
July 2006
AEI-2006-038

Cadabra
A field-theory motivated approach to symbolic computer algebra

Copyright c© 2001–2007 Kasper Peeters

Tutorial and reference guide

This manual is available under the terms of the GNU Free Documentation License, version 1.2.

The accompanying software is available under the terms of the GNU General Public License, version 2.

2

Cadabra is a computer algebra system for the manipulation of tensorial mathematical ex-
pressions such as they occur in “field theory problems”. It is aimed at, but not necessarily
restricted to, high-energy physicists. It is constructed as a simple tree-manipulating core,
a large collection of standalone algorithmic modules which act on the expression tree,
and a set of modules responsible for output of nodes in the tree. All of these parts are
written in C++. The input and output formats closely follow TEX, which in many cases
means that cadabra is much simpler to use than other similar programs. It intentionally
does not contain its own programming language; instead, new functionality is added by
writing new modules in C++.

This document contains a description of the core program as well as a detailed listing
of the functionality of the currently available algorithm modules. Given the origin of
cadabra, the bias is currently towards algorithms for problems in (quantum) field theory,
general relativity, group theory and related areas. The last part of this text consists of
a user guide on how to implement new algorithmic and display modules and thereby
extend the functionality of cadabra.

The software is available for download under the terms of the GNU General Public Li-
cense from http://www.aei.mpg.de/~peekas/cadabra/ .

A paper introducing cadabra to high-energy physicists is available as

“Introducing Cadabra: a symbolic computer algebra system for
field theory problems”,
Kasper Peeters, preprint SPIN-06/46, ITP-UU-06/56, hep-th/0701238.

Furthermore, a short paper describing the motivation and key technical aspects of cadabra
is available as

“A field-theory motivated approach to symbolic computer algebra”,
Kasper Peeters,
Comp. Phys. Comm. 176 (2007) 550-558 (title changed in print),
cs.CS/0608005.

Both papers can be obtained from the cadabra web site or the arXiv.

Copyright c© 2001–2007 Kasper Peeters

Max-Planck-Institut für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
14476 Golm, GERMANY

kasper.peeters@aei.mpg.de

http://www.aei.mpg.de/~peekas/cadabra/

Table of Contents

1 Overview and motivation 5

2 Tutorial 6
2.1 Tutorial 1: Tensor monomials and multi-term symmetries 7
2.2 Tutorial 2: Tensor monomials, part two . 8
2.3 Tutorial 3: World-sheet supersymmetry . 8
2.4 Tutorial 4: Super-Maxwell . 10

3 Graphical user interface 12
3.1 General information . 12
3.2 Editing, loading, saving . 12
3.3 Evaluating cells . 12
3.4 Printing and exporting . 12
3.5 Cutting and pasting . 12
3.6 The TEXmacs frontend . 13

4 Reference guide 14
4.1 Startup and program options . 14
4.2 Basics about the input format . 14
4.3 Active nodes or “commands” . 15
4.4 Object properties and declaration . 17
4.5 List properties and symbol groups . 19
4.6 Indices, dummy indices and automatic index renaming 20
4.7 Exponents, indices and labels . 21
4.8 Spacing and brackets . 21
4.9 Implicit versus explicit indices . 22
4.10 Indexbrackets . 22
4.11 Derivatives and implicit dependence on coordinates 23
4.12 Accents . 24
4.13 Symbol ordering and commutation properties 25
4.14 Input and output redirection . 26
4.15 Default rules . 27
4.16 Patterns, conditionals and regular expressions 27
4.17 Environment variables . 29
4.18 Future plans . 29

5 Algorithm modules 30
5.1 Builtin core algorithms . 32
5.2 Rationals, complex numbers and other numerics 34
5.3 Sums and products . 35
5.4 Lists and ranges . 42
5.5 Differential geometry . 44
5.6 Properties . 44
5.7 Dummy indices . 45
5.8 Symmetrisation and anti-symmetrisation 46

5.9 Field theory . 47
5.10 Output routines . 51
5.11 General relativity . 53
5.12 Substitution . 55
5.13 Linear algebra . 57
5.14 Gamma matrix algebra and fermions . 58
5.15 Conversion from/to other formats . 61

6 Core functionality 62
6.1 Source file description . 62
6.2 Tree representation of expressions . 62
6.3 Nested sums, products and pure numbers 63

7 Module implementation guide 66
7.1 Storage of numbers and strings . 66
7.2 Accessing indices . 66
7.3 Object properties . 66
7.4 Writing a new algorithm module . 67
7.5 Adding the module to the system . 69
7.6 Adding new properties . 70
7.7 Throwing errors . 71
7.8 Manipulating the expression tree . 71

7.8.1 Acting on products or single terms 71
7.8.2 Reserved node names . 71

7.9 Utility functions . 72
7.10 Writing a new output module . 72
7.11 Namespaces and global objects . 72

Overview and motivation 5

Overview and motivation
“ I think that several of you are missing the obvious. The majority of

people use these programs as symbolic calculators – occasionally. As
such they want their input and output to match what they would have
written with pencil and paper.” soft-sys.math.maple, 2002

Cadabra is a computer algebra system for the manipulation of what could loosely be
called tensorial expressions. It is aimed at, but not necessarily restricted to, theoretical
high-energy physicists. The program’s interface, storage system and underlying philos-
ophy differ substantially from other computer algebra systems. Its main characteristics
are:

� Usage of TEX notation for both input and output, which eliminates many errors in
transcribing problems from paper to computer and back.

� Built-in understanding of dummy indices and dummy symbols, including their au-
tomatic relabelling when necessary. Powerful algorithms for canonicalisation of
objects with index symmetries, both mono-term and multi-term.

� A new way to deal with products of non-commuting objects, enabling a notation
which is identical to standard physicist’s notation (i.e. no need for special non-
commuting product operators).

� A flexible way to associate meaning (“type information”) to tensors by attaching
them to “properties”.

� An optional unlimited undo system. Interactive calculations can be undone to
arbitrary level without requiring a full re-evaluation of the entire calculation.

� A simple and documented way to add new algorithms in the form of C++ modules,
which directly operate on the internal expression tree.

� A command line interface as well as a graphical one, and a TEXmacs frontend.

This document contains a small tutorial, an extensive reference guide and a technical
summary of the program’s internals together with a guide on how to write new algorithm
modules in C++.

Acknowledgements

This program uses code written by several other people. The tensor monomial canon-
icalisation routines rely on the xPerm code written by José Martin-Garcia [1]). All
representation-theory related problems are handled by the LiE software by Marc van
Leeuwen, Arjeh Cohen and Bert Lisser [2].

The name Cadabra is an implicit acknowledgement to Mees de Roo, who introduced me
to his (so far unpublished) Pascal program Abra in the fall of 2000. This program has an
extremely physicist-friendly way of dealing with fermions and tensor symmetries, and
a formula history mechanism still not found in any other comparable computer algebra
system. Cadabra was originally planned to be “my private C++ version of Abra”, and even
though it does not show much similarity anymore, the development was to a large extent
inspired by Abra.

Tutorial 6

Tutorial
The best way to explain the advantages of a new computer algebra system is to demon-
strate its ease-of-use for a real-world problem. But if you lack the patience to even read
the tutorial on the next few pages, at least read the remainder of this page for an absolute
minimum of information. All input in the examples is prefixed with a “�” symbol.

� Start the program by typing “prompt cadabra”. Quit with the “@quit” command.

� Tensor expressions are entered as in TEX, with subscripts and superscripts as you
know them, e.g.

� A_{m n} B^{m q} R^{n}_{q};

Input lines are terminated with “;”, “:” or “.” punctuation; see section 4.2 on
page 14 for information on what these characters mean.

� Tensors carry properties, such as “being a Riemann tensor”. These properties are
attached by using a double-double dot notation,

� R_{m n p q}::RiemannTensor.
� g_{m n}::Metric.
� \psi::Spinor.

A list of all properties and the place where they are described in this manual can
be found on page 30.

� For many operations cadabra needs to know about the names which it can use for
‘dummy’ indices. You declare dummy indices as

� {m,n,p,q}::Indices(vector).

where “vector” is a chosen name for this index set. See section 4.6 on page 20.

� For many other operators, cadabra needs to know the range over which indices
run. Set these index ranges by attaching the Integer property to the indices, e.g.

� {m,n,p,q}::Integer(0..10).

� Expressions can be given a label so you can refer to them again later; you do this
by writing the label before the expression and a “:=” in between,

� MaxwellEom:= \diff{F^{m n}}_{n} = 0;

� All things starting with ‘@’ are commands (also called “active nodes”). Some of the
frequently used commands are @substitute (page 55), @canonicalise (page 40)
and @collect terms (page 39).

2.1. Tutorial 1: Tensor monomials and multi-term symmetries 7

2.1 Tutorial 1: Tensor monomials and multi-term symmetries

Cadabra contains powerful algorithms to bring any tensorial expression into a canonical
form. For multi-term symmetries, cadabra relies on Young tableau methods to generate
a canonical form for tensor monomials. 1

As an example, consider the identity

WpqrsWptruWtvqwWuvsw − WpqrsWpqtuWrvtwWsvuw

= WmnabWnpbcWmscdWspda − 1
4
WmnabWpsbaWmpcdWnsdc . (2.1)

in which Wmnpq is a Weyl tensor (all contracted indices have been written as subscripts
for easier readability). Proving this identity requires multiple uses of the Ricci cyclic
identity,

Wm[npq] = 0 . (2.2)

With cadabra’s Young tableau methods the proof is simple. We first declare our objects
and input the identity which we want to prove,

� {m,n,p,q,r,s,t,u,v,w,a,b,c,d,e,f}::Indices(vector).
� W_{m n p q}::WeylTensor.

� W_{p q r s} W_{p t r u} W_{t v q w} W_{u v s w}
- W_{p q r s} W_{p q t u} W_{r v t w} W_{s v u w}
- W_{m n a b} W_{n p b c} W_{m s c d} W_{s p d a}
+ (1/4) W_{m n a b} W_{p s b a} W_{m p c d} W_{n s d c};

Using a Young projector to project all Weyl tensors onto a form which shows the Ricci
symmetry in manifest form is done with

� @young_project_tensor!(%){ModuloMonoterm};

This algorithm knows that the Weyl tensor sits in the ˜ representation of the rotation
group SO(d), and effectively leads to a replacement

Wmnpq → 2
3
Wmnpq − 1

3
Wmqnp +

1
3
Wmpnq . (2.3)

We then expand the products of sums and canonicalise using mono-term symmetries,

� @distribute!(%):
� @canonicalise!(%):
� @rename_dummies!(%):
� @collect_terms!(%);

The last line produces the expected “zero”. A slightly more complicated multi-term ex-
ample can be found in TEXmacs format in texmacs/showcase1.tm.

1The user interface for multi-term symmetries is under active development and will simplify substan-
tially in upcoming releases.

2.3. Tutorial 3: World-sheet supersymmetry 8

2.2 Tutorial 2: Tensor monomials, part two

It is easy to generate complete bases of tensor monomials, for any arbitrary tensors (not
necessarily for tensors in irreps, as in the previous example). As an example, let us show
how this works for a basis constructed from three powers of the Riemann tensor. All that
is required is

� {m,n,p,q,r,s,t,u,v,w,a,b}::Indices(vector).
� {m,n,p,q,r,s,t,u,v,w,a,b}::Integer(0..9).

� R_{m n p q}::RiemannTensor.

� basisR3:= R_{m n p q} R_{r s t u} R_{v w a b};
� @all_contractions(%);

The result can be further simplified using

� @canonicalise!(%):
� @substitute!(%)(R_{m n m n} -> R):
� @substitute!(%)(R_{m n m p} -> R_{n p}):
� @substitute!(%)(R_{n m p m} -> R_{n p}):
� @substitute!(%)(R_{n m m p} -> R_{n p});

which leads something like2

basisR3:= \{ R_{m n p q} * R_{m p r s} * R_{n r q s},
R * R_{q r} * R_{q r},
R_{n p} * R_{n q p r} * R_{q r},
R_{n p} * R_{n q r s} * R_{p r q s},
R * R_{p q r s} * R_{p q r s},
R_{n p} * R_{n r} * R_{p r},
R_{m n p q} * R_{m r p s} * R_{n r q s},
R * R * R \};

This result is equivalent to the basis given in the “R0
6,3” table on page 1184 of [3].

2.3 Tutorial 3: World-sheet supersymmetry

Cadabra not only deals with bosonic tensors, but also with fermionic objects, i.e. anti-
commuting variables. A simple example on which to illustrate their use is the Ramond-
Neveu-Schwarz superstring action. We will here show how one uses cadabra to show
invariance of this action under supersymmetry (a calculation which is easy to do by
hand, but illustrates several aspects of cadabra nicely). We will use a conformal gauge
and complex coordinates.

We first define the properties of all the symbols which we will use,

2The algorithm involves a random step which implies that the basis is not always the same, though it is
always complete. Further improvements are in preparation which will eliminate this randomness (and also
lead to a speedup).

2.3. Tutorial 3: World-sheet supersymmetry 9

� {\del{#}, \delbar{#}}::Derivative.
� {\Psi_\mu, \Psibar_\mu, \eps, \epsbar}::AntiCommuting.
� {\Psi_\mu, \Psibar_\mu, \eps, \epsbar}::SelfAntiCommuting.
� {\Psi_\mu, \Psibar_\mu, X_\mu}::Depends(\del,\delbar).
� {\Psi_\mu, \Psibar_\mu, \eps, \epsbar, X_\mu, i}::SortOrder.

All objects are by default commuting, so the bosons do not have to be declared sepa-
rately. You can at any time get a list of the declared properties by using the command
@proplist.

