with an 8 cm Petri-dish filled with sand and supplied with green 

standard-length synthetic threads as nesting material. Males were positioned 

next to each other within pairs of brothers and according to their treatment for 

the choice test (group 2 and 3: optimal next to suboptimal, with respect to a 

certain MHC of the same family, group 1: two optimal, e.g. MHC similar males 

next to each other). Opaque partitions prevented sight between aquaria. 

Females were maintained in 16 L aquaria that were lengthwise split into two 

halves by solid, opaque partitions in groups of 3, respectively. During the 

experiment all fish were fed mixed frozen food and additionally live Daphnia. 

Only males actively caring for a nest and reacting with zigzag courtship 

dance to a ripe female the day before the experiment were used for the choice 

trials. Females were used only if they were in spawning condition, indicated by 

head-up posture to a courting male. To test for the reaction to courtship only 

such males and females were used that were not included in the later tests. For 

the transport of the females to the test aquaria a glass pipe filled with water was 

used (Milinski & Bakker 1992, Wedekind & Milinski 1996) to prevent major 

disturbance. 

For the exposure of the fish, the three most abundant parasite species, 

Camallanus lacustris, Anguillicola crassus and Diplostomum 

pseudospathaceum, in lakes in Northern Germany were used (Kalbe et al. 
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2002). Three-spined sticklebacks serve as paratenic host to the two nematodes 

C. lacustris and A. crassus, both transmitted by ingestion of intermediate hosts. 

As intermediate hosts, copepods (Macrocyclops albidus) were taken from a 

laboratory culture and prepared for infection as described in Hammerschmidt & 

Kurtz (2005a). Infection and maintenance of the copepods were performed as 

described in Wegner et al. (2003b). Each copepod was singly exposed to six 

actively moving larvae of the assigned parasites (C. lacustris or A. crassus). 

One week before exposure to fish, the number of larvae within each copepod 

was determined using a microscope. The third parasite species, D. 

pseudospathaceum, is released into the water as small larvae (cercaria) by its 

snail host (Lymnaea stagnalis). The cercariae penetrate the fish actively 

through the skin and then migrate into the eye lenses of the host.  

The fish that were assigned to be infected (the optimal males in group 1 

and 2, the sub-optimal males in group 3) were exposed twice to the three 

parasite species with similar infection doses to ensure an elevation in the 

adaptive immune response. The first exposure took place 17 weeks, the second 

4 weeks before the experiment. Each fish was offered copepods infected with a 

total number of 4 larvae (first exposure) and 6 larvae (second exposure) of the 

respective nematode and additionally exposed to 20 cercaria of D. 

pseudospathaceum (both exposures). The fish that were assigned to be non-

infected were treated in the same way but were offered the number of 

uninfected copepods the infected partner got. 

 

MHC classIIB determination 

MHC determination of male and female sticklebacks was performed 

using single-strand conformation polymorphism (SSCP) as described in Wegner 

et al. (2003a). For each fish the number of MHC alleles was counted following 

Reusch et al. (2001). Mean allele number of the males was 5.89, which was 

also true within the groups optimal and non-optimal with respect to the female, 

whereas mean allele number of the females was 6.33. Males were assigned to 

be optimal or non-optimal with respect to the female as described in Milinski et 

al. (2005). From now one we will use the term ‘optimal’ MHC for the best fitting 
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male according to the females’ MHC class II B genotype and ‘non-optimal’ for 

all other males.  

 

Experimental design  

The top view of the setup is presented in Figure 14. We created an 

experimental setup with a box for the female which could be placed in front of 

the aquaria of two males without disturbing them. Between the female test tank 

and the males’ aquaria a removable opaque plate was installed. The handling of 

this plate did not disturb the fish in most of the tests. In the closed position the 

plate hindered the female to see the two males and their aquaria for the 

olfactory test. 

nest nest

removable partitition 

water in  

water  out  

camera  

water in  

 
 

Figure 14: Draft of the experimental setup from top view with the female compartment 
and the two males’ aquaria. An opaque partition could be added or removed between 
female and male aquaria, depending on which kind of test was performed. Water inflow 
was on either side, water outflow in the lower middle of the female aquarium. 
Connected to the inflow hoses were small tubes connected to bottles with male water. 
The behaviour of the female was recorded with a video camera placed opposite to the 
male aquaria which enabled also the observation of the males’ activity towards her. 
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If a disturbance was recognised, the measurement of the time was only started 

when the male’s started courtship and the female normal swimming behaviour 

again. To analyse the female’s preference for a distinct male (with visual, 

olfactory or combined cues) the time it spent in front of each male was 

measured with respect to the following parameters: Time was only recorded if 

the female appeared to be calm and undisturbed. Furthermore, the female had 

to be facing the male (if visual cues were available) or the water inlet (if 

olfactory cues were available). As an exception to this, time was also measured 

if the female was within 5 cm of the walls bearing the inlets. Finally, time was 

never recorded if the fish was in the middlemost area (i.e. 3 cm around the 

centre of the set-up). The analysis of all films was performed by an independent 

person (R. Sommerfeld), without knowledge of the used male-male 

combinations.  

On each side of the female aquarium an inlet strainer was installed. We used a 

peristaltic precision pump (ISMATEC) to keep up a flow through system with 

constant water supply and outflow. A second pump was used to add ~100 

ml/min of male water equally on either side of the female tank. For the male 

water supply 1 L was taken directly from above the nest of the male instantly 

before the experiment (Aeschlimann et al. 2003) and added on the respective 

side of the female tank. After a 5 minute break with tab-water supply, the sides 

of the male water were switched to control for side preference. For later 

analysis the mean time of the two olfactory tests was used. For the visual test, 

the plate was gently lifted resulting in visibility of the whole male aquaria 

including the nests and the males themselves. In this test, pure tab-water was 

added on both sides of the female tank. The combined test is conforming to the 

visual test but with additionally male water supply on either side of the female 

tank as described for the olfactory test. This test is probably the closest to the 

natural choice situation in the field with availability of visual and olfactory cues.  

The three male-male combinations we tested combined certain MHC 

background with respect to the female and infection status: (1): optimal-infected 

versus optimal non-infected, (2): optimal-infected versus not-optimal-non 

infected and (3): optimal non-infected versus non-optimal infected one. Test (1) 

was used to test whether female sticklebacks can distinguish between infected 
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and non-infected males if their MHC background is similar. If so, they should 

choose the non-infected male since it should be in better condition and 

therefore the better father. In test (2) we expect the females to choose the 

optimal male if infection status plays no role for her choice, or the non-infected 

male if the actual infection is more important that the MHC. According to results 

from previous studies (Wegner et al. 2003a, b, 2004) we expect the 

combination of test (3) to be the one most probably occurring in nature with the 

optimal male having lower parasite load, e.g. no parasites. Females should 

prefer the optimal non-infected male in this situation.  

The female and the two available males were siblings from the same 

family, assuming their genetic background to be similar. Each triplet consisted 

of one female that was used only once during the experiment and a pair of 

males. Only three females were used with a second, different male pair in a 

distinct spawning cycle. For each male a digital photograph was taken directly 

after the test and mean redness of the throat colouration was analysed for a 

certain region. This region was chosen from the tip of the snout to the ankle of 

the mouth, to the edge of the gill-lid and back on the other side. All pictures 

were measured twice, on two consecutive days in the R/RGB 8-bit colour model 

(Frischknecht 1993). The marking of the area as well as the values for the red 

colouration were highly repeatable: 95,8% for the marked area and 99,9% for 

the mean colouration. 

