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1. Introduction

The symmetry structures of eleven-dimensional supergravity [1] are widely believed to be

instrumental, if not crucial, for finding a non-perturbative and background independent

formulation of M-Theory. Starting with the work of [2, 3] the chain of exceptional symmetry

groups En(R) has been a recurring theme in analyses of these symmetry structures [4 – 7].

In particular, the emergence of the hyperbolic Kac-Moody algebra E10 in the reduction

to one dimension had already been conjectured in [8], see also [9, 10]. More recently, it

was argued that the bosonic supergravity field equations in eleven space-time dimensions

correspond to a non-linear realization of the indefinite Kac-Moody group E11 (jointly with

the conformal group) [11, 12], and these considerations were extended also to the (massive)

IIA and IIB supergravity theories [13 – 15] by using the same groups.

Independent evidence for the relevance of E10 came from a study of the dynamical

behaviour of the bosonic fields near a space-like singularity, which showed that the chaotic

oscillations of BKL type [16] near the singularity can be effectively described in terms of a

‘cosmological billiard’ involving the E10 Weyl chamber [17, 18]. The cosmological billiard

description was subsequently extended to the conjecture of a ‘correspondence’ between

eleven-dimensional supergravity (and M-theory) and a one-dimensional σ-model on the

infinite-dimensional E10/K(E10) coset space [19, 20]. This coset model has a non-linearly

realised E10 symmetry and rephrases the dynamical evolution as a null geodesic motion

on the E10/K(E10) coset space. A truncation of this model was shown to be dynamically

equivalent to a truncation of the bosonic equations of eleven-dimensional supergravity [19,

20], and also to truncations of (massive) IIA and IIB supergravity [21, 22]. In yet another

development, a one-dimensional geodesic model based on E11 was introduced in [23, 24],

merging some features of the E11 proposal of [12] with [19].

In this paper we study the extension of the one-dimensional E10/K(E10) σ-model of [19]

to include fermionic degrees of freedom. Some of our results have already been announced

in [25], see also [26 – 28]. The resulting model describes a spinning massless particle on

E10/K(E10), where the fermionic degrees of freedom are assigned to spinor representations

of K(E10), in analogy with the finite-dimensional hidden symmetries. Since the maximal

compact subgroup K(E10) of E10 is not of Kac-Moody (or any other classified) type [29]

(see [30] for related studies in K(E9)), an important part of the present paper (namely,

section 2) is devoted to the study of the basic structure of the infinite-dimensional K(E10).

In particular, we will need to develop some representation theory below in order to describe

the spin degrees of freedom. Here we will be mostly concerned with finite-dimensional, i.e.

unfaithful representations. It will turn out that this unfaithfulness leads (beyond the first

two A9 levels in a level decomposition) to a conflict between full K(E10) covariance and

local supersymmetry. Our main conclusion is therefore that, in order to arrive at an

extension of the bosonic E10/K(E10) model reconciling these two requirements, it will be

necessary to replace the unfaithful spinor representation by a faithful infinite-dimensional

one.

Nevertheless, the unfaithful spinor representations of K(E10) will allow us to study

many aspects of D = 11 supergravity (to lowest fermion order), for instance admitting an

– 2 –
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Supergravity equation Coset model equation

Gab = 0 D(0)P (0) = P (1)P (1) + P (2)P (2) + P (3)P (3)

Mabc = 0 D(0)P (1) = P (0)P (1) + P (1)P (2) + P (2)P (3)

D[0Fa1a2a3a4] = 0 D(0)P (2) = P (0)P (2) + P (1)P (3)

D[0Ωab] c = 0 D(0)P (3) = P (0)P (3)

Ea = 0 D(0)Ψ = P (1)Ψ + P (2)Ψ + P (3)Ψ

G00 = 0 C(0) = P (0)P (0) + P (1)P (1) + P (2)P (2) + P (3)P (3) ≈ 0

G0a = 0 C(3) = P (3)P (0) + P (2)P (1) ≈ 0

M0ab = 0 C(4) = P (3)P (1) + P (2)P (2) ≈ 0

D[a1
Fa2a3a4a5] = 0 C(5) = P (3)P (2) ≈ 0

D[a1
Ωa2a3 a4] = 0 C(6) = P (3)P (3) ≈ 0

E0 = 0 S = P (0)Ψ + P (1)Ψ + P (2)Ψ + P (3)Ψ ≈ 0

Table 1: List of corresponding equations with indications of the A9 level structure on the coset side.

The horizontal line shows the division into coset equations of motion and constraint equations. The

equations on both sides of the correspondence have to be truncated in order to make the dynamical

correspondence exact. The precise correspondence depends on the ‘dictionary’ between supergravity

and coset variables. Our current knowledge of this dictionary will be detailed in eqs. (5.1) and (5.6)

below.

independent re-derivation of the bosonic ‘dictionary’ required for the dynamical equivalence

in [19, 20]. The methods used in this derivation rest on an analysis of the supersymmetry

variations by techniques developed already long ago in studies of the hidden ‘R-symmetries’

K(E7) ≡ SU(8) and K(E8) ≡ Spin(16)/Z2 [31 – 33].

We will also explore the canonical structure of the one-dimensional model and study the

bosonic and supersymmetry constraints and parts of the constraint algebra and show how

these relate to the supergravity equations (for the special case of homogeneous cosmological

solutions of D = 11 supergravity, the bosonic constraints were already given in [34]). Our

present results allow for the first time for a unified treatment of all bosonic and fermionic

equations of supergravity in an E10 context.1

For the reader’s convenience and for later reference we list in table 1 the correspon-

dences between the equations of supergravity and those of the E10/K(E10) model. To

this end we denote the components of the Einstein equation (A.18) by GAB, the compo-

nents of the matter equation (A.19) by MABC and the components of the gravitino equa-

tion (A.24) by EA (see appendix A for details). The components of the bosonic Bianchi

identities (A.21) and (A.22) are written out fully. The flat space-time index range is

A,B = 0, 1, . . . , 10, while small Latin letters a, b = 1, . . . , 10 are (flat) spatial indices.

As explained in more detail below the E10/K(E10) model gives rise to certain ‘currents’

1A full treatment of all bosonic equations of motions and constraints in the case of type I supergravity

and DE10 has been given in [35].

– 3 –
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P = (P (0), P (1), P (2), P (3), . . .) where the superscripts indicate the level in the A9 level

decomposition. The constraints on the coset side are denoted by C(`), while S is the super-

symmetry constraint expressed in coset variables (‘≈’ means ‘weakly zero’). The explicit

expressions will be derived in section 6.

Table 1 is very schematic (see appendix A.3 for an explanation of the supergravity

objects appearing in the left column). When decomposed according to level `, the bosonic

equations of motion are of the general structure

D(0)P (`) =
∑

m≥0

P (m) ∗ P (`+m) (1.1)

where the symbol ∗ stands for a sum over all representations at the indicated levels, and

where we (crucially) make use of the triangular gauge, as explained in [20]. The sum on the

right hand side (r.h.s.) of this equation in principle involves an infinite number of terms,

but can be consistently truncated to any finite level (by setting P (`) = 0 for ` > `0). The

bosonic coset constraints, on the other hand, as they follow from supergravity, take the

form (for ` ≥ 3)

C(`) =
∑̀

m=0

P (m) ∗ P (`−m) ≈ 0. (1.2)

when expressed in terms of coset variables, and hence only contain a finite number of terms

on the r.h.s.. The scalar constraint C(0), corresponding to the Hamiltonian constraint of

the gravity system, plays a special rôle, as it is currently taken to be a K(E10) singlet,

whereas one would expect the remaining constraints to transform in some representation

of K(E10). As we will show, the bosonic constraints all follow from the canonical bracket

{Sα,Sβ} of the supersymmetry constraint. This may obviate the necessity to impose them

by introducing extra (bosonic) Lagrange multipliers in the (partially) supersymmetric coset

model. The presence of constraints usually signals the presence of gauge symmetries — as

is obviously true for the D = 11 supergravity constraints —, but their origin is less clear in

the present context. The tensor structure of our constraints is reminiscent of the structure

of the ‘central charge representation’ L(Λ1) of E11 (which is of highest weight type) first

considered in [36], and proposed there to explain the emergence of space-time. By contrast,

we here focus on the compact K(E10) since the fermionic supersymmetry constraint Sα can

at most be a representation of K(E10) and not of E10 (see also [37] for a discussion of the

link between central charges and hidden symmetries). In addition, preliminary calculations

indicate that our bosonic constraints C do not properly transform as an E10 representation.

In summary, the correspondence of table 1 works beautifully, but only up to a point.

The correspondence between supergravity and the E10 model, as presently known, requires

a truncation, where, on the supergravity side, one retains only first-order spatial gradients

of the bosonic fields while discarding the spatial gradients of the fermionic fields, and

where, on the σ-model side, one neglects all bosonic level ` > 3 degrees of freedom, and

restricts attention to unfaithful spinor representations of K(E10). While there is thus

perfect agreement of all quantities up to ` ≤ 2, and partial agreement at level ` = 3 (and,
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as the present work shows, this agreement extends substantially beyond the equations of

motion), the following discrepancies appear at level ` = 3:

• the Hamiltonian (scalar) constraint as computed from supergravity, or equivalently

(as explicitly shown in section 6) from the canonical bracket of the supersymmetry

constraint, differs from the one obtained from the standard bilinear invariant form

(= 〈P|P〉) at ` = 3, cf. eqs. (6.7) and (6.6);

• the supersymmetry constraint (a Dirac-type spinor with 32 real components) fails to

transform covariantly under K(E10) beyond level ` = 2; likewise, it appears impossi-

ble to manufacture an exact K(E10) invariant from P, the supersymmetry parameter

ε (the 32 spinor of K(E10)) and the ‘gravitino’ Ψ (the 320 vector spinor of K(E10));

• while one would expect the bosonic constraints C(`) (for ` ≥ 3) to fit into a multiplet

of K(E10), we here find that, with the presently known ‘dictionary’, the constraints

studied below transform only partly in a K(E10) covariant manner.

The first of these disagreements was already suggested by the fact that the positivity

of the E10 invariant bilinear form ‘away’ from the Cartan subalgebra seems difficult to

reconcile with the fact that the ‘potential’ (essentially, minus the scalar curvature of the

spatial hypersurface) in the scalar constraint of canonical gravity can become negative [18]

(for instance for spatially homogeneous spaces of constant positive curvature). The second

and third are more subtle, but may go to the root of the problem we are trying to address,

namely the question of how to embed the full higher-dimensional field theory into a one-

dimensional σ-model. Indeed, one cannot expect to be able to realize full supersymmetry in

a context where there are infinitely many bosonic degrees of freedom, but only finitely many

fermionic ones, and this expectation is confirmed by the fact that our model does not admit

full K(E10) invariance and supersymmetry simultaneously. We offer some speculations on

how to solve this problem in the conclusions. The key question is therefore whether (and

how) it is possible to extend the known unfaithful finite-dimensional spinor representations

of K(E10) constructed in [26, 25, 27] to faithful infinite-dimensional ones. The necessity

of faithful representations is also suggested by the gradient conjecture of [19] according

to which the higher order spatial gradients of the bosonic fields are encoded into certain

higher level ‘gradient representations’ of the infinite-dimensional Lie algebra. The finite-

dimensional unfaithful spinor representation obviously does not allow for an analogous

conjecture; in order to accommodate spatial dependence, one evidently needs infinitely

many fermionic components as well.

The main purpose of this paper is thus two-fold: (i) to give a detailed account of

the agreements between supergravity and the one-dimensional E10/K(E10) σ-model so far

established, in particular concerning the fermionic sector; and (ii) to exhibit in as clear as

possible a fashion the remaining discrepancies that need to be resolved in order to arrive

at a fully compatible description incorporating both supersymmetry as well as full E10 and

K(E10) symmetry.

