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Abstract

We present a practical technique for spectrum and spectral density estimation from long time series by Fourier trans-
forms. We apply Welch�s popular technique of ‘‘averaging over modified periodograms’’ which uses Fourier transforms of
fixed length with time-domain windows and overlap. Our technique retains the basic properties of this method, but com-
putes the optimal frequency resolution individually for each Fourier frequency on a logarithmic frequency axis, thus yield-
ing results that are more useful than those of the standard techniques.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Two experimental methods commonly used to
measure the spectral distribution of an experimental
quantity are (a) using analog bandpass filters or (b)
digitizing the quantity with an A/D converter and
applying digital algorithms to the time series. While
(a) is used for high-frequency signals, (b) is a general
method that finds widespread application, i.e. in
commercial spectrum analyzers. We only consider
(b) here.
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It is often useful to plot spectral estimates on a
logarithmically uniform frequency axis. Special
algorithms have been developed in the context of
acoustical research [1–3] and their spectral estimates
are known as ‘‘constant-Q’’ estimates. A survey of
other spectral estimation methods with logarithmi-
cally uniform frequency resolution not specifically
tailored to musical research can be found in [4].

A popular method for spectral estimation with
uniform frequency resolution for the case of abun-
dant equidistant samples is the so-called �overlapped
segmented averaging of modified periodograms�.
Here a periodogram means the discrete Fourier
transform (DFT) of one segment of the time series,
while modified refers to the application of a time-
domain window function and averaging is used to
reduce the variance of the spectral estimates. This
.
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Fig. 2. Spectral density estimate obtained by combining the
results of the WOSA method with two different frequency
resolutions (10 averages and 1266 averages). The noise floor is
preserved, and the peak heights depend on the resolution
bandwidth.
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method is attributed to Welch [5] and is also known
under various acronyms such as WOSA (for �win-
dowed overlapped segmented average�). It is widely
used in commercial signal analyzers, oscilloscopes
and other equipment. Specialized methods for the
case of non-equidistant or very few samples [6,7]
or other methods such as the Blackman–Tukey
method [8] and the multitaper method [9] exist,
but are not considered here.

Modern data acquisition equipment easily allows
the collection of very long time series. This leads
to spectra covering several decades of frequency
which are often plotted on a logarithmic frequency
axis in order to display a maximum of information.

The results from a direct application of the
WOSA method are, however, equidistant in the fre-
quency domain. A trade-off is necessary between
frequency resolution of the spectrum and the num-
ber of averages. Especially with a logarithmically
scaled frequency axis spanning several decades the
problem becomes obvious, as can be seen in
Fig. 1: while at low frequencies a narrow frequency
resolution is necessary, this resolution leads to
an inconvenient density of data-points at higher
frequencies, where instead better averaging is
desirable.

The situation can be improved by arbitrarily
splitting the frequency axis and using a coarser fre-
quency resolution for the higher Fourier frequency
part of the spectral estimate as is shown in Fig. 2:
the coarser frequency resolution allows more aver-
Fig. 1. Spectral density estimate obtained by Welch�s method of
windowed, overlapped segmented average (WOSA). The noise
floor is preserved and the peak heights depend on the resolution
bandwidth. Ten estimates were averaged.
ages for Fourier frequencies above 5 mHz which
results in a smoother curve.

For Figs. 1–3 and 8–10 we have used the mea-
sured input voltage noise of an operational amplifier
sampled with a digital voltmeter. For illustrative
purposes, we have additionally introduced two sinu-
soidal signals, both with 20 lVrms amplitude and
frequencies of 1.23 · 10�4 Hz and 2.5 · 10�2 Hz,
and a 3.5 dB notch at 0.16 Hz by digital processing
of the measured data.
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Fig. 3. Spectral density estimate obtained by our new LPSD
method. The resolution bandwidth is adjusted to the frequency to
obtain more averages at higher frequencies (10–12,982 averages).
The peak heights depend on the resolution bandwidth.
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In this paper we describe an extension of the
WOSA method that is especially suited for the case
of very long time series (at least a few thousand
samples) and a logarithmic frequency axis. A typical
result is shown in Fig. 3. While the WOSA method
uses the same frequency resolution for every Fourier
frequency, our new method named LPSD (for Log-
arithmic frequency axis Power Spectral Density)
adjusts the frequency resolution for every Fourier
frequency in the estimate. The property of the
WOSA method that the distance between adjacent
Fourier frequencies equals the resolution band-
width, is approximately maintained.
Table 1
Commonly used symbols