 

Fish Dissection  

Fish were dissected 4-6 weeks after the last experiment. The dissection 

was performed as described in Kalbe et al. (2002). C. lacustris larvae were 

counted by squeezing the total gut of the fish between two glass plates and D. 

pseudospathaceum larvae were counted in the dissected eye-lenses of the fish, 

under the dissection microscope respectively. A. crassus larvae were counted 

in the swim bladder on a slide under the microscope. For the test of female 

preference, we determined whether an exposed fish was infected with at least 

one of the parasites, which was the case for all of them. We recorded condition 

index, HIS and GSI for each male. For the HSI, liver weight per total fish weight 
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was calculated and GSI was calculated as weight of the testes per total fish 

weight. For the body condition we used the formula by Bolger & Conolly (1989). 

 

Statistical analyses 

We measured the time the female spent in front of each male and 

calculated preference indices from the time (Pm) the female spent in front the 

male as proportion on total time (Pt) spent choosing (R. Sommerfeld, Pm/Pt). 

Then we decided for each male pair which one was the redder, had the higher 

HSI, GSI and condition, which one was infected and which one was optimal. 

With matched-pairs, two-tailed t-tests we then analysed whether the female 

spent more time in front of one male according to those traits within certain test 

situations. Due to a lack of normal distribution, data of GSI was log transformed 

and redness was Box-Cox transformed (Sokal & Rohlf 1997). The varying 

sample sizes are due to the fact that some females did not see both sides of the 

setup which was a pre-requisite for the analysis and that we could not get all 

trait measurements for each male. For details of the sample size of each test 

see table 2. 

We first analysed the mean female preference for all females of the three 

test situations: test 1: both males optimal, one infected, one non-infected, test 2: 

optimal infected vs. suboptimal non-infected and test 3: optimal non-infected vs. 

non-optimal infected. In a second step, a possible preference for optimality was 

calculated from the groups 2 and 3, in which one male was optimal and the 

other was non-optimal. In the last step, the possible preference for the infected 

male as well as the correlations for the different mal traits was calculated using 

exclusively the males of test 1, in which both males were optimal in respect to 

the female and the only difference between them was the infection of one of 

them.  

In addition, we correlated the male traits we measured (condition index, 

GSI, HSI, redness and MHC allele number) for group 1 (both males optimal), to 

get an idea of how the parasitation could have influenced them. Furthermore, 

we wanted to gain information about what kind of messages the females might 

achieve if they choose for a certain male trait. 
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Results 
All male pairs: preference for non infected irrespective of MHC background 

No significant difference in male traits (body condition (N=48), HSI 

(N=45), GSI (N=46) and redness (N=41)) could be detected between the three 

groups of male pairs we investigated: 1. optimal infected vs. suboptimal non-

infected, 2. optimal non-infected vs. non-optimal infected and 3. both males 

optimal in respect to the female (ANOVA: all P>0.14). Therefore, we pooled the 

data of all females to test whether they chose for the infection status (infected or 

sham-exposed) of the two male variants irrespective of the MHC background 

(Table 2: “all males”). All males that were exposed to the three parasites were 

infected with at least one of them. Maximum numbers of parasites were 2 for A. 

crassus (20%), 10 for C. lacustris (100%) and 9 for D. pseudospathaceum 

(45%). Total infection rates for all three parasites taken together ranged from 

1% to 40%. 

We found no female preference for the infected or the non-infected male 

in the visual (two-tailed, matched pairs t-test: DF=25, t=-0.3972, P=0.6946), the 

olfactory (two-tailed, matched pairs t-test: DF=26, t=0.8061, P=0.4275) or the 

combined choice situation (two-tailed, matched pairs t-test: DF=25, t=0.2218, 

P=0.8263).  

We then analysed the preference of these females for the male traits 

redness (visual trait), GSI and HIS. In the visual choice situation, the females 

significantly preferred the redder male of a given male pair (Fig. 15 a), two-

tailed, matched pairs t-test: DF=19, t=-2.5890, P=0.0180) without respect to 

infection status. In the olfactory choice situation preference for any male trait 

(GSI, HSI, condition index) could be detected (two-tailed, matched pairs t-test: 

all P>0.4). In the choice situation, where the females could see and smell the 

two males, they tended to prefer the male with the higher HSI (Fig. 15 c), two-

tailed, matched pairs t-test: DF=24, t=-1.8747, P=0.0731). Infected males 

tended to have a lower HSI than non infected males (t-test: DF=48, t=1.847, 

P=0.0710). No preference for any other investigated trait was found (Table 2).  
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Male pairs differing in MHC: preference for better fitting MHC  

To test whether the females chose a male for its MHC background 

independently of the infection, we pooled the two groups in which one male was 

optimal in respect to the female and the other was not optimal (Table 2: “opti vs. 

nonopti”). We found no preference for the optimal male in the visual choice test 

(two-tailed, matched pairs t-test: DF=15, t=-1.0183, P=0.3247), whereas, in the 

olfactory choice test, a significant preference for the optimal male could be 

detected (two-tailed, matched pairs t-test: DF=15, t=-2.4466, P=0.0272). 

Testing the preference for GSI, we found females significantly preferring males 

with smaller gonads (two-tailed, matched pairs t-test: DF=15, t=3.2617, 

P=0.006) 

Concerning the other investigated male traits, in the visual test, 8 out of 

11 females preferred the redder male of the pair (72.73%, Table 2). The males 

optimal with respect to the female were not always the redder ones within a pair 

and we found that the females choose the same male in the visual and in the 

olfactory choice in only 6 out of 11 cases (54.55%). In the choice situation 

where the females could see and smell the males, they did neither choose the 

optimal nor the redder male (two-tailed, matched pairs t-test: optimal: DF=15, 

t=0.9505, P=0.3569, redness: DF=10, t=1.0064, P=0.3380). In this test 

situation, the females did not prefer the males for any other of the investigated 

traits (Table 2). 

 

Both males optimal: preference for non infected 

We wanted to know whether the male traits are altered by parasitisation 

and whether the females can distinguish an infected from a non infected male if 

they both have the same MHC allele number and are optimal in respect to the 

female. No significant difference could be detected in any of the investigated 

traits (redness, HSI, GSI) according to infection (two-tailed t-test: all P>0.1). 

Females did neither prefer the non-infected nor the infected male in the visual, 

the olfactory or the combined choice situation (two-tailed, matched pairs t-test, 

all P>0.2).  