Now we have to input the action density (see [4] for the conventions used here)

� action:= \del{X_\mu} \delbar{X_\mu}
+ i \Psi_\mu \delbar{\Psi_\mu} + i \Psibar_\mu \del{\Psibar_\mu};

Observe how we wrapped the \del and \delbar operators around the objects on which
they are supposed to act. We are now ready to perform the supersymmetry transforma-
tion. This is done by using the @substitute algorithm,

� @vary!(%)(X_\mu -> i \epsbar \Psi_\mu + i \eps \Psibar_\mu,
\Psi_\mu -> - \epsbar \del{X_\mu},
\Psibar_\mu -> - \eps \delbar{X_\mu});

� @distribute!(%);
� @prodrule!(%);

The @prodrule command has applied the Leibnitz rule on the derivatives, so that the
derivative of a product becomes a sum of terms. We expand again the products of sums,
and use @unwrap to take everything out of the derivatives which does not depend on it,

� @distribute!(%);
� @unwrap!(%);
� @prodsort!(%);

At this stage we are left with an expression which still contains double derivatives. In
order to write this in a canonical form, we eliminate all double derivatives by doing
one partial integration. This is done by first marking the derivatives which we want to
partially integrate, and then using @pintegrate,

� @substitute!(%)(\del{\delbar{X_{\mu}}} -> \pdelbar{\del{X_{\mu}}});
� @substitute!(%)(\delbar{\del{X_{\mu}}} -> \pdel{\delbar{X_{\mu}}});
� @pintegrate!(%){ \pdelbar };
� @pintegrate!(%){ \pdel };
� @rename!(%){"\pdelbar"}{"\delbar"};
� @rename!(%){"\pdel"}{"\del"};
� @prodrule!(%);
� @distribute!(%);
� @unwrap!(%);
� @prodsort!(%);

2.4. Tutorial 4: Super-Maxwell 10

Notice how, after the partial integration, we renamed the partially integrated derivatives
back to normal ones (and again apply Leibnitz’ rule). If we now collect terms,

� @collect_terms!(%);

we indeed find that the total susy variation vanishes.

2.4 Tutorial 4: Super-Maxwell

The following example illustrates the use of a somewhat more complicated set of object
properties. A TEXmacs version of this problem can be found in the distribution tarball in
the file texmacs/showcase3.tm. We start with the super-Maxwell action, given by

S =
∫

d4x
[
− 1

4
(Fab)2 − 1

2
λ̄γa∂aλ

]
, (2.4)

It is supposed to be invariant under the transformations

δAa = ε̄γaλ , δλ = −1
2
γabε Fab . (2.5)

The object properties for this problem are

� { a,b,c,d,e }::Indices(vector).
� \bar{#}::DiracBar.
� { \partial{#}, \ppartial{#} }::PartialDerivative.
� { A_{a}, f_{a b} }::Depends(\partial, \ppartial).
� { \epsilon, \gamma_{#} }::Depends(\bar).
� \lambda::Depends(\bar, \partial).
� { \lambda, \gamma_{#} }::NonCommuting.
� { \lambda, \epsilon }::Spinor(dimension=4, type=Majorana).
� { \epsilon, \lambda }::SortOrder.
� { \epsilon, \lambda }::AntiCommuting.
� \lambda::SelfAntiCommuting.
� \gamma_{#}::GammaMatrix(metric=\delta).
� \delta{#}::Accent.
� f_{a b}::AntiSymmetric.
� \delta_{a b}::KroneckerDelta.

Note the use of two types of properties: those which apply to a single object, like
Depends, and those which are associated to a list of objects, like AntiCommuting. Clearly
∂aλ and ε̄ are anti-commuting too, but the program figures this out automatically from
the fact that \partial has an associated PartialDerivative property associated to it.3

The actual calculation is an almost direct transcription of the formulas above. First
we define the supersymmetry transformation rules,

� susy:= { \delta{A_{a}} = \bar{\epsilon} \gamma_{a} \lambda,
\delta{\lambda} = -(1/2) \gamma_{a b} \epsilon f_{a b} };

3This is similar to Macsyma’s types and features: the property which is attached to a symbol is like a
‘type’, while all properties which the symbol inherits from child nodes are like ‘features’.

2.4. Tutorial 4: Super-Maxwell 11

The action is also written just as it is typed in TEX,

� S:= -(1/4) f_{a b} f_{a b}
- (1/2) \bar{\lambda} \gamma_{a} \partial_{a}{\lambda};

Showing invariance starts by applying a variational derivative,

� @vary!(%)(f_{a b} -> \partial_{a}{\delta{A_{b}}}
- \partial_{b}{\delta{A_{a}}},

\lambda -> \delta{\lambda});

� @distribute!(%):
� @substitute!(%)(@(susy)): @prodrule!(%): @distribute!(%): @unwrap!(%);

After these steps, the result is (shown exactly as it appears in the TEXmacs [5] frontend)

S = ε̄γa∂bλ fab +
1
4
γcbεγa∂aλ fcb +

1
4
λ̄γaγcdε∂afcb . (2.6)

Since the program knows about the properties of gamma matrices it can rewrite the
Dirac bar, and then we do one further partial integration,

� @rewrite_diracbar!(%);
� @substitute!(%)(\partial_{c}{f_{a b}} -> \ppartial_{c}{f_{a b}}):
� @pintegrate!(%){\ppartial}:
� @rename!(%){"\ppartial"}{"\partial"}:
� @prodrule!(%): @unwrap!(%);

What remains is the gamma matrix algebra, sorting of spinors (which employs inheri-
tance of the Spinor and AntiCommuting properties as already alluded to earlier) and a
final canonicalisation of the index contractions,

� @join!(%){expand}: @distribute!(%): @eliminate_kr!(%): @prodsort!(%);
� @substitute!(%)(\partial_{a}{\bar{\lambda}}

-> \bar{\partial_{a}{\lambda}});
� @spinorsort!(%):
� @rename_dummies!(%): @canonicalise!(%): @collect_terms!(%);

The result is a Bianchi identity on the field strength, and thus invariance of the action.

3.5. Cutting and pasting 12

Graphical user interface
3.1 General information

The graphical user interface is called xcadabra.

3.2 Editing, loading, saving

The file format used by the front-end is a LATEX compatible file. If necessary, it can be
edited by hand using a text editor.

3.3 Evaluating cells

In order to evaluate cells, press ctrl-enter in an input cell. This will send the input to
the kernel and display any results or informal messages below the input cell.

3.4 Printing and exporting

As the file format which the front-end uses to save notebooks is a LATEX compatible file,
it is simple to print a notebook: simply save it and run it through LATEX as usual. You
will need two special-purpose packages, breqn (which is separately packaged and also
available from the AMS) and tableaux (which is included with the cadabra distribution).

Notebooks can be exported to a normal cadabra text input file. This results in a file
which contains only the input cells of the notebook. Such a file can be fed into the
command line version of cadabra by using

� cadabra --input [filename]

3.5 Cutting and pasting

You can select output cells and paste them back into input cells or into some other appli-
cation. The program offers two formats for pasting, a LATEX one which is useful to paste
into a paper, and a cadabra one which represents the way in which the expression can
be pasted back into the program.

In most cases, the format will be selected correctly automatically. Under Emacs, you
can choose either one. The list of formats can be inspected using

� (x-get-selection-internal ’PRIMARY ’TARGETS)
[TIMESTAMP TARGETS MULTIPLE cadabra UTF8_STRING TEXT]

If e.g. an output cell with the content 1/2 A_{m}^{n} is selected, the two different paste
formats can be obtained by evaluating the following two LISP expressions in a scratch
buffer,

� (x-get-selection-internal ’PRIMARY ’cadabra)
#("1/2 A_{m}^{n};" 0 14 (foreign-selection STRING))

3.6. The TEXmacs frontend 13

� (x-get-selection-internal ’PRIMARY ’TEXT)
#("1 := \frac{1}{2}\, A_{m}\,^{n};" 0 31 (foreign-selection COMPOUND_TEXT))

Note that the TEXT format contains markup such as spacing commands which make it
more useful for papers. This is the default format when the middle mouse button is
pressed.

3.6 The TEXmacs frontend

The program also comes with a TEXmacs frontend (which is now no longer actively main-
tained because the native graphical frontend is in many ways easier to use and more
adapted to cadabra). If everything is installed correctly, the “Insert → Session” submenu
of TEXmacs should contain an entry for Cadabra. A few sample TEXmacs files can be
found in the texmacs subdirectory of the source tarball.

Cadabra sends its output more-or-less unchanged to the TEXmacs frontend. It is there-
fore useful to use tensor names which have a meaning in TEX. For example, if you declare
a derivative operator, you might be tempted to use

� \diff{#}::Derivative.

(perhaps because you want to mimic Maple’s notation). However, this will lead to ugly
output since \diff is not a TEX symbol and TEXmacs does not know what to do with it.
A better choice would be

� \nabla{#}::Derivative.

since \nabla actually prints as a nice symbol in TEXmacs.
If you want to cut-and-paste formulas from a TEX document into a TEXmacs notebook,

you will encounter the problem that all backslashes get swallowed. To avoid this, choose
the menu entry

Edit → Paste from → Verbatim

which pastes text unmodified. You can make this the default for middle-button paste by
choosing

Tools → Selections → Import → Verbatim

which will remain active during the current session.
In order to make PDF output work, you have to have pfbtops installed (it is usually

part of the groff package).

4.2. Basics about the input format 14

Reference guide
4.1 Startup and program options

If present, a startup file ~/.cadabra will be read when the program is started. This file
can contain any cadabra input.

--bare
Disable reading of the startup file ~/.cadabra.

--silent
Disable normal output (so that the only remaining output is through output redi-
rection into files).

--input [filename]
Before switching to interactive mode, first read and process the indicated file.

--prompt [string]
Set the cadabra prompt to the given string.

--silentfail
Silently fail (i.e. do not complain) if an algorithm is activated which cannot be
applied.

--loginput
Write the input into the debug file as well.

--nowarnings
Suppress displaying of any warnings which are not fatal errors.

--texmacs
Send output in TeXmacs format.

In order to have command-line editing functionality, the prompt program is provided. So
the two ways of starting cadabra are

cadabra
prompt cadabra

the second of which gives cursor control and an editing history. There are various other
settings of cadabra which can be influenced through environment variables; see sec-
tion 4.17 for details.

4.2 Basics about the input format

The input format of cadabra is closely related to the notation used by TEX to denote
tensorial expressions. That is, one can use not only bracketed notation to denote child
objects, like in

object[child,child]

4.3. Active nodes or “commands” 15

but also the usual sub- and superscript notation like

object^{child child}_{child}

One can use backslashes in the names of objects as well, just as in TEX. All of the symbols
that one enters this way are considered “passive”, that is, they will go into the expression
tree just like one has entered them.

“Active nodes”, on the other hand, are symbols pre-fixed with a “@” symbol. These
are nodes which lead to an algorithm being applied to their children; they will thus not
end up in the actual tree stored in memory, but instead get replaced with the output that
their algorithm produces (if any). Finally, every non-empty expression that one enters
will labelled by a number. Additionally, one can give an expression a label by entering
it as “label-text:= expression;”. One can use either the expression number or the
label to refer to an expression.

Names of objects can contain any printable character, except for brackets, sub- and
super-script symbols and backslash characters (the latter can only occur at the beginning
of a name). The sole exception to this rule is the names of active nodes: these names can
contain underscores to separate words. The program can also deal with “accents” added
to symbol names, like

\hat{A}
\bar{B}
\prime{Q}

The precise way in which this works is explained in section 4.12.
Input lines always have to be terminated with either a “;”, a “:” or a “.”. The first two

of these delimiting symbols act in the same way as in Maple: the second form suppresses
the output of the entered expression (see section 4.14 for additional information on how
to redirect output to files). The last delimiter has the effect of evaluating the resulting
expression, and immediately discarding it, also disabling printing. Long expressions
can, because of these delimiters, be spread over many subsequent input lines. Any line
starting with a “#” sign is considered to be a comment (even when it appears within a
multi-line expression). Comments are always ignored completely (they do not end up in
the expression tree).

All internal storage is in prefix notation, but a converter is applied to the input which
transforms normal infix notation for products and sums to prefix notation.

4.3 Active nodes or “commands”

Active nodes are nodes which lead to immediate evaluation after the input has been
entered; these could thus be called “commands”. Commands always start with a “@”
symbol, to distinguish them from normal, unevaluated input. Used in the standard “note-
book” way, active nodes act on their first argument and get replaced with the result that
they compute. This form uses square brackets to denote the argument on which to act:

@command[expression]{arg1}{arg2}...{argn}

4.3. Active nodes or “commands” 16

If you want to re-use an existing expression as the argument, this can be cloned by using
the “@” operator itself:

@[equation number or label]

or (for convenience, as a single exception to the square bracket rule)

@(equation number or label)

both evaluate to a copy of the expression to which they refer (one can use the “%”
character to denote the number of the last-used expression). Note that all of these forms
create a new expression. One is advised not to refer to equation numbers using this
command, as this makes expressions tied together in a rather fragile way.

Algorithms can also be made to act on existing expressions such as to modify the
expression history (i.e. in the language of the previous section, to stay within a “mini-
notebook”). This is done by using round brackets instead of square ones:

@command(expression number or label){arg1}{arg2}...{argn}

Here it is no longer problematic to refer to equation numbers, as the result of this com-
mand will appear in the history list of the indicated expression (and is therefore not tied
to the particular number of the expression).

All of these commands act on the top of the argument subtree. You can make them
act subsequently on all nodes to which they apply by postfixing the name with an excla-
mation mark, as in

@command![expression]{arg1}{arg2}...{argn}

This will search the tree in pre-order style, applying the algorithm on every node to
which the algorithm applies.

If you want an algorithm to act until the expression no longer changes, use a double
exclamation mark. Compare the single-exclamation mark version,

� A_{m} B_{m} A_{n} B_{n};
� @substitute!(%)(A_{m} B_{n} -> Q);

Q A_{n} B_{n};

with the double-exclamation mark one,

� A_{m} B_{m} A_{n} B_{n};
� @substitute!!(%)(A_{m} B_{n} -> Q);

Q Q;

4.4. Object properties and declaration 17

Be careful with this functionality, as there is currently no safeguard in case the expression
keeps changing forever.

Instead of acting only at the top of the argument subtree, or acting on all nodes
individually, it is also possible to act only a specific level of the expression. The notation
for this is an exclamation mark with an extra number attached to it, which indicates the
level (starting at 1 for the highest level),

@command!level(expression number of label){arg1}{arg2}...{argn}

Note that \sum and \prod nodes in the expression tree also count as a level.

4.4 Object properties and declaration

Symbols in cadabra have no a-priori “meaning”. If you write \Gamma, the program will
not know that it is supposed to be, for instance, a Clifford algebra generator. You will
have to declare the properties of symbols, i.e. you have to tell cadabra explicitly that if
you write \Gamma, you actually mean a Clifford algebra generator. This indirect way of
attaching a meaning to a symbol has the advantage that you can use whatever notation
you like; if you prefer to write \gamma, or perhaps even \rho if your paper uses that,
then this is perfectly possible (object properties are a bit like “attributes” in Mathematica
or “domains” in Axiom and MuPAD).