Symbols Comment

a Parameter f
a(j,k) Average va
A(j,k,m(j)) Discrete Fo
C Normalizat
CPS(j) Calibration
CPSD(j) Calibration
D(j) Segment off
ENBW Equivalent
f(j) Fourier freq
fmax Largest freq
fmin Smallest fre
fs Sampling fr
g Abbreviatio
G(j,k, l) Data segme
J Actual num
Jdes Desired num
j Index j = 0,
K(j) Number of
Kdes Desired num
Kmin Minimum n
L Constant nu
L(j) Number of
l Data index
m(j) Frequency
N Total numb
n Index of da
P(f(j)) Spectral est
r Constant re
r(j) Frequency
r0(j), r00(j), r000(j) Preliminary
ravg Smallest fre
rmin Frequency
S1 Constant su
S1(j) Sum of all
S2 Constant su
S2(j) Sum of all
w(j, l) Window fu
x(n) Time series
xk(j, l) Data segme
n Fractional s
z(j, l) Abbreviatio
As will be described below, the computational
cost of the LPSD method scales as OðN � JÞ with
input data size N and number of Fourier frequencies
J. For J = 419 our non-optimized implementation
takes less than 9 s for N = 105 and less than 2 min
for N = 106 on a typical 2 GHz PC. For the many
cases where the authors and their colleagues have
used LPSD, the time required for a program run
was always negligible compared with the time neces-
sary to collect the input data.

This paper is organized as follows: Table 1 con-
tains a list of symbols commonly used in this paper,
in Section 2 we review segmentation of the time ser-
or Kaiser window
lue of segment k
urier transform of G(j,k, l)
ion factor for spectral estimate
coefficient for power spectrum estimation
coefficient for power spectral density estimation
set
noise bandwidth
uencies in spectral estimate, j = 0, . . . ,J � 1
uency in spectral estimate
quency in spectral estimate
equency of the time-series
n, g = log(fmax) � log(fmin)
nt minus segment average multiplied by window function
ber of Fourier frequencies f(j) in spectral estimate
ber of Fourier frequencies f(j) in spectral estimate
. . . ,J � 1 of Fourier frequencies f(j)
averages for Fourier frequency f(j)
ber of averages
umber of averages
mber of data in one segment
data in one segment
within one segment l = 0, . . . ,L(j) � 1
index, m(j) = f(j)/r(j)
er of data
ta x(n), n = 0, . . . ,N � 1
imate for Fourier frequency f(j)
solution bandwidth
resolutions in spectral estimate, j = 0, . . . ,J � 1
frequency resolution
quency resolution with Kdes averages
resolution corresponding to Kmin averages
m of all window values
window values
m of all squared window values
squared window values
nction for Fourier frequency f(j)
of equidistant samples n = 0, . . . ,N � 1
nt k, k = 0, . . . ,K(j) � 1, l = 0, . . . ,L(j) � 1
egment overlap, 0 6 n 6 1
n for definition of Hanning window
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ies, subtraction of the average value of each seg-
ment, multiplication with a window function, com-
putation of the discrete Fourier transforms, and
calculation and averaging of their squared magni-
tudes, all of which are common to both the classical
WOSA and our new method. In Section 3 we
describe our novel method of selecting equally
spaced Fourier frequencies on a logarithmically
spaced axis. The main difference between the
WOSA method and the LPSD method is that
the WOSA method computes scalar products of
the modified time series with a complete set of com-
plex exponentials using integer frequency bins while
our new method uses individual non-integer bins in
the frequency domain. Section 4 discusses the effects
of segment overlapping and in Section 5 we study
the effects of non-integer bins on the estimate. Sec-
tion 6 contains the important topic of proper cali-
bration of spectral estimates. Section 7 discusses
the effect of aliasing for small frequency bins and
in Section 8 we give a step-by-step list for the imple-
mentation of the LPSD algorithm.