As found for all females, the females of this group also tended to prefer 

the redder male of a pair in the visual choice situation (Fig. 15 b), two-tailed, 
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matched pairs t-test: DF=8, t=-2.1735, P=0.0615, results of preference tests 

summarized in Table 2 as “both optimal”). However, in the olfactory choice 

situation, the females had no possibility to choose the better fitting male due to 

the MHC background because both males had optimal MHC with respect to the 

female. The only male trait found to be correlated negatively with the MHC 

allele number within this group of males was the GSI (linear regression: 

P=0.0200) and the females significantly preferred the males with the higher GSI 

in the olfactory choice situation (two-tailed, matched pairs t-test: DF=9, t=-

2.3848, P=0.0409). In the test where the females could see and smell the 

males, 8 out of 10 females preferred the male with the higher HSI (Fig. 15 c), 

two-tailed, matched pairs t-test: DF=9, t=-0.9093, P=0.3897). 
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Figure 15: Mean time (%) the female spent in front of the a) redder male in the visual 
choice situation, b) optimal fitting male in the olfactory choice situation, c) male with the 
higher HSI in the combined choice situation (visual and olfactory test at the same time). 
For each of the three tested male-male combinations the data points for the individual 
females are shown. The columns represent the three male subgroups of the analyses: 
both males optimal with respect to the female, one male infected the other one non-
infected (both optimal), one male optimal and infected versus non-optimal non-infected 
(optinf-subnon), one male optimal non-infected versus suboptimal infected (optnon-
subinf). Dotted horizontal lines indicate the no-choice situation with 50% time spent in 
front of either male. 
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Table 2: Summary of P values the two-tailed, matched pairs t-tests for female 
preferences for infection (infected male vs. non-infected male), optimality (optimal male 
vs. non-optimal male with respect to the female), redness (red male vs. dull male), GSI 
(high GSI male vs. low GSI male) and HSI (high HSI male vs. low HSI male) in the 
visual, olfactory and combined choice situation.  
 

choice 
test

male 
combination N infection N optimality N redness N HSI N GSI

visual both optimal 9 0.537  - 9 0.062 9 0.386 9 0.736
all males 26 0.694  - 20 0.018 25 0.236 24 0.962

opti-nonopti 16 0.385 16 0.324 11 0.171 16 0.438 15 0.825

olfactoric both optimal 10 0.329  -  - 10 0.290 10 0.041
all males 27 0.428  -  - 21 0.479 25 0.598

opti-nonopti 16 0.696 16 0.027  - 16 0.453 15 0.006

combined both optimal 9 0.783  - 9 0.917 9 0.390 9 0.714
all males 26 0.826  - 20 0.447 25 0.073 24 0.421

opti-nonopti 16 0.788 16 0.357 11 0.338 16 0.125 15 0.176   
 

Correlations of traits and preferences 

To analyse whether those traits the females chose for in the test situation 

with two MHC similar, optimal males, they were correlated with each other. We 

calculated multivariate correlations including body condition, GSI, redness and 

MHC allele number. HSI was significantly, negatively correlated with GSI (Fig. 

16, r=-0.5875, N=16, P=0.0167) with significantly lower values for infected than 

non-infected males (two-tailed t-test: DF=12.06, t=2.379 P=0.0347). 
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Figure 16: Relationship between hepatosomatic index (HSI) and gonad index (GSI) in 
the group with both males optimal with respect to the female for infected (filled dots) 
and non-infected (open dots) males. Data points represent individuals. 

HSI was significantly affected by condition index, GSI and infection 

(ANOVA: F4,11=7.1611, P=0.0043, effect of condition: F1,11=8.2590, P=0.0152, 

effect of GSI: F1,11=15.2972, P=0.0024, effect of infection: F1,11=9543, 

P=0.0328, interaction GSI x infection: F1,11=3.0621, P=0.1079).  Body condition, 

but not HSI, showed a strong association with redness, independently of the 

parasitation of the male (Fig. 17, ANOVA: F3,14=4.5964, P=0.0193, effect of 

condition: F1,14=12.1936, P=0.0036). 
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Figure 17: Relationship between condition and redness in the group with both males 
optimal with respect to the female for infected (filled dots) and non-infected (open dots) 
males. Data points represent individuals. 
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Figure 18: Relationship between MHC allele number and GSI in the group with both 
males optimal in respect to the female for infected (filled dots) and non-infected (open 
dots) males. Data points represent individuals. 
 

The GSI was significantly correlated with the absolute MHC allele 

number of the males and the interaction of infection and MHC allele number 

(Fig. 18, ANOVA: F4,14=4.1593, P=0.0200, effect of MHC allele number: 

F1,14=7.3341, P=0.0170, effect of infection X MHC allele number: F1,14=7.9214, 

P=0.0138), while infection alone and body condition showed no significant 

association (effect of infection: F1,14=0.0359, P=0.8525, effect of condition: 

F1,14=2.5418, P=0.1332).  
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Discussion 

The results of our study show that female sticklebacks use different male 

traits within their mate choice. In visual choice situations redness seems to be 

the most important trait for females to choose for, irrespective of the infection or 

MHC allele number of the males. In olfactoric choice situations with the same 

male pairs, females based their preference on the MHC allele number, without 

respect to infection. However, in the combined choice situation a combination of 

both, olfactory and visually traits might be used, which could be reflected by the 

HSI of the males.  

 

Visual choice 

When only visual signals are available, females chose for the red 

colouration which, in previous studies was found to reflect the parasite load of a 

given male (Milinski & Bakker 1990). However, in our experiment we found no 

difference in redness between infected and non-infected males (t-test: DF=43, 

t=-1.059, P=0.2955). Redness is meant to be costly because it increases risk of 

predation (Endler 1980, Bakker et al. 1997, van der Veen 2005) and therefore is 

meant to be a reliable signal. In other species carotenoids-based colouration 

also acted as a cue for female mate choice (Houde & Torio 1992, Hill 1993). 

This might be due to the costs of resource allocation if the carotenoids are 

additionally used as scavengers for free oxygen radicals that emerge from 

immune defence (Hill 1999, von Schantz et al. 1999). However, we could not 

detect condition dependent or infection dependent alterations in colouration, 

although this is described in other studies. This lack might be due to the ad 

libitum feeding conditions in the laboratory (Candolin 2003) and does not 

necessarily underline the unreliable signal hypothesis. If a cue evolved for 

instance by Fisherian selection (Pomiankowski & Iwasa 1991), it might be used 

for mate choice for some time, but if the choice becomes to costly (e.g. 

inspecting time), females might switch to other signals that might be less 

frequent and therefore e.g. faster to evaluate. However, if female preference 

changes the old, cheap cues might still persist especially if they are not costly 

(Møller & Pomiankowski 1993).  
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If cues are true handicaps that are strongly condition dependent, females 

will use them as reliable traits, even if the choice is costly (Andersson 1986, 

Iwasa et al. 1991, Houle & Kondrashow 2002). Colour measurements on wild 

caught sticklebacks of the same population showed fish with a better body 

condition to be redder (Krobbach, unpublished data) an effect which could be 

masked in laboratory bred fish (Candolin 2001). It is known that sticklebacks are 

able to change the red colouration quickly (pers. observation) and it is maybe a 

reliable trait only under certain environmental conditions. Females might 

therefore choose for redness only if no other (e.g. olfactory) traits are available. 

The colouration is the only visual trait we investigated because it is meant to be 

the most important one (Künzler & Bakker 2001). However, in our experiment it 

is not possible to disentangle red colouration from other visual traits that are 

possibly used for the females’ mating decision. The zig-zag courtship dance of 

the males (Bronseth & Folstad 1997) as well as pectoral spine asymmetry 

(Mazzi et al. 2003) or nest quality (Barber 2001a) could, among others also play 

a role in sticklebacks visual mate choice. For the females the visual choice was 

limited since they could not inspect the males or their nests directly, which might 

also play a role for their mating decision (Barber et al. 2001a). 