This paper is structured as follows. In section 2, we study the structure and represen-

tation theory of K(E10) in purely mathematical terms, emphasizing notably the existence

– 5 –
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and structure of ideals of Lie(K(E10)). The D = 11 supergravity equations and variations

are rewritten in redefined variables in section 3. In section 4, we present a fermionic ex-

tension of the one-dimensional E10/K(E10) coset model and derive its basic equations of

motion and constraints. In section 5 we establish a (partial) correspondence with the coset

equations of section 4 and the supergravity equations of section 3. The canonical structure

of the constraints are studied in section 6. Concluding remarks are offered in section 7. Ap-

pendix A contains a number of conventions used for D = 11 supergravity and, appendix B

a proof of a theorem on the consistency of unfaithful representations stated in section 2.

2. Structure and representations of K(E10)

Let us briefly recall the definition of the hyperbolic Kac-Moody algebra e10 via the Cheval-

ley-Serre presentation (see [38] for further details). The basic data are the set of generators

{(ei, fi, hi) | i = 1, . . . , 10} and the E10 Cartan matrix aij corresponding to the Dynkin

diagram in figure 1, which also displays our numbering conventions for the simple roots.

These generators are subject to the defining relations

[hi, ej ] = aijej ,

[hi, fj ] = −aijfj ,

[ei, fj ] = δijhj , (2.1)

where hi span a Cartan subalgebra: [hi, hj ] = 0. In addition, the generators obey the

multilinear Serre relations

(ad ei)
1−aij ej = 0,

(ad fi)
1−aij fj = 0. (2.2)

These are the relations which have to be imposed on the free Lie algebras generated by

the ei (for the positive, strictly upper triangular half of e10) and the fi (for the negative,

strictly lower triangular half of e10) in order to obtain the Kac-Moody algebra e10.

By definition, the maximal compact subgroup K(E10) is the subgroup of E10 whose Lie

algebra consists of the fixed point set under the Chevalley involution θ (such subalgebras

are also referred to as ‘involutory subalgebras’). The latter is defined to act by

θ(ei) = −fi, θ(fi) = −ei, θ(hi) = −hi (i = 1, . . . , 10) (2.3)

on the simple Chevalley generators of E10, and extends to all of e10 by the invariance

property θ([x, y]) = [θ(x), θ(y)]. The associated invariant subalgebra will be designated by

k ≡ ke10 ≡ Lie (K(E10)). (2.4)

It is sometimes convenient to define a generalized ‘transposition’ by

xT := −θ(x). (2.5)

– 6 –
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Figure 1: Dynkin diagram of E10 with numbering of nodes.

In terms of this transposition, the Lie algebra k consists of all ‘antisymmetric’ elements

of e10. Similarly, the group K(E10) consists of all the ‘orthogonal’ elements of k ∈ E10:

k kT = kT k = 1. Lastly, as we shall see in more detail below, the rank of k is nine,2

i.e. strictly smaller than the rank (ten) of E10. This contrasts with the finite-dimensional

exceptional hidden symmetry groups, for which rank En = rank K(En) [2] (for n = 6, 7, 8).

2.1 K(E10) at low levels

In order to determine the structure of the fixed point set under θ we first require some

results about the structure of the Lie algebra e10. The low level structure of the latter

can be conveniently described in terms of a ‘level decomposition’ in terms of irreducible

representations of the SL(10) ≡ A9 subgroup of E10; see e.g. [20] for our conventions and

the relevant low level commutators, and [39] for a table of higher level representations. The

generators for A9 levels ` = 0, . . . , 3 are3

` = 0 ` = 1 ` = 2 ` = 3

Ka
b Ea1a2a3 Ea1...a6 Ea0|a1...a8

(2.6)

where small latin indices from the beginning of the alphabet take the values 1, . . . , 10 and

are to be thought of as flat indices w.r.t. the spatial Lorentz group SO(10). The simple

positive (raising) generators in terms of (2.6) are

ea = Ka
a+1 (for a = 1, . . . , 9) , e10 = E8 9 10 . (2.7)

Similarly for the simple negative (lowering) generators fa = Ka+1
a, f10 = F8 9 10, where

Fa1a2a3 , of level ` = −1, is a transposed generator introduced below.

The level-0 elements Ka
b generate the general linear group GL(10), the rigid subgroup

of the group of purely spatial diffeomorphisms acting on the spatial slices in eleven space-

time dimensions. The trace generator K ≡ ∑10
a=1 Ka

a here arises because the exceptional

Cartan generator h10 is included in the level ` = 0 sector, in addition to the nine traceless

SL(10) generators hi (i = 1, . . . , 9). The remaining tensors are irreducible SL(10) tensors

with defining symmetries (using (anti-)symmetrizers of strength one)

Ea1a2a3 = E[a1a2a3],

2V. Kac, private communication.
3The corresponding low level representations for the finite-dimensional En groups were already given

in [6], and for E11 in [40].
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Ea1...a6 = E[a1...a6],

Ea0|a1...a8 = Ea0|[a1...a8], E[a0|a1...a8] = 0. (2.8)

Under the Chevalley involution we have

Ka
b = (Kb

a)
T := −θ(Kb

a). (2.9)

The remaining negative level ` ≥ −3 generators are given by

Fa1a2a3 := (Ea1a2a3)T := −θ(Ea1a2a3),

Fa1...a6 := (Ea1...a6)T := −θ(Ea1...a6),

Fa0|a1...a8
:= (Ea0|a1...a8)T := −θ(Ea0|a1...a8). (2.10)

The generators of K(E10), will always be normalized as the anti-symmetric combina-

tions J = E − F .4 Explicitly, we have, up to ` = 3, and putting a ‘level’ subscript on the

generators,

Jab
(0) = Ka

b − Kb
a,

Ja1a2a3

(1) = Ea1a2a3 − Fa1a2a3 ,

Ja1...a6

(2) = Ea1...a6 − Fa1...a6 ,

J
a0|a1...a8

(3) = Ea0|a1...a8 − Fa0|a1...a8
. (2.11)

Similarly, we define the ‘symmetric’ elements

Sab
(0) = Ka

b + Kb
a,

Sa1a2a3

(1) = Ea1a2a3 + Fa1a2a3 ,

Sa1...a6

(2) = Ea1...a6 + Fa1...a6 ,

S
a0|a1...a8

(3) = Ea0|a1...a8 + Fa0|a1...a8
, (2.12)

which span the level ` ≤ 3 sector of the algebra coset space e10 ª k. This coset forms an

infinite-dimensional representation of k. With regard to its SL(10) representation content,

it differs from k only in the level ` = 0 sector, and ‘outnumbers’ k only by the ten Cartan

subalgebra generators. (For this reason the split real form is sometimes denoted as E10(10).)

From the commutation relations given in [20] we deduce

[

Jab
(0), J

cd
(0)

]

= δbcJad
(0) + δadJbc

(0) − δacJbd
(0) − δbdJac

(0) ≡ 4δbcJad
(0)

[

Ja1a2a3

(1) , Jb1b2b3
(1)

]

= Ja1a2a3b1b2b3
(2) − 18δa1b1δa2b2Ja3b3

(0)
[

Ja1a2a3

(1) , Jb1...b6
(2)

]

= J
[a1|a2a3]b1...b6
(3) − 5! δa1b1δa2b2δa3b3Jb4b5b6

(1)
[

Ja1...a6

(2) , Jb1...b6
(2)

]

= −6 · 6! δa1b1 · · · δa5b5Ja6b6
(0) + · · ·

[

Ja1a2a3

(1) , J
b0|b1...b8
(3)

]

= −336
(

δb0b1b2
a1a2a3

Jb3...b8
(2) − δb1b2b3

a1a2a3
Jb4...b8b0

(2)

)

+ · · ·

4 This convention differs by a factor 2 from [20], where J = 1
2
(E − F ) for ` ≥ 1.
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[

Ja1...a6

(2) , J
b0|b1...b8
(3)

]

= −8!
(

δb0b1...b5
a1...a6

Jb6b7b8
(1) − δb1...b6

a1...a6
Jb7b8b0

(1)

)

+ · · ·
[

J
a0|a1...a8

(3) , J
b0|b1...b8
(3)

]

= −8 · 8!
(

δa1...a8
b1...b8

Ja0b0
(0) − δa1...a8

b0b1...b7
Ja0b8

(0) − δa0a1...a7
b1...b8

Ja8b0
(0)

+8 δa0
b0

δa1...a7
b1...b7

Ja8b8
(0) + 7δa1

b0
δa0a2...a7
b1...b7

Ja8b8
(0)

)

+ · · · . (2.13)

Here, and throughout this paper, we will make use of the following convention in writing

these equations: there is always an implicit anti-symmetrization (with unit weight) on the

r.h.s. according to the anti-symmetries of the l.h.s. — as exemplified in the first equation

in (2.13). Under the SO(10) generators Jab
(0) all other generators rotate in the standard

fashion. The ellipses denote contributions from higher level generators not computed here.

From the above relations, it is straightforward to check that the following nine (mutually

commuting) elements provide a basis of a Cartan subalgebra of k

J34
(0) , J56

(0) , J78
(0) , J9 10

(0) , J345678
(2) , J34569 10

(2) , J34789 10
(2) , J56789 10

(2) , J12
(0) . (2.14)

To see that the level-two elements J(2) in this list cannot generate any level-four elements

J(4) (and hence no higher level elements either), one simply observes that the first eight of

these elements by themselves constitute a basis of a Cartan subalgebra of SO(16) ⊂ E8(8).

From the second line in (2.13) we also see that the commutator of two ‘level one’

generators is schematically [J(1), J(1)] = J(2) + J(0); consequently, K(E10) does not inherit

the graded structure present in a level decomposition of e10. We can nevertheless decompose

the algebra k according to

k =

∞
⊕

`=0

k(`) (2.15)

where k(0) ≡ so(10), and k(`) is the linear span of all antisymmetric elements in e
(`)
10 ⊕ e

(−`)
10

(for ` ≥ 1). We will thus continue to refer to (2.15) as a ‘level decomposition’, always

keeping in mind that the term ‘level’ here is to be taken cum grano salis. The general

structure on k is then

[k(`), k(`′)] ⊂ k(`+`′) ⊕ k(|`−`′|). (2.16)

Hence, k is not a Kac-Moody algebra [29], nor is it an integer graded Lie algebra, since,

according to (2.15) commutators ‘go up and down in level’. Note, however, the fact,

apparent in eq. (2.16), that the commutators of k have a ‘filtered structure’, i.e. that they

are ‘graded modulo lower level contributions’.

The first line in (2.13) is the standard so(10) algebra. With the transition from E10

to the compact subgroup K(E10), the SL(10) tensors appearing in the level decomposition

now become tensors of its compact subgroup SO(10) = K(SL(10)) (the subgroup of spatial

rotations within the Lorentz group SO(1, 10)), and hence can be reducible in general. The

SL(10) irreducible tensor J
a0|a1...a8

(3) is SO(10) reducible. We decompose it into irreducible

pieces J̄ and Ĵ by defining

J
a0|a1...a8

(3) = J̄
a0|a1...a8

(3) +
8

3
δa0[a1 Ĵ

a2...a8]
(3) , Ĵa2...a8

(3) = δa0a1J
a0|a1a2...a8.
(3) (2.17)
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The relations of (2.13) for these two generators can also be written separately as
[

Ja1a2a3

(1) , Ĵb1...b7
(3)

]

= 378 δa1b1δa2b2Jb3...b7a3

(2) + · · ·
[

Ja1...a6

(2) , Ĵb1...b7
(3)

]

= −9 · 7! δa1b1 · · · δa5b5Jb6b7a6

(1) + · · ·
[

Ĵa1...a7

(3) , Ĵb1...b7
(3)

]

= −21 · 9 · 7! δa1b1 · · · δa6b6Ja7b7
(0) + · · ·

[

Ja1a2a3

(1) , J̄
b0|b1...b8
(3)

]

= −336
(

δb0b1b2
a1a2a3

Jb3...b8
(2) − δb1b2b3

a1a2a3
Jb4...b8b0

(2)

)

−3 · 336 δb1b2b3
b0a1a2

Jb4...b8a3

(2) + · · ·
[

Ja1...a6

(2) , J̄
b0|b1...b8
(3)

]

= −8!
(

δb0b1...b5
a1...a6

Jb6b7b8
(1) − δb1...b6

a1...a6
Jb7b8b0

(1)

)

+3 · 8! δb1 ...b6
b0a1...a5

Jb7b8a3

(1) + · · ·
[

J̄
a0|a1...a8

(3) , Ĵb1...b7
(3)

]

= 0 + · · ·
[

J̄
a0|a1...a8

(3) , J̄
b0|b1...b8
(3)

]

= −8 · 8!
(

δa1...a8
b1...b8

Ja0b0
(0) − δa1...a8

b0b1...b7
Ja0b8

(0) − δa0a1...a7
b1...b8

Ja8b0
(0)

+8 δa0
b0

δa1...a7
b1...b7

Ja8b8
(0) + 7δa1

b0
δa0a2...a7
b1...b7

Ja8b8
(0)

)

+3 · 8 · 7 · 8! δb0b1δa1...a7
a0b2...b7

Ja8b9
(0) + · · · (2.18)

Neglecting the mixed representations J̄
a0|a1...a8

(3) , the corresponding commutators for K(E11)

and the fully antisymmetric tensors at levels ` ≤ 3 were already given in [36].