2. The WOSA method

Consider the N equidistant samples x(n), n =
0, . . . ,N � 1 of a signal x that has been sampled with
sampling frequency fs. Furthermore, take a set of J
Fourier frequencies f(j), j = 0, . . . ,J � 1 at which the
periodogram of x will be evaluated. The bandwidth
at each of the frequencies is denoted r(j) and is not
necessarily constant (see Section 3). Then, for each
j (i.e. for each Fourier frequency f(j)) we do the
following.

We divide the data into overlapping segments of
length L(j) with the starting points of these segments
D(j) samples apart as is illustrated in Fig. 4. Here,
the segment length L(j) depends on sampling fre-
quency fs and resolution bandwidth r(j)

LðjÞ ¼ fs=rðjÞ. ð1Þ
time

nL(j)
L(j)

D(j) D(j) D(j)

L(j)

L(j)

Fig. 4. Segmentation of the data stream.
Note that the r(j) must be chosen in such a way that
L(j) are integers. The D(j) depend on the fractional
overlap n (0 6 n < 1) of the segments

DðjÞ ¼ ð1� nÞ � LðjÞ. ð2Þ

The data of segment k is given by {x(l + kD(j)),
l = 0, . . . ,L(j) � 1}. We suppose we have K(j) such
segments (k = 0, . . . ,K(j) � 1). It is easily shown
that K(j) is given by

KðjÞ ¼ floor
N � LðjÞ

LðjÞð1� nÞ þ 1

� �
; ð3Þ

where floor( ) takes the largest integer smaller or
equal to its argument. For each segment we calcu-
late the mean value

aðj; kÞ ¼ 1

KðjÞ
XLðjÞ�1

l¼0

xðlþ kDðjÞÞ;

k ¼ 0; . . . ;KðjÞ � 1 ð4Þ

that will be subtracted from each segment to reduce
spectral leakage (see also Section 4).

In order to calculate a spectral estimate, we select
a data window w(j, l), l = 0, . . . ,L(j) � 1, and form
the windowed sequences (k = 0, . . . ,K(j) � 1)

Gðj; k; lÞ ¼ ½xðlþ kDðjÞÞ � aðj; kÞ�wðj; lÞ;
l ¼ 0; . . . ; LðjÞ � 1; ð5Þ

where the mean has been subtracted separately for
each segment.

A brief discussion of windowing and segment
overlapping can be found in Section 4 and a detailed
discussion is given in [10]. We then compute the
scalar products A(j,k) of these sequences with the
complex exponential of the appropriate Fourier fre-
quency f(j)

Aðj; kÞ ¼
XLðjÞ�1

l¼0

Gðj; k; lÞ exp �2pi
mðjÞl
LðjÞ

� �
;

k ¼ 0; . . . ;KðjÞ � 1 ð6Þ

with

mðjÞ ¼ f ðjÞ=rðjÞ ð7Þ

being the bin number [11], further discussed in Sec-
tion 5 below.