 

Olfactory choice 

In the olfactory choice situation, the females did not prefer the non-

infected male of a given pair. This is in contrast to other species like mice 

(Kavalier & Colwell 1995). In our experiments this might have two reasons: 1. 

sticklebacks seem not to be able to detect parasitisation olfactory, either via 

modification of the males’ excretory-secretory products during infection or the 

direct smell of the parasite or 2. the males in our experiment might have had 

such a good body condition due to high food supply that they did not suffer from 

the infection. The latter is supported by the comparison of conditional traits of 

infected vs. non-infected males which did not differ in any of the investigated 

traits (HSI, GSI, condition index).  

In the choice situations where one male was optimal with respect to the 

female and the other was not, the females chose the optimal one. The MHC 

dependent choice in sticklebacks was first described by Reusch et al. (2001) 
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and is also known from other species like mice (Potts et al. 1991, Ehmann & 

Scott 2002). It enables the female to choose a male with good genes that 

promises good parasite resistance for the offspring (Wegner et al. 2003a). 

However, we detected also olfactory preference for GSI, surprisingly for high 

GSI in test situations with both males optimal. Although we prevented sight 

between the males and therefore excluded this possibility, competition might 

play a more important role to choose a mating partner if both are optimal. Due 

to the MHC alleles it would make no difference with which male the female 

spawns, but in the nest of the better competitor, the eggs could be more secure 

with respect to predation. In contrast, Females preferred males with lower GSI if 

one male was optimal and the other non-optimal. In this combination, optimal 

males are the ones with low GSI (11 out of 15 male pairs) and for the females 

the genetic background, e.g. the MHC allele number might be more important 

than the GSI which might strongly depend on the environmental conditions.  

 

Combined choice 

If visual and olfactory signals were available at the same time, the 

females were not consistent in their choice. They neither preferred the redder 

nor the optimal male. Instead, in this combined choice situation, females 

preferred males with a higher HSI, a measurement for the body condition of the 

males. Although possible, the HSI alone might not be a trait the females choose 

directly on (e.g. via odour), but since secondary sexual traits are known to 

reflect condition, females might be able to estimate a male’s condition by the 

combination of visual and olfactory cues. In addition, they might use one trait 

after the other to reduce the total costs of the choice due to longer inspection 

time (Candolin 2003).  

In particular, the female chose the males with the higher HSI, which also 

have the lowest GSI. Large gonads are common in species in which sperm 

competition is high (Hosken & Ward 2001) and also male sticklebacks do invest 

more in sperm if there are possible rivals around (Zbinden 2004). Since the 

individual males in our experiment could not see any other males, competition 

can be assumed to be low and males might have invested less into 

reproduction. Males are able to fertilise many eggs with low cost for the 
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production of sperm and therefore, in a situation without competition, we do not 

expect them to heavily invest into sperm production.  

However, we find a negative correlation of MHC allele number with the 

GSI and this indicates that males with low MHC allele numbers have larger 

gonad, reflecting higher investment into sperm. This could be due to the fact 

that males with low MHC numbers have to activate the innate immunity, which 

is not directly related to the MHC (Kurtz et al. 2006), to fight the parasite 

infection. This part of the vertebrate immune system is more costly (Moret & 

Siva-Jothy 2003) than the MHC related adaptive immunity. Those fish should 

therefore invest more into actual reproduction, because they might suffer so 

much that on a later point in time reproduction is not possible any more (Poizat 

et al. 1999). However, it might also be that the males with a low MHC allele 

number are generally of bad quality. Interestingly, we did not find a correlation 

of HSI and MHC allele number, although we would expect a low condition for 

low numbers in this case. Taken together this fits the multiple messages theory 

with HSI and GSI acting as indicators for different aspects of the males’ 

condition.  

If females manage to combine several visual and olfactory traits, they 

might get information about condition via the HSI and about the MHC allele 

number via the GSI at the same time. Using multiple ornaments they can 

therefore get a more reliable overall picture from the male.  

 

Summary 

Although different cues might indicate different or similar aspects of male 

condition (multiple messages) they might be used together to get a more 

reliable picture, which is also more difficult to cheat (redundant signals). Under 

non-restricted conditions as in the laboratory, redness for example might be 

less reliable due to resource availability. Resource allocation in this case might 

be more likely than under field conditions. In choice situations where the female 

achieves exclusively visual or olfactory traits it might go for a trait that only 

reflects one part of the total condition and is therefore not shown by the overall 

better male. We conclude that the different hypotheses for the use of multiple 

ornaments are not mutually exclusive in the three-spined stickleback. Our 
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results indicate that under different environmental conditions the informative 

effect of different ornaments might change and that females should include 

multiple messages into their mating decision to get a reliable overall measure of 

the males’ condition.  

 

77 



  

78 



 

Chapter ΙV 
 
 
 
 

 
 
 
 
 
 

Enclosure experiment 

 
 

79 



Chapter IV  

Female mating decisions of three-spined sticklebacks: 
A field study 
 
Abstract 

Many laboratory as well as field experiments have been performed on 

mating behaviour and female preferences in three-spined sticklebacks 

(Gasterosteus aculeatus). While work in the laboratory focuses more on the 

detection and proof of possible traits and preferences, field studies survey the 

overall reproductive success. In total, more studies were performed under 

controlled laboratory conditions, while only few field experiments are available 

until today. However, both methods also have disadvantages which we wanted 

to minimise by the use of controlled enclosure cages in the field. 

With a comprehensive enclosure experiment, we investigated 

reproductive success of males and females according to their immuno-genetic 

background, carrying a certain MHC class IIb variant number. MHC alleles play 

a major role for adaptive immune reaction and therefore individual parasite 

resistance. According to results from previous studies we expected females to 

spawn with males promising optimal parasite resistance for the offspring, e.g. 

around 5 MHC alleles. However, we could not find more eggs from male-female 

combinations of optimal MHC than of such with more or less variants. 

Furthermore, from 25 clutches we collected, eggs were assigned to come from 

chosen or sneaked fertilizations, to detect a possible cost of sneaking for the 

female. The according MHC variant number did not differ between these three 

categories, hence sneaking seems to cause no loss of benefit for the offspring. 

Males were caught and dissected at the end of the two weeks experiment. We 

found that males with an intermediate number of 5 or 6 MHC variants had 

fertilised the eggs of more females than males with high or low number, which 

might be due to their optimal parasite resistance.  
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Keywords 
enclosure experiment, reproductive success, three-spined stickleback, parasite 

diversity, MHC class IIb 
 

Introduction 
Field studies concerning the reproductive success of male and female 

three-spined stickleback are rare. Most field research was done on DNA 

fingerprinting to evaluate different reproductive tactics like nesting, sneaking 

and egg stealing (Rico et al. 1991, 1992, Jones et al. 1998, Largiarder et al. 

2001). Others focussed on observation and quantification of male aggressive 

behaviour in the presence of potential sneaking neighbours (Ridgway & McPhail 

1987, LeComber et al. 2003) or on population comparison (Ishikawa & Mori 

2000). However, to our knowledge only single field studies are available until 

today that incorporate both, estimation of female mate choice for certain male 

traits and parenthood analysis (Goldschmidt & Bakker 1990, Bakker & 

Mundwiler 1994). 