2.2 Serre-like relations for K(E10)

The compact subalgebra k admits, thanks to its filtered structure, a ‘Chevalley-Serre-like’

presentation very similar to the one used to define Kac-Moody algebras [41]. Namely,

by transferring the Serre relations (2.2) to the compact subalgebra k one arrives at a

presentation of k as a quotient of a free Lie algebra k̃ by some defining relations. More

explicitly, let

xi := ei − fi, k1 := 〈xi : i = 1, . . . , n〉 , (2.19)

(where 〈. . .〉 denotes the linear span) and let k̃ be the free Lie algebra over k1. The relations

identifying k within k̃ can now be directly obtained from the standard Serre relations (2.2)

and use of the definition (2.19); they read

1−aij
∑

m=0

C
(m)
ij (ad xi)

mxj = 0 (2.20)

where the coefficients C
(m)
ij can be expressed in terms of the Cartan matrix aij. As shown

in [41], the converse is also true: the involutory subalgebra is completely characterized by

the relations (2.20) (obviously, there is no analog of the bilinear relations (2.1)).

In the case at hand, that is for K(E10), eq. (2.20) yields the following non-trivial

Serre-like relation involving the exceptional node (cf. figure 1)

[

x10, [x10, x7]
]

+ x7 = 0 (2.21)
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which in the A9 basis (2.11), using (2.7), reads

[

J8 9 10
(1) ,

[

J8 9 10
(1) , J7 8

(0)

] ]

+ J7 8
(0) = 0. (2.22)

Remarkably, all other such relations are automatically satisfied if one uses an SO(10)

covariant formalism — that is, in order to ensure consistency of a representation we need to

verify only one relation involving the ‘exceptional’ node. This simple observation enables us

to determine the consistency of any given set of transformation rules of a tentative K(E10)

representation: supposing that all objects are written in an SO(10) covariant form, all one

requires is that relation (2.22) be satisfied on all elements of the representation space. In

particular, the consistency is completely ‘localized’ within the transformation rules under

the ‘levels’ ` = 0 and ` = 1. A formal proof of this statement can be found in appendix B.

This property shows that, if the consistency condition (2.22) is satisfied, the knowl-

edge of the K(E10) transformations of ‘level’ zero and one is sufficient, in principle, to

determine all the K(E10) transformations (see e.g. (2.24) below). As a warning to the

reader, however, we note that the analysis of supergravity below gives expressions for more

than just the lowest two levels. In such a case, the comparison of the supergravity-derived

` ≥ 2 transformation rules with those induced from the abstract mathematical theory will

provide further checks of the supergravity/coset correspondence. In some cases we will find

disagreement; however, this does not by any means invalidate the reasoning of this section,

but rather indicates the need for an appropriate modification of the E10/K(E10) model (or

of the ‘dictionary’) we introduce below.

As an application let us consider the two non-faithful representations of K(E10) con-

structed recently [26, 25, 27] (whose realization in the context of the supersymmetric

E10/K(E10) model will be discussed in much more detail in the following sections). There,

the following Dirac-spinor transformation rules at levels ` = 0, 1 were deduced:

Jab
(0) · ε =

1

2
Γabε , Jabc

(1) · ε =
1

2
Γabcε. (2.23)

Here, ε is a 32-dimensional spinor which, as an SO(10) representation, is a 32-component

Majorana spinor of SO(10). Now it is straightforward to check from (2.26), by using Γ

algebra, that the sufficient consistency condition (2.22) is satisfied. Therefore, there is a

unique consistent way of extending the above transformation rules to all of K(E10). The

higher-level transformations are then defined through the filtered algebra structure. For

example, the ‘level’ ` = 2 transformation must be (cf. the second equation in (2.13))

Ja1...a6

(2) · ε :=

(

[

Ja1a2a3

(1) , Ja4a5a6

(1)

]

+ 18δa1a4δa2a5Ja3a6

(0)

)

· ε =
1

2
Γa1...a6ε. (2.24)

Continuing in this manner, we obtain, at the next level,

Ĵa1...a7

(3) · ε =
9

2
Γa1...a7ε , J̄

a0|a1...a8

(3) · ε = 0 (2.25)

The latter relation shows in particular, that the mixed symmetry generator J̄
a0|a1...a8

(3) is

trivially represented on the Dirac spinor — in agreement with the fact that one can only
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build fully anti-symmetric tensors from Γ-matrices. By repeating (2.24), we could now in

principle work out the action of all K(E10) elements on ε. Going up in level in this way,

there will be an (exponentially) increasing number of K(E10) elements that are represented

trivially like J̄
a0|a1...a8

(3) , see also section 2.4.

Similarly, a ‘vector-spinor’ representation was defined in [25, 27] with ` = 0, 1 trans-

formation rules given by

(

Jab
(0) · Ψ

)

c
=

1

2
ΓabΨc + 2δ[a

c Ψb],

(

Jabc
(1) · Ψ

)

d
=

1

2
ΓabcΨd + 4δ

[a
d ΓbΨc] − Γd

[abΨc]. (2.26)

Here, Ψa is a 320-dimensional object which, as an SO(10) representation, is the tensor

product of the 32-component Majorana spinor of SO(10) with the 10-component vector.

In [25] we wrote these transformations using

J
(0)
Λ =

1

2
Λ

(0)
ab Jab

(0), J
(1)
Λ =

1

3!
Λ(1)

a1a2a3
Ja1a2a3

(1) , etc. (2.27)

The representation (2.26) will be discussed in more detail below, so let us just record here

that it is again straight-forward to check from (2.26) that the consistency condition (2.22) is

satisfied. Let us also note that, as an SO(10) representation, Ψa is not irreducible since one

can isolate a Γ-trace. However, it is irreducible as a representation of K(E10): assuming

ΓdΨd = 0, we find

Γd
(

Jabc
(1) · Ψ

)

d
= −Γ[abΨc] 6= 0 (2.28)

whence Γ-tracelessness is not preserved by the level one transformation of k. For arbitrary

spatial dimension ∆, the corresponding result is5

Γd
(

Jabc
(1) · Ψ

)

d
= (9 − ∆)Γ[abΨc] (2.29)

Thus, the removal of a Γ-trace is only possible for ∆ = 9 (that is, K(E9)), in agreement

with the results of [30].

The transformation rules for Ψa on ‘levels’ two and three implied by (2.26) are

(

Ja1...a6

(2) · Ψ
)

b
=

1

2
Γa1...a6Ψb − 10δ

[a1

b Γa2...a5Ψa6] + 4Γb
[a1...a5Ψa6],

(

J
a0|a1...a8

(3) · Ψ
)

b
= +

16

3

(

Γb
a1...a8Ψa0 − Γb

a0[a1...a7Ψa8]
)

+ 12δa0 [a1Γa2...a8]Ψb

−168δa0 [a1Γb
a2...a7Ψa8] − 16

3

(

− 8δa0
b Γ[a1...a7Ψa8]

+δ
[a1

b Γa2...a8]Ψa0 − 7δ
[a1

b Γa0
a2...a7Ψa8]

)

. (2.30)

When contracted with a transformation parameter Λ
(3)
a0|a1...a8

the last relation simplifies to

(

1

9!
Λ

(3)
a0|a1...a8

J
a0|a1...a8

(3) · Ψ
)

b

= +
2

3 · 8!

(

Λ
(3)
a0|a1...a8

Γb
a1...a8Ψa0 (2.31)

5By contrast, checking the consistency relation (2.22) for ‘spinor’ or ‘vector-spinor’ representations does

not depend on the spatial dimension ∆; see also [28].
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+8Λ
(3)
b|a1...a8

Γa1...a7Ψa8 + 2Λ
(3)
c|ca1...a7

Γa1...a7Ψb − 28Λ
(3)
c|ca1...a7

Γb
a1...a6Ψa7

)

.

in agreement with the formulas given in [25, 27].

As shown in [28], by restricting the action of K(E10) via the formulas (2.23) and (2.26)

to its subgroups appropriate to IIA and IIB supergravity, respectively, one sees that the

unfaithful 32 and 320 representations of K(E10) give rise simultaneously to both the

(vectorlike) IIA and (chiral) IIB spinors.

2.3 Invariant bilinear forms for K(E10) spinors

It is possible to define invariant symmetric bilinear forms on the unfaithful 32 and 320

spinor representations of K(E10) that can be used to define an action for these fields. We

denote these by (·|·)s for the 32 Dirac-spinor and by (·|·)vs for the 320 vector-spinor.6

These forms are defined by

(ϕ|χ)s = ϕT χ (2.32)

for Dirac-spinors ϕ,χ, and by

(Ψ|Φ)vs = ΨT
a ΓabΦb (2.33)

for vector-spinors Ψ = (Ψa) and Φ = (Φa).

These expressions are known to be invariant under Lorentz transformations, but we

also need to verify invariance under the additional K(E10) transformations on higher levels.

The general relation to check is

(x · ϕ|χ)s + (ϕ|x · χ)s = 0 (2.34)

for all x ∈ k, and for all ϕ and χ in the representation space, and similarly for the vector-

spinor. Due to the filtered structure of k (and the associated recursive definition of the

representations) it is sufficient to verify invariance under a transformation with the level-one

generator Ja1a2a3

(1) . The invariance of the Dirac-spinor invariant form follows immediately

from the fact that Ja1a2a3

(1) is represented as 1
2Γa1a2a3 (see eq. (2.23)) and that this is an anti-

symmetric Γ-matrix, cf. appendix A, like all the other matrices listed in (2.24) and (2.25).

For the vector-spinor the condition (2.34) for Ja1a2a3

(1) reduces to the evaluation of the

expression
[

Γcd,Γa1a2a3
]

+ 8δda3Γca1Γa2 − 2δda3ΓcbΓb
a1a2 − 8δca3Γa1Γa2d + 2δca3Γb

a1a2Γbd

which needs to vanish for all a1, a2, a3, c, d. (Here, anti-symmetrization over (a1, a2, a3)

is implicit.) Doing the calculation in order to check (2.34) shows that the invariance is

dimension dependent. Whereas (2.33) defines an invariant form on vector spinors for any

SO(∆), the transformations (2.26) under Jc1c2c3
(1) is compatible with (2.34) only if ∆ = 10,

which is the only value for which the above combination vanishes.7

6These forms become anti-symmetric when evaluated on anti-commuting Grassmann variables; in par-

ticular, (ϕ|ϕ)s = 0 for anti-commuting fermions ϕ.
7Note that ∆ = 10 corresponds to a one-dimensional (reduced) dynamics, so that the existence of an

action in this case is in agreement with the folklore that invariant actions for hidden symmetries only exist

in odd space-time dimensions.
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2.4 Ideals of K(E10)

Both the representations (2.23) and (2.26) are finite-dimensional representations of the

infinite-dimensional algebra k. Therefore they are necessarily unfaithful : this means that

there exist generators (or combinations of generators) of K(E10) which are mapped to the

zero matrix acting on the representation space. The existence of unfaithful representations

has a number of consequences which we now discuss. Most importantly, k is not simple (in

the sense of the classification of Lie algebras). The hidden information about k (and e10

itself!) implicit in this result remains to be exploited for its full worth.