We obtain the squared magnitudes of the com-
plex scalar products jA(j,k)j2. Finally, the spectral
estimate at the Fourier frequency f(j) is the average
of these squared magnitudes, i.e.
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Pðf ðjÞÞ ¼ C
KðjÞ

XKðjÞ�1

k¼0

jAðj; kÞj2; ð8Þ

where C is a normalization factor that will be dis-
cussed in Section 6, and the relation between Fou-
rier frequency f(j) and frequency bin number m(j)
is given by

f ðjÞ ¼ mðjÞ � fs
LðjÞ . ð9Þ
3. Fourier frequencies, frequency resolutions,

and bins on a logarithmic axis

If Jdes Fourier frequencies f(j) are to be spaced
equally on a logarithmic axis ranging from fmin to
fmax, the logarithms of the frequencies obey the lin-
ear equation

logðf ðjÞÞ ¼ logðfminÞþ
j

Jdes � 1
ðlogðfmaxÞ� logðfminÞÞ

ð10Þ
with j = 0, . . . ,Jdes � 1, and the frequency limits
being bounded by

fs
N

6 fmin < fmax 6
fs
2

ð11Þ

according to the total length of the time series and
the Nyquist criterion, respectively. Using the abbre-
viation

g :¼ logðfmaxÞ � logðfminÞ. ð12Þ
Eq. (10) can be rewritten to

f ðjÞ ¼ fmin � exp
jg

Jdes � 1

� �
. ð13Þ

In analogy to the WOSA method we aim for a fre-
quency resolution r(j) at Fourier frequency f(j) that
equals the difference to the next higher Fourier fre-
quency f(j + 1) [12]

r0ðjÞ ¼ f ðjþ 1Þ � f ðjÞ; ð14Þ
which we solve for our preliminary estimate r 0(j)

r0ðjÞ ¼ fmin exp
jg

Jdes � 1

� �
exp

g
Jdes � 1

� �
� 1

� �

� f ðjÞ g
Jdes � 1

. ð15Þ

As will be shown, for common values of N and Jdes,
it is typically not possible to produce spectral esti-
mates at Fourier frequencies f(j) according to Eq.
(13) and frequency resolutions according to Eq.
(15). In the following we will use N = 106, Jdes =
1000, fs = 2 Hz, fmin = fs/N = 2 lHz, and fmax =
fs/2 = 1 Hz as example. This leads to a desired fre-
quency spacing of r 0(0) = 26 nHz between the first
two Fourier frequencies which is much smaller than
the smallest possible frequency resolution fs/N =
2 lHz.

It turns out that typically for the higher Fourier
frequencies, suitable parameters r(j) and K(j) can
be found without restrictions, while in the lower
end of the spectrum we need to abandon our aim
of equally spaced Fourier frequencies on the loga-
rithmically scaled axis. To allow a trade-off between
the number of averages and the uniformity of the
Fourier frequencies on the logarithmic axis, we
introduce an additional parameter in our algorithm,
the desired number of averages Kdes, with typical
values of Kdes � 100. This corresponds to a fre-
quency resolution

ravg ¼
fs
N
� ð1þ ð1� nÞðKdes � 1ÞÞ ð16Þ

that also depends on the overlap of the segments
and is a constant for each run of the full algo-
rithm. With an overlap of n = 0.3, Kdes = 100,
and the example values mentioned above, we get
ravg = 141 lHz. This means that only for frequency
resolutions (spacing between adjacent Fourier fre-
quencies) above 141 lHz is it possible to obtain
the desired number of averages.

The smallest possible frequency resolution rmin is
given by fs/N. If it is desired to use at least Kmin

averages for each Fourier frequency (Kmin P 1),
then one should use

rmin ¼
fs
N
� ð1þ ð1� nÞðKmin � 1ÞÞ ð17Þ

instead.
The procedure to determine suitable Fourier fre-

quencies and corresponding frequency resolutions is
as follows:

(1) Start at fmin, let j = 0, f(j = 0) = fmin.
(2) Determine the frequency resolution r 0(j)

according to Eq. (15). Then compute
r00ðjÞ ¼
r0ðjÞ; r0ðjÞ P ravg;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ravg � r0ðjÞ
p

; rmin 6 r0ðjÞ < ravg;

rmin; r0ðjÞ < rmin.