In sticklebacks, mate choice was mainly studied in laboratory 

experiments with a focus on female preference for one or only few male traits 

(reviewed in Jennions & Petrie 2000, but see Künzler & Bakker 2001). Under 

field conditions, females might use multiple traits for their mating decision to get 

a better overall picture of the mating partners’ condition (reviewed in Candolin 

2003). The choice can be depend on the status of the female itself (Bakker et 

al. 1985), the status of the male (Moore & Moore 1988) and the environment 

including e.g. parasites or predators (Kennedy et al. 1987, Wedekind 1994, 

Milinski & Bakker 1990, Forsgren 1992, Rowe 1994, Godin & Briggs 1996).  

To get an idea of the traits that are used by the females, restricted 

laboratory experiments are necessary. They investigate single aspects of 

female choice under controlled laboratory conditions and exclude side effects 

like, e.g. competition or predation using wild caught or laboratory bred fish, 

which might be selected for special traits. Furthermore, computer animated 

males can be tested with real females which helps to focus even more on the 

one aspect of interest (Künzler & Bakker 1998, 2001). However, it is important 
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to investigate the applicability of these results from laboratory experiments in 

the natural habitat of the fish.  

In contrast to laboratory studies, field observation or correlative studies 

on natural populations investigate animals within their natural habitat with all 

restrictions of abiotic and biotic factors e.g. food, light conditions, competition 

and predation. This gives a picture of how females choose and how successful 

the resulting offspring is (Kraak et al. 1999). Only few studies investigated the 

impact of male stickleback traits on reproductive success. Bakker & Mundwiler 

(1994) found males being redder during egg collection to receive more eggs. 

However, contrary to laboratory experiments, females face the choice between 

several males and the interaction between individuals in the field which is 

important to include direct, tactile contact of males and females that might 

influence mate choice (Rowland 1999). In this context also male-male 

interaction might influence the female fitness via egg-stealing or sneaking 

(Largiarder et al. 2001, LeComber et al. 2003). Still, we have no knowledge 

about life-history, genetic background or competitive ability of animals 

investigated in the field. A good possibility to combine the advantages of 

laboratory experiments and field observations and reduce their disadvantages is 

the use of outdoor enclosures (Sargent 1982). With controlled stocking, 

experiments are performed under natural conditions according to the question 

of the study. All fish can interact freely and compete for resources like food, 

territories and mating partners. Enclosure experiments are therefore the best 

compromise to test findings from laboratory experiments under semi-natural 

conditions in the wild. Thereby, one can estimate reproductive success of each 

individual according to male traits and condition. 

Females gain fitness benefits via their mate choice which can enlarge the 

quantity or quality of their offspring (Clutton-Brock & Vincent 1991). Thus, males 

often exhibit secondary sexual traits that carry reliable information about their 

ability to provide direct and indirect benefits (Andersson 1994). Possible direct 

benefits include e.g. parental care or nuptial gifts (Reynolds & Gross 1990, 

Kirkpatrick & Ryan 1991), whereas indirect benefits are heritable, genetic 

advantages for the offspring (Zahavi 1975), e.g. parasite resistance (Hamilton & 

Zuk 1982). Females are able to judge a male for the traits it exhibits and 
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distinguish an adequate mating partner. In three-spined stickleback 

(Gasterosteus aculeatus), females are known to use multiple traits in mate 

choice (McLennan 2003). In this species, exclusively the males care for the 

offspring. Hence, for the female the costs of mating an inferior father would be 

high since fitness might be reduced. The male builds a nest, courts a female to 

spawn the eggs, fertilises the eggs and cares for the offspring until it hatches 

(Wootton 1976). The structure of the nest (Barber et al. 2001a) as well as the 

parental care (Kraak et al. 1999, Bakker & Mundwiler 1999) could influence the 

quality of the offspring directly. Courtship cues, including zigzag dance and red 

breeding colouration might reflect the condition and genetic background of the 

male (Bakker 1993). To obtain indirect, genetic benefits females estimate the 

genetic quality of the male via these traits. The red breeding colouration or 

symmetry of pectoral spines are only two examples of visual traits that were 

found to be important in laboratory experiments (Bakker & Milinski 1991, Mazzi 

et al. 2003). The males’ red throat colouration reflects parasite load, with redder 

males having less parasites (Milinski & Bakker 1990, Frischknecht 1993) and is 

also a measure for male aggressiveness (Candolin 1999). However, female 

sticklebacks prefer males not only for visual, but also for olfactoric cues. 

Aeschlimann et al. (2003) showed female preferences for males with certain 

MHC class IIb allele number which they calculate by a self-referential process. 

Females choose males leading to an intermediate number of 5-6 MHC variants 

for their offspring (Aeschlimann et al. 2003, Reusch et al. 2001). Fish with an 

intermediate number of MHC alleles have a fitness advantage, because they 

are less likely to get infected under experimental conditions as well as in the 

wild (Wegner et al 2003b, a) and suffer less from the infection (Kurtz et al. 

2004).  

In addition to egg collection from several females that have chosen a 

certain male as a mating partner, males can enlarge their reproductive output 

by sneaking into neighbouring nests (van den Assem 1967, Mori 1995). For 

sneaking, male sticklebacks are able to change their colouration to a cryptic 

female-like or more light (Frommen, pers. communication) colouration to 

approach a foreign nest in which a female had spawned her eggs shortly 

before. The sneaker swims through the nest, sometimes even before the nest 
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owner himself (Zbinden et al. 2003), and fertilizes the eggs. Another possibility 

for males to cheat females is the egg stealing behaviour. Females prefer to 

spawn into nests that already contain eggs (Ridley & Rechten 1981) and 

therefore males can enlarge the attractiveness of their nest by stealing eggs 

from foreign nests and bring them into the own one (e.g. Goldschmidt & Bakker 

1990). Little is known about frequency of sneaking and egg stealing in the wild 

(Jones et al. 1998, Largiarder et al. 2001) but both behaviours were observed in 

the population of sticklebacks we used for our experiment (pers. observation). 

We determined eggs to result from sneaked, stolen and chosen male-female 

combinations and included it into our analysis. 

We stocked the enclosures with wild caught males and females of 

selected MHC class IIb genetic background and sampled nests and male 

sticklebacks after two weeks. We performed microsatellite-based parenthood 

analysis and determined the amount of sneaked and chosen fertilizations to 

incorporate this information into the analysis of female choice. In conjunction 

with male breeding colouration, morphological characteristics and parasite load 

we analysed the relative importance and interaction of MHC-related cues and 

other sexual traits on mate choice of sticklebacks in a natural breeding habitat. 

84 



Enclosure experiment 

Methods 
The enclosures 

We used six outdoor cages (No. 1- 6) installed in the shallow water of the 

lake shore of the Grosse Plöner See in Schleswig-Holstein, Germany. The 

metal cages were 3x3 m in size with 1 m in height and were anchored in the 

ground and sealed to the water body of the lake with a base of sandbags and 

gravel. The meshes were 5 mm wide, thus small particles and most 

invertebrates (intermediate hosts to various parasite species), zooplankton and 

algae could pass through while predators and other fish were kept outside. In 

the middle of each cage a pole was installed to fix nylon net as cover against 

airborne predators, like sea gulls or herons. Wooden wave breakers were 

installed in 10 m distance around the whole setup in direction to the lakeside.  