Properties are all written using capitals to separate words, as in AntiSymmetric.
This makes it easier to distinguish them from commands (the fact that they do not have
underscores also helps for the parser). Properties of objects are declared by using the “::”
characters. This can be done “at first use”, i.e. by just adding the property to the object
when it first appears in the input. As an example, one can write

� F_{m n p}::AntiSymmetric;

This declares the object to be anti-symmetric in its indices and at the same time creates
a new expression with this object. The property information is stored separately, so that
further appearances of the “F_{m n p}” object will automatically share this property. It
is of course also possible to keep object property declarations separated (for instance at
the top of an input file). This is done as follows:

� F_{m n p}::AntiSymmetric.
� F_{m n p};

For more information about this and other commands related to object properties, refer
to the documentation about the properties module in section 5.6.

Note that properties are attached to patterns. Therefore, you can have

� R::RicciScalar.
� R_{m n p q}::RiemannTensor.

4.4. Object properties and declaration 18

at the same time. The program will not warn you if you use incompatible properties, so
if you make a declaration like above and then later on do

� R::Coordinate.

this may lead to weird results.
The fact that objects are attached to patterns also means that you can use something

like wildcards. In the following declaration,

� { m#, n# }::Indices(vector).

the entire infinite set of objects m1,m2,m3, . . . and n1, n2, n3, . . . are declared to be
in the dummy index set “vector”.4 Range wildcards can also be used to match one or
more objects of a specific type. In this case, they always start with a “#” sign, followed
by optional additional information to specify the type of the object and the number of
them. The declaration

{m,n,p,q,r,s}::Indices(vector).
A_{ #{m, 1..3} }::AntiSymmetric.
B_{ #{m} }::Symmetric.

indicates that whenever the object A appears with one to three indices of the vector type,
it is antisymmetric. If the index type does not match, or if there are zero or more than
three indices, the property does not apply. Similarly, B is always symmetric when all of
its indices are of the vector type.

Properties can be assigned to an entire list of symbols with one command, namely by
attaching the property to the list. For example,

� {n, m, p, q}::Integer(1..d).

This associates the property “Integer” to each and every symbol in the list. However,
there is also a concept of “list properties”, which are properties which are associated to
the list as a whole. Examples of list properties are “AntiCommuting” or “Indices”. See for
a discussion of list properties section 4.5.

Objects can have more than one property attached to them, and one should therefore
not confuse properties with the “type” of the object. Consider for instance

� x::Coordinate.
� W_{m n p q}::WeylTensor.
� W_{m n p q}::Depends(x).

This attaches two completely independent properties to the pattern Wmnpq.
In the examples above, several properties had arguments (e.g. “vector” or “1..d”).

The general form of these arguments is a set of key-value pairs, as in

4This way of declaring ranges of objects is similar to the “autodeclare” declaration method of FORM [6].

4.5. List properties and symbol groups 19

� T_{m n p q}::TableauSymmetry(shape={2,1}, indices={0,2,1}).

In the simple cases discussed so far, the key and the equal sign was suppressed. This is
allowed because one of the keys plays the role of the default key. Therefore, the following
two are equivalent,

� { m, n }::Integer(range=0..d).
� { m, n }::Integer(0..d).

See the detailed documentation of the individual properties for allowed keys and the one
which is taken as the default.

Finally, there is a concept of “inherited properties”. Consider e.g. a sum of spinors,
declared as

� {\psi1, \psi2, \psi3}::Spinor.
� \psi1 + \psi2 + \psi3;

Here the sum has inherited the property “Spinor”, even though it does not have normal
or intrinsic property of this type. Properties can also inherit from each other, e.g.

� \Gamma_{#}::GammaMatrix.
� \Gamma_{p o i u y};
� @indexsort!(%);

The GammaMatrix property inherits from AntiSymmetric property, and therefore the
\Gamma object is automatically anti-symmetric in its indices.

A list of all properties known to cadabra can be obtained by using the @proplist
command.

4.5 List properties and symbol groups

Some properties are not naturally associated to a single symbol or object, but have to
do with collections of them. A simple example of such a property is AntiCommuting.
Although it sometimes makes sense to say that “ψm is anticommuting” (meaning that
ψmψn = −ψnψm), it happens just as often that you want to say “ψ and χ anticommute”
(meaning that ψχ = −χψ). The latter property is clearly relating two different objects.

Another example is dummy indices. While it may make sense to say that “m is a
dummy index”, this does not allow the program to substitute m with another index
when a clash of dummy index names occurs (e.g. upon substitution of one expression
into another). More useful is to say that “m, n, and p are dummy indices of the same
type”, so that the program can relabel a pair of m’s into a pair of p’s when necessary.

In cadabra such properties are called “list properties”. You can associate a list prop-
erty to a list of symbols by simply writing, e.g. for the first example above,

� { \psi, \chi }::AntiCommuting.

4.6. Indices, dummy indices and automatic index renaming 20

Note that, as described in section 4.4, you can also attach normal properties to multiple
symbols in one go using this notation. The program will figure out automatically whether
you want to associate a normal property or a list property to the symbols in the list.

Lists are ordered, although the ordering does not necessarily mean anything for all
list properties (it is relevant for e.g. SortOrder but irrelevant for e.g. AntiCommuting).

4.6 Indices, dummy indices and automatic index renaming

In cadabra, all objects which occur as subscripts or superscripts are considered to be
“indices”. The names of indices are understood to be irrelevant when they occur in
a pair, and automatic relabelling will take place whenever necessary in order to avoid
index clashes.

Cadabra knows about the differences between free and dummy indices. It checks the
input for consistency and displays a warning when the index structure does not make
sense. Thus, the input

� A_{m n} + B_{m} = 0;

results in an error message.
The location of indices is, by default, not considered to be relevant. That is, you can

write

� A_{m} + A^{m};
� A_{m} B_{m};

as input and these are considered to be consistent expressions. If, however, the position
of an index means something (like in general relativity, where index lowering and raising
implies contraction with a metric), then you can declare index positions to be “fixed”.
This is done using

� {m, n, p}::Indices(position=fixed).

When substituting an expression into another one, dummy indices will automatically
be relabelled when necessary. To see this in action, consider the following example:

� {p,q}::Indices(vector).
� F_{m n} F^{m n};

F_{m n} F^{m n}

� G_{m n} @(1);
G_{m n} F_{p q} F^{p q}

The m and n indices have automatically been converted to p and q in order to avoid a
conflict with the free indices on the Gmn object.

Refer to section 5.7 for commands that deal with dummy indices.

4.8. Spacing and brackets 21

argument whitespace dummy example

{} separator alg{a b} = alg{a}{b}
() product sin(a b) = sin(a * b)

{} separator yes M{a b} = M_{a}_{b}
^{} separator yes M^{a b} = M^{a}^{b}
() separator M(a b) = M_(a)_(b)
^() separator M^(a b) = M^(a)^(b)
[] product [a b, c] = [a * b, c]

Table 1: The implicit meaning of objects and whitespace inside the various types of brackets.

4.7 Exponents, indices and labels

Exponents, indices and labels are traditionally all placed using super- or subscript nota-
tion, making these slightly ambiguous for a computer algebra system. Since this situation
can become quite complex (how do you represent the third power of the first element of
a vector?) cadabra requires all powers to be entered with a double-star “∗∗” notation:

� a**2;
� a**(2 + 3b);

In addition, all sub- or superscripts with curly braces indicate indices, to which the sum-
mation convention applies. In particular, there are not allowed to be more than two
identical indices in a single product. The summation convention does not apply to ar-
guments with any other bracket types. In particular, sub- or superscripts with square or
pointy brackets have (as of yet) no fixed meaning.

4.8 Spacing and brackets

Cadabra is reasonably flexible as far as spacing and brackets are concerned, but the fact
that objects do not have to be declared before they can be used means that spaces have to
be introduced in some cases to avoid ambiguity. As a general rule, all terms in a product
have to be separated by at least one whitespace character. Thus,

A(B+C) incorrect, (interpreted as A with argument B+C),

AB incorrect, (interpreted as one object, not two)

A (B+C) correct,

A*(B+C) correct.

If a whitespace character is absent, all brackets are interpreted as enclosing argument
groups. Products of variables (e.g. AB) have to be separated by a space, otherwise the
input will be read as the name of a single variable. However, spaces will automatically be
inserted after numbers, between a closing bracket and a name or number, and between
two names if the second name starts with a backslash. The following expressions are
therefore interpreted as one would expect:

4.10. Indexbrackets 22

3A interpreted as 3*A

(A+B)C interpreted as (A+B)*C

(A+B)3 interpreted as (A+B)*3

A\Gamma interpreted as A*Γ

This conversion is done by the preprocessor. Finally, note that brackets in the input
must be balanced (a decision made to simplify the parser; it means that cadabra uses a
different way to indicate groups of symmetric or anti-symmetric indices than one often
encounters in the literature; see section 5.9).

4.9 Implicit versus explicit indices

4.10 Indexbrackets

Indices can be associated to tensors, as in Tμν , but it often also happens that we want to
associate indices to a sum or product of tensors, without writing all indices out explicitly.
Examples are

(A + B + C)αβ , or (ψΓmnΓp)β . (4.1)

Here the objects A, B, C and Γ are matrices, while ψ is a vector. Their explicit com-
ponents are labelled with α and β indices, but the notation above keeps most of these
vector indices implicit.

Cadabra can deal with such expressions through a construction which is called the
“indexbracket”. It is possible to convert from one form to the other by using the @combine
and @expand algorithms. Combining terms goes like this,

� (\Gamma_r)_{\alpha\beta} (\Gamma_{s t u})_{\beta\gamma}:
� @combine!(%);

(\Gamma_r \Gamma_{s t u})_{\alpha\gamma};

or as in

� (\Gamma_r)_{\alpha\beta} Q_\beta:
� @combine!(%);

(\Gamma_r Q)_{\alpha};

If the index bracket has only one index, either the first or the last argument should be a
matrix, but not both:

� A::Matrix.
� {m,n,p}::Indices(vector).

(A B)_{m};
� @expand(%);

A_{m n} B_{n};

If the index bracket has two indices, all arguments should be matrices,

4.11. Derivatives and implicit dependence on coordinates 23

� {A,B}::Matrix.
� {m,n,p}::Indices(vector).
� (A B)_{m n};

@expand(%);
A_{m p} B_{p n};

If there are more arguments inside the bracket, these of course all need to be matrices
(and are assumed to be so by default).

4.11 Derivatives and implicit dependence on coordinates

There is no fixed notation for derivatives; as with all other objects you have to declare
derivatives by associating a property to them, in this case the Derivative property.

� \nabla{#}::Derivative.

Derivative objects can be used in various ways. You can just write the derivative symbol,
as in

� \nabla{ A_{\mu} };

(a notation used e.g. in the tutorial example in section 2.3). Or you can write the coor-
dinate with respect to which the derivative is taken,

� s::Coordinate.
� A_{\mu}::Depends(s).
� \nabla_{s}{ A_{\mu} };

Finally, you can use an index as the subscript argument, as in

� { \mu, \nu }::Indices(vector).
� \nabla_{\nu}{ A_{\mu} };

(in which case the first line is, for the purpose of using the derivative operator, actually
unnecessary).

The main point of associating the Derivative property to an object is to make the
object obey the Leibnitz or product rule, as illustrated by the following example,

� \nabla{#}::Derivative.
� \nabla{ A_{\mu} * B_{\nu} };
� @prodrule!(%);

\nabla{A_{\mu}} B_{\nu} + A_{\mu} \nabla{B_{\nu}};

4.12. Accents 24

This behaviour is a consequence of the fact that Derivative derives from Distributable.
Note that the Derivative property does not automatically give you commuting deriva-
tives, so that you can e.g. use it to write covariant derivatives.

More specific derivative types exist too. An example are partial derivatives, declared
using the PartialDerivative property. Partial derivatives are commuting and therefore
automatically symmetric in their indices,

� \partial{#}::PartialDerivative.
� {a,b,m,n}::Indices(vector).
� C_{m n}::Symmetric.

� T^{b a} \partial_{a b}(C_{m n} D_{n m});
� @canonicalise!(%);

T^{a b} \partial_{a b}(C_{m n} D_{m n});

4.12 Accents

It often occurs that you want to put a hat or tilde or some other accent on top of a symbol,
as a means to indicate a slightly different object. In most of these cases, the properties
of the normal symbol and the accented symbol are identical. Such accents are declared
using the Accent property, as in

\hat{#}::Accent.

This automatically makes all symbols with hats inherit the properties of the unhatted
symbols,

� \hat{#}::Accent.
� {\psi, \chi}::AntiCommuting.
� {\psi, \chi}::SortOrder.
� \hat{\chi} \psi:
� @prodsort!(%);

(-1) \psi \hat{\chi};

If you want to put an accent on an object with indices, wrap the accent around the entire
object, do not leave the indices outside.

Note that it is also possible to mark objects by attaching sub- or superscripted symbols
to them, as in e.g. A†. This can be done by declaring these symbols explicitly using the
Symbol property,

� \dagger::Symbol.

If you do not do this, \dagger will be seen as an index and an error will be reported if it
appears more than twice.

4.13. Symbol ordering and commutation properties 25

4.13 Symbol ordering and commutation properties

A conventional way to sort factors in a product is to use lexographical ordering. How-
ever, this is almost never what one wants when transcribing a physics problem to the
computer. Therefore, cadabra allows you to specify the sort order of symbols yourself.
This is done by associating the SortOrder list property to a list of symbols, as in

� {X,G,Y,A,B}::SortOrder.
� A*B*G*X*A*X:
� @prodsort(%);

X*X*G*A*A*B;

More complicated objects with indices are of course also allowed, such as in

� { W_{m n}, W_{m} }::SortOrder.
� W_{m n} W_{p} W_{q r} W_{s} W_{t}:
� @prodsort(%);

W_{m n} * W_{q r} * W_{p} * W_{s} * W_{t};

For the time being, it is not allowed to have more than one such set contain the same
symbol. Thus,

� {X,G}::SortOrder.
� {X,A,B}::SortOrder.

is not allowed (and will, in fact, take X out of the first list).
Apart from the preferred sort order, there are more properties which influence the

way in which products can be sorted. In particular, sort order is influenced by whether
symbols commute or anti-commute with each other. Physicists in general use a very
implicit notation as far as commutativity of objects in a product is concerned. Consider
for instance a situation in which we deal with two operators M̂ and N̂ , as well as some
constants q and p. These two expressions are equivalent:

2q M̂pN̂ and 2pq M̂N̂ . (4.2)

But this is not obvious from the notation that has been used to indicate the product. In
fact, the product symbol is usually left out completely.

