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Abstract
The structure of a light cone in the Gödel universe is studied. We derive the
intrinsic cone metric, calculate the rotation coefficients of the ray congruence
forming the cone, determine local differential invariants up to second order,
describe the crossover (keel) singularities and give a first discussion of its
focal points. Contrary to many rotation coefficients, some inner differential
invariants attain simple finite standard values at focal singularities.

PACS numbers: 02.40.Xx, 04.20.−q, 02.40.Hw, 04.20.Jb, 04.20.Gz

1. Introduction

Gödel’s rotating cosmological model [13, 14] is one of the most interesting solutions of
Einstein’s field equations with negative �-constant, particularly in view of its contribution
to our understanding of rotation in relativity and its signs of causality breakdown due to the
existence of closed timelike curves [5, 16, 22, 23, 29].

The Gödel solution is also of interest for a study of light ray caustics, which are basic for
a discussion of the strong lensing effects in the Universe [27, 30]. There are now many papers
discussing singularities on characteristic manifolds of the Einstein field equations, mainly
based on powerful mathematical theorems of Lagrangian and Legendrian maps [4, 9–12].
One may also mention an older paper by Laurent, Rosquist and Sviestins [19], where the cone
of an Ozsváth class III metric [21] was studied. This metric already includes the Gödel metric
as a particular case.

Focal subsets (caustics) are likely to be present on null hypersurfaces, if a weak energy
condition holds for its lightlike generators (see [7, 24]), hence almost always in realistic
astrophysical or cosmological situations. They often have a complicated structure and are
an obstacle for attempts to solve the characteristic initial value problem for Einstein’s field
equations numerically, since integration along null geodesics runs into difficulties at caustics
[9, 11, 31]. It would be extremely helpful if existent algorithms could be modified or replaced
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to allow numerical processing through such singularities. A preliminary step is to study
caustics in exact solutions of the field equations.

In this connection, the Gödel light cone could be a useful object, since here the behaviour
of light rays is already sufficiently complex to give an impression of features which we can
expect in more realistic geometries, and on the other hand it is simple enough to allow a
complete analytical treatment. Due to the five-dimensional group of isometries admitted by
the Gödel metric, which has a four-dimensional transitive subgroup, all light cones have the
same internal structure.

A first discussion of the inner geometry of the Gödel cone was given by us in 1972 [1, 2],
on the basis of the integration of geodesics performed by Kundt in 1956 [18]. Use of the
computer-based formula manipulation technique has shown that a number of complicated
relations can be simplified considerably. In particular, the structure of caustics and the
resulting startling cyclic lens effects found in [1, 2] now became more transparent. The lens
effects arise from a quasi-periodic re-focusing of the generators and are surprisingly similar
to those discussed by Ozsváth and Schücking for the light cone of a plane gravitational wave
propagating in vacuum, one of their anti-Mach metrics [20].

We apply the geometrical description of null hypersurfaces developed in [7, 8]. After
integrating the null geodesics in section 2, we derive the intrinsic metric of the Gödel cone
in section 3, calculate and discuss its rotation coefficients and differential invariants in
section 4 and turn to a description of caustics in section 5. While rotation coefficients of
the light ray congruence forming the cone have as a rule singularities on focal surfaces or keel
points, some local inner differential invariants have simple finite limits there. It is interesting
that this feature—with the same asymptotic values of invariants at singularities—has shown up
in all nontrivial light cones studied so far by us. A method to relate intrinsic cone coordinates
to the angles (θ, φ) on the observer sky is described in appendix B.

2. Light rays in the Gödel universe

2.1. General congruence

Gödel’s stationary solution of Einstein’s field equations with cosmological constant describes
the gravitational field of a uniform distribution of rotating dust matter, where—loosely
speaking—the gravitational attraction of matter and the added attractive force of a negative
� constant is compensated by the centrifugal force of rotation. Hawking and Ellis [16]
introduce the Gödel metric with the coordinates t, x, ȳ, z as (we have exchanged x, y to reach
conformity with our notation, the signature will be taken as (−1,1,1,1), and the conventions
of the Misner–Thorne–Wheeler book will be adopted)

ds2 = −dt2 + dȳ2 − 1
2 e2ȳ/bdx2 + dz2 − 2 eȳ/b dt dx.