Let V be an (unfaithful) representation space of k and define the following subset of k

iV := {x ∈ k : x · v = 0 for all v ∈ V } , (2.35)

i.e. the kernel of the representation map ρV : k → End(V ). It is easily checked that the

space iV is an ideal (under the Lie bracket) of k. By definition, a representation V is

unfaithful if iV 6= {0}, and the existence of the unfaithful representations above implies the

existence of non-trivial ideals in k. In technical terms, this means that k is not simple. The

Kac-Moody algebra e10, by contrast, is simple (since its Dynkin diagram is connected).8

The existence of an ideal (for example implied by an unfaithful representation) also provides

us with a new, usually infinite-dimensional representation of k, namely the ideal iV itself.

Given two ideals i1 and i2 of k one can form new ideals of k in a number of ways: the

direct sum i1 ⊕ i2, the commutator [i1, i2], the intersection i1 ∩ i2 and the quotient i1 : i2

are all ideals of k. In addition, using the (invariant) symmetric bilinear form of k, it is

easily checked that the orthogonal complement i⊥ of any ideal i is a new ideal. These

constructions of new ideals are, however, not linked in any obvious way to operations on

unfaithful representations. We should also stress that there is no one-to-one correspondence

between ideals and unfaithful representations. An important question we leave unanswered

here is what the maximal solvable ideal (a.k.a. the radical) of k is — its associated quotient

would describe the ‘semi-simple part’ of k.

For the case of the unfaithful Dirac-spinor representation defined in (2.23), the ideal

iV ≡ iDirac has the following (schematic) structure. As already noted below (2.25), the

generator J̄
a0|a1...a8

(3) is represented trivially on the Dirac-spinor. Hence,

iDirac =
〈

J̄
a0|a1...a8

(3) , . . .
〉

= G(3) ⊕ G(4) ⊕ . . . (2.36)

where G(`) is the linear span of the generators of the ideal at level `. The spaces G(`)

contain at least all the elements obtained from lower level G(m) by commuting with K(E10)

generators J(`−m) (for m < `) in all possible ways. For example, one must have
[

J(1), G(3)

]

⊂ G(4), etc. (2.37)

8Some finite-dimensional simple Lie algebras for which a similar phenomenon occurs are sl(4) with max-

imal compact subalgebra so(4) ∼= so(3) ⊕ so(3), and e5(5) ≡ so(5, 5) with maximal compact subalgebra

so(5)⊕ so(5) (the latter being the symmetry of maximal supergravity in six dimensions). In both examples

the lack of simplicity of the maximal compact subalgebra is reflected in the existence of unfaithful represen-

tations on which one of the summands acts trivially (although it is not always the case that an algebra with

ideals splits into a direct sum). These examples also show that one and the same ideal may be associated

with (in fact, infinitely) many unfaithful representations.
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We do not know if repeated commutation exhausts all of the ideal. If this were the case,

the Dirac ideal would be a Hauptideal generated by a certain lowest weight element among

J̄
a0|a1...a8

(3) . However, in order to decide this question we would need to know all the relevant

structure constants.

On level ` = 4, K(E10) contains four different SO(10) representations which we denote

by J̄
(ab)
(4) , Ĵ(4), J̄

a1...a9|b1b2b3
(4) and Ĵ

[a1...a6]
(4) (as these will appear nowhere else in this paper there

is no need to be more specific here). Since only generators with anti-symmetric SO(10)

indices can occur in the Γ algebra, all generators which are not anti-symmetric will belong

to the ideal (as is also true for all higher levels). The singlet generator Ĵ is represented

by Γ0, and the anti-symmetric six index generator Ĵa1...a6

(4) is represented by a Γ(6)-matrix,

just like Ja1...a6

(2) . Hence, the generators of relations for the Dirac ideal iDirac on ` = 4 are9

G(4) =
〈

J̄ab
(4) , J̄

a1...a9|b1b2b3
(4) , (Ĵa1...a6

(4) − Ja1...a6

(2) )
〉

, (2.38)

and it is clear at least in principle how to continue in this way to determine the higher

level sectors G(5), . . . of the ideal. However, this inductive procedure involves also com-

puting the K(E10) structure constants to higher and higher level. This is a hard problem

computationally [42]. At any rate, it seems intuitively clear from these arguments that the

existence of non-trivial ideals in k hinges very much on the fact that k is not a graded Lie

algebra, that is, on the existence of the second term on the r.h.s. of (2.16).

For any ideal iV we can define the quotient Lie algebra

qV := k/iV , (2.39)

which by general arguments is isomorphic (as a Lie algebra) to the image of k under the

representation map ρV

qV
∼= ImρV ⊂ End(V ), (2.40)

and so is a Lie subalgebra of the Lie algebra of endomorphisms of the representation space

V . Associated with the ideal iV is the orthogonal complement

i⊥V = {x ∈ k | 〈x|iV 〉 = 0}. (2.41)

If k were finite-dimensional, i⊥V would be a subalgebra of k, and, in fact, the same as

the quotient Lie algebra qV . However, in the infinite-dimensional case, the situation is

much more subtle, as formally divergent sums may appear. For this reason, the study of

orthogonal complements necessitates extra analytic categories (in additional to the purely

algebraic ones considered so far). More specifically, one can make the Lie algebra k into a

Hilbert space by means of the scalar product

(x, y) := −〈x|y〉 (2.42)

9Fixing a convenient normalisation for Ĵ
a1...a6

(4) .
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which is the restriction of the ‘almost positive’ Hermitean form −〈x|θ(y)〉 on e10 to k (cf.

section 2.7 in [38]), and positive definite on k. The Hilbert space H is then defined as

H :=
{

x ∈ k | (x, x) < ∞
}

(2.43)

A study of the affine case10 now suggests that, for finite-dimensional representation spaces

V , the elements of i⊥V are generically not normalisable w.r.t. the norm (2.42), hence do

not belong to H. In other words, the orthogonal complement i⊥V consists of distributional

objects.

Let us make these abstract statements a little more concrete for the unfaithful Dirac

spinor representation. In this case, the image of the representation map appearing in (2.40)

coincides with the set of anti-symmetric (32 × 32)-matrices since all J(0) and J(1) are

represented by anti-symmetric Γ-matrices, and hence their commutators are also anti-

symmetric 32×32-matrices. By Γ-matrix completeness, the quotient Lie algebra is therefore

isomorphic to so(32):

k/iDirac
∼= so(32). (2.44)

For the reasons already explained above this relation does not mean that the quotient alge-

bra k/iDirac can be explicitly written (in finite terms) as an so(32) subalgebra of k (as would

have been the case for a finite-dimensional Lie algebra). Namely, if it were, one would have

to identify a set of elements of k obeying the so(32) commutation relations. This, in turn,

would require solving the relations of the ideal, for example relating the ‘level zero’ element

J
[ab]
(0) to infinitely many other anti-symmetric two index so(10) representations contained in

k. Consequently, the resulting expression would be a formally infinite series in k elements,

such that the commutator of two such elements would not be a priori defined even in the

sense of formal power series (in the affine case leading to a product of δ-functions at coin-

cident arguments). However, this does not necessarily preclude the possibility to regularise

the divergence in a physically meaningful way, for instance in terms of an ‘evaluation map’

as in the affine case [30].

For this reason the correct statement is that so(32) is contained in k as a quotient,

but not as a subalgebra. Let us also note that so(32) appears here somewhat accidentally,

and is in fact not tied to studying D = 11 supergravity, nor to the presence of a three-

form potential AM1M2M3 in this theory. Namely, repeating the same analysis for pure

gravity (governed by AE10) one finds that the unfaithful Dirac-spinor of K(AE10) has as

its quotient the very same algebra so(32). More importantly, the gravitino (vector spinor)

320 anyway does not fit into a linear representation of SO(32). For the unfaithful vector-

spinor the corresponding ideal ivs gives rise to a quotient Lie algebra

k/ivs ⊂ gl(320) (2.45)

but we have not determined which one.

The possible physical significance of SO(32) and of SL(32) had already been investi-

gated in previous work. The relevance of SL(32) (or GL(32)) had first been pointed out

10Which we will discuss elsewhere.
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in a study of the dynamics of five-branes [43]. The possible role of these groups as ‘gener-

alised holonomy groups’ was explored in studies of (partially) supersymmetric solutions of

D = 11 supergravity [44 – 46]. In [47] it was shown that there are global obstructions to

implementing SO(32) (or SL(32)) as symmetry groups of M-theory, as these groups do not

possess representations that reduce to the required spinor (double-valued) representations

w.r.t. the groups of spatial and space-time rotations in eleven dimensions. This problem is

altogether avoided here.

3. Reduction of D = 11 supergravity

After the mathematical preliminaries we now turn to supergravity and the E10 model in

order to see how the structures discussed above are realised in supergravity. A related

analysis of massive IIA supergravity (for which the relevant subgroup of E10 is D9 ≡
SO(9, 9)) had already been carried out in [21].

3.1 Redefinitions and gauge choices

We decompose the elfbein in pseudo-Gaussian gauge as11

EM
A =





N 0

0 em
a



 . (3.1)

Small Latin indices again run over the spatial directions a = 1, . . . , 10. Curved indices are

M = 0, 1, . . . , 10 and m = 1, . . . , 10. As in [20, 21], we define a rescaled lapse n (= Ñ

of [18]) by

n := Ng−1/2 , (3.2)

where
√

g ≡ det em
a. Anticipating on the supergravity-coset dictionary detailed below, we

shall identify the rescaled supergravity lapse (3.2) with the coset ‘einbein’, used to convert

flat (V0) into curved (Vt) one-dimensional coset indices, that is, we set Vt = nV0, etc., where

t denotes the time-parameter used in the coset model (see below for more examples). The

redefinition (3.2) is also in accord with the rescaling required in Kaluza-Klein theories to

convert the reduced action to Einstein frame (although the relevant formula fails for d = 2,

remarkably, it does work again in d = 1). In the remainder, we will also assume that the

following trace of the spatial spin connection vanishes

ωa ab = 0 . (3.3)

The redefined supergravity fermions are denoted by small Greek letter ψM and ε, and

are related as follows to the ‘old’ fermionic variables of appendix A by

ψ0 = g1/4
(

ψ
(11)
0 − Γ0Γ

aψ(11)
a

)

,

ψa = g1/4ψ(11)
a ,

11Our signature is mostly plus. All our other conventions are detailed in appendix A.
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ε = g−1/4ε(11). (3.4)

Here, we have re-instated the superscript (11) also used in [25] to denote the standard

D = 11 fermions (which for ease of notation was suppressed in app. A). Our convention

here is such that we use capital letters for K(E10) spinors and small letters for redefined

D = 11 spinors. Therefore the correspondence with the notation in [25] is ψa ≡ ψ
(10)
a .

The one-dimensional gravitino with lower world index t is then

ψt = nψ0 = ng1/4
(

ψ
(11)
0 − Γ0Γ

aψ(11)
a

)

. (3.5)

These redefinitions imply for the supersymmetry variation of n (as in [21])

δn = iε̄Γ0ψt . (3.6)

This is the one-dimensional analog of the standard vielbein variation in supergravity, and

shows that the einbein n and the redefined time-component ψt of the gravitino in (3.5) are

superpartners.

3.2 Fermion Variations

For the variation of the gravitino component ψt we find, with all the redefinitions (3.4),

and to linear order in the fermions,

δεψt = ∂tε +
1

4
NΩ0[a b]Γ

abε − 1

12
NF0abcΓ

abcε +
N

48
FabcdΓ0Γ

abcdε (3.7)

−1

8
NΩ[ab c]Γ0Γ

abcε +
1

2
NΩ0a 0Γ

aΓ0ε − NΓ0Γ
a
(

∂aε +
1

4
g−1∂agε

)

,

where we made use of (3.3), ∂a ≡ ea
m∂m and where

NΩ0a b = ea
m∂tebm, (⇒ ωa b0 = Ω0(a b), ω0 ab = Ω0[a b])

NΩ0 a0 = ea
m∂mN,

NF0abc = ea
meb

nec
pFtmnp. (3.8)

In (3.7), we have already grouped the first three ‘connection terms’ on the r.h.s. in the

level order that will be seen to emerge on the σ-model side. We should like to emphasize

that no truncations have been made so far, and the above formula is thus still completely

equivalent to the original gravitino variation of D = 11 supergravity. In particular, it still

contains contributions, namely the last two terms in (3.7) involving spatial gradients of

the lapse N and the supersymmetry parameter ε, which are not understood so far in the

framework of the E10/K(E10) σ-model.