In many other computer algebra systems, you have to introduce special types of “non-
commuting” products (e.g. the &* operator in Maple or the ** operator in Mathematica).
This can be rather cumbersome, for a variety of reasons. The main reason, however, is
that it does not match with what you do on paper. On paper, you never write special
product symbols for objects which do not commute. You just string them together, and
know from the properties of the symbols whether objects can be moved through each
other or not.

In order to make these sort of things possible in cadabra, it is necessary to declare
“sets” of objects which mutually do not commute (i.e. for which the order inside a prod-
uct cannot be changed without consequences) but which commute with objects of other

4.14. Input and output redirection 26

sets. Many computer algebra systems only use one such set: objects are either “commut-
ing” or “non-commuting”. This is often too restrictive. For instance, when Ψ is a fermion
and Γ denotes a Clifford algebra element, a system with only one set of non-commuting
objects is unable to see that

Ψ̄a(ΓnΓm)abΨb and Ψ̄aΨb(ΓnΓm)ab (4.3)

are equivalent. In cadabra, one would simply put Ψa and Γm in two different sets,
mutually commuting, but non-commuting among themselves. To be precise, the example
above is reproduced by

� \bar{#}::Accent.
� \Psi_{a}::SelfNonCommuting.
� \Gamma_{#}::GammaMatrix.
� \bar{\Psi_a} (\Gamma_n \Gamma_m)_{ab} \Psi_b:
� @prodsort(%);

\bar{\Psi_a} \Psi_b (\Gamma_n \Gamma_m)_{ab};

(see section 4.12 for an explanation of the Accent property).
Commutation properties always refer to components. If you associate an ImplicitIndex

property to an object, then it will never commute with itself or with any other such ob-
ject. You can see this in the example above, as the @prodsort command kept the order
of the two gamma matrices unchanged.

4.14 Input and output redirection

By default, all generated output is displayed on the screen. As mentioned in section 4.2,
the delimiter of a line determines whether output is suppressed or not. It is, however,
also possible to write output to a file, by appending a file name to the line delimiter, as
in

� a^2+b^2 = c^2; "output_file"

(note that there is no semi-colon following the file name). This shows the filename
“output file” on the display, and writes to this file the expression

1:= a^{2}+b^{2}=c^{2}

This is exactly as it would have appeared on the display. If you need a different kind of
output, use the algorithms provided in the output module (see section 5.10).

It is also possible to read input from files instead of from the terminal:

� < "input_file"

reads from the file “input file” until the end or until a line @end; is found, whichever
comes first. Input redirect can be nested. In case an error occurs, reading from the file is
also aborted and input is taken from the terminal again.

4.16. Patterns, conditionals and regular expressions 27

4.15 Default rules

By default, cadabra does very few things “by itself” with your expressions. This goes as
far as not collecting equal terms, so that you can write

� A + A;

and have this stored as a sum of two terms. However, you can add an arbitrary num-
ber of default commands, which are run just after you have entered an expression
on the command line (PreDefaultRules) or just before the output is returned to you
(PostDefaultRules). So if you want terms to be collected automatically, just enter

� ::PostDefaultRules(@@collect_terms!(%)).

Note the double “@@” symbol, which prevents immediate execution of the command.
This post default rule will collect equal terms before they ever make it to internal storage.

Many more complicated things can be achieved with this feature. You can, for in-
stance, also use complicated substitution commands as arguments to PreDefaultRules
or PostDefaultRules. An example is

� {m,n,p,q}::Indices(vector).
� ::PreDefaultRules(@@substitute!(%)(A_{m n} -> B_{m q} B_{q n}).

� A_{m n} A_{n m};

which immediately returns

B_{m q} B_{q n} B_{n p} B_{p m};

As usual dummy indices have been relabelled appropriately.

4.16 Patterns, conditionals and regular expressions

Patterns in cadabra are quite a bit different from those in other computer algebra sys-
tems, because they are more tuned towards the pattern matching of objects common in
tensorial expressions, rather than generic tree structures.

Name patterns are constructed by writing a single question mark behind the name,
as in

� @substitute!(%)(A? + B? -> 0);

which matches all sums with two terms, each of which is a single symbol without in-
dices or arguments. If you want to match instead any object, with or without indices or
arguments, use the double question mark instead. To see the difference more explicitly,
compare the two substitute commands in the following example:

4.16. Patterns, conditionals and regular expressions 28

� A_{m n} + B_{m n}:
� @substitute!(%)(A? + B? -> 0);

A_{m n} + B_{m n};
� @substitute!(%)(A?? + B?? -> 0);

0;

Note that it does not make sense to add arguments or indices to object patterns; a con-
struction of the type “A??_{\mu}(x)” is meaningless and will be flagged as an error.

There is a special handling of objects which are dummy objects in the classification
of section 4.6 (see table 1). Objects of this type do not need the question mark, as their
explicit name is never relevant. You can therefore write

� @substitute!(%)(A_{m n} -> 0);

to set all occurrances of the tensor A with two subscript indices to zero, regardless of the
names of the indices (i.e. this command sets Apq to zero).

When replacing object wildcards with something else that involves these objects, use
the question mark notation also on the right-hand side of the rule. For instance,

� @substitute!(%)(A? + B? -> A? A?);

replaces all sums with two elements by the square of the first element. The following
example shows the difference between the presence or absence of question marks on the
right-hand side:

� C + D:
� @substitute!(%)(A? + B? -> A? A?);

C * C;
� @pop(%);
� @substitute!(%)(A? + B? -> A A);

A * A;

In many algorithms, patterns can be supplemented by so-called conditionals. These
are constraints on the objects that appear in the pattern. For instance, the substitution
command

� @substitute!(%)(A_{m n} B_{p q} | n!=p -> 0);

applies the substitution rule only if the second index of A and the first index of B do
not match. Note that the conditional follows directly after the pattern, not after the full
substitution rule. A way to think about this is that the conditional is part of the pattern,
not of the rule. The reason why the conditional follows the full pattern, and not directly
the symbol to which it relates, is clear from the example above: the conditional is a
“global” constraint on the pattern, not a local one.

These conditions can be used to match names of objects using regular expressions.
Consider the following example:

4.18. Future plans 29

� A + B3 + C7:
� @substitute!(%)(A + M? + N? | { \regex{M?}{"B[0-9]*"},

\regex{N?}{"[A-Z]7"} } -> sin(M? N?)/N?);
sin(B3 C7)/C7;

It is also possible to select objects based on whether or not they are associated with a
particular property, e.g.5

� A::SelfAntiCommuting.
� A A + B B;
� @substitute!(%)(Q?? Q?? | \hasprop{Q??}{SelfAntiCommuting} -> 0);

B B;

Combinations of different types of conditionals are of course also possible.

4.17 Environment variables

There are a few environment variables which may be set to influence the behaviour of
cadabra:

1. CDB LOG When set, debug logging will be enabled.

2. CDB ERRORS ARE FATAL If this variable is set, errors (inconsistency of the tree
or attempted use of non-existing algorithm) will abort the program (the default
action, when this variable is unset, is to ignore the offending input line).

3. CDB PARANOID Perform extensive consistency checks on the internal data format
after each algorithm has been applied (only useful for debugging).

4. CDB PRINTSTAR Determines whether or not multiplication star symbols are dis-
played.

5. CDB TIGHTSTAR Make output of multiplication symbols more compact.

6. CDB TIGHTBRACKETS Make output of bracketed expressions more compact.

7. CDB USE UTF8 Use UTF8 line breaking characters in the output.

4.18 Future plans

Now that the program is beginning to reach a usable and stable state, a number of
directions for future work suggest themselves:

• A new parser; the current one was hand-written for many reasons, and is messy
and not entirely correct. Now that the input format has stabilised it is time for a
parser which is easier to debug, e.g. one based on lex & yacc.

• Inclusion of proper program flow including loops and subroutines.

Any suggestions on these or other topics are welcome.

5More compact notations may look tempting, but were abandoned in favour of the constraint-based
notation because it makes patterns potentially much harder to read.

Algorithm modules 30

Algorithm modules
All algorithms are stored in modules separate from the core of the program. These are at
present all distributed together with the main program, but will in the future be available
separately as binary or source plugin modules that can be loaded on demand.

Any expression that starts with a name beginning with an “@” symbol is interpreted
as a command. Commands act on the currently selected objects in an expression or
on the expression for which the label or number is given as the first argument. See
section 4.3 for more details on how to apply algorithms to expressions.

@ 55
@acanonicalorder 46
@algorithms 32
@all contractions 41
@amnesia 32
@assert 51
@asym 46
@asymprop 46
@canonicalise 40
@canonicalorder 46
@collect factors 39
@collect terms 39
@combine 50
@decompose 57
@depprint 51
@distribute 39
@drop 38
@dualise tensor 49
@einsteinify 50
@eliminate kr 49
@eliminateeps 49
@end 32
@epsprod2gendelta 49
@expand 50
@expand power 38
@expand product shorthand 50
@extract properties 44
@factorise 40
@from math 61
@gammasplit 59
@impose asym 46
@impose bianchi 50
@indexlist 52
@inner 43
@join 59
@join 59
@keep 38

@length 42
@list sum 43
@lsolve 57
@number of terms 51
@output format 32
@pop 32
@print 51
@prodflatten 37
@prodrule 39
@prodsort 39
@product shorthand 49
@projweyl 59
@proplist 51
@quit 32
@range 42
@reduce 40
@reduce gendelta 49
@remove indexbracket 37
@remove weyl traces 53
@rename 55
@rename dummies 45
@reset 32
@rewrite diracbar 59
@rewrite indices 53
@ricci can order 54
@ricci identity 54
@riemann index regroup 54
@spinorsort 60
@split index 54
@substitute 55
@sumflatten 37
@sumsort 39
@sym 46
@take 42
@take match 56
@to math 61
@tree 52

Algorithm modules 31

@unwrap 48
@weyl index order 53
@xterm title 33
@young project 40
::Accent 48
::AntiCommuting 35
::AntiSelfDual 47
::AntiSymmetric 35
::Commuting 36
::CommutingAsProduct 35
::CommutingAsSum 35
::Complex 34
::Coordinate 47
::DAntiSymmetric 36
::Depends 47
::Derivative 37
::DifferentialForm 44
::DiracBar 58
::Distributable 35
::EpsilonTensor 36
::GammaMatrix 58
::GammaTraceless 58
::Imaginary 34
::ImaginaryI 34
::ImplicitIndex 35
::Indices 45
::Integer 34

::InverseMetric 53
::InverseVielbein 53
::KeepHistory 32
::KroneckerDelta 36
::Matrix 35
::Metric 53
::NonCommuting 35
::PartialDerivative 37
::PostDefaultRules 32
::PreDefaultRules 32
::Real 34
::RiemannTensor 53
::SelfAntiCommuting 35
::SelfCommuting 35
::SelfDual 47
::SelfNonCommuting 35
::SigmaBarMatrix 58
::SigmaMatrix 58
::SortOrder 37
::Spinor 58
::Symbol 47
::Symmetric 35
::TableauSymmetry 36
::Traceless 36
::Vielbein 53
::Weight 47
::WeylTensor 53

5.1. Builtin core algorithms 32

5.1 Builtin core algorithms

There is a very small number of properties and algorithms built into the core program.
These have to do with global memory management and global output settings.

properties:

::KeepHistory(true|false)
When set to false, only the last version of each expression is kept in memory,
thereby reducing memory usage for very large expressions. The default is “true”.

::PreDefaultRules(expression list)
Set the default rules to be executed on all input before the active nodes in that input
are expanded.

::PostDefaultRules(expression list)
Set the default rules, to be applied after every new input has been processed
and active nodes have been executed. Use the inert form of active nodes for
those ones that only have to be come active upon actual evaluation of the rule,
i.e. @@collect terms!(%).

algorithms:

@pop
Remove the last step of the indicated expression history.

@amnesia
Forget the history of the indicated expression, that is, remove all previous forms of
the expression from memory.

@algorithms
Shows a list of all algorithms in the various modules, together with the time spent
in them since the start of the program.

@output format
Sets the output format type according to the argument given. This can take one of
the three values cadabra, mathematica or reduce.

@print status{true|false}
Toggles printing of status information. Status output is always enclosed inside
easily distinguished <status> and </status> marks.

@quit
Exits the program.

@end
Stop reading the current input file/stream.

@reset
Erases all expressions and object properties (but does not change any of the global
flags).

5.1. Builtin core algorithms 33

@utf8 output{true|false}
Determines whether the output should contain UTF8 encoded Unicode control
characters for line-breaking and object grouping. This output format is used by
the graphical front-end.

@xterm title
Set the title of the xterm to the given argument.

5.2. Rationals, complex numbers and other numerics 34

5.2 Rationals, complex numbers and other numerics

properties:

::ImaginaryI
Indicates that the object squares to −1.

::Real

::Imaginary

::Complex

::Integer
Indicates that the object takes values in the integers. An optional range can be
specified,

� p::Integer;
� m::Integer(1..10);
� n::Integer(1..d-p);

5.3. Sums and products 35

5.3 Sums and products

This module handles expansion of sums and products as well as distributing products
over sums and similar algorithms. It recognises

properties:

::ImplicitIndex
Indicates that the object carries implicit indices, e.g. for objects representing ma-
trices or vectors. Such objects will not be moved through each other, i.e. they are
mutually noncommuting.

::Matrix

::CommutingAsProduct

::CommutingAsSum

::AntiCommuting

::NonCommuting

::SelfCommuting
::SelfAntiCommuting
::SelfNonCommuting

Properties which determine the exchange properties of objects with indices. Exam-
ple,

� \psi^{\mu}::SelfAntiCommuting.
� \psi^{\nu} \psi^{\mu}:
� @prodsort!(%);

(-1) \psi^{\mu} \psi^{\nu};
� \psi^{\mu} \psi^{\mu}:
� @canonicalise!(%);

0;

::Distributable
Makes the object distributable. When the object has a sum as argument, it can be
distributed over the terms with @distribute, as in

� \hat{#}::Distributable.
� \hat{A+B+C D}:
� @distribute!(%);

\hat{A} + \hat{B} + \hat{C D};

::Symmetric
::AntiSymmetric

Makes an object symmetric resp. antisymmetric in all its indices. For more compli-
cated symmetries, use TableauSymmetry.