 

Fish and experimental setup 

Young of the year three-spined sticklebacks (Gasterosteus aculeatus) 

were caught at the shoreline of the lake Grosser Plöner See on 1st of November 

2002 in the location where later the enclosures were installed. The fish were 

housed in the lab in 190 L tanks at 6°C and a daily light period of 10 hours. In 

April 2003, for 191 fish a small part of one of the first dorsal spines of each fish 

was clipped for MHC class IIb and gender genotyping (see below). This is 

shown not to harm the fish (Kraak et al. 1997). Subsequently, the fish were kept 

individually in 8 L tanks.  

Six groups of experimental fish were composed each containing two 

females with four, six and eight different MHC class IIb variants each, resulting 

in six females per group. To each of these groups either six or twelve males 

selected for the same three MHC diversity classes were added in order to 

control for potential density effects on mate choice. Unfortunately, we lacked a 

sufficient number of fish with the required MHC variants, so that we substituted 

the missing by such with three, five or seven (instead of four, six or eight, 

respectively) MHC variants. 

All experimental fish were weighed (to the nearest 0.1 mg), the total 

length was measured (to the nearest mm) and the number of eye flukes 
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catching (genus Diplostomum) they carried from before the in the eye lenses 

was counted in vivo under a dissection microscope. After all groups were 

completed they were kept in 190 L tanks and consecutively transferred to spring 

(3 weeks at 12ºC, 12/12 h light/dark period) and summer conditions (18ºC, 

14/10 h light/dark periods) until early June 2003. Two weeks later (13th of June 

2003) the groups were released into the enclosures in that particular area of the 

lake where they had been caught seven months before.  

 

Catching 

After fourteen days in the enclosure, males were caught and 

photographed digitally for later standardized analysis of the red breeding 

colouration (see below), measured and weighed. All recovered males were 

dissected within two days after capture including screening for macro-parasites 

and weighing of organs (gonads, kidney, liver, spleen). Condition indices were 

calculated for each fish following Bolger & Connolly (1989) with the exponent 

b=3.314), using weight and length measurements from catching day. All other 

body indices were calculated by dividing the weight of the organ by the total 

weight of the fish (liver, spleen, gonads).  

For each fish the number of following parasites was counted: trematodes: 

Diplostomum spec, Apatemon cobitidis, Cyathocotyle prussica, Echinochasmus 

spec and Phyllodistomum folium, cestodes: Valipora campylancristrota, 

Proteocephalus filicollis, nematodes: Anguillicola crassus, Camallanus lacustris, 

Contracaecum sp., and others: Acantocephalus sp., parasitic glochidia 

(parasitic stages of freshwater bivalves) and Gyrodactylus gasterostei. 

Individual parasite diversity was calculated: ns

sd(Ns)
∗

1

sd(Ns)
∗10 , with ns being 

the number of parasites of a certain species s and sd (Ns) the standard 

deviation of all parasites of that species within the population (Kalbe et al. 

2002). Absolute parasite load was calculated using the formula ns

Nss

∑  with ns 

being the number of individuals of a parasite species s and Ns the absolute 

number of this parasite within the population (Rauch et al. 2005).  
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Colouration 

For each male a picture was taken from its throat using a digital camera 

(Olympus E20-p) with 36mm macro objective. Closing time of the lens was 1/60 

sec, aperture 7 and illumination came from 4 cold lights with 3300 K colour 

temperature according to daylight illumination. Alignment was performed at 

3700 K automatically. The red colouration of a marked area on the throat of 

each fish (Fig. 19) was measured in IP Lab (Version 3.6.2 for Mac OS 9.2.2, 

Scanalytics, Inc.) as mean intensity. The photographs of all fish were measured 

twice, in random order on two consecutive days. This method was highly 

repeatable: 95.9 % for the marked area as well as 99.98 % for the mean 

colouration of each fish. 

 
Figure 19: Digital photograph of the throat of a stickleback showing the corner-points of the 
marked region used for measurement of red courtship colouration. 

 

Molecular methods & analyses 

DNA was extracted from the spine clipping material using DNA Tissue Kit 

(Invitek), following the manufacturers instructions. The gender of all fish was 

then determined by amplification of a sex specific marker described in Griffiths 

et al. (2000). In males two products get amplified, one of 370bp in length and 

one of 600bp, while females just show the 600 bp product. MHC class IIb typing 

was performed with Single-Stranded conformation polymorphism (SSCP) (Binz 

et al. 2001, Reusch et al. 2001). By using two primer combinations, we 

amplified a 124 bp long stretch from the highly polymorphic exon 2 including the 

peptide binding region (PBR, Binz et al. 2001). PCR products were separated 

by capillary electrophoresis using native polymers on an ABI 3100 capillary 
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sequencer (Applied Biosystems, Weiterstadt, Germany, Wegner 2004a) and 

MHC class IIb variants were counted as described (Reusch et al. 2001, Wegner 

et al. 2003a, b).  

 

Parenthood analysis 

We collected all nests from the enclosures and picked 48 eggs from each 

nest for parentage analysis using nine polymorphic microsatellite loci. Genetic 

fingerprints were determined by capillary electrophoresis for all eggs and the 

possible parental fish from the according enclosure. The most likely parents 

were assigned to each egg by using the software Cervus Version 2.0 (Tristan 

Marshall, 1998-2001). The best fitting parent for every egg (95-80% probability, 

at least 8 similar loci) was chosen and complemented with the next best fitting 

fish from the other gender.  

According to parenthood analysis each egg was assigned to one of the 

following categories: chosen, sneaked and stolen. Males that fertilized the 

majority of the eggs in a nest were assigned to be owner of this nest and 

resulting eggs were assumed to come from females that have chosen this male. 

Eggs were assigned to be fertilized by a sneaker if in one nest the same female 

had eggs fertilized by the nest owner and another male. Eggs were assigned to 

be stolen from other nests if they were not fertilized by the nest owner and no 

eggs of the same female were found in the same nest.  

 

Data analysis 

The optimal MHC class IIb allele number associated with the lowest 

parasite load for the experimental fish was calculated as the curve-minimum 

from the quadratic regression of the actual residual parasite load we found 

(Figure 20).  

The main question of the experiment was whether females try to optimise 

the MHC genotype of their offspring via mate choice. To answer this question 

we calculated for each male within an enclosure the mean MHC variant number 

of potentially resulting offspring with every female from the same enclosure 

(Milinski et al. 2005). The male-female combination closest to the optimum of 

5.9 is predicted to be preferred by the female because they promise best fitness 
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for the offspring due to parasite resistance. We counted how many eggs were 

actually fertilised by such predicted males. Then we counted the eggs for each 

of the three categories (chosen, sneaked, stolen) and determined the difference 

of their MHC number to the optimum. Low distance values represent good fitting 

mating partners and high values represent less fitting partners. We finally 

compared the distance to the optimum for each of the categories. Not only MHC 

class IIb variants (olfactory) seem to play a role for the female mating 

preference, but also visual traits are used. We counted the eggs that were 

fertilized by the reddest male of the enclosure to consider female choice for 

visual traits as well.  

To exclude difference between the enclosures that might occur due to 

microhabitat variance, we calculated residuals with the factor ‘enclosure’ for 

parasite diversity, parasite number, redness, gonad index, condition index and 

hepatosomatic index. 