For the ‘internal’ (redefined) gravitino components we obtain

δεψa = g1/2

(

∂a +
1

4
g−1∂ag

)

ε + N−1g1/2

[

1

2
NΩ0(a b)Γ

bΓ0ε

+
1

8
N(Ωab c + Ωca b − Ωbc a)Γ

bcε − 1

36
NF0bcdΓ

0
(

Γa
bcd − 6δb

aΓ
cd

)

ε
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+
1

144
NFbcde

(

Γa
bcde − 8δb

aΓ
cde

)

ε

]

. (3.9)

Let us emphasize once more the importance of using flat indices in (3.7) and (3.9), as this

will facilitate the comparison with the K(E10) covariant quantities to be introduced in the

following section. Note also that, by virtue of (3.2), the prefactor of the square bracket

in (3.9) is simply n−1. This ensures that, when we rewrite these relations in terms of

K(E10) covariant objects below, it is always the einbein n, rather than N , which appears

in the proper places to make (3.9) a world-line scalar (whereas ψt is to be regarded as a

‘world line vector’).

3.3 Fermion equation of motion

In this section we will adopt the supersymmetry gauge

ψt = 0 ⇐⇒ ψ
(11)
0 = Γ0Γ

aψ(11)
a . (3.10)

With this gauge choice, the local supersymmetry manifests itself only via the supersym-

metry constraint. This is analogous to the bosonic sector, where after fixing diffeomor-

phism and gauge invariances, one is left only with the corresponding constraints on the

initial data. As is well-known, the supersymmetry constraint is the time component of the

Rarita-Schwinger equation (A.24)

S̃ := E0 = ΓabD̂a(ω,F )ψ
(11)
b = 0. (3.11)

Writing out this constraint, we obtain

S̃ = Γab

[

∂aψ
(11)
b +

1

4
ωa cdΓ

cdψ
(11)
b + ωa bcψ

(11)
c +

1

2
ωa c0Γ

cΓ0ψ
(11)
b

]

+
1

4
F0abcΓ

0Γabψ(11)
c +

1

48
FabcdΓ

abcdeψ(11)
e . (3.12)

The terms involving the spatial spin connection can be further simplified upon use of the

tracelessness condition (3.3)

Γab
(1

4
ωa cdΓ

cdψ
(11)
b + ωa bcψ

(11)
c

)

=
1

8
Ω[ab c]Γ

abcdψ
(11)
d +

1

4
Ωab cΓ

abψ(11)
c . (3.13)

To write the remaining ten components of (A.24), we define

Ẽa := Γ0ΓB
(

D̂aψ
(11)
B − D̂Bψ(11)

a

)

= 0. (3.14)

When working them out we must not forget to replace ψ
(11)
0 everywhere by Γ0Γ

aψ
(11)
a

according to (3.10). Switching to the redefined fermionic variables (3.4), and setting Ea :=

Ng1/4Ẽa, the complete expression is (because sums are now with the Euclidean metric δab

the position of spatial indices does not really matter anymore, so we put them as convenient,

whereas the position of ‘0’ does matter)

Ea = ∂tψa + Nω0 abψb +
1

4
Nω0 cdΓ

cdψa (3.15)
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− 1

12
NF0bcdΓ

bcdψa − 2

3
NF0abcΓ

bψc +
1

6
NF0bcdΓa

bcψd

+
1

144
NFbcdeΓ

0Γbcdeψa +
1

9
NFabcdΓ

0Γbcdeψe − 1

72
NF bcdeΓ0Γabcdefψf

+N(ωabc − ωbac)Γ
0Γbψc +

1

2
NωabcΓ

0Γbcdψd − 1

4
NωbcdΓ

0Γbcdψa

+Ng1/4Γ0Γb
(

2∂aψ
(11)
b − ∂bψ

(11)
a − 1

2
ωc cbψ

(11)
a − ω0 0aψ

(11)
b +

1

2
ω0 0bψ

(11)
a

)

.

Like (3.7) this expression is completely equivalent to the original version, and thus again

contains terms not yet accounted for in the E10/K(E10) σ-model. More specifically, in

the last line we have collected all the terms which are not understood (involving spatial

gradients) or can be eliminated by gauge choice (3.3); the factor of 2 in front of ∂aψ
(11)
b

comes from the extra contribution ∝ ∂aψ
(11)
0 .

In section 5 we will translate equations (3.7), (3.9), (3.12) and (3.15) into K(E10)

covariant objects as far as possible.

4. E10-model with fermions

We here briefly summarize previous results. The bosonic degrees of freedom of the

E10/K(E10) σ-model are contained in a ‘matrix’ V(t) ∈ E10 depending on an affine

(time) parameter t, in terms of which the trajectory in the E10/K(E10) coset space is

parametrized. The associated e10-valued Cartan form can be decomposed as

∂tVV−1 = Q + P , Q ∈ k , P ∈ e10 ª k . (4.1)

Alternatively, we can write this as

DVV−1 = P (4.2)

where D denotes the K(E10) covariant derivative

D := ∂t −Q, (4.3)

involving the K(E10) connection Q. Making use of the decomposition of E10 into antisym-

metric and symmetric elements (cf. (2.11) and (2.12)), we write

P =
1

2
P

(0)
ab Sab

(0) +
1

3!
P

(1)
abcS

abc
(1) +

1

6!
P (2)

a1...a6
Sa1...a6

(2)

+
1

9!
P

(3)
a0|a1...a8

S
a0|a1...a8

(3) + · · · (4.4)

and

Q =
1

2
Q

(0)
ab Jab

(0) +
1

3!
Q

(1)
abcJ

abc
(1) +

1

6!
Q(2)

a1...a6
Ja1...a6

(2)

+
1

9!
Q

(3)
a0|a1...a8

J
a0|a1...a8

(3) + · · · . (4.5)
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Although k is not a graded Lie algebra in view of (2.15), we will nevertheless exploit its

filtered structure and assign a ‘level’ to the various terms in the expansion of Q as above.

We also define for later convenience the partially covariantised derivative

D(0)P (`) = ∂P (`) −
[

Q(0), P (`)
]

−
[

Q(`), P (0)
]

. (4.6)

This is the derivative also appearing in table 1. Unless stated otherwise, we will work in

the following in (almost) triangular gauge for V(t) ∈ E10; this implies [20]

P (`) = Q(`) for ` > 0. (4.7)

Of course, in a general gauge, this relation will no longer hold.

In order to obtain an explicit expression for Q and P in terms of coset manifold coor-

dinates, and to write the bosonic equations of motion in the standard second order form,

one must, of course, choose an explicit parametrisation V(t) = V
(

h(t), A(3)(t), A(6)(t), . . .
)

as was done in [19, 25]. This choice is naturally subject to ‘general coordinate transforma-

tions’ on the coset space, that is, to non-linear field redefinitions of the basic fields (which

maintain the triangular gauge). For this reason, the relation between the coset fields ap-

pearing in the exponential parametrisation of V and the ones appearing in supergravity

depends on coordinate choices in field space. It is therefore convenient (and entirely suf-

ficent for our purposes) to work only with the K(E10) objects Q and P, and with ‘flat’

indices, where this coordinate dependence is not visible.

The Lagrangian of the one-dimensional model is assumed to be of the form [25, 27]

L =
1

4n
〈P|P〉 − i

2
(Ψ|DΨ)vs + in−1(Ψt|S)s (4.8)

where 〈·|·〉 is the invariant bilinear form on the e10 Lie algebra and (·|·) are the invariant

forms on the K(E10) spinor representations of section 2.3. The expression S denotes

the (rescaled) supersymmetry constraint and is proportional to P ¯ Ψ which is a certain

projection from the tensor product P ⊗ Ψ to a Dirac-spinor representation of K(E10),

and Ψt is a Dirac-spinor Lagrange multiplier. Starting from supergravity we will be more

explicit below as to what we can say about this projection and how the supersymmetry

constraint P ¯ Ψ can be expressed in terms of E10/K(E10) coset variables.

We will also investigate the invariance of the Lagrangian (4.8) under local supersym-

metry transformations with transformation parameter ε in a Dirac-spinor representation

of K(E10). Schematically, these will be of the form

δεP = DΣ + [Λ,P], δεn = iεT Ψt,

δεΨ = ε ¯ P, δεΨt = Dε, (4.9)

where Σ and Λ are fermion bilinears constructed out of Ψ and ε. Note that the ‘supersym-

metry gauge-fixed’ action obtained by imposing Ψt = 0 is then expected to be invariant

under residual ‘quasi-rigid’ supersymmetry transformations constrained to satisfy Dε = 0.

Since we do not have the expressions for (4.9) to arbitrary levels we cannot present

a complete analysis of how local supersymmetry is realised in (4.8) — as will be argued
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shortly the action (4.8) for unfaithful fermions will fail to simultaneously possess K(E10)

symmetry and local supersymmetry.

The equations of motion are obtained by varying (4.8) with respect to P and Ψ. In

the gauge Ψt = 0 they are to lowest order in fermions

D(n−1P) = 0 ⇔ n∂t(n
−1P) − [Q,P] = 0 (4.10)

DΨ = 0 ⇔ ∂tΨ −Q · Ψ = 0. (4.11)

In the last equation, the K(E10) gauge connection Q acts in the appropriate (here: vector-

spinor) representation. For a general representation R we write the K(E10) covariant

derivative D as

R
D = ∂t −

(1

2
Q

(0)
ab

R
J ab

(0) +
1

3!
Q

(1)
abc

R
J abc

(1) +
1

6!
Q(2)

a1...a6

R
J a1...a6

(2)

+
1

9!
Q

(3)
a0|a1...a8

R
J

a0|a1...a8

(3) + · · ·
)

, (4.12)

where
R
J is the form a K(E10) generator takes in the representation R.

Employing the unfaithful vector-spinor of section 2 in (4.11) we note the (potentially

pathological) feature that the components of Q in the ideal ivs of (2.45) do not couple to the

fermionic field Ψ. Hence the unfaithful spinor Ψ couples only to a very restricted subset of

the bosonic σ-model degrees of freedom. Similar features can be anticipated when writing

down K(E10)-covariant supersymmetry transformation rules with the unfaithful fields, as

will be discussed below.

Varying with respect to the Lagrange multipliers n (ensuring invariance under time

reparametrisation) and Ψt (hopefully linked to local supersymmetry) gives the constraints

of (4.8)

〈P|P〉 = 0 , P ¯ Ψ = 0. (4.13)

5. Supergravity and the E10/K(E10) σ-model

Now we turn to the comparison of the supergravity expressions of section 3 and the σ-

model expressions of the preceding section. The method adopted here differs from the one

used in previous work in that we shall start from postulating a correspondence between the

fermionic variables, and deduce from it the correspondence between the bosonic variables

(previously, we started from the bosonic equations of motion to derive the supergravity-

coset dictionary). Accordingly, we stipulate as starting point the following correspondence

between the supergravity fermions (3.4) and the unfaithful K(E10) spinor representations of

section 2 by identifying (in addition to the bosonic identification (Ng−1/2)(t,x0) ≡ ncoset(t)

of eq. (3.2))

ψa(t,x0) = Ψa(t) ,

ψt(t,x0) = Ψt(t)

ε(t,x0) = ε(t) , (5.1)
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with the supergravity objects on the left hand side evaluated at a fixed but arbitrary spatial

point x0, and the K(E10) objects on the right hand side. We will truncate systematically

spatial frame gradients of the fermionic fields in the supergravity expressions. Proceeding

from (5.1), we then infer the bosonic correspondence from an analysis of the supersymmetry

variations, employing techniques that had already been successfully used in [31 – 33].