5.3. Sums and products 36

::TableauSymmetry
Takes lists of two key-value pairs as arguments, indicating the shape of the Young
tableau and the index slots associated to each box in the tableau. For instance

� R_{a b c d}::TableauSymmetry(shape={2,2}, indices={0,2,1,3}).

yields the symmetries of the Riemann tensor. Note that indices are counted from
zero.

::DAntiSymmetric
For objects which are derivatives of fully anti-symmetric objects and satisfy a Bianchi-
identity, i.e. which are zero when anti-symmetrised over all indices. This is a short-
hand for a TableauSymmetry with a “hook” shape.

::Commuting
Makes components commuting. Note that this property always refers to compo-
nents; if you attach it to an object with ImplicitIndex property, the commutation
property does not refer to the object as a whole, but rather to its components.

::Traceless
Indicates that the tensor is traceless: any internal index contraction makes the
tensor vanish.

::KroneckerDelta
Denotes a generalised Kronecker delta symbol. When the symbol carries two in-
dices, it is the usual Kronecker delta. When the number of indices is larger, the
meaning is

δm1
n1

m2
n2

...mk

nk = δ[m1
n1δm2

n2 · · · δmk]
nk , (5.1)

with unit weight anti-symmetrisation. A symbol which is declared as a Kronecker
delta has the property that it can be taken in and out of derivatives. The algorithm
@eliminate kr eliminates normal Kronecker deltas by appropriately renaming in-
dices (in order to eliminate Kronecker deltas with more than two indices, first use
@breakgendelta).

::EpsilonTensor(metric=tensor, delta=tensor)
A fully anti-symmetric tensor, defined by

εm1...mk
:= εm1...mk

√
|g| , (5.2)

where the components of εm1...mk
are 0, +1 or −1 and ε01···k = 1, independent of

the basis, and g denotes the metric determinant. Optionally takes a tensor which
indicates the Metric (so that the signature can be extracted) or a KroneckerDelta
(so that the product of two epsilon tensors can be written in terms of Kroneck-
erDeltas, see the @epsprod2gendelta command). When the indices are in differ-
ent positions it is understood that they are simply raised with the metric. This in
particular implies

εm1...mk := gm1n1 · · · gmknkεn1...nk
=

εm1...mk√|g| , (5.3)

5.3. Sums and products 37

again with εm1...mk taking values 0, +1 or −1 and ε01···k = ±1 depending on the
signature of the metric.

::SortOrder
A list property which determines the preferred order of objects when a @prodsort
command is used. See section 4.13 for examples.

::Derivative
An generic derivative object, satisfying the Leibnitz rule. These generic derivatives
do not have to commute.

::PartialDerivative
Makes an object a partial derivative, i.e. a derivative which commutes. The object
on which it acts has to be a non-sub/superscript child, while all the sub- or su-
perscript child nodes are interpreted to be the variables with respect to which the
derivative is taken.

� \partial{#}::PartialDerivative.
� A_{\mu}::Depends(\partial).
� \partial_{\nu}{A_{\mu} B_{\rho}};
� @prodrule!(%);

\partial_{\nu}{A_\mu} B_{\rho}

Note that derivative objects do not necessarily need to have a sub- or superscript
child, they can be abstract derivatives as in

� D(d?)::Derivative.
� D(c d e);
� @prodrule!(%);

D(c) d e + c D(d) e + c d D(e);

algorithms:

@prodflatten
Removes brackets in a product, that is, makes changes of the type

a ∗ (b ∗ c) → a ∗ b ∗ c . (5.4)

Also performs the same flattening for nested @diff nodes.

@sumflatten
Removes brackets in a sum, that is, makes changes of the type

a + (b + c) → a + b + c . (5.5)

@remove indexbracket
When a single symbol-with-indices is entered as

� (A)_{\mu\nu};

5.3. Sums and products 38

it gets wrapped in an \indexbracket node. In order to remove this node again,
and produce

A_{\mu\nu}

again, use @remove indexbracket. This is also useful after a @distribute has
been called on an \indexbracket node which contained a sum; the command
@remove indexbracket will then remove the superfluous brackets around the sin-
gle symbols.

@expand power
Expand powers into repeated products, e.g.

� (A B)**3:
� @expand_power!(%);

(A * B) * (A * B) * (A * B);
� @prodflatten!(%):
� @prodsort!(%);

A A A B B B;
� @collect_factors!(%);

A**3 * B**3;

This command automatically takes care of index relabelling when necessary, as in
the following example,

� {m,n,p,q,r}::Indices(vector).
� (A_m B_m)**3:
� @expand_power!(%):
� @prodflatten!(%);

A_{m} * B_{m} * A_{n} * B_{n} * A_{p} * B_{p};

@drop
Removes terms for which a product contains the indicated number of factors, with
indicated weight factors. Example:

� A B B + A A A + A B + B:
� @drop!(%){A,B}{1,2}{3};

A B B + B;

In this example, the weight of A is 1 and the weight of B is 2, and all terms for
which the total weight adds up to 3 have been removed.

@keep
The opposite of @drop: keep only those terms for which a product contains the
indicated number of factors.

5.3. Sums and products 39

� A B B + A A A + A B + B:
� @keep!(%){A,B}{1,2}{3};

A A A + A B;

@distribute
Rewrite a product of sums as a sum of products, as in

a (b + c) → a b + a c . (5.6)

For this rule to apply, the selection should contain a product, each factor of which
can be a sum. All sums will be distributed.

@prodrule
Apply the product rule or “Leibnitz identity” to an object which has the “Derivative”
property, i.e.

D(f g) = D(f) g + f D(g) . (5.7)

@sumsort
Sort terms in a sum, taking into account any SortOrder properties, or else sorting
lexographically.

� a**(-1+d) - a**(d-1);
� @collect_terms!(%);

a**(-1+d) - a**(d-1);
� @sumsort!(%);
� @collect_terms!(%);

0;

@prodsort
Sort factors in a product, taking into account any SortOrder properties. Also takes
into account commutativity properties, such as Commuting and SelfCommuting.
If no sort order is given, it first does a lexographical sort based on the name of
the factor, and if two names are identical, does a sort based on the number of
children and (if this number is equal) a lexographical comparison of the names of
the children. [KP: Warning! Does not yet know about \pow]

@collect terms
Collect terms in a sum that differ only by their numerical pre-factor. This is called
automatically on all new input, and also by some algorithms (in which case it will
be indicated in the description of the command), but in general has to be called by
hand.

Note that this command only collects terms which are identical, it does not collect
terms which are different but mathematically equivalent. See @sumsort on page 39
for an example.

@collect factors
Collect factors in a product that differ only by their exponent. Note that factors
containing sub- or superscripted indices do not get collected (i.e. AmAm does not
get reduced to (Am)2).

5.3. Sums and products 40

@factorise
Given a list of symbols, this algorithm collects terms in a sum that only differ by
pre-factors consisting of these given symbols. As an example,

� a b + a c + a d:
� @factorise!(%){b,c};

(b + c) a + a d;

This is like the antibracket statement of FORM.

@canonicalise
Canonicalise a product of tensors, using the mono-term index symmetries of the
individual tensors and the exchange symmetries of identical tensors. Tensor ex-
change takes into account commutativity properties of identical tensors.

Note that this algorithm does not take into account multi-term symmetries such as
the Ricci identity of the Riemann tensor.

If you have symmetric or anti-symmetric tensors with many indices, it sometimes
pays off to sort them to the end of the expression (this may speed up the canoni-
calisation process considerably).

@reduce
Reduce a sum of tensor monomials of the same type, taking into account mono-
term as well as multi-term symmetries. This does not aim for a canonical form,
but rather for a form in which no monomials occur which can be expressed (using
mono- and multi-term symmetries) as a linear combination of other monomials
appearing in the sum. An example makes this more clear:

� {m,n,p,q}::Indices(vector).
{m,n,p,q}::Integer(0..10).
R_{m n p q}::RiemannTensor.

R_{m n q p} R_{m n p q} + R_{m p n q} R_{m n p q};
@reduce!(%);

@young project
Project the indicated expression onto a Young tableau representation. This includes
the normalisation factor, such that applying the operation twice does not change
the result anymore. For example,

� A_{m n} B_{p}:
� @young_project!(%){2,1}{0,1,2};

1/3 A_{m n} B_{p} + 1/3 A_{n m} B_{p}
- 1/3 A_{p n} B_{m} - 1/3 A_{n p} B_{m};

� @young_project!(%){2,1}{0,1,2}:
� @collect_terms!(%);

1/3 A_{m n} B_{p} + 1/3 A_{n m} B_{p}
- 1/3 A_{p n} B_{m} - 1/3 A_{n p} B_{m};

5.3. Sums and products 41

The index positions given in the second argument count from zero. [7] .

@all contractions
Construct all full contractions of the given tensors, taking into account mono-term
symmetries. Example,

� A_{m n}::Symmetric.
� A_{m n}::Traceless.
� {m,n,p,q,r,s,t,u}::Indices(vector).
� {m,n,p,q,r,s,t,u}::Integer(0..9).
� obj14:= A_{m n} A_{p q} A_{r s} A_{t u};

@all_contractions(%){2};
A_{m n} A_{m n} A_{p q} A_{p q} + A_{m n} A_{m p} A_{n q} A_{p q};

5.4. Lists and ranges 42

5.4 Lists and ranges

When using list algorithms, be aware of the fact that when they act on an argument,
they actually replace the argument, not generate a new one. Therefore, to generate a
new expression which contains the length of another expression,

� A+B+C+D;
1:= A+B+C+D;

� @length[@(1)];
2:= 4;

This is to be compared with

� A+B+C+D;
1:= A+B+C+D;

� @length(1);
1:= 4;

in which case the first expression gets replaced by its length.

algorithms:

@length
Replaces the expression with its length, that is, the number of terms in a sum, the
number of factors in a product or the number of elements in a list.

@take
Replace a sum, product or list with a subset of its terms, factors or elements. Ex-
ample,

� A+B+C+D+E;
� @take(%){1,3};

B+D;
� {A,B,C,D,E};
� @take(%){4};

\{ E \};
� A*B*C*D*E;
� @take(%){2..\infty};

C*D*E;

As usual, a range can be open by setting the second boundary to \infty. See also
@take match.

@range
Replaces a two-element list of integers with the elements in the range,

� {-3,2};
@range(%);

� \{ -3,-2,-1,0,1,2 \}
@range[{1,3}];
\{ 1,2,3 \}

5.4. Lists and ranges 43

When the list has three elements, the algorithm generates a list consisting of a
number of copies of the third element of the given list,

� @range[{1,3,c}];
{c,c,c};

When the list contains four elements, the first one is used as a counter, and can
appear in the fourth element to generate different list elements,

� @range[{i, 1, 5, c_{i} }];
{ c_1, c_2, c_3, c_4, c_5 }

@inner
Construct an inner product between two lists appearing in a list,

� lst1:= {a_m, b_m ,c_m ,d_m ,e_m }:
� lst2:= @range[{1, @length[@(lst1)]}];

\{ 1,2,3,4,5 \};
� @inner[{ @(lst1), @(lst2) }];

a_m + 2 b_m + 3 c_m + 4 d_m + 5 e_m;

@list sum
In an expression containing sums of identical-length lists, create one new list con-
structed by adding the elements at the same position in each list. Example,

� {a, b, 7 c + q, d, e} - {-f, g, h, i, j}:
� @list_sum!(%):
� @sumflatten!(%);

\{ a + f, b - g, 7c + q - h, d - i, e - j \};

5.6. Properties 44

5.5 Differential geometry

properties:

::DifferentialForm

5.6 Properties

algorithms:

@extract properties
An algorithm mainly useful in internal routines: it extracts properties attached to
a symbol and adds them to the global property list. Gets called automatically on
input.

5.7. Dummy indices 45

5.7 Dummy indices

Dummy indices are a subject by itself. There are various problems with most implemen-
tations of dummy indices in computer algebra software. In many cases, dummy indices
are added as an afterthought, leading to situations were illegal expressions (e.g. with a
more than twice repeated dummy index) can be entered. Even if this is flagged, most
programs do not know about different index types (which leads to problems when there
is more than one type of contraction, or a sum over only part of the index range). In
cadabra, the system knows about dummy index sets, and all algorithms can request new
dummy indices very easily. This is handled through the dummies module.

properties:

::Indices
Declare index names to be usable for dummy index purposes. Typical usage is of
the form

� {r,s,t}::Indices(vector).
� {a,b,c,d}::Indices(spinor).

This indicates the name of the index set (“vector” resp. “spinor” in the example
above).

algorithms:

@rename dummies
Rename the dummy indices in an expression.

5.8. Symmetrisation and anti-symmetrisation 46

5.8 Symmetrisation and anti-symmetrisation

This module contains algorithms for the symmetrisation or anti-symmetrisation of ex-
pressions in their elements, and for the inverse procedure, whereby object trees are
identified when they differ only by certain symmetrisations or anti-symmetrisations.

algorithms:

@sym
Symmetrise a product in the indicated objects.

@asym
Anti-symmetrise a product in the indicated objects.

@canonicalorder
@acanonicalorder

Orders the indicated objects in the expression in canonical order, taking into ac-
count permutation signs (symmetric in case of @canonicalorder, antisymmetric
in case of @acanonicalorder). Example:

� A^{m n p} B^{q r} + A^{q m} B^{n p r};
� @acanonicalorder!(%)(^{m}, ^{n}, ^{p}, ^{r}, ^{q});

- A^{m n p} B^{r q} + A^{m n} B^{p r q};

@impose asym
Impose anti-symmetry in external indices, that is, remove terms in the expression
which have anti-symmetry imposed on more than one index sitting on a symmetric
object.

@asymprop
Remove all traces of anti-symmetric tensors.

5.9. Field theory 47

5.9 Field theory

properties:

::SelfDual

::AntiSelfDual
These two properties declare that a tensor is fully anti-symmetric, but in addition
satisfies a selfduality or anti-selfduality condition.

::Depends
Makes an object implicitly dependent on other objects, i.e. assumes that the indi-
cated object is a function of the arguments of the property. For example,

� x::Coordinate.
� \phi::Depends(x).

makes φ an implicit function of x. Instead of indicating the coordinate on which
the object depends, it is also possible to indicate which derivatives would yield a
non-zero answer, as in

� \nabla{#}::Derivative.
� \phi::Depends(\nabla).