8><
>:

ð18Þ

For r 0(j) P ravg, we can obtain both the de-
sired spacing on the logarithmic axis and reach
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or exceed the desired number of averages. If,
on the other hand, r 0(j) < rmin, the minimum
number of averages cannot be achieved, and
we have no choice but to use rmin as frequency
resolution. Finally, if rmin 6 r 0(j) < ravg we
choose a heuristic compromise between an
equally spaced logarithmic frequency axis
and the desired number of averages.

(3) From r00(j) we calculate the closest integer seg-
ment length L(j) by
LðjÞ ¼ round
fs

r00ðjÞ

� �
. ð19Þ
(4) We obtain our final frequency resolution r(j)
from the integer segment length L(j) by
rðjÞ ¼ fs
LðjÞ ð20Þ
and the frequency bin number m(j) from Eq.
(7). Note that m(j) can be non-integer (see Sec-
tion 5).

(5) The next Fourier frequency is given by
f ðjþ 1Þ ¼ f ðjÞ þ rðjÞ. ð21Þ
N NN

W
in

do
w

Fig. 5. Non-overlapping segmented data stream with window.

overlap

W
in

do
w

N

Fig. 6. Data stream with overlapping segments and window.
If f(j + 1) < fmax we increase j by 1 and go to
step 2.

(6) Finally, the actual number of Fourier frequen-
cies obtained is given by J = j + 1. Since usu-
ally for the lower frequencies we have
r 0(j) < ravg in step 2, this will be less than were
aimed for. The spacing of Fourier frequencies
at the upper end of the spectrum, however,
corresponds to J = Jdes.

4. Windowing and overlap of segments

Each segment of length L(j) is multiplied with a
window function before being subjected to the
DFT. One common feature of the variety of window
functions (see e.g. [13]) is that they have a maximum
in the middle and tend to zero near the beginning
and the end. The effect on the data is twofold: the
benefit of a window function is to make the modi-
fied data quasi-continuous. This reduces spectral
leakage, i.e. the transfer of power from one fre-
quency bin to neighboring frequencies. The other
effect is that the data in the middle have a stronger
weight than the data at the beginning and at the
end, which is undesirable in principle, because all
data intrinsically have the same importance. The
remedy is to use overlapping segments as is illus-
trated below.

As an example of a window function we use the
Hanning window defined by (see [13])

wðj; lÞ ¼ 1� cosðzðj; lÞÞ
2

¼ cos2
zðj; lÞ � p

2

� �
ð22Þ

with

zðj; lÞ ¼ 2p � l
N

and l ¼ 0; . . . ; LðjÞ � 1.

For normalization purposes we define two sums,
specific to a window function, that are needed for
calibrating the spectral estimates (see Section 6)

S1ðjÞ ¼
XLðjÞ�1

l¼0

wðj; lÞ; ð23Þ

S2ðjÞ ¼
XLðjÞ�1

l¼0

w2ðj; lÞ. ð24Þ

When the time series of data is divided into non-
overlapping segments that are multiplied with a
window function, we have a situation as illustrated
in Fig. 5. Due to the fact that the window function
is typically very small or zero near its boundaries, a
significant portion of the data is effectively ignored
in the analysis. This is clearly not optimal in cases
where the data has been produced at great expense
and maximal information is to be extracted from
it. The situation can be improved by letting the
segments overlap as illustrated in Fig. 6. The
amount of overlap is a trade-off between computa-
tional effort and flatness of the data weighting. A
detailed discussion of segment overlap, along with



Fig. 8. Spectrum estimate obtained by Welch�s method of
windowed, overlapped segments averaging (WOSA). The level
of the noise floor depends on the resolution bandwidth.

10-5

10-4

s)

20 µVrms 20 µVrms
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a comprehensive list of window functions and some
new flat-top windows can be found in [10].