5.1 Re-derivation of the bosonic ‘dictionary’

We first re-derive the bosonic ‘dictionary’ which accompanies (5.1) by using as input the

supersymmetry variation of the eleven-dimensional gravitino ψt in (3.7) and comparing

it with the expected supersymmetry variation (4.9) of the coset Lagrange multiplier Ψt,

in which D denotes the K(E10) covariant derivative (4.12) in the unfaithful Dirac-spinor

representation (2.23). The basic equation which will allow us to extend the dictionary to

the bosonic sector is

δεψt
!
= δεΨt =

s
D ε = (∂t−

s
Q)ε. (5.2)

We can expand the right hand side of (5.2) from (4.12) and (2.23) as

Dε = ∂tε −
1

4
Q

(0)
ab Γabε − 1

12
Q(1)

a1a2a3
Γa1a2a3ε − 1

2 · 6!Q
(2)
a1...a6

Γa1...a6ε

− 1

6 · 7!Q
(3)
b|ba1...a7

Γa1...a7ε + · · · (5.3)

where the dots stand for higher level contributions. Comparing this expression with (3.7)

we can read off the identification (‘dictionary’)

Q
(0)
ab (t) = −Nω0ab(t,x0) = −NΩ0[a b](t,x0),

Q
(1)
abc(t) = NF0abc(t,x0),

Q(2)
a1...a6

(t) = − 1

4!
Nεa1...a6b1...b4Fb1...b4(t,x0),

Q
(3)
b|ba1...a7

(t) = −3

4
Nεa1...a7b1b2b3Ωb1b2 b3(t,x0). (5.4)

This fixes only the trace part Q
(3)
b|ba1...a7

of the level three gauge connection — as was to be

expected since Q̄
(3)
a0|a1...a8

is contracted with a generator contained in the ideal of the Dirac

representation. However, demanding that the expression for the full Q(3) does not involve

this trace separately, leads to12

Q
(3)
a0|a1...a8

(t) =
3

4
Nεa1...a8b1b2Ωb1b2 a0(t,x0). (5.5)

In triangular gauge (4.7) we can now directly infer from this the corresponding dictio-

nary for the P components

P
(1)
abc(t) = NF0abc(t,x0)

12Alternatively, the complete result for Q(3) can be deduced by matching the Rarita-Schwinger equa-

tion (3.15) with its K(E10) covariant form (5.10), see following section.
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P (2)
a1...a6

(t) = − 1

4!
Nεa1...a6b1...b4Fb1...b4(t,x0)

P
(3)
a0|a1...a8

(t) =
3

4
Nεa1...a8b1b2Ωb1b2 a0(t,x0) (5.6)

The only undetermined piece at this point is P
(0)
ab . Its explicit expression follows either

from inspection of (5.8) below and comparison with (3.9), or alternatively from splitting

the Cartan form associated with the GL(10) submatrix of the ‘unendlichbein’ V into its

symmetric and anti-symmetric parts; either way the result is

P
(0)
ab (t) = −Nω(a b)0(t,x0) = −e(a

m∂temb)(t,x0) (5.7)

The above list is identical to the dictionary derived in [19] (and also [25]) if one follows

through all changes in convention.13 We emphasize again that the present analysis did not

involve the bosonic equations of motion, but only the supersymmetry variations and the

unfaithful K(E10) spinor representations. The correspondence for n = Ng−1/2 was already

motivated in (3.2) for the simple form of the variation (3.6).

It remains to rewrite the variation (3.9) of the 320 gravitino components ψa in coset

quantities. For this we use (i) the dictionary (5.6), (ii) the unfaithful Dirac-spinor ε and

(iii) the identification ψa = Ψa as the correspondence for the 320 components. Putting

everything together leads to the following expression for δεΨa:

δεΨa = n−1Γ0

[

1

2
P (0)

ac Γc − 1

36
P (1)

c1c2c3 (Γa
c1c2c3 − 6δc1

a Γc2c3)

− 1

3 · 6!P
(2)
c1...c6 (Γa

c1...c6 − 3δc1
a Γc2...c6) +

3

9!
P

(3)
a|c1...c8

Γc1...c8

−12

9!
P

(3)
b|bc1...c7

Γa
c1...c7

]

ε + g1/2

(

∂aε +
1

4
(g−1∂ag)ε

)

. (5.8)

This expression can be shown to be K(E10) covariant for all terms involving P (0) and P (1).

K(E10) covariance here means that transforming on the r.h.s. ε in the representation (2.23)

and P as a coset element results in a vector-spinor transformation (2.26) for δεΨa. Antic-

ipating a fully supersymmetric and K(E10) covariant formulation, the above formula has

already been written out in (4.9) in the somewhat symbolic form δεΨ = ε ¯P.

5.2 K(E10) covariant form of RS equation

Like the supersymmetry variations, the fermionic equations of motion can be cast into a

K(E10) covariant form. More specifically, we would like to rewrite the Rarita-Schwinger

equation (3.15) as a K(E10) covariant ‘Dirac equation’ involving the unfaithful fermion

representation Ψa, according to

Ea
!
= (DΨ)a ≡

(

(∂t −Q)Ψ
)

a
. (5.9)

13In comparison with [19] and [25], the relative normalisation is given by P (1)here
abc = 1

2
DAcoset

abc =
1
2
NFDHN

0abc = NFDKN
0abc = NF here

0abc .
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This ansatz is, of course, motivated by the K(E10) covariant spinor equation (4.11); more

explicitly, we now proceed from

(
vs
D Ψ)a = ∂tΨa −

(

1

2
Q

(0)
ab

vs
J ab

(0) · Ψ +
1

3!
Q

(1)
abc

vs
J abc

(1) · Ψ (5.10)

+
1

6!
Q(2)

a1...a6

vs
J a1...a6

(2) · Ψ +
1

9!
Q

(3)
a0|a1...a8

vs
J

a0|a1...a8

(3) · Ψ + · · ·
)

a

.

where the explicit expressions for the K(E10) generators
vs
J (`) are to be substituted from

eqs. (2.26) and (2.30). The resulting expression must then be compared with (3.15) in

order to re-obtain the bosonic dictionary. At this point, (5.9) provides a consistency check

on the results we have obtained so far since all bosonic quantities in (3.15) have found

corresponding coset partners in the dictionary (5.6), and the form of the unfaithful repre-

sentation is known from (2.26). Indeed, performing all the required substitutions on the

r.h.s. of (5.10), we find complete agreement between Ea and (5.10), except for the terms

in the last line of (3.15) which involve spatial gradients of the fermions, the lapse and the

trace of the spin connection.

The agreements established at this stage provide a very non-trivial consistency check.

To underline this point, let us have a closer look at how this agreement works for the

level three terms, as this is the most intricate part of the computation. According to the

dictionary (5.4) the level three terms involve the spatial part of the spin connection ωa bc

in (3.15) which needs to be re-expressed in terms of the anholonomy Ωab c. In order to

establish (5.9), we therefore need to match explicitly

Ωab cΓ
0ΓbΨc +

1

2
Ωab cΓ

0ΓbcdΨd −
1

4
Ωbc aΓ

0ΓbcdΨd −
1

8
Ωbc dΓ

0ΓbcdΨa

!
= −

(

1

9!
Q

(3)
a0|a1...a8

J
a0|a1...a8

(3) · Ψ
)

a

. (5.11)

Using the duality

Ωab c =
2

3 · 8!N
−1εabd1...d8Q

(3)
c|d1...d8

(5.12)

from the dictionary (5.4) we find that the left hand side of (5.11) becomes

= − 2

3 · 8!

(

Q
(3)
b0|b1...b8

Γa
b1...b8Ψb0 + 2Q

(3)
c|cb1...b7

Γb1...b7Ψa

−28Q
(3)
c|cb1...b7

Γa
b1...b6Ψb7 + 8Q

(3)
a|b1...b8

Γb1...b7Ψb8

)

. (5.13)

It is gratifying that equation (5.13) indeed agrees completely with the transformation prop-

erty (2.31) deduced abstractly from purely algebraic considerations in the unfaithful K(E10)

vector-spinor representation (with transformation parameter Λ(3) replaced by Q(3)).

5.3 Supersymmetry constraint

We also rewrite the supersymmetry constraint (3.12) in coset quantities. Defining S =

Ng1/4S̃ we write

S =
1

2

(

P
(0)
ab Γ0Γa − P (0)

cc Γ0Γb

)

Ψb +
1

4
P (1)

c1c2c3Γ
0Γc1c2Ψc3
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− 1

2 · 5!P
(2)
c1...c6Γ

0Γc1...c5Ψc6 +
1

6 · 6!P
(3)
b|bc1...c7

Γ0Γc1...c6Ψc7

− 1

3 · 8!P
(3)
b|c1...c8

Γ0Γc1...c8Ψb + NΓab

(

∂a −
1

4
g−1∂ag

)

Ψb. (5.14)

As before, and in analogy with (4.9), we introduce the symbolic notation

S = P ¯ Ψ (5.15)

for the supersymmetry constraint expressed in E10/K(E10) coset variables.

From the way S appears in the action (4.8) we would like this expression to transform

under K(E10) in the same manner as an unfaithful Dirac-spinor. For an infinitesimal level

one transformation Ja1a2a3

(1) , we need to compare 1
2Γa1a2a3S with the expression obtained by

transforming the P and Ψa symbols in (5.14). Though the terms involving P (0) and P (1)

pass this check, we find that (5.14) is not fully covariant like a Dirac-spinor. More precisely,

in the transformed expression all terms which receive contributions from P (3) do not give

the correct result. This happens for the first time when comparing the resulting terms

involving P (2) since P (3) transforms into P (2) under Ja1a2a3

(1) . This deficiency is likely to be

linked to the projection from the tensor product Ψ ⊗ P of the unfaithful K(E10) spinor

with the faithful infinite-dimensional coset representation onto an unfaithful Dirac-spinor

representation Ψ ¯ P, as in (5.14) where not all components of P appear.

5.4 Supersymmetry variation in the coset

Finally, we study the compatibility of the supersymmetry variation of the bosonic fields

(via the dictionary) with the general variational structure of the coset. For a general

supersymmetry coset variation we write

δεVV−1 = Λ + Σ , Λ ∈ k , Σ ∈ e10 ª k (5.16)

as in (4.1). The advantage of writing the variation in this way is again its K(E10) covari-

ance: if we were to express the variations in terms of explicit ‘coordinates’ on E10/K(E10),

these variations would be subject to possible field redefinitions just as the coordinate fields

themselves. Moreover, this simple expression encapsulates all the variations of the bosonic

fields (including dual magnetic potentials) in a single formula. However, the shortcomings

of the unfaithful spinor representations of K(E10) are again apparent: because Λ and Σ

are bilinear expressions in some fermionic fields ε and Ψ of K(E10), it is not possible to

construct out of only finitely many spinor components ε and Ψa the most general Λ and Σ

(which both have infinitely many independent components), and hence objects which trans-

form in the right way under K(E10). Lastly, the ‘compensating’ K(E10) transformation

with parameter Λ in (5.16) is needed to preserve the triangular gauge.14

Proceeding with the general analysis we deduce by combining (4.1) with (5.16) that

δεP = DΣ + [Λ,P] ,

14The ‘gauge’ term Λ ∈ k was not given in [21]. We thank C. Hillmann for bringing this omission to our

attention.
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δεQ = DΛ + [Σ,P] . (5.17)

In triangular gauge the first equation yields schematically

δεP
(`) = D(0)Σ(`) −

`−1
∑

m=1

P (m)Σ(`−m), (5.18)

where in particular only a finite number of terms contribute on the right hand side. (D(0)

is the partially covariantised derivative of eq. (4.6).)