Finally, it is possible to use an index name to indicate on which coordinates a field
depends,

� {m,n,p,q}::Indices(vector).
� \phi::Depends(m).

::Weight

::Symbol
If you want to attach symbols to tensors in sub- or superscript, as in A†, you need
to tell cadabra that this symbol is not an index (otherwise it may interpret A†A†

as two contracted vectors with vector indices †). This is done by associating the
Symbol property to the symbol; in this example

� \dagger::Symbol.
� A^\dagger A^\dagger;

::Coordinate
Declare a symbol to be a coordinate label (useful in combination with Depends).
This is required if you want to write a derivative with respect to a coordinate: the
input

5.9. Field theory 48

� A(x,x’) + \diff{B(x,x’)}_{x};

will by default be seen as incorrect because the x in the second term will be con-
sidered an index label, not a coordinate. The input

� { x, x’ }::Coordinate.
� A(x,x’) + \diff{B(x,x’)}_{x};

is allowed and interpreted in the right way.

::Accent

algorithms:

@unwrap
Move objects out of Derivatives or Accents when they do not depend on these
operators. Accents will get removed, as in the following example,

� \hat{#}::Accent.
� \hat{#}::Distributable.
� B::Depends(\hat).

� \hat{A+B+C}:
� @distribute!(%);

\hat{A} + \hat{B} + \hat{C};
� @unwrap!(%);

A + \hat{B} + C;

Derivatives will be set to zero if an object inside does not depend on it,

� \partial{#}::PartialDerivative.
� x::Coordinate.

B::Depends(\partial).
�
� \partial_{x}(A B C):

@unwrap!(%);
A C \partial_{x}{B};

Here is another example,

� \del{#}::Derivative.
� X::Depends(\del).
� \del{X*Y*Z}:
� @prodrule!(%);

\del{X} * Y * Z + X * \del{Y} * Z + X * Y * \del{Z};
� @unwrap!(%);

\del{X}*Y*Z;

5.9. Field theory 49

Note that all objects are by default constants for the action of Derivative opera-
tors. If you want objects to stay inside derivative operators you have to explicitly
declare that they depend on the derivative operator or on the coordinate with re-
spect to which you take a derivative.

@eliminate kr
Eliminates kronecker delta symbols in the selection by performing index contrac-
tions. Also replaces contracted kronecker delta symbols with the range over which
the index runs, if known.

@eliminateeps
[KP: Stupid name] Given an epsilon tensor and a self-dual tensor contracted with
it, rewrite the self-dual tensor as epsilon times itself, so that at a further stage
one can use the command @epsprod2gendelta to remove the epsilons altogether
the arguments contain a list of all tensors for which self-duality can be applied).
Uses the the tensor with the largest number of indices in common with the epsilon
symbol (can be more than one, in which case more terms are generated).

@epsprod2gendelta
Replace a product of two epsilon tensors with a generalised delta according to the
expression

εr1···rdεs1···sd
=

1√|g|ε
r1···rd

√
|g|εs1···sd

= sgn g d! δr1···rd
s1···sd

, (5.8)

where sgn g denotes the signature of the metric g used to raise/lower the indices
(see Epsilon for conventions on the epsilon tensor). When the indices are not
ocurring up/down as in this expression, and the index position is not free, metric
objects will be generated instead.

Contracted indices inside the generalised delta are automatically eliminated, as the
command @reduce gendelta is called automatically; if you do not want this use
the optional argument “noreduce”.

@dualise tensor
Dualises tensors which have been declared SelfDual according to the formula

Fμn+1···μd
→ ∗Fμn+1···μd

=
1
n!

εμn+1···μd

μ1···μnFμ1···μn . (5.9)

In order for this to work the indices on the tensor have to be declared with Indices
and their range should have been specified with Integer.

@reduce gendelta
Convert generalised delta symbols which contain contracted indices to deltas with
fewer indices, according to the formula

n! δa1···an
b1···bn

δb1
a1

· · · δbm
am

=
[m∏

i=1

(
d − (n − i)

)]
(n − m)! δam+1···an

bm+1···bn
. (5.10)

@product shorthand
Rewrites the product of two fully symmetric or anti-symmetric tensors in a compact
form by removing the contracting dummy indices.

5.9. Field theory 50

� F_{m n p q}::Symmetric.
� G_{m n p q}::Symmetric.
� @product_shorthand![F_{a b c d} G_{a b d f}]{F}{G};

F_{c} G_{f};

The two arguments denote the tensors to which the algorithm should apply.

@expand product shorthand
Reverse of the previous algorithm. In addition to the two tensor names, it takes a
number denoting the total number of indices.

@impose bianchi
Removes terms which are proportional to the (Garnir generalised) Bianchi identity.
It removes all products for which a set of indices in Garnir hook form is contracted
with an anti-symmetric set.

@einsteinify
In an expression containing dummy indices at the same position (i.e. either both
subscripts or both superscripts), raise one of the indices.

If an additional argument is given to this command, it instead inserts “inverse
metric” objects, with the name as indicated by the additional argument.

@combine
Combine two consecutive objects with indexbrackets and consecutive contracted
indices into one object with an indexbracket. Example

� (\Gamma_r)_{\alpha\beta} (\Gamma_{s t u})_{\beta\gamma};
� @combine!(%);

(\Gamma_r \Gamma_{s t u})_{\alpha\gamma};

@expand
Write out products of matrices inside indexbrackets, inserting new dummy indices
for the contraction.

5.10. Output routines 51

5.10 Output routines

The core of cadabra only knows how to output its internal tree format in infix notation,
and by default displays the result of every input line in this way (labelled by the ex-
pression number and label, if any). For more complicated output, for instance to feed
cadabra expressions to other programs, or to see the internal tree form, routines are
available in the output module. Note that these modules do not transform the tree or
generate new expressions; they only generate output.

Related but different functionality is present in the convert module, which contains
transformation algorithms which transform the internal tree to other conventions (e.g. in
order to convert a cadabra tree to a tree which can be understood by Maple or Mathe-
matica).

algorithms:

@depprint
Display an expression together with all properties of the symbols that appear in
this expression. This is a very useful command if you want to extract a result from
a long calculation and write it in a separate file for further processing.

@print
Construct output from strings and cadabra expressions. As an example, the com-
mand

� @print["tst := " ~ @join[\Gamma^{a b}\Gamma_{c}] ~ ";"];

will show the output

tst := \Gamma^{a b}*\Gamma_{c};

As you can see in this example, expressions are joined together into one printable
string by using the tilde character.

Note that this completely overrides the normal output of expressions: there is no
expression number for instance. Also note that all active nodes are (as usual)
completely expanded before the print algorithm is called.

@number of terms
Returns the number of terms in a sum.

@proplist
Show all properties and the patterns to which they are associated.

@assert
Checks whether the indicated expression equals zero. If not, the program will be
terminated. This command is used e.g. in the test suite.

Furthermore, there are a few algorithms which are mainly useful for debugging purposes,
as they display information about the internal representation of the expression tree.
More information on the internal data structures can be found in section 6.2.

5.10. Output routines 52

algorithms:

@tree
Display the internal tree form of a given expression. Can be used on a single
expression or on an entire tree,

� @tree(3);
� @tree;

shows the tree form of expression (3) and the whole expression tree respectively.
Most expressions lead to extremely lengthy output, so it is useful to redirect it to a
file using the standard output redirection mechanism described in section 4.14.

@indexlist
Displays a list of all indices in an expression, together with their type (dummy or
free).

5.11. General relativity 53

5.11 General relativity

This module deals with special tensors relevant for general relativity. See in particular
also the canonicalise algorithm in section 5.3.

properties:

::Metric(signature=integer)
Labels the object as a symmetric tensor, and optionally gives it the indicated sig-
nature. Objects declared as Metrics can be used to automatically raise or lower
indices using the @eliminate metric command.

::InverseMetric

::Vielbein

::InverseVielbein

::WeylTensor

::RiemannTensor

algorithms:

@remove weyl traces
Removes terms containing the trace of a Weyl tensor, i.e. a Weyl tensor with two
indices contracted.

@rewrite indices
Rewrite indices on an object by contracting it with a second object which contains
indices of both the old and the new type (a vielbein, in other words). Example,

� {m,n,p}::Indices(flat).
� {\mu,\nu,\rho}::Indices(curved).
� T_{m n p};
� @rewrite_indices!(%){ T_{\mu\nu\rho} }{ e_{\mu}^{n} };

T_{\mu \nu \rho} e_{\mu}^{m} e_{\nu}^{n} e_{\rho}^{p};

However, this also works for other type of index conversions, for instance if you
want to raise or lower an index with a metric,

� {m,n,p,q,r,s}::Indices(curved, position=fixed).
� H_{m n p};
� @rewrite_indices!(%){ H^{m n p} }{ g_{m n} };

H^{q r s} g_{m q} g_{n r} g_{p s};

@weyl index order
Sorts the indices on a Riemann or Weyl tensor by first applying anti-symmetry deprecated

in each pair, and subsequently sorting the pairs by using symmetry under pair
exchange. This alphabetical sorting can be prohibited by giving a list of indices
which is preferred to be in the first pair.

5.11. General relativity 54

� R_{s2 s1 s3 r1};
� @weyl_index_order(%){s1};

R_{s1 s2 r1 s3}
� @weyl_index_order(%);

R_{r1 s3 s1 s2}

@riemann index regroup
Given a set (or multiple sets) of indices in which to anti-symmetrise, this routine
determines whether the indicated Riemann tensor has an index distribution with
two of the anti-symmetrised indices on two different pairs. If so, it performs the
substitution

Rm[p|n|q] →
1
2
Rmnpq , (5.11)

which is valid by virtue of the Riccy cyclic identity Rm[npq] = 0.

@ricci identity
Remove all objects of type “riemann” or “weyl” which are contracted with 3 or more
indices on an anti-symmetric tensor. This therefore implements the Ricci identity

R[μν ρ]σ = 0 , (5.12)

and a similar one for the Weyl tensor.

@ricci can order
Rewrites all terms with two Weyl or Riemann tensors which are doubly contracted
in a canonical form, that is, with the contracted indices sitting on mixed pairs. The
identity that is used is

RabmnRcdmn = 2Ramnb(Rcmnd − Rdmnc) . (5.13)

@split index
Replace a sum by a sum-of-sums, abstractly. Concretely, replaces all index contrac-
tions of a given type by a sum of two terms, each with indices of a different type.
Useful for Kaluza-Klein reductions and the like.

� {M,N,P,Q,R}::Indices(full).
� {m,n,p,q,r}::Indices(space1).
� {a,b,c,d,e}::Indices(space2).
� A_{M p} B_{M p};
� @split_index(%){M,m,a};

A_{m p} B_{m p} + A_{a p} B_{a p};
� @pop(%);
� @split_index(%){M,m,4};

A_{m p} B_{m p} + A_{4 p} B_{4 p};

5.12. Substitution 55

5.12 Substitution

Substitution of expressions into other ones is a subtle issue. One problem, namely that of
relabelling of dummy indices, is addressed by the core routines and has been discussed
in section 5.7. Here we will discuss how cadabra handles the issue of pattern matching.

algorithms:

@
Given an expression number of label, this node replaces itself with a copy of this
expression. As with any active node, this one takes care of dummy index relabelling
automatically (see section 5.7).

@rename
(documentation no longer correct!)Renames objects and numbered objects, but
only on a fixed level, i.e. does not do pattern matching at all. For instance,

� F_{m1 m2 m3};
F_{m1 m2 m3}

� @rename!(%){m}{r};
F_{r1 r2 r3}

It will not prevent you from introducing dummy pairs:

� F_{m n};
� @rename!(%){m}{n};

F_{n n};

However, it will relabel already existing dummy pairs if you rename an open index
in such a way that it would conflict with the dummy pair:

� {m,n,p,q,r,s}::Indices(vector).
� F_{m n} G_{n q};
� @rename!(%){m}{n};

F_{n p} G_{p q};

@substitute
Generic substitution command. Takes a rule or a set of rules according to which an
expression should be modified. If more than one rule is given, it tries each rule in
turn, until the first working one is encountered, after which it continues with the
next node.

� G_{mu nu rho} + F_{mu nu rho};
� @substitute!(%)(F_{mu nu rho} -> A_{mu nu} B_{rho});

G_{mu nu rho} + A_{mu nu} B_{rho};

5.12. Substitution 56

� A_{mu nu} B_{nu rho} C_{rho sigma};
� @substitute!(%)(A_{m n} C_{p q} -> D_{m q});

D_{mu sigma} B_{nu rho};

This command takes full care of dummy index relabelling, as the following example
shows:

� {m,n,q,d1,d2,d3,d4}::Indices(vector).
� a_{m} b_{n};
� @substitute!(%)(a_{q} -> c_{m n} d_{m n q});

c_{d1 d2} * d_{d1 d2 m} * b_{n};

By postfixing a name with a question mark, it becomes a pattern.

@take match
Select a subset of terms in a sum or list which match the given pattern.

5.13. Linear algebra 57

5.13 Linear algebra

algorithms:

@lsolve
Solve a system of linear equations. Example,

� { a0+2*a2 + a3= 3, -a0 - a2 + a3= - (8/3) , a3 = 3};
� @lsolve(%){a0,a2,a3};

{a0 = 34/3, a2 = (-17/3), a3 = 3};

Underdetermined and inconsistent systems are handled as expected: either some
coefficients are left unfixed or the system is returned and an error message is
printed.

@decompose
Decompose a tensor monomial on a given basis of monomials. The basis should be
given in the second argument. All tensor symmetries, including those implied by
Young tableau Garnir symmetries, are taken into account. Example,6

� {m,n,p,q}::Indices(vector).
� {m,n,p,q}::Integer(0..10).

R_{m n p q}::RiemannTensor.
�
� R_{m n q p} R_{m p n q};

@decompose!(%)(R_{m n p q} R_{m n p q});
\{ -1/2 \};

6Note that this algorithm does not yet take into account dimension-dependent identities, but it is nev-
ertheless already required that the index range is specified.