The matter density is given by κµ = −2� = 1/b2. With y = √
2b e−ȳ/b one obtains the form

of the metric used in [2] and employed also here:

ds2 = −
(

dt +

√
2b

y
dx

)2

+
b2

y2
(dx2 + dy2) + dz2. (1)

As first shown by Kundt [18], the differential equations x ′′µ +�µ
ρσ xρ ′xσ ′ = 0 for the geodesics

admit the first integrals

t ′ ≡ x(0)′ = (−c2/
√

2 +
√

2y)/c0, (2)

x ′ ≡ x(1)′ = y(c2 − y)/(bc0), (3)
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Figure 1. c2–c4-parameter plane for null geodesics in the Gödel universe (b = 1 assumed). Null
geodesics have their integration constants c2 and c4 between the lines ACD and AEF . Those
forming the (past) light cone through P0 are confined to the shadowed triangles, with c4 > 0 for
the western hemisphere and c4 < 0 for the eastern hemisphere of the observer sky. But only the
northern hemisphere is mapped 1:1 to the two triangle regions, for the missing southern hemisphere
a second copy of the figure is needed. To obtain the topology of a sphere, certain boundary lines
of the triangles in both copies must be identified pointwise. The lines CD and EF correspond to
parts of the equator; the pole ray at B is the exceptional ray towards the rotation direction.

y ′ ≡ x(2)′ = y(x − c1)/(bc0), (4)

z′ ≡ x(3)′ = c3/c0. (5)

Here the prime denotes the derivative with respect to a running parameter s on the geodesic,
i.e., s is the proper time or invariant length for a non-null geodesic and an affine parameter
for light rays. The integrals depend on four parameters c0, c1, c2, c3 and are subject to the
normalization condition gµνx

µ′xν ′ = constant, where the constant is −1 for a timelike, 1 for
a spacelike and 0 for a null geodesic. For the null geodesics discussed here, different values
of c0 correspond only to different definitions of the affine parameter, so we assume c0 = 1
subsequently. With (2)–(5), the normalization condition becomes for null geodesics

(x − c1)
2 + (y − c2)

2 = 1
2c2

2 − c2
3 ≡ c2

4. (6)

Thus, the projection of null geodesics into the xy-plane is confined to a circle with a radius
|c4|. Light can move to arbitrary large distances only in the z-direction, the direction of the
rotation axis. Equation (6) is solved with

x = c1 + c4 sin 	, y = c2 + c4 cos 	, (7)

where 	(s) is an unknown function. Since y � 0, no circle point can lie below the y-axis.
The parameter range for null geodesics is thus constrained by

c2 �
√

2|c4|, (8)

corresponding to points below the line ACD in the upper half plane and above the line AEF

in the lower half plane of figure 1.
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Equations (3) and (4) lead to a single differential equation for 	:

b	′ + c4 cos 	 + c2 = 0. (9)

We first shortly discuss the particular case c4 = 0, when the circle in the xy-plane shrinks to
a point. Here (2)–(5) have the solutions

t = c2√
2
s + t0, x = c1, y = c2, z = c2√

2
s + z0. (10)

Thus through every point P of the Gödel universe passes one exceptional light ray: it is the
light ray sent or received by a comoving observer at P in or opposite to the direction of the
local rotation axis. Returning to the general case, integration of (9) gives with an integration
constant k1

tan
	

2
= −

√
c2 + c4

c2 − c4
tan

(√
c2

2 − c2
4

s + k1

2b

)
. (11)

Inequality (8) ensures that the roots are real. To simplify the representation, we define a new
real constant k

k = k1

2b

√
c2

2 − c2
4, (12)

and introduce a new affine parameter w instead of s:

w = s

2b

√
c2

2 − c2
4. (13)

Integrating also the remaining equations (2), (5), one finally obtains (ε = ±1, since c3 can
have both signs)

t (w) = 2
√

2b arctan

(√
c2 + c4

c2 − c4
tan(w + k)