We can compute the variation of the fields P (`) for ` = 0, 1 by using the dictionary (5.6)

and the supergravity variations (A.15). We find that the general coset structure (5.18)

matches the supergravity result with

Σ
(0)
ab = −iε̄Γ(aΨb),

Σ(1)
a1a2a3

= −3

2
iε̄Γ[a1a2

Ψa3],

Λ
(0)
ab = iε̄Γ[aΨb],

Λ(1)
a1a2a3

= −3

2
iε̄Γ[a1a2

Ψa3]. (5.19)

Here, we have used the correspondence with the unfaithful spinors and ε̄ ≡ εT Γ0. The

structure up to here is also compatible with the K(E10) transformation on the coset: A

level one transformation of the unfaithful spinors in Σ(0) yields the same combination of

Σ(1) terms as transforming Σ(1) as a coset element.15 The choice Σ(1) = Λ(1) ensures that

the supersymmetry tansformations (5.19) preserve the triangular gauge.

Insisting on the correct K(E10) transformation properties we can also compute from

the unfaithful fermions that Σ(2) has to be

Σ(2)
a1...a6

= 3iε̄Γ[a1...a5
Ψa6]. (5.20)

This result is identical with the one that one obtains from supergravity when introducing

a dual potential Aa1...a6 , see appendix A.2.

However, transforming ε and Ψ in Σ(2) under level one again does not give the right

tensor structure Σ
(3)
a0|a1...a8

in agreement with the coset on level three. Rather one finds

also a totally anti-symmetric piece to Σ(3). Such a breakdown is not unexpected since we

knew from the start that ε and Ψ will not suffice to construct Σ to all levels. Again, we

interpret this as the need to find the correct faithful spinor representation ε and Ψ in order

to construct a supersymmetric and E10 invariant model.

6. Canonical structure and constraints

In this section, we consider the (Dirac) algebra of supersymmetry constraints and show that

it properly closes into the bosonic constraints.16 We give the expressions for all constraints

15For this computation it is crucial that Σ(0) contains ε̄ and not simply εT .
16See [48, 49] and [50] for analyses of the supersymmetry constraint algebras for canonical supergravity

in four and three space-time dimensions, respectively.
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in terms of the E10/K(E10) coset variables, but will leave a detailed investigation of their

transformation properties under K(E10) to future work.

6.1 Canonical Dirac brackets

The momentum conjugate to the original supergravity gravitino ψ
(11)
a is given by (sup-

pressing spinor indices)

Πa =
∂L

∂∂tψ
(11)
a

=
i

2
EN−1(ψ

(11)
b )T Γab. (6.1)

Because of the linear dependence of the momentum on ψ(11) (6.1) is tantamount to a

second class constraint, hence we must replace Poisson by Dirac brackets in the standard

fashion [51]. As a result, we can replace the momentum by ψ(11), thus explicitly solving

the constraint (6.1). This yields

(ψ(11)
a )T = −2ig−1/2

9
Πb (8δab + Γab) , (6.2)

and the canonical (Dirac) brackets

{

ψ(11)
a , (ψ

(11)
b )T

}

= −2ig−1/2

(

δab −
1

9
ΓaΓb

)

. (6.3)

Substituting the redefinition (3.4) and making use of the fermionic correspondence (5.1),

we finally obtain (now with all the indices written out)

i

2

{

Ψaα,Ψbβ

}

= δabδαβ − 1

9

(

ΓaΓb

)

αβ
. (6.4)

The canonical bracket (6.4) is the same one would have derived from the E10 model (4.8)

since the kinetic term for ψa is the same.

For the explicit computation of the canonical brackets {S,ST } we note that the second

entry in this bracket corresponds to the (matrix) transpose of S. Hence, the antisymmetric

Γ-matrices appearing in ST change sign relative to S, that is, for Γ(p) with p = 2, 3, 6, 7, 10.

6.2 Constraint algebra

From (6.4) and (5.14) one can now compute {S,S}. We restrict attention here to the

purely bosonic terms (originating from PP{Ψ,Ψ}), and will thus not consider fermionic

bilinears (coming from ΨΨ{P,P}). Since S is an SO(10) Dirac spinor, we can decompose

this symmetric tensor product into its irreducible SO(10) pieces, i.e. in a Γ-basis, using all

the symmetric SO(10) Γ-matrices, see appendix A. The result of this computation is

i

2
{Sα,Sβ} = C(0)δαβ + C(3)

c1...c9Γ
c1...c9
αβ + C(4)

c1...c8Γ
c1...c8
αβ

+C(5)
c1...c5Γ

c1...c5
αβ + C(6)

c1...c4Γ
c1...c4
αβ . (6.5)

where the constraints are labelled by the level of the corresponding contributions as in

table 1 (and thus not by the number of Γ-matrix indices!). A further term proportional
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to a single Γ-matrix Γa
αβ , which is allowed in principle, does not show up in our present

calculation below. As we already mentioned in the introduction, the structure of the terms

on the r.h.s. of (6.5) is reminiscent of the ‘central charge representation’ L(Λ1) of E11 first

introduced in [36]. Let us therefore briefly relate the terms to the more familiar terms in

the D = 11 supersymmetry algebra, which contains the following SO(1, 10) central charges

(see e.g. [52] and references therein)

• PA (translation operator): Reduced to SO(10) this yields a scalar object (C(0) above)

and an SO(10) vector (dual to C(3) above). These are to be interpreted as the Hamil-

tonian and diffeomorphism constraint of the theory. (In a spatial reduction of D = 11

supergravity to type IIA supergravity, these are the D0 brane and the momentum

charge for gravitational waves.)

• ZAB (M2 brane charge): Reduced to SO(10) this yields a vector and a two-form (dual

to C(4) above). The interpretation of the latter in the present context is as the Gauss

constraint of the theory. (In IIA language, these would be interpreted as the central

charges to which the D2-brane and the fundamental string couple as well as their

duals.)

• ZA1...A5 (M5 brane charge): Reduction to SO(10) gives a four-form (C(6) above) and

a five-form (C(5) above). In the present context, they can be interpreted as part of

the Bianchi identities on the four-form potential and on the gravity sector. (In IIA

language, these would be interpreted as the central charges to which the D4-brane

and the NS5 brane couple as well as their duals.)

Assuming that S transforms as a spinor representation of K(E10), one may ask what the

K(E10) decomposition of the r.h.s. of (6.5) would be. If S were an unfaithful Dirac spinor

32, the symmetric product of two 32 representations would be reducible under K(E10) into

a scalar representation (C(0) above) and a remaining piece of dimension 527, by the K(E10)

invariance of (2.32). However, as we pointed out already, with the present dictionary, S
does not transform properly, so that any match to K(E10) representations is bound to be

incomplete.

We now give the result of the computation of {S,S} in this SO(10) basis. For the

scalar (level zero) part we find

C(0) =
1

4
P

(0)
ab P

(0)
ab − 1

4
P (0)

aa P
(0)
bb +

1

12
P (1)

a1a2a3
P (1)

a1a2a3
+

1

12 · 5!P
(2)
a1...a6

P (2)
a1...a6

+
1

9!
P

(3)
a0|a1...a8

P
(3)
a0|a1...a8

− 4

9!
P

(3)
b|ba1...a7

P
(3)
b|ba1...a7

. (6.6)

This result is to be compared with the scalar constraint computed from the bosonic σ-model

with the standard invariant bilinear form, which reads

1

4
〈P|P〉 =

1

4
P

(0)
ab P

(0)
ab − 1

4
P (0)

aa P
(0)
bb +

1

12
P (1)

a1a2a3
P (1)

a1a2a3

+
1

12 · 5!P
(2)
a1...a6

P (2)
a1...a6

+
1

2 · 9!P
(3)
a0|a1...a8

P
(3)
a0|a1...a8

+ . . . (6.7)
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where the dots stand for higher level (` ≥ 4) contributions. One sees that the terms up to

` ≤ 2 match perfectly, but mismatches appear at level ` = 3: (i) the coefficient of the full

mixed tableau is off by a factor of 2, and (ii) the traced tableau appears explicitly, whereas

it is absent from (6.6). The r.h.s. of (6.6) can be identified with the (bosonic part of) the

Hamiltonian constraint of D = 11 supergravity. Indeed the ` = 3 terms appear in exactly

the right combination (neglecting the trace Ωab b)

∝ Ωab cΩab c − 2Ωab cΩbc a (6.8)

appearing in the Einstein-Hilbert action. Another indication of the mismatch is that the

level ` ≥ 1 contributions in (6.7) are manifestly positive, whereas the level-three term

in (6.6) is not.17

The next contributions we consider are those proportional to a Γ(9) matrix (which is

dual to Γ(1)Γ0) in (6.5). Explicitly one finds

C(3)
c1...c9 =

1

3 · 8!P
(0)
ac1P

(3)
a|c2...c9

+
1

6 · 6!P
(1)
c1c2c3P

(2)
c4...c9 . (6.9)

where antisymmetrization over the indices [c1 . . . c9] is understood. After a little algebra

this expression reduces to (after dualisation in [c1 . . . c9])

εac1...c9C(3)
c1...c9 ∝ Ωab cωb c0 −

1

3
FabcdF0bcd (6.10)

in terms of the original supergravity variables. Using the the tracelessness of Ωab c we can

rewrite first term on the r.h.s. as

Ωab cωb c0 = Ωab c(ωb c0 − δbcωe e0) ≡ Ωab cΠbc (6.11)

where Πab is the gravitational canonical momentum (with flat indices). Hence, ignoring

spatial gradients, this is just the diffeomorphism (momentum) constraint G0a = 0 of super-

gravity (with the correct relative coefficient).

Next we compute the contributions proportional to Γ(4), which read

C(4)
c1...c8 = − 1

4 · 4! · 4!P
(2)
a1a2c1...c4P

(2)
a1a2c5...c8 −

1

3 · 7!P
(1)
a1a2c1P

(3)
a1|a2c2...c8

+
1

6 · 6!P
(1)
ac1c2P

(3)
b|bac3...c8

. (6.12)

Again, the trace of ` = 3 appears separately. After dualising the relevant terms the result

is proportional to

εabc1...c8C(4)
c1...c8 ∝ Ωcd [aFb]0cd +

1

576
εabc1...c4d1...d4Fc1...c4Fd1...d4 (6.13)

which (again neglecting spatial gradients) coincides with the Gauss constraint M0ab = 0

of the supergravity.

17Recall that the two terms in (6.8) are not of the same order near the singularity [18]. Namely, the first

term is associated with a leading gravitational wall, whose normal is a real (gravitational) root, whereas

the second term is subleading, and associated to an affine null root. This distinction is not respected by

the decomposition of (6.6) into SO(10) irreducible tensors, as the last (trace) term in (6.6) contributes to

both terms in (6.8). By contrast, at the level of the equations of motion, the leading ` = 3 terms do match

between the supergravity and the coset dynamics, and the mismatch concerns only subleading ` = 3 terms.
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The Bianchi identity (D[aFbcde] = 0) terms are proportional to Γ(5)

C(5)
c1...c5 = − 1

16 · 5!P
(2)
c1a1...a5

P
(3)
a1|a2...a5c2...c5

+
1

4 · 5!P
(2)
c1c2a1...a4

P
(3)
b|ba1...a4c3c4c5

. (6.14)

Upon use of the dictionary (5.6) this agrees with the appropriately truncated version of

the supergravity Bianchi constraint.

Finally we find contributions of the form [P (3)]2 which are proportional to Γ(4). They

are (with anti-symmetrisation over [c1 . . . c4])

C(6)
c1...c4 = − 1

9 · 7!P
(3)
c1|c2a1...a7

P
(3)
c3|c4a1...a7

− 1

18 · 6!P
(3)
c1|c2c3a1...a6

P
(3)
b|bc4a1...a6

. (6.15)

Using the dictionary (5.6), the constraint C(6) = 0 is equivalent to the Ω Bianchi identity

[

∂[a , [∂b , ∂c]]
]

=
(

∂[aΩbc]
e − Ω[ab

dΩc]d
e
)

∂e = 0 (6.16)

neglecting spatial gradients (that is, dropping the first term on the r.h.s.).