5.14. Gamma matrix algebra and fermions 58

5.14 Gamma matrix algebra and fermions

This module deals with manipulations of the Clifford algebra, spinor representations
of the Lorentz group and related issues. Cadabra follows the conventions of Sevrin’s
appendix 1.5, except for the fact that we call the time-like component zero and the
product of all gamma matrices Γ̃.

properties:

::GammaMatrix
A generalised generator of a Clifford algebra. With one vector index, it satisfies

{Γm,Γn} = 2 ηmn . (5.14)

The objects with more vector indices are defined as

Γm1...mn = Γ[m1 · · ·Γmn] , (5.15)

where the anti-symmetrisation includes a division by n!. If you intend to use the
@join algorithm, you have to add a key/value pair metric to set the name of the
tensor which acts as the unit element in the Clifford algebra.

::Spinor

::DiracBar
Declares an object to be the operator which applies the Dirac bar to a spinor, i.e. an
operator which acts according to

ψ̄ = iψ†Γ0 . (5.16)

::GammaTraceless
Declares a spinor object with a vector index to be zero when it is contracted with a
gamma matrix.

::SigmaMatrix
::SigmaBarMatrix

These are the invariant tensors relating the (1
2 , 1

2) to the vector representation of
SO(3,1). Cadabra uses the Wess & Bagger conventions [8], which means that the
metric has signature η = diag(−1, 1, 1, 1) and

(σμ)αβ̇ = (−�, �σ)αβ̇ , (σ̄μ)α̇β = (−�,−�σ)α̇β . (5.17)

When the objects carry two vector indices, they are understood to be

(σmn)αβ ≡ 1
4
(σmσ̄n − σnσ̄m)αβ , (σ̄mn)α̇β̇ ≡ 1

4
(σ̄mσn − σ̄nσm)α̇β̇ . (5.18)

See below for algorithms dealing with the conversion from indexed to index-free
notation.

algorithms:

5.14. Gamma matrix algebra and fermions 59

@join
Join two fully anti-symmetrised gamma matrix products according to the expres-
sion

Γb1...bnΓa1...am =
min(n,m)∑

p=0

n!m!
(n − p)!(m − p)!p!

Γ[b1...bn−p
[ap+1...am

ηbn−p+1...bn]
a1...am−p] .

(5.19)
Without further arguments, the anti-symmetrisations will be left implicit. The ar-
gument “expand” instead performs the sum over all anti-symmetrisations, which
may lead to an enormous number of terms if the number of indices on the gamma
matrices is large. In order to reduce the number somewhat, one can instruct the
algorithm to make use of generalised Kronecker delta symbols in the result; these
symbols are defined as

δr1
s1

r2
s2 · · · rn

sn = δ[r1
s1δ

r2
s2 · · · rn]

sn . (5.20)

Anti-symmetrisation is implied in the set of even-numbered indices. The use of
these symbols is triggered by the “gendelta” option.

Finally, to select only a single term (for a given p) in this expansion, give the join
an argument with the value of p.

@gammasplit
The opposite of @join splits off a gamma matrix from a totally anti-symmetrised
product, e.g.

Γmnp = ΓmnΓp − 2Γ[mηn]
p . (5.21)

By default it splits of the one from the back, like in the example above, but with
argument front it will split from the front.

@rewrite diracbar
Rewrite the Dirac conjugate of a product of spinors and gamma matrices as a prod-
uct of Dirac and hermitean conjugates. This uses

ψ̄ = iψ†Γ0 , (5.22)

together with
Γ†

m = Γ0ΓmΓ0 . (5.23)

For example,

� \bar{#}::DiracBar.
� \psi::Spinor(dimension=10).
� \Gamma{#}::GammaMatrix.
� \bar{\Gamma^{m n p} * \psi};
� @rewrite_diracbar!(%);

@projweyl
Projects an expression onto Weyl spinors of positive chirality (this algorithm only
works in even dimensions). On such a subspace, we have

Γr1···rd

∣∣∣
Weyl

=
1√−g

εr1···rd , ε0···(d−1) = +1 , (5.24)

5.14. Gamma matrix algebra and fermions 60

and therefore all gamma matrices with more than d/2 indices can be converted
to their “dual” gamma matrices. By repeated contraction of (5.24) with gamma
matrices on the left one deduces that

Γr1···rn

∣∣∣
Weyl

=
1√−g

(−1)
1
2
n(n+1)+1

(d − n)!
Γs1···sd−n

∣∣∣
Weyl

εs1···sd−nr1···rn . (5.25)

@spinorsort
Sorts Majorana spinor bilinears using the Majorana flip property

ψ̄1Γr1···rnψ2 = αβn(−)
1
2
n(n−1) ψ̄1Γr1···rnψ2 . (5.26)

Here α and β determine the properties of the charge conjugation matrix,

CT = αC , CΓrC−1 = βΓT
r . (5.27)

5.15. Conversion from/to other formats 61

5.15 Conversion from/to other formats

Cadabra’s syntax is a superset of the Maple and Mathematica formats, in the sense that
the internal tree representation of cadabra can store input for both of these systems.
However, this may not always be the most convenient way of storage, as cadabra often
has more compact or expressive ways to store tensors. The convert module provides
conversion algorithms from and to these two formats.

algorithms:

@from math[expression]
Reads mathematica input format as used by GAMMA [9]. Fully anti-symmetric
tensors are denoted with

Tensor[name,{indices}]

Tensors with property “weyltensor” are printed as

� W_{r1 r2 r3 r4}
Weyl[{r1,r2}, {r3,r4}]

(warning, this removes the tensor name).

@to math[expression]
Converts the mathematica expression to a cadabra one. See above for details about
the conversion process.

6.2. Tree representation of expressions 62

Core functionality
6.1 Source file description

The files in the src directory build up the core of the program and are described below.
Algorithm-specific code is in the src/modules subdirectory and a description of those
files can be found in section 5. The files below should not be changed when adding new
modules.

main.cc
Startup routines; initialises the I/O streams, sets up the signal handlers for control-
C and window resize signals and starts the main event loop.

manipulator.cc, manipulator.hh
Contains the object that processes the input line by line, activates the parser on
it, and scans the tree for active nodes. A few very low-level commands (see sec-
tion 5.1) are handled in this class, while the other ones are dispatched to external
modules.

preprocessor.cc, preprocessor.hh
The code for conversion of human editable infix input to the tree-form handled by
the other parts of the program. This is a text-to-text filter forming the first pass of
the parser. All functionality can be tested using test_preprocessor.cc.

storage.cc, storage.hh
The node and tree classes for storage of the tree form of expressions. These are the
classes on which actual symbolic manipulation takes place. See also the separate
tree.hh class.

parser.cc, parser.hh
The class which contains the parsing algorithms that turns output of the preproces-
sor class into a tree form.

algorithm.cc, algorithm.hh
The base class for all the classes defined in the modules subdirectory. Plus the
implementation of scanning for command arguments and the necessary logic to
create the undo information, apply an algorithm until it no longer changes the
expression and other things which are independent of the particular command.

combinatorics.hh
General routines for the generation of combinations and permutations of elements
in a vector. Consists of a single class combinations<. . .> templated over the type of
the objects to be permuted. This class acts as a container holding both the original
vector (in the storage member), the permutation patterns (in the sublengths
vector, more on this later) as well as the resulting permuted vectors (accessible
through operator[]; the total number of combinations is given by size()).

6.2 Tree representation of expressions

Expressions are internally stored in a tree container class, based on the tree.hh li-
brary [10]. The present section describes the tree format in some more detail.

6.3. Nested sums, products and pure numbers 63

Let us start with a couple of remarks on the motivation which has led to the current
implementation. An important requirement for the storage format is that symbols should
not have a fixed meaning, but rather be like variables in a computer program: they can
be declared to represent objects of a certain type. Similarly, the user should be free to
use arbitrary bracket types and sub- and superscript indicators (these should in addition
be kept during the algebraic manipulations). The first issue is resolved with the property
system, but the second one needs support directly in the storage tree.

Secondly, storage should be such that a trivial (often occurring) extensions from one
object to another should not lead to blowup. For instance, the difference between A_\mu
and A_{\mu \nu} should preferably not introduce a new layer between the A node and
the \mu node. This is achieved by adding the bracket type to the child node rather than
the parent (in the example above, the curly brackets are part of the \mu and \nu nodes).
This applies also to e.g. sums: in (A+B) (which is converted by the preprocessor to
\sum(A)(B)), the round brackets are part of the child nodes of the \+ node.7 Similarly,
extending q to 3q should not introduce new intermediate layers to group the two symbols
together. This has been achieved by giving each node a multiplier field (this holds true
even for products, i.e. 3(a+b) is represented as a sum node with multiplier 3 (in addition,
such numerical factors are always commuted to the front of the expression).8

It should also be possible to make expressions arbitrarily deeply nested; one should
be able to write a+b as well as \sin(a+b). This is in contrast to programs such as Abra
and FORM which store their input as sums of products of factors, i.e. without further
nesting.

Finally, tt should be posssible to store the history of an expression, in order to imple-
ment unlimited undo.

The data stored at each tree node is further explained in section 7.4, see in partic-
ular the excerpt from the storage.hh file in figure 2. The structure of the actual tree
is illustrated in figure 1. Each expression starts with a history node. The label of
the expression is given in a subnode label. All remaining child nodes of the history
nodes represent the history of the expression. The most often encountered node here is
the expression node, which contains the actual expression. However, there are other
nodes as well, for instance asymimplicit which contains information about the symme-
try structure of an expression (this feature is not yet enabled).

6.3 Nested sums, products and pure numbers

Nested sum and product nodes require some explanation, as the way in which cadabra
handles and stores these determines how brackets can appear in sums and products. As
a general rule, sums within sums which are such that all child nodes have the same, non-
visible bracket are not allowed, and automatically converted to a single sum. In other
words

(\sum{a}{b}+\sum{c}{d})

7Subsequent child nodes with the same bracket type associated to them are taken to be part of the same
group; the input A {\mu} {\nu} will therefore be printed as A {\mu \nu}. Similarly, there is no way to
represent (a) + (b) since the internal storage format automatically turns this into (a + b).

8The multiplier field is a rational, and is intended to stay that way. It is not a good idea to make it
complex, otherwise we will end up with octonionic multipliers at some stage.

6.3. Nested sums, products and pure numbers 64

\history
\label

apple
\expression

\prod
a
\sum

b
c

\expression
\sum

\prod
a
b

\prod
a
c

Figure 1: Example history tree for a single expression. Here, the program started with the user entering the
expression a(b + c). This expression was then manipulated by applying the @distribute algorithm. The
nodes at the top of the expression tree are all of the history type.

is not allowed, since it would print as (a+b+c+d) which is indistinguishable from

(\sum{a}{b}{c}{d}) .

The first expression is therefore internally always converted to the second one before it
is stored. A similar situation occurs with products, where

\prod{a}{\prod{b}{c}}

is not allowed and “flattened” to the simpler

\prod{a}{b}{c} .

The general rule is that nested sums and products are converted to flattened form if
these two forms are indistinguishable in the standard output format. Nested sums and
products can occur, but they have to have different or non-empty bracket types for their
children. An example is

\prod{a}{\prod(b)(c)}

which prints as a*(b*c). This is not automatically converted to a*b*c. Note that this
form is not represented as

\prod{a}(b)(c) (wrong)

6.3. Nested sums, products and pure numbers 65

This is a consequence of the second rule: all child nodes of product or sum nodes must
have the same bracket type. In summary, automatic flattening of nested sum or product
trees do not automatically occur over bracket boundaries. You can then write and keep
(sin(x) + cos(x)) + (sin(x) + 3 cos(x)), which will be stored as

\sum{\sum(sin(x))(cos(x))}{\sum(sin(x))(cos(x))}

In order to remove brackets, one uses the @sumflatten and @prodflatten commands,
see section 5.3.

Products and sums with sub- or superscripts which apply to one or more of the child
nodes are internally represented using \indexbracket nodes. That is, the input

q (a+b)_\mu

is represented as

\prod{q}{\indexbracket{\sum(a)(b)}_{\mu}}

(note the way in which the bracket types are inherited). In fact, such indexbracket
constructions apply for any content inside the brackets; in the example above, an in-
dexbracket would be generated even without the \sum node: the input

q (\Gamma^r)_{a b}

is stored as

\prod{q}{\indexbracket(\Gamma^r)_{a b}}

The result of the indexbracket way of storing expressions is that “index free” manipu-
lations apply directly inside the indexbracket argument and no special algorithms are
needed. Input will automatically be converted to this form. Getting rid of indexbrackets
around single symbols is done using @remove indexbracket.

Another issue is the storage of numbers. Since pure numerical factors are only al-
lowed to appear in the multiplier field of a node, a pure number is stored as “1” with
its multiplier equal to the number. Product nodes with two arguments of which one is
a number are not allowed and will be converted to a single node with multiplier field,
automatically.

In order to eliminate ambiguities concerning multipliers in sum and product nodes,
the following rules should be obeyed: sum nodes always have unit multiplier (i.e. non-
trivial multipliers are associated to the children) and children of product nodes should
also always have unit multiplier (i.e. the multipliers of all the children should in this case
be collected in the prod node itself).

7.3. Object properties 66

Module implementation guide
7.1 Storage of numbers and strings

There is a special memory area for the storage of rational numbers (with arbitrary-length
integers for the numerator and denominator) as well as for the storage of strings.

7.2 Accessing indices

Indices are stored as ordinary child nodes. However, there are various ways to iterate
over all indices in a factor, which are more useful than a simple iteration over all child
nodes.

7.3 Object properties

The properties attached to a node in the tree can be queried by using a lookup method
in the properties namespace. Object properties are child classes of the property class,
and contain the property information in a parsed form. The following code snippet
illustrates how properties are dealt with:

AntiSymmetry *s=properties::get<AntiSymmetry>(it)
if(s) {

// do something with the property info
}

Here we used a property called AntiSymmetry, which is declared in the the module
header modules/algebra.hh (see the other header files of the various modules for in-
formation about the available property types). If the node pointed to by it has this
property associated to it, the pointer s will be set to point to the associated property
node. [KP: Better to use a property example where the property node contains
some additional information, which can then be used.]

It is also possible to do this search in the other direction, that is, to find an object
with a given property.

properties::property_map_t::iterator
it=properties::get_pattern<GammaMatrix>();

if(it!=properties::props.end()) {
// Now *(it->first) contains the name of a GammaMatrix object.
}

[KP: Instead of checking these things, it is better to throw exceptions, since that
will make the code more readable and also the error handling more uniform (it can
go in one place instead of being repeated).]

