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Abstract. This paper gives an update on the status of the LISA technology package (LTP)
which is to be launched in 2009 by ESA as a technology demonstration mission for the space-
borne gravitational wave observatory LISA. The dominant noise source in the interferometer
prototype has been investigated and improved such that it is now comfortably below its budget
at all frequencies.

1. Introduction
The LISA Pathfinder (LPF) mission [1, 2, 3] will be launched in 2009 by ESA. It will contain a
European LISA Technology Package (LTP) and a similar US-package called DRS. The purpose
of the mission is to:

• Demonstrate the free fall of the test mass within one order of magnitude of the LISA
specifications: The goal for LTP is 3 × 10−14 ms−2/

√
Hz at 3 mHz.

• Verify in orbit the functionality and performance of:
– the drag-free system,
– operation of the test mass as a mirror of a precision interferometer,
– the µN thrusters,
– capacitive sensors and actuators,
– caging mechanism,
– ultra-stable interferometer with pm accuracy.

The LTP is currently being built by a large team including Albert-Einstein-Institut Hannover,
Germany, University of Trento, Italy, University of Glasgow, UK, University of Birmingham, UK,
Imperial College London, UK, ETH Zürich, Switzerland, CNES, Paris, France, DLR, Germany,
ASI, Italy, SRON, The Netherlands, IEEC, Barcelona, Spain, with ESA/ESTEC in Noordwijk
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as the leading agency and EADS Astrium GmbH Immenstaad, Germany as industrial prime
contractor.

Figures 1 and 2 show the acceleration noise budget for LISA and LTP, and the present
performance of the interferometer prototype. The design and construction of the interferometer
is described in References [4], [5], [6], [7] and [8].
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Figure 1. Acceleration noise require-
ments for LISA and LTP.
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Figure 2. LTP requirements, interferometer
budget and current performance of interferometer
prototype.

2. Phasemeter
Recently the previous PC-based phasemeter has been replaced by a breadboard similar to
the flight model. The phase is measured in many channels simultaneously by digitizing the
photocurrent and performing a single-bin discrete Fourier transform (SBDFT), i.e. multiplying
the time series by a sine- and cosine-wave of the correct frequency. This simple, but time-
consuming step is done in dedicated hardware (FPGA). Figure 3 shows a block diagram of the
FPGA, and Figure 4 the measured noise of the phasemeter (lowest curve). Our breadboard uses
one 18-bit A/D converter at 800 kHz sampling frequency per channel, while the flight model
(being built in Birmingham) will use 16-bit converters at 50 kHz or 100 kHz.

3. Sideband-induced noise
The most important noise source in the interferometer has recently been studied in detail. It is
caused by spurious sidebands on the light that are in turn caused by RF crosstalk between the
two nearby RF frequencies that drive the acousto-optical modulators. In a simplified sketch of
the interferometer (Figure 5), we introduce the phases

∆F =
2 π

λ
(L1 − L2), ∆R =

2 π

λ
(L1R − L2R), and ∆M =

2 π

λ
(L1M − L2M ),

which represent differential pathlength fluctuations of the unstable part (mostly the fibers),
the (stable) reference interferometer and the measurement interferometer, respectively and
neglect any static pathlength differences. The pathlengths L1R, L2R, L1M and L2M are
defined by distances on the ultrastable optical bench, which is constructed by quasi-monolithic
hydroxycatalysis bonding on a Zerodur baseplate and which is located in a thermally very stable
environment such that the fluctuations of these pathlengths are smaller than our measurement
goal.

The primary observables thus become

ϕR = ∆F + ∆R and ϕM = ∆F + ∆M .

133



co
py

cl
k

��

��

��

��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��
data adregclock

busy

EN

EN

B

A
Comp.

B

A
Comp.
B<A ?

B>A ?

18

ARSTsinclk

sinclk

sincos

multiplexer
54−bit

ARST

cosreg

ARST

sinreg

dcreg

ARST

adbusyregADC

38

54

54

54

12

12

38

54

54

18

outreg

44

44

38

12

ff
tc

ou
nt

 (
20

)

ch
an

ne
l_

id
 (

5)

ze
ro

 p
ad

16*18 −> 34 bit
unsigned multiplier

16

18

18

n

control

clock

n−bit data

12

34

SET

RST

RST

RST

RST
cosclk

sinclk

sinclk

ARST

to control FSM

adclk

54−bit adder

minreg

maxreg 12

from central RAM

sin−cos−table

54

38−bit adder 38

serial clk serial output

176

12

Figure 3. Block diagram of the Hannover breadboard for the FPGA-based phasemeter front
end.
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Figure 4. Noise performance of the Hannover phasemeter breadboard. The measured curves
show (from top to bottom): Interferometer noise without ∆F stabilization, a typical noise curve
obtained with ∆F stabilization and laser amplitude stabilization, and the noise of the new
phasemeter when driven with a clean sine wave.