Statistical tests were performed using JMP Professional 5.0.1a (SAS 

Institute Inc. 2002 for Windows) on a level of significance of P<0.05. All tests 

were two-tailed. 
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Results 
After two weeks of experiment, 25 nests were collected with 20 of them 

bearing eggs from one or more females. In total, 960 eggs were prepared for 

microsatellite analysis. In enclosure 3 and 4 we discovered two young pike 

(Esox lucius) that might have preyed upon the fish as well as the nests and 

since predation was not subject to our experimental design, we excluded those 

enclosures from further analysis. For the determination of parenthood we took 

all fish for which genetic data were available (e.g. all fish that were used for 

stocking) into account, resulting in 535 (55.73%) eggs with 25 males and 21 

females as possible parents, which could be clearly determined. Resulting from 

these numbers, we had 114 possible male-female combinations, of which we 

detected eggs for 70 of them (61.4%). The large deficit of analysed eggs was 

due to major problems during DNA extraction because of the low developmental 

stage of some eggs.  

 

Males 

Of the 54 males that were released into the enclosures 25 were caught 

again after the two weeks of experiment. The missing males could not be 

caught with the gentle method we use to prevent major disturbance for the 

photographing that directly followed the catching. All males were dissected, 

typed for their MHC class IIb and the resulting data was used for the analysis of 

male traits. Only the 18 males caught from enclosures 1, 2, 5 and 6 the data for 

all measured traits (redness, parasite load & diversity, condition index, 

hepatosomatic index, gonad index) were analysed. According to the MHC class 

II variant number and parasite diversity we found males with 5 or 6 alleles 

having the lowest parasite diversity although the quadratic fit was not significant 

due to low number of individuals (figure 20, polynomial regression: residual 

parasite diversity, N=18, r2 =0.094, F2,15=1.886, p=0.085). From the minimum of 

the fitted curve, we calculated an optimal MHC variant number of 5.9 for the 

males in our experiment.  
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Figure 20: Relationship of residual parasite diversity and number of MHC class IIB variants in 
the 13 dissected males from enclosure 1, 2, 5 and 6. The quadratic regression fitted best with a 
minimum of 5.899 which reflects the variant number for optimal parasite resistance 
(parasitization = -17,09 - 0,86 * Nvariant + 6,59 (Nvariant -5,83)2). 
 

For the absolute parasite load we could not detect such a quadratic relationship 

with certain allele numbers (polynomial regression: residual parasite load, 

N=18, r2 =-0.090, F2,15=0.2977, P=0.46). However, males with optimal allele 

number tended to have a higher condition factor than fish with low or high 

numbers (Fig. 21, two-tailed t-test: F1,15=-3.1785, P=0.095).  

MHC allele number
2 3 4 5 6 7 8 9

co
nd

iti
on

 in
de

x

6,0

6,5

7,0

7,5

8,0

8,5

9,0

  
Figure 21: Relationship of condition index and MHC variant number.  
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According to the redness, males with an optimal MHC allele number were not 

the ones with the reddest throat colouration compared to those with more or 

less alleles (Fig. 22, two-tailed t-test: F1,15=0.0253, P=0.8758). We found a 

negative correlation between colouration and MHC variant number (linear 

regression: N=17, r2=0.4109, F=10.4605, P=0.0056). Males with lowest variant 

number were redder than the ones with the highest number (ANOVA: 

F2,14=4.3266, P=0.0344, post-hoc test significant).  
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Figure 22: Relation of the mean redness of the males and their MHC variant number with the 
fitted linear regression (residual redness = 18,60 - 3,19 Nvariant). Given are the means of two 
independent analyses of digital photographs per individual as sum of red pixel. 
 

The males with optimal variant number also fertilized the eggs of more females 

(two-tailed t-test: F1,16=6.0706, P=0.0255) although we did not find more nests 

for them (Pearson: r2=0.1052, N=18, P=0.1144). Interestingly, we found no 

difference in any morphological trait between males with an own nest and those 

without (condition index, hepatosomatic index, gonad index, two-sided t-test: 

N=17, all p>0.2) and also not for parasite diversity, parasite number or redness 

(two-sided t-test: N=18, all P>0.18).  

 

Mate choice 

For the nests we collected, 454 eggs were assigned to be chosen, 41 to 

be sneaked and 40 to be stolen. We expected females to choose males with 

which the resulting offspring would be closest to the MHC optimum of the 
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population. Only 2 females had most eggs fertilized by the predicted nesting 

male. The mean (±std err) combined allele number from male and female was 

4.92 (±0.20) for chosen, 4.57 (±0.31) for sneaked and 4.49 (±0.31) for stolen, 

resulting in differences to the calculated optimal allele number of -0.18 (±0.23) 

for chosen, -0.47 (±0.40) for sneaked and -0.50 (±0.33) for stolen. For the 

females a mean egg number of 21.62 (±2.92) was detected for chosen 

combinations, whereas a mean of 4.56 (±4.45) eggs was fertilized by a sneaker 

and 4.44 (±4.45) eggs were stolen by neighbouring males. The difference 

between the numbers of eggs for the chosen to the two other categories was 

significant (ANOVA: F2,36=7.956, P=0.0014, post-hoc test significant). However, 

we did not find eggs fertilized by chosen males to be closer to the expected 

optimal MHC variant number and possible costs of sneaking can therefore not 

be analysed. 

Due to the other male traits we investigated, e.g. redness, we determined 

8 females having spawned their eggs with the reddest male of those we 

measured. For 7 egg clutches we could not define one trait that the females 

might have chosen for.  
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Discussion 
The six large outdoor enclosures we used in our experiment provide a 

good method to investigate mating behaviour and reproduction of three-spined 

sticklebacks. In each of the cages, males established territories and built nest to 

collect egg clutches from several females. According to results from previous 

mate choice experiments in the laboratory (Reusch et al. 2001, Aeschlimann et 

al. 2003) we selected the fish stocking for the MHC class IIb variant number. If 

females choose for the MHC variants via male odour cues, we would have 

expected to find most eggs from male-female combinations that provide 5-6 

variants for the offspring. We found more eggs of optimal male-female 

combinations than of non-optimal combinations and females spawned more 

often with an optimal fitting male. However, from visual mate choice 

experiments in the laboratory it is known that females choose males for traits 

like red breeding colouration (Bakker & Milinski 1991, Milinski & Bakker 1992, 

Bakker 1993, Bakker & Mundwiler 1994). Indeed, 8 females did spawn their 

eggs with the reddest male of the certain enclosure. Redness was negatively 

correlated with MHC variant number and therefore females in some cases seem 

to choose mainly because of visual cues even though males were available that 

would fit better in accordance to the MHC. This result might be influenced by 

the parasite load and diversity, because reddest males proved to have highest 

parasite load, but only intermediate parasite diversity. For the females this 

would mean that parasite load is not as important as low parasite diversity. 

They therefore choose for optimal MHC with good body condition, but only 

intermediate redness and parasite load. It is, however, surprising that high 

parasite load and intermediate parasite diversity are found in the reddest males. 