)
−

√
2bc2w√
c2

2 − c2
4

+ c5, (14)

x(w) = c1 −
c4

√
c2

2 − c2
4 sin(2w + 2k)

c2 − c4 cos(2w + 2k)
, (15)

y(w) = c2
2 − c2

4

c2 − c4 cos(2w + 2k)
, (16)

z(w) =
√

2εbw

√
c2

2 − 2c2
4√

c2
2 − c2

4

+ c6 (17)

as a parameter representation of the null geodesics. Counting the number of independent
parameters one sees that (14)–(17) is the generic null congruence of the Gödel cosmos. Its
explicit form helps us to answer questions on null geodesics in the Gödel cosmos. For
example, one can easily conclude that there are no closed null geodesics, which would require
xµ(w) = xµ(w1) for some values w and w1: taking first µ = 3, equation (17) shows that
c3 = 0 or c2 = √

2c4 is needed, which corresponds to z = const. An inspection of the relation
for µ = 1, 2 shows that these relations can be satisfied by means of periodic functions. Thus,
a subset of null geodesics may return to the same space point, but the point is (repeatedly)
reached at different times t, due to the aperiodic term proportional to w in (14).
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2.2. Light cone geodesics

We are here interested in those null geodesics which form a cone with the vertex at a point
P0 with the coordinates (0, 0, b, 0), say. P0 corresponds to the origin of the Hawking–Ellis
coordinates. Since all light cones of the Gödel cosmos have the same intrinsic structure, we
could have chosen any other origin in principle. Furthermore, for definiteness, the past cone
(w > 0) will be considered. Assuming w = 0 at the vertex, we have four relations which will
be used to determine c1, c5, k and c6 in terms of the remaining parameters c2 and c4:

c1 =
c4

√
c2

2 − c2
4 sin 2k

c2 − c4 cos 2k
, (18)

c5 = −2b
√

2 arctan

(√
c2 + c4

c2 − c4
tan k

)
, (19)

cos 2k = c2
4 − c2

2 + bc2

bc4
, (20)

c6 = 0. (21)

The requirement that c1, c5, k and c6 exist and are real restricts c2 and c4 beyond (8). In [1, 2],
a pair (u, v) of transversal parameters was introduced to replace (c2, c4):

u2 = c4 + c2 − b

c4 − c2 + b
, v2 = c2 + c4

c2 − c4
. (22)

Inverting, we have

c2 = b(1 + u2)(v2 + 1)

2(u2 + v2)
, c4 = b(1 + u2)(v2 − 1)

2(u2 + v2)
.

The map (c2, c4) → (u, v) is not everywhere regular, since the functional determinant
∂c2
∂u

∂c4
∂v

− ∂c2
∂v

∂c4
∂u

= −2uvb2 (u2+1)(v2−1)

u2+v2 has for real u, v zeros at u = 0, v = 0 and v2 = 1.
The first two arise from using squares on the lhs of (22); the singularity v2 = 1 or c4 = 0
corresponds to the exceptional ray introduced above. In terms of u and v, (20) can be written
as cos 2k = v2−u2

v2+u2 . It is seen from this equation that u2 cannot be negative for geodesics
forming the P0-cone; this also applies to v2 because of (8). Thus, u and v as introduced by
(22) are real.

For more information we refer to figure 1. In this parameter plane, the points A through
F correspond to coordinate pairs (c2, c4) given by

A = (0, 0), B = b(1, 0),

C = b

( √
2√

2 + 1
,

1√
2 + 1

)
, D = b

( √
2√

2 − 1
,

1√
2 − 1

)
,

E = b

(√
2 + 2√
2 + 1

,− 1√
2 + 1

)
, F = b

( √
2√

2 − 1
,− 1√

2 − 1

)
.