5. Non-integer frequency bin numbers

Both the WOSA and the LPSD method for spec-
tral estimation calculate scalar products of win-
dowed data segments with complex exponentials.
The main difference between WOSA and LPSD is
that the former uses a complete set of integer bin
numbers while the latter uses individual non-integer
bin numbers in the frequency domain. We have
investigated the transfer function of several windows
for integer and non-integer bin numbers. Since we
discard the phase information in our spectral esti-
mate, we ignore it in this discussion. We have calcu-
lated the transfer function magnitude jH(f)j using

Hðf Þ ¼
XL�1

l¼0

sin
2pfl
L

� �
wðlÞ exp �2pilm

L

� �
; ð25Þ

where f is the frequency of the sinusoidal test func-
tion in units of bins, w(l) the window function under
investigation, and m the frequency bin number of
interest. Fig. 7 shows the magnitude of the fre-
quency response of a Hanning window to a sinusoi-
dal input signal for frequencies ranging from 0 to
15, for fixed frequency bin numbers of 6 and 6.23.

At the respective bin number, the window-func-
tion responses equal 0 dB, as is expected. Further
away, the responses drop and side-lobes are visible.
The drop in frequency response between the main
lobe and the highest side lobes is called peak side
lobe level (PSLL). For the Hanning window this is
�31.5 dB for both the integer and the non-integer
case.
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Fig. 7. Magnitude of the Hanning window frequency response
for sinusoidal signals.
The PSLL is an important characteristic of a win-
dow function: it describes the amount of suppres-
sion of spectral leakage of peaks to neighboring
frequencies. To obtain spectra without artifacts, a
window function with an appropriate PSLL must
be chosen. For Figs. 1–3 and 8–10 we have used a
Kaiser window [13] with its parameter a = 3.826
corresponding to a PSLL of �90 dB.

Fig. 7 shows that the frequency response for non-
integer bin numbers slightly differs from the integer
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Fig. 9. Spectrum estimate obtained by Welch�s method of
windowed, overlapped segments averaging (WOSA). The WOSA
method has been applied to the data with two different resolution
bandwidths to obtain more averages for higher frequencies. Peak
heights are preserved, but the noise floor shows a discontinuity
due to the change of resolution bandwidth.
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Fig. 10. Spectrum estimate obtained our new LPSD method.
Peak heights are preserved and the noise floor is continuous due
to the continuous adjustment of resolution bandwidth. The level
of the noise floor depends on the resolution bandwidth.
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case, but since these differences only occur below the
PSLL of the window, they have no effect on the
spectrum estimate and can be neglected.

We have done this comparison for many window
functions and bin numbers and consistently found
that no significant differences exist between integer
and non-integer bins, provided that the bin number
is higher than the effective half-width of the window
transfer function in the frequency domain, mea-
sured at the PSLL.

6. Calibration of spectral estimates

The result of any spectral estimation algorithm
can be scaled as spectral density or spectrum. Spec-
tral densities are commonly used to estimate the
incoherent content of a measured quantity, e.g. a
noise floor or a wide-band signal. Spectra, on the
other hand, are used to measure the amplitude of
sinusoidal peaks.

Table 2 shows four commonly used calibrations
for spectral estimates and their relationships.
Table 2
Naming convention for spectra

Abbreviation Name

PSD Power spectral density
PS Power spectrum
LSD Linear spectral density
LS Linear spectrum

ENBW is the equivalent noise bandwidth, defined in Eq. (26).
Spectral densities and spectra with constant fre-
quency resolution can be converted to each other
when the equivalent noise bandwidth ENBW is
known. It is computed as

ENBW ¼ r �NENBW ¼ NENBW � fs
L
¼ fs

S2

ðS1Þ2
;

ð26Þ
where

NENBW ¼ LS2

ðS1Þ2
ð27Þ

is the normalized equivalent noise bandwidth [13], r
the frequency resolution used to calculate the esti-
mate, fs the sampling frequency, L = fs/r the length
of the Fourier transforms and S1 and S2 window-
function-specific sums defined by Eqs. (23) and
(24) in Section 4.