It was shown that redness decreases with high parasitation (Milinski & Bakker 

1990, Folstad et al.  1994), but this might not be the case in the natural 

environment. The reddest males might invest all available resources into the 

actual reproduction, which is underlined by the low body condition we find for 

these males. Due to their low MHC variant number they might have to fight 

parasites to a higher degree with the innate immunity, which is known to be 

much more costly (Kurtz 2003). For these males it could be the only chance to 
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be fast and collect as many eggs as possible within the first breeding cycle, 

since later in season they might not have enough resources left to perform a 

second breeding cycle. In other populations males perform only one breeding 

cycle (Largiarder et al. 2001) but this might be different in our population. This 

might be a terminal investment strategy (Clutton-Brock 1984), because the 

probability to die after the first breeding cycle is higher for parasitised males 

with low MHC variant number.  

During the analysis of paternity for the eggs, we divided them into three 

categories: chosen, sneaked and stolen. According to further studies of MHC 

based female mate choice (reviewed in Milinski 2003) we would expect chosen 

eggs to result from male-female combinations that provide a MHC variant 

number in the offspring which is closer to the optimum than others. Males are 

not expected to be choosy, since they can enlarge their fitness by quantity and 

not quality of the offspring (Birkhead 2000). However, we did not find any 

difference in the distance to the optimal MHC variant number for any of the 

three categories. For the stolen eggs the explanation is obvious, since the 

female had chosen the nest owner, they can be handled as chosen, only that 

they are reared by a (less fitting) male. The missing difference for the eggs from 

sneaked male-female combinations remains puzzling. One possible explanation 

could be the qualitative difference of certain MHC variants that are specific for 

actually occurring parasites. To disentangle other explanations, further 

experiments are needed, with severe observation of sneaking behaviour.  

After the two weeks of experiment, only half of the males were caught 

again. In addition, we might not have detected all of the nests in the enclosures. 

Stickleback nests are built from plant material, that is taken from the 

surrounding vegetation and they are hard to detect from above. However, our 

results are the first step in the investigation of stickleback mating behaviour due 

to MHC variant number under semi-natural conditions. The small number of re-

caught males implies some difficulty according the analysis of male traits and 

their use for the female mating decision. Although we know from laboratory 

observation that males owning a nest are redder, we could not confirm this with 

the colouration measurements in our experiment. Nesting males did not differ in 

redness from non-nesting males, but they fertilised more eggs. Males that care 
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for a nest are duller than those still courting females and it might bet hat some 

of the males already had finished clutch collection and started broodcare. 

Furthermore, as we can not rule out completely that nests were overlooked, 

some of the males might be misleadingly assigned as non-nesting. As we 

stated above, females use not only one, but a mixture of several traits for their 

mating decision and this might underline the use of olfactory traits, or the use of 

other traits we could not take into account. We measured the redness of the 

males, which is assumed to be of major importance, but zigzag dance, 

symmetry or other possible candidate traits for female choice (Rowland 1995, 

Bronseth & Folstad 1997, Mazzi et al. 2003, Bakker & Mundwiler 1999, 

Ishikawa & Mori 2000, Barber 2001a) were not taken into account. This might 

bias the analysis of the female preference.  

To approve the results of our study it would be useful to collect the nests 

of the males not only once after two weeks, but weekly over a longer period. 

Hence, we could get more information about the life-time reproductive success 

of males and females according to their MHC variant number. Also, the 

investigation of certain male strategies, like terminal investment or risk 

assessment of the single individual could be deepened. Further information 

could be gained by the analysis of more eggs from one, or total nest contents. 

We took only 48 eggs per nest and had to face major problems with the DNA 

extraction of more than half of them. Due to the protein rich egg shell of 

stickleback eggs and especially the low developmental stage of some of them, 

we missed information from clutches that were spawned shortly before 

collection. Not all males might have built a nest instantly and this is another 

reason to expand the collection period. It would improve the experiment to 

include more measurements of the males that are known to play a role for the 

female mating decision. Since the analysis of the zigzag dance could be 

complicated in field experiments, possible candidates are nest quality, pectoral 

spine asymmetry or aggression towards other males.  

 

Summary 

The comprehensive approach of our study using enclosures under semi-

natural field conditions seems to be a good method to investigate the 
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complexity of female mate choice in sticklebacks. Although our results should 

be considered carefully they raise some interesting questions about the use of 

multiple visual and olfactoric ornaments in the field. We could not detect a 

certain male trait that was correlated with number of eggs fertilized, although 

redness seems to be a good candidate. Also the role of sneaked fertilizations 

and stolen eggs might be underestimated and needs further attention for 

instance to estimate the costs for the females. 

Similar enclosure experiments have been conducted using the same 

cages and location in the lake in 2004 and 2005. Since the analysis of eggs and 

the according parenthood determination is still in progress we are looking 

forward to get more results that might shed more light into at least some of the 

questions we raise. 
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Conclusion 
The maintenance of sex is a widely discussed topic in evolutionary biology (e.g. 

Trivers 1985, Lively 1992, Ridley 2004, Milinski 2006). One, and probably the 

most important reason is the advantage of sexually reproducing individuals to 

adapt more rapidly to environmental changes (Crow & Kimura 1965, but see 

Maynard Smith 1976). Parasites are a major, and extremely fast changing part 

of this environment. Therefore, choice for mating partners should include traits 

reflecting the ability of an individual to cope with parasites. In this thesis, I 

discussed variability in stickleback male traits that provide information about 

parasite load e.g. via red throat colouration (Milinski & Baker 1990, Folstad et 

al. 1994) or parasite resistance (MHC) via odour cues (Reusch et al. 2001, 

Aeschlimann et al. 2003, Milinski 2003). I show that different parasites can 

induce various changes in the host’s physiology (Chapter I) that might be 

signalled by sexually selected traits. Also, differences in MHC class I and class 

II B immuno-genetic background were reflected through the male red breeding 

colouration, as well as by certain nest characters (Chapter II). Taken together, 

these might be the prerequisites for female choice of fitter, or more resistant, 

mating partners.  

This thesis shows that visual and olfactory traits have the potential to signal 

parasite load and resistance, and are used for mate choice (Chapter III). The 

results suggest both traits to signal complex information. Hence, the usage of a 

combination of traits seems an ideal strategy to find the best fitting mate and a 

partner that does not only manage survival in the actual environment, but also 

entails its genes to the offspring. The enclosure experiment provides us an 

impression of how mate choice influences reproduction of an individual in the 

wild (Chapter IV). Nevertheless, further investigations are necessary, especially 

on potential variation in lifetime reproductive success between males with a 

different MHC genetic background. Thereby, one could disentangle the effect of 

parasites on the exhibited male traits and, thus, its influence on female choice. 

However, the complex interactions of traits, choice and fitness remain puzzling 

and raise new questions as rapidly as solutions to previous questions are found. 
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One of these raising questions that might gain even more interest in the future 

deals with the evolution of the MHC as a component in specific immune 

defence. The MHC is known to present peptides derived from pathogens to T-

cells during the adaptive immune reaction. In a recent paper, Boehm (2006) 

discussed that this system might have originally evolved for discrimination of 

genetic individuals in the context of sexual selection, namely to discriminate 

between potential mating partners. This recognition could be due to the 

individual diversity of intra-cellular peptides carried to the extra-cellular space. 

One candidate to be such a carrier is the MHC. MHC-peptide complexes might 

be detectable in body fluids and thereby used for mate choice, as studies in 

mice and sticklebacks suggest (Leinders-Zufall et al. 2004, Milinski et al. 2005). 

Later in evolution, the presentation of peptides derived from pathogen deletion 

might have also become important. This could explain the tight linkage between 

parasite resistance and mate choice. 
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