Sums and products inherit, in a certain way, properties of the terms and factors from
which they are built up. This is true also for other functions. If you want to know
whether a given node has such inherited properties, a simple call to get<...> is not
sufficient. Instead, use the following construction:

7.4. Writing a new algorithm module 67

Matrix *m=properties::get_composite<Matrix>(it)
if(m) {

// do something with the property info
}

These inheritance rules for composite objects are at present hard-coded but will be user-
defineable at a later stage.

7.4 Writing a new algorithm module

All functionality of cadabra that goes beyond storage of the expression trees is located in
separate modules, stored in the src/modules subdirectory. New functionality can easily
be added by writing new modules. All algorithm objects derive from the algorithm
object defined in src/algorithm.hh, and only a couple of virtual members have to be
implemented.

The class interface for the algorithm object is shown in figure 3. The members which
any class derived from algorithm should implement are described below.

constructor(exptree&, iterator)
Algorithm objects get initialised with a reference tr to the expression tree on which
they act, together with an iterator this command pointing to the associated com-
mand node. By looking at the child nodes of the latter, the arguments of the
command can be obtained. The simplest way to do this is to use the sibling it-
erators returned by args_begin() and args_end(); these automatically skip the
argument which refers to the equation number (i.e. they skip the (5) argument
in @command(5){arg1}{arg2}). The constructor is a good place to parse the com-
mand arguments, since that will in general only be required once. Do not do
anything in the constructor that has to be done on every invocation of the same
command on different expressions.

If you discover that the arguments passed to an algorithm are not legal, you have
to throw an algorithm::constructor error exception.

description()
Should display an explanation of the functionality of the algorithm on the txtout
stream. Do not add std::endl newlines by hand, these will be inserted automati-
cally.

bool can apply(iterator)
bool can apply(sibling iterator, sibling iterator)

Determines whether the algorithm has a chance of acting on the given expression.
This is an estimate but is required to return true if there is a possibility that the
algorithm would yield a change.

It takes two sibling iterators as arguments, which indicate a node or a range of
nodes on which the algorithm is supposed to act.

Since can apply is guaranteed to be called before apply, it is allowed for the
can apply member to store results for later use in apply. However, multiple calls
to can be made to this combo, so any data stored should be erased upon each call
to can apply.

7.4. Writing a new algorithm module 68

class str_node {
public:

...
};

Figure 2: The node class.

class algorithm {
public:
typedef exptree::iterator iterator;
typedef exptree::sibling_iterator sibling_iterator;

algorithm(exptree&, iterator&);

virtual void description() const=0;
virtual bool can_apply(iterator&);
virtual bool can_apply(sibling_iterator&, sibling_iterator&);
virtual result_t apply(iterator&);
virtual result_t apply(sibling_iterator&, sibling_iterator&);

sibling_iterator args_begin() const;
sibling_iterator args_end() const;
unsigned int number_of_args() const;

exptree& tr;
iterator this_command;

};

Figure 3: The relevant members of the class interface for the algorithm object. The virtual members and
the constructor have to be implemented in new algorithm objects; see the main text for an explanation of
the two versions of can apply and apply.

class exptree {
public:
sibling_iterator arg(iterator, unsigned int) const;
unsigned int arg_size(sibling_iterator) const;
multiplier_t arg_to_num(sibling_iterator, unsigned int) const;

};

Figure 4: The relevant members of the class interface for the exptree object.

7.5. Adding the module to the system 69

apply result apply(iterator&)
apply result apply(sibling iterator&, sibling iterator&)

Before exiting this function, the member variable expression modified has to be
set according to whether or not the apply call made any changes to the expression.

If the algorithm can take a long time to complete and you want to give the user the
option of interrupting it with control-C, you can check (at points where the algo-
rithm can be interrupted) the global variable interrupted. If it is set, you should
immediately throw an exception of type algorithm interrupted, preferably with
a short string describing the location or algorithm at which the interrupt occurred.
The exception will be handled at the top level in the manipulator.cc code, where
the current expression will be removed.

Algorithms can write progress information to the stream txtout and debug infor-
mation (which will go into a separate file on disk) to debugout. These are global
objects. Do not use the C++ streams std::cout and std::cerr for this purpose.

An algorithm is never allowed to modify the tree above the node or range of sibling nodes
which were passed to the apply call. In other words, siblings and parent nodes should
never be touched, and the nodes should not be removed from the tree directly. If you
want to remove nodes, this can be done by setting their multiplier field to zero; the core
routines will take care of actually removing the nodes from the tree. It is allowed to
inspect the tree above the given nodes, but this is discouraged.

Upon any exit from an algorithm module, the tree is required to be in a valid state. In
many cases, it is useful to clean up modifications to the tree by calling the utility function
cleanup expression (see section 7.9 for more information).

7.5 Adding the module to the system

Once you have written the .hh and .cc files associated to your new algorithm, it has to
be added to the build process and the core program. First, add the header to the master
header file src/modules/modules.hh file; this one looks like

src/modules/modules.hh:

#include "algebra.hh"
#include "pertstring.hh"
#include "select.hh"
...

You also have to add it to the src/Makefile.in. Near the top of this file you find a line
looking somewhat like

src/Makefile.in:

...
MOBJS=modules/algebra.o modules/pertstring.o modules/convert.o \

modules/field_theory.o modules/select.o modules/dummies.o \
modules/properties.o modules/relativity.o modules/substitute.o

...

7.6. Adding new properties 70

class property {
public:
virtual bool parse(exptree&, iterator pat, iterator prop);
virtual std::string name() const=0;
virtual void display(std::ostream&) const;

};

Figure 5: The relevant members of the class interface for the property object.

and this is where your module has to be added. Finally, you have to make the algorithm
visible to the core program. This is done in the src/manipulator.cc file. In the con-
structor of the manipulator class (defined somewhere near the top), you see a map of
names to algorithm classes. A small piece is listed below:

src/manipulator.cc:

...
// pertstring
algorithms["@aticksen"] =&create<aticksen>;
algorithms["@riemannid"] =&create<riemannid>;

// algebra
algorithms["@distribute"] =&create<distribute>;
...

Add your algorithm here; it does not have to have the same name as the object class
name. Once this is all done, rerun configure and make.

7.6 Adding new properties

[KP: Discuss the various member functions of property, in particular the way
in which parse is supposed to behave, and the way in which properties should
be registered.] Since algorithms rely crucially on a fixed set of properties which they
provide themselves, we store these things in a C++ way, rather than using strings. Another
motivation: we do not want to parse (and check) these property trees every time they
are accessed.

Properties typically carry key/value pairs which further specify the characteristics of
the property. When the property object is created, the core calls the parse() method
of the property, in which you are responsible for scanning through the list of key/value
pairs. This is rather simple: just call the find() member of the keyval argument,

keyval_t::iterator ki=keyvals.find("dimension");
if(ki!=keyvals.end()) {

// now ki->second is an iterator to an expression subtree
}

If the new property is derived from existing ones, do not forget to call the parse()
method of all parent classes at the end.

7.8. Manipulating the expression tree 71

Once this is all done, register the property with the system by adding an appropriate
call to the module’s register_properties() method, found at the top of each module.

7.7 Throwing errors

If, at any stage, an inconsistent expression is encountered, the safe way to return to the
top level of the manipulator is to throw the exception class consistency error (defined
in algorithm.hh).

7.8 Manipulating the expression tree

The exptree class contains a number of tree access routines which enhance the func-
tionality of the tree.hh library.

index iterator

index map t

7.8.1 Acting on products or single terms

use is single term and prod wrap single term.

7.8.2 Reserved node names

There is a small number of node names which is reserved to always mean the same thing,
i.e. for which the properties are not determined by the property system. These are

\prod
\div
\sum
\pow
\indexbracket
\factorial
\equals
\unequals
\sequence
\comma
\infty

Some properties of these nodes are still obtained from the property system in order to
make algorithms look more uniform, but the names of these reserved nodes can not be
changed.

7.11. Namespaces and global objects 72

7.9 Utility functions

There are also various useful helper functions in the exptree class, mainly dealing with
the conversion of expression numbers or labels to iterators that point to the actual ex-
pression in the tree.

cleanup expression(exptree&)
cleanup expression(exptree&, iterator)

Converts an expression (or part of it below the indicated node) to a valid form.
That is, it calls various simplification algorithms on the expression, among which
sumflatten and prodcollectnum.

cleanup nests
When called on a product inside a product, or a sum inside a sum, and the bracket
types of both node and parent are the same, flatten the tree. Adjusts the iterator to
point to the product or sum node which remains.

equation by number or name
Given an iterator to a node that represents an expression number or expression
label, this member returns an iterator that points to the actual node (to be precise:
to the \history node of the expression).

arg size(sibling iterator)
arg(iterator, unsigned int)

Many algorithms require one or more objects as arguments. These are usually
passed as lists, and therefore end up being of two forms: either they are single
objects or they are comma objects representing a list. In order to avoid having to
check for these two cases, one can use these two member functions.

The iterator arguments of these two member functions should point to the child
which is either a single argument or a \comma node.

pushup multiplier
Can be called on any node. If the node has a non-unit multiplier and the storage
conventions exclude this, the algorithm will push the multiplier up the tree.

7.10 Writing a new output module

[KP: Structure is different now: one inherits from output exptree and then has
printing stuff at ones disposal. Still would be nice to be able to change the print-
ing objects for a given node type, i.e. modify the map of node names to printing
objects.]

[KP: Also do something intelligent with the Mathematica output flags].

7.11 Namespaces and global objects

The following objects are global:

modglue::opipe txtout
The normal output stream, to which you should communicate with the user.

7.11. Namespaces and global objects 73

std::ofstream debugout
The debug output stream, which normally writes to a file, and should only be used
to write output which is useful for debugging purposes.

nset t name set
The global collection of all strings. Nodes in the expression tree contain an iterator
into this map (see in particular figure 2).

rset t rat set
The global collection of all rational numbers. Nodes in the expression tree contain
an iterator into this map (see in particular figure 2).

bool interrupted
A global flag which indicates that the user has requested the computation to be
interrupted. See section 7.4 for more information on this variable.

stopwatch globaltime
The wall time since program start.

unsigned int size x, size y
The size of the current output window.

Index
.cadabra, 14
?, 27
??, 27
#, 18

autodeclare, 18

CDB ERRORS ARE FATAL, 29
CDB LOG, 29
CDB PARANOID, 29
CDB PRINTSTAR, 29
CDB TIGHTBRACKETS, 29
CDB TIGHTSTAR, 29
CDB USE UTF8, 29
comments, 15
conditionals, 28

environment variables, 29

mono-term symmetries, 40

pfbtops, 13
properties

inheritance, 19
list of all, 19

range wildcards, 18
regular expressions, 28

startup file, 14

REFERENCES 75

References
[1] J. Mart́ın-Garćıa, “xPerm and xAct”,

http://metric.iem.csic.es/Martin-Garcia/xAct/index.html.

[2] A. Cohen, M. van Leeuwen, and B. Lisser, “LiE v. 2.2”, 1998,
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/.

[3] S. A. Fulling, R. C. King, B. G. Wybourne, and C. J. Cummins, “Normal forms for
tensor polynomials. 1: The Riemann tensor”, Class. Quant. Grav. 9 (1992) 1151.

[4] F. De Jonghe, K. Peeters, and K. Sfetsos, “Killing-Yano supersymmetry in string
theory”, Class. Quant. Grav. 14 (1997) 35–46, hep-th/9607203.

[5] J. van der Hoeven, “GNU TeXmacs: A free, structured, wysiwyg and technical text
editor”, in “Le document au XXI-ième siècle”, D. Flipo, ed., vol. 39–40, pp. 39–50.
Metz, 14–17 mai 2001. Actes du congrès GUTenberg. http://www.texmacs.org.

[6] J. A. M. Vermaseren, “New features of FORM”, math-ph/0010025.

[7] S. B. Edgar and A. Hoglund, “Dimensionally dependent tensor identities by double
antisymmetrisation”, J. Math. Phys. 43 (2002) 659–677, gr-qc/0105066.

[8] J. Bagger and J. Wess, “Supersymmetry and supergravity”, Princeton, 1992.

[9] U. Gran, “GAMMA: A Mathematica package for performing gamma-matrix algebra
and Fierz transformations in arbitrary dimensions”, hep-th/0105086,
http://fy.chalmers.se/~gran/GAMMA/.

[10] K. Peeters, “Tree.hh”, 2006, http://www.aei.mpg.de/~peekas/tree/.

http://metric.iem.csic.es/Martin-Garcia/xAct/index.html
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/
http://xxx.lanl.gov/abs/hep-th/9607203
http://www.texmacs.org
http://xxx.lanl.gov/abs/math-ph/0010025
http://xxx.lanl.gov/abs/gr-qc/0105066
http://xxx.lanl.gov/abs/hep-th/0105086
http://fy.chalmers.se/~gran/GAMMA/
http://www.aei.mpg.de/~peekas/tree/

	Overview and motivation
	Tutorial
	Tutorial 1: Tensor monomials and multi-term symmetries
	Tutorial 2: Tensor monomials, part two
	Tutorial 3: World-sheet supersymmetry
	Tutorial 4: Super-Maxwell

	Graphical user interface
	General information
	Editing, loading, saving
	Evaluating cells
	Printing and exporting
	Cutting and pasting
	The TeXmacs frontend

	Reference guide
	Startup and program options
	Basics about the input format
	Active nodes or ``commands''
	Object properties and declaration
	List properties and symbol groups
	Indices, dummy indices and automatic index renaming
	Exponents, indices and labels
	Spacing and brackets
	Implicit versus explicit indices
	Indexbrackets
	Derivatives and implicit dependence on coordinates
	Accents
	Symbol ordering and commutation properties
	Input and output redirection
	Default rules
	Patterns, conditionals and regular expressions
	Environment variables
	Future plans

	Algorithm modules
	Builtin core algorithms
	Rationals, complex numbers and other numerics
	Sums and products
	Lists and ranges
	Differential geometry
	Properties
	Dummy indices
	Symmetrisation and anti-symmetrisation
	Field theory
	Output routines
	General relativity
	Substitution
	Linear algebra
	Gamma matrix algebra and fermions
	Conversion from/to other formats

	Core functionality
	Source file description
	Tree representation of expressions
	Nested sums, products and pure numbers

	Module implementation guide
	Storage of numbers and strings
	Accessing indices
	Object properties
	Writing a new algorithm module
	Adding the module to the system
	Adding new properties
	Throwing errors
	Manipulating the expression tree
	Acting on products or single terms
	Reserved node names

	Utility functions
	Writing a new output module
	Namespaces and global objects