The calibration coefficient for power spectrum
estimation CPS(j) is hence given by

CPSðjÞ ¼
2

ðS1ðjÞÞ2
ð28Þ

and the corresponding coefficient CPSD(j) for power
spectral density is defined as

CPSDðjÞ ¼
2

fsS2ðjÞ
; ð29Þ

where the sums defined in Eqs. (23) and (24) have
been used. The linear quantities LSD and LS can
be found by taking the square root of PSD or PS,
respectively, after averaging has been completed.

Fig. 8 shows a linear spectrum estimate of our
time series by the WOSA method. The peak height
is 20 lVrms at the correct frequencies.

Fig. 9 shows a linear spectrum estimate of the
same time series by the WOSA method, but this
time two different frequency resolutions have been
used. As a result, the noise floor shows a discontinu-
ity at 5 mHz. The peak heights have however been
preserved.
Relation for constant ENBW Unit

V2/Hz
PS = PSD Æ ENBW V2

LSD ¼
ffiffiffiffiffiffiffiffiffiffi
PSD

p
V=

ffiffiffiffiffiffiffi
Hz

p

LS ¼
ffiffiffiffiffiffi
PS

p
¼ LSD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENBW

p
V
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Fig. 10 shows the result of our new LPSD
method. Peak heights have been preserved and
due to the continuous adjustment of the frequency
resolution, the noise floor is continuous.
7. Aliasing for small frequency bins

It is well known that windowing of data segments
is necessary in the WOSA method to reduce the bias
of the spectral estimate [14]. When calculating one-
sided spectral estimates containing only positive
Fourier frequencies windowing causes a bias at
low frequency bins—a fact that is also well known:
one cannot trust the lowest frequency bins on the
spectrum analyzer. The bias stems from aliasing of
power from negative bins and bin zero to the lowest
positive frequency bins. Aliasing from bin zero can
be eliminated by subtracting the mean data value
from the segment. Aliasing from negative bins how-
ever, cannot be reduced that way. Hence we propose
not to use the first few frequency bins. The first fre-
quency bin that yields unbiased spectral estimates
depends on the window function used. The bin is
given by the effective half-width of the window
transfer function. Values for a variety of windows
are tabulated in [10].
8. Algorithm summary

In this section we summarize how we have imple-
mented the LPSD algorithm for spectrum and spec-
tral density estimation. We have programmed it in
C and compiled executable programs for Linux
and DOS/Windows. The source code is available
upon request from the authors. Readers requiring
a different implementation (e.g. in Matlab, Math-
cad, etc.) may use this summary as a guideline.

Input data. We assume to have a long stream
x(n), n = 0, . . . ,N � 1 of equally spaced input data
sampled with frequency fs. Typical values for N

range from 104 to >106.
Window function. Choose a window function

w(j, l) to reduce spectral leakage within the estimate.
Lists of window functions can be found in [13,10].
The computations of the window function will be
performed when the segment lengths L(j) have been
determined.

Fourier frequencies, frequency resolutions, and

bins. Calculate Fourier frequencies f(j) ranging from
fmin to fmax, frequency resolutions r(j), and fre-
quency bins m(j) according to steps 1 to 5 in Section
3 with j ranging from 0 to J � 1. A typical value for
J is 1000.

For every Fourier frequency, f(j) do:
Splitting of the data stream. The segment length

L(j) is determined from the r(j) calculated in the pre-
vious step by using Eq. (20). Split the data into seg-
ments of length L(j), overlapping as desired.
Remove the mean of each segment if desired.

DFT. Compute the window function w(j, l) with l

running from 0 to L(j) � 1. Multiply each data seg-
ment with the window function (Eq. (5)), and com-
pute the discrete Fourier transforms (Eq. (6)).

Averaging and calibration. Average the squared
magnitudes of Eq. (6) and apply the desired calibra-
tion factor according to Eq. (8). Table 2 and Eqs.
(28), (29) can be used to determine the desired cali-
bration factor.
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