7. Discussion and outlook

In this paper, we have given full account of the supersymmetry variations, equations of mo-

tion and constraints of D = 11 supergravity (to lowest fermion order) in the framework of

the E10/K(E10) σ-model defined by the action (4.8), using the bosonic and fermionic cor-

respondences (5.6) and (5.1). In addition, we have developed the rudiments of a structure

theory for K(E10), where, however, many important questions remain open. By study-

ing the K(E10) properties of various supergravity expressions in section 5 we have found

strong evidence for a correspondence between supergravity and the fermionic E10/K(E10)

σ-model, with complete agreement up to and including A9 level ` = 2, but also a number

of discrepancies starting at level ` = 3. Most of these can be traced back to our use of

unfaithful K(E10) spinor representation for the fermionic fields. This makes the need for

the construction of faithful spinor representations more urgent. The task is made harder by

the fact that standard tools of representation theory are unavailable here; in particular, we

do not expect that the required representations of K(E10) are of highest or lowest weight

type. We have exposed some unusual (and, a priori unexpected) features of k related to

the existence of unfaithful fermionic representations, especially the existence of non-trivial

ideals in k, and pointed out that these ideals may furnish new types of representations (and

thus may also shed a new light on the ‘gradient conjecture’ of [19]). One possibility for

constructing faithful spinor representations of K(E10) was already mentioned in [30, 25],

namely to consider tensor products of unfaithful spinor representations (e.g. the Dirac-

spinor ε) with faithful bosonic representations (e.g. the coset P). We have not explored

this possibility in much detail, but note that a similar construction was recently proposed

in the context of maximal (N = 16) supergravity in two space-time dimensions and for the

involutory algebra K(E9) [53].

We leave to future work a better understanding of the extension of the multiplet of

bosonic constraints studied above, that is the Hamiltonian constraint C(0) and the remain-

ing constraints C(3), C(4), C(5), C(6), to a bona fide (and presumably infinite-dimensional)
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multiplet of constraints carrying a (faithful) representation of K(E10). An interesting

speculation is that this infinite set of constraints might constrain the ‘velocity’ P of the

coset particle to lie in a ‘mass-shell’, which might be small enough to zoom on the very

restricted affine representations entering the ‘gradient conjecture’ of [19].
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A. D = 11 supergravity

We give an explicit transcription of the conventions of Cremmer, Julia and Scherk (CJS) [1].

As a warning to the reader we note that in eq. (3.4) redefined fermions are introduced which

have the same letters as the ones used in this appendix but are different.

A.1 General conventions

Unlike [1] we work with the ‘mostly plus’ signature for the eleven-dimensional Lorentz

metric

ηAB
here = diag(− + · · ·+) = −ηAB

CJS, A,B = 0, . . . , 10. (A.1)

In order to maintain the SO(1, 10) Clifford algebra18 {ΓA,ΓB} = 2ηAB the Γ-matrices

change accordingly to

ΓM
here = −iΓM

CJS. (A.2)

Furthermore, we set the D = 11 anti-symmetric tensor with upper indices to

ε0...10
here = ε0...10

CJS = +1 (A.3)

and our Γ-matrices satisfy

Γ0 · · ·Γ11 = +ε0...10 132 = +132. (A.4)

An explicit representation in a Majorana basis is given by (cf. appendices of [21])

Γ0 =





0 1

−1 0



 = C , Γ10 =





1 0

0 −1



 , Γa =





0 γ̃a

γ̃a 0



 (A.5)

18If no subscript appears on an object it is in the ‘here’ conventions.
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with the real symmetric 16 × 16 SO(9) γ̃a matrices for a = 1, . . . , 9; C is the charge

conjugation matrix. Consequently, our (32 × 32) SO(10) matrices Γa (now a = 1, . . . , 10)

are real and symmetric, and furthermore obey

Γa1...a10 = εa1...a10Γ0 (= −εa1...a10Γ0), (A.6)

where the ten-dimensional SO(10) invariant epsilon symbol is ε1...10 = +1. From this we

deduce

Γa1...ak =
1

(10 − k)!
(−1)

(k+1)(k+2)
2 εa1...akak+1...a10Γak+1...a10Γ0. (A.7)

Among the anti-symmetric products Γ(p) of p SO(10) Γ-matrices the symmetric ones occur

for p = 0, 1, 4, 5, 8, 9 and the anti-symmetric ones occur for p = 2, 3, 6, 7, 10.

As a rule (with the exception of εM1...M11
here = εM1...M11

CJS ) we identify covariant tensors

with the corresponding objects in CJS [1]: EN
A
here = EN

A
CJS, ωM A

B
here = ωM A

B
CJS, Ahere

MNP =

ACJS
MNP , ψhere

M = ψCJS
M . One must then be careful about changes in derived objects, such

as GMN ≡ ηABEM
AEN

B (for which Ghere
MN = −GCJS

MN ), or ψM
here = −ψM

CJS. Similarly, the

conjugate fermions are related by

(ψ̄M )here ≡ (ψhere
M )T Γ0

here = −i(ψM )T Γ0
CJS = −i(ψ̄M )CJS. (A.8)

This implies ψ̄M
here = +iψ̄M

CJS. There is no complex conjugation since ψM is in a real

(Majorana) representation of the SO(1, 10) group. A Majorana spinor consists of 32 real

(anti-commuting) components. Note also that conjugation reverses the order of the (anti-

commuting) fermions. In the main body of the paper, the fermions of this appendix will

be written with an additional superscript (11) in order to distinguish them from certain

redefined fermions which are more useful for studying the relation to E10 (cf. (3.4)).

The Lorentz covariant derivative on the vielbein EM
A is given by

DM (ω)EN
A := ∂MEN

A + ωM
ABENB = ΓMN

P EP
A (A.9)

with the standard Christoffel symbol ΓMN
P and spin connection ωA BC (in flat indices)

given in terms of the anholonomy coefficients ΩAB C by

ωA BC =
1

2

(

ΩAB C + ΩCA B − ΩBC A

)

,

ΩAB C ≡ EA
MEB

N (∂MENC − ∂NENC). (A.10)

The Riemann tensor is defined via the commutator of two Lorentz covariant derivatives,

viz.

DM = ∂M +
1

4
ωM ABΓAB ⇒ [DM ,DN ] =

1

4
RMNABΓAB . (A.11)

which gives

RMNA
B = ∂MωN A

B − ∂NωM A
B + ωM A

EωN E
B − ωN A

EωM E
B , (A.12)

or, in flat indices,

RABCD = ∂AωB CD − ∂BωA CD + ΩAB
EωE CD

+ωAC
EωB ED − ωBC

EωA ED. (A.13)
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A.2 Action and supersymmetry variations

Modulo higher order fermionic terms, the Lagrangian of D = 11 supergravity [1] in our

conventions reads19

E−1L =
1

4
R − i

2
ψ̄MΓMNP DNψP − 1

48
FMNPQFMNPQ

− i

96

(

ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR
)

FNPQR

+
2E−1

(144)2
εM1...M11FM1...M4FM5...M8AM9...M11 . (A.14)

The field strength is FMNPQ ≡ 4∂[MANPQ]. The supersymmetry variations are, in our

conventions,

δEM
A = iε̄ΓAψM

δψM = DMε +
1

144

(

ΓM
NPQR − 8δN

MΓPQR
)

εFNPQR

δAMNP = −3

2
iε̄Γ[MNψP ] (A.15)

The parameter ε is a 32-component spinor of SO(1, 10), related to the one of [1] by εhere =

εCJS, and ε̄here = −iε̄CJS.

For completeness we also give the variation of the dual ‘magnetic’ potential ÃM1...M6 .

This can be derived by adding to the action a term [54] (ignoring the FFA term for the

moment)

L′ =
1

4! · 7!ε
MNPQRS1...S6FMNPQ∂RÃS1...S6 (A.16)

such that the variation with respect to ÃM1...M6 enforces the Bianchi identity for FMNPQ.

Requiring the action with the addition (A.16) to be supersymmetric, a little algebra shows

that

δÃM1...M6 = 3iε̄Γ[M1...M5
ψM6] (A.17)

which is thus the ‘magnetic’ analog of the last variation in (A.15). Extensions of the

supersymmetry transformation rules including dual and ten-form potentials were recently

studied in [55, 56].

A.3 Equations of motion and constraints

Neglecting terms quadratic in the fermions, the bosonic equations of motion with ψM = 0

are (always flat indices)

RAB =
1

3
FACDEFB

CDE − 1

36
ηABFCDEF FCDEF (A.18)

DAFABCD = − 1

576
εBCDE1...E4F1...F4FE1...E4FF1...F4 (A.19)

19We set the constant κ11 = 1 [1], which in terms of the Newton constant is 4πG11 = 1.
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with the Lorentz covariant derivative in flat indices DA ≡ EA
MDM (ω). In the text (and

in table 1) we use the notation

GAB ≡ RAB − 1

2
ηABR − 1

3
FA

CDEFBCDE +
1

24
ηABFCDEF FCDEF ,

MBCD ≡ DAFABCD +
1

576
εBCDE1...E4F1...F4FE1...E4FF1...F4 . (A.20)

Furthermore, we have the Bianchi identities

D[A1
FA2A3A4A5] = 0, (A.21)

D[A1
ΩA2A3]

B = 0. (A.22)

where the Lorentz covariant derivative in (A.22) does not act on the B index.

The Rarita-Schwinger equation for the gravitino is20

EA ≡ ΓABCDB(ω)ψC +
1

48

(

ΓABCDEF ψF + 12ηABΓCDψE
)

FBCDE = 0 (A.23)

A more convenient form, used in the text, is

ΓB
(

D̂AψB − D̂BψA

)

= 0 with D̂A := DA(ω) + FA (A.24)

where

FA := +
1

144

(

ΓA
BCDE − 8δB

AΓCDE
)

FBCDE (A.25)

Again these equations have been given in terms of flat indices, whose use is a crucial

ingredient in our construction.

In a Hamiltonian (canonical) formulation, the above equations split into equations of

motion (describing the evolution in time) and constraints (which must be imposed on the

initial data), and whose relation to the σ-model quantities is displayed in table 1. The

equations of motion consist of the components Gab,Mabc and Ea, while the constraints are:

G00 ≈ 0 ↔ Hamiltonian (scalar) constraint

G0a ≈ 0 ↔ diffeomorphism constraint

M0ab ≈ 0 ↔ Gauss constraint

E0 ≈ 0 ↔ supersymmetry constraint (A.26)

B. Consistency conditions for representations

Proposition. Let k1 be a (finite-dimensional) vector space with basis (xi) and k̃ be the free

Lie algebra (over R) generated by the xi. Let r ⊂ k̃ be an ideal in k̃. Denote the quotient Lie

algebra k̃/r by k. Finally, let V be a module of k1, i.e. we have a map ρ1 : k1 → End(V ).21

20Note that DA(ω)ψB = ∂AψB + ωA BCψC + 1
4
ωA CDΓCDψB.

21In this set-up, where k1 is thought of to contain the simple generators xi, ρ1 can be any map, there are

no consistency conditions imposed on it.
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(i) V can be made a module of k̃. Denote the representation homomorphism by ρ̃ : k̃ →
End(V ).

(ii) If ρ̃(r) = 0, then V is also a module of k = k̃/r.

Proof. (i) ρ̃ is defined recursively on k̃ =
⊕

n≥1 k̃n, where the degree of an element is the

number of k1 elements in the multiple commutator in the free Lie algebra. For y1 ∈ k1

one defines ρ̃(y1) := ρ1(y1). For x2 ∈ k̃2 represented by x2 = [y1, y
′
1] in terms of two

elements y1, y
′
1 ∈ k1 one defines ρ̃(x2) := ρ̃(y1)ρ̃(y′1) − ρ̃(y′1)ρ̃(y1). Similarly for the higher

degrees. Consistency (and independence from the way one parametrises the next degree)

is guaranteed generally, see e.g. chapter 17.5 of [57].

(ii) Define the representation homomorphism ρ : k → End(V ) by ρ(x) = ρ̃(x + r).

Independence of the representative follows generally from ρ̃(r) = 0 (the kernel of ρ̃ factors

through). For this representation homomorphism one easily checks the representation

property. ¤

Corollary. If r is generated as an ideal of k̃ by some number of relations rA (A in some

index set), it suffices to check ρ̃(rA) = 0 for the assumptions of (ii) in theorem above.

Proof. This follows from the construction of ρ̃ in the free algebra via successive commuta-

tors. ¤
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