The main measurement consists of taking the difference between ϕR and ϕM : ϕ = ϕR −ϕM .
Ideally, ∆F should cancel and ϕ should represent the test mass motion ∆M , provided that

the reference path on the optical bench ∆R is stable. Experimentally, this is true to the mrad
(equivalently nm) level. Looking more closely, however, one discovers that ϕ is not perfectly
independent of the fiber pathlength difference ∆F , even if both ∆R and ∆M are stable. Figure 6
shows a measurement of ϕ, when ∆F was freely fluctuating, and the uppermost curve in Figure 4
shows the resulting interferometer noise spectrum, which is clearly unacceptable.

Figure 7 shows the spectra of the two AOM driving frequencies with sidebands, which directly
translate into the optical spectra of the two light beams. In our breadboard electronic modules
(which were built before this problem was discovered), such sidebands are caused by electrical
crosstalk between insufficiently shielded VCXO’s and 80 MHz power amplifiers.
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Figure 5. Simplified diagram of a hetero-
dyne interferometeric setup, with one ‘mea-
surement’ interferometer and a reference in-
terferometer.
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Figure 6. Measured noise caused by ∆F

fluctuations together with sidebands on the
light.
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Figure 7. Sidebands on the light and their
beat notes. For this illustration, 80 MHz is
the average AOM driving frequency, and the
heterodyne frequency is 2 kHz. ’A’ represents
the (desired) main beatnote between carrier
and carrier. The spurious beatnotes labelled
’B’ produce an error term that varies as
sin(∆F ), while those labelled ’C’ cause an
error ∼ sin(2∆F ).

A theoretical analysis [9] of the errors caused by these sidebands has shown that

• The first-order sidebands cause a phase error of the form

δϕ =
{

α1 sin
(

ϕM + ϕR

2

)
+ α2 cos

(
ϕM + ϕR

2

)}
· sin

(
ϕM − ϕR

2

)
,

where α1 and α2 are combinations of the amplitudes and phases of the individual sidebands.
• a pair of first-order sidebands that are caused by phase modulation of the RF or light cancel

and produce no resulting error.
• first-order sidebands that are caused by amplitude modulation add and produce twice the

error of an indivudual sideband.
• Of the second-order sidebands, only those labelled ’C’ in Figure 7 produce an error term,

which has the form

δϕ = {α3 sin(ϕM + ϕR) + α4 cos(ϕM + ϕR)} · sin(ϕM − ϕR).

Hence it is irrelevant whether the sideband was caused by phase- or amplitude-modulation
or occurs as single sideband.

• All error terms scale with the amplitude of the sideband, both in the light and the RF
signal. This means that in order to reduce the error (measured in radians) by a factor of
10, the offending sideband needs to be reduced by 20 dB (not 10 dB).
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All these predictions have been confirmed by a series of experiments using the breadboards of
the optical bench and associated electronics.

Several strategies to mitigate this error have also been investigated:

• Reduction of the offending sidebands: The results described above have led to more stringent
requirements on the spectral purity of the AOM unit of the flight model.

• Reducing the fluctuations of ∆F : This is now routinely used in our breadboards and will
also be included in the flight model. For this purpose, the pathlength difference ∆F between
the two unstable optical paths, which is measured by the phasemeter, is actively stabilized
using a PZT in the AOM unit.

• Since the analytical form of the error is known, it can be removed by subtraction from
corrupted data. Although this has been shown to work in principle and a reduction of the
error by a factor of 10 or so was achieved, measuring the coefficients α1 . . . α4 is difficult in
practice, and hence this method is not the baseline.

The analysis and results will be published in more detail in another paper.

4. Conclusions
Using the new phasemeter, active stabilisation of ∆F and active suppression of the laser
amplitude noise, the noise of the interferometer has been reduced to the levels shown in Figures 2
and 4. The remaining noise at low frequencies is mainly due to real motion of the test mirrors,
which is caused by thermal fluctuations in the lab. We expect that these fluctuations (as well
as the ∆F fluctuation) will be considerably smaller in the quiet orbit of LPF, and that the
interferometer will hence perform considerably better than its requirement, thus enabling LTP
to study other noise sources (e.g. of the drag-free system) with high detail and fidelity.
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