Allowed parameters c2, c4 for generators are subject to (8), and lie above the line AEF as
well as below the line ACD. v = const is the equation of straight lines (‘parallels’) starting
at A, with v ranging from v = 1 (the c2-axis) to v = 1 +

√
2 (the line ACD) in the upper

half plane. For v < 1, the lines v = const lie in the lower half plane c4 < 0, ranging from
v = 1 through v = 1/(1 +

√
2) (the line AEF ). Curves with u = const are straight lines
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(‘meridians’) through the point B, ranging from u = 0 (BC) to u → ∞ (BD) in the upper
half plane. We shall find it appropriate (appendix B) to take u negative in one hemisphere.
As discussed subsequently, the cone generators cover the two shadowed triangles in figure 1,
which correspond to certain quadrants on the observer sky, e.g., the lines EF and CD form
part of the equator. Two copies of the figure are required to cover the full observer sphere.
For details we refer to appendix B.

Returning to the cone representation, the parameters c5, c1, k and c6 can be written in
terms of u and v in a compact form as solutions of (18)–(21):

c1 = −b
u(1 − v2)

u2 + v2
, c5 = −2

√
2b arctan u,

tan k = u

v
, c6 = 0.

Substituting these values into (2)–(5), one obtains as a parameter representation of the light
cone through P0:

t = t (u, v,w) = − bw√
2

(
v +

1

v

)
+ 2

√
2b arctan

(u2 + v2) tan w

v(u2 + 1) + u(v2 − 1) tan(w)
, (23)

x = x(u, v,w) = b(v2 − 1)
sin w(v(u2 − 1) cos w + u(v2 + 1) sin w)

(v cos w − u sin w)2 + v2(u cos w + v sin w)2
, (24)

y = y(u, v,w) = bv2(u2 + 1)

(v cos w − u sin w)2 + v2(u cos w + v sin w)2
, (25)

z = z(u, v,w) = bεw√
2v

√
6v2 − 1 − v4. (26)

Positive values of the affine parameter w correspond to the past light cone, negative values to
the future cone. The sign ε distinguishes between the northern (ε = 1) and southern (ε = −1)

hemispheres of the observer sky. We note the following invariance property of the system
(23)–(26): substituting −1/u for u and 1/v for v leads to the same geodesics

xµ(u, v,w) = xµ

(
− 1

u
,

1

v
,w

)
. (27)

The same map sends also (c2, c4) into (c2,−c4). Some geodesics of the parallel v = 1.5 are
plotted in figure 2.

Knowing the tangential vector dxµ

dw
of the past light cone from (23)–(26) or from (2)–(5),

one can calculate the redshift z of distant objects from the well-known relation

1 + z =
(

dxµ

dw
V νgµν

)
emitter(

dxµ

dw
V νgµν

)
observer

.

With V µ = δ
µ

0 and (23)–(26), one finds z = 0: as noted already by Gödel in his original paper
[13], distant objects comoving with the cosmic fluid would show no redshift, proving that this
model cannot represent the real Universe.

3. Light cone metric

The spacetime coordinates of light rays through P0, (23)–(26), depend on the affine parameter
w as well as on two quantities u, v. While w determines a position on a light ray, u and v label
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Figure 2. The twisted generators of the past light cone through P0 are shown in a fictitious
Euclidean 3-space R3. Plotted are the coordinates x(u, v, w), y(u, v, w), t (u, v, w) from (23)–
(25) for rays on the parallel v = 1.5 and several u with constant separation π/30 in the meridian
angle φ = 2 arctan u corresponding to u. The z-coordinate is suppressed, keels appear as points,
focal surfaces as lines. The affine parameter ranges from w = 0 at the vertex (top) to w = 1.5π

(bottom), the plot ends before the second keel line at w = 2π is reached. Distances cannot be
represented correctly in such a projection, the type of caustics is preserved, however, since the map
from the curved V 3 to R3 is a diffeomorphism.

a ray. The triple wi ≡ (w, u, v) may therefore be used as intrinsic coordinates on the cone.
Below we will see how u and v are related to the angles θ, φ on the sky of a comoving observer
at P0, who wants to fix an event on his past light cone. The intrinsic three-dimensional metric
of the light cone at P0 can be found from (23)–(26) by means of

γik = gµν

∂xµ

∂wi

∂xµ

∂wk
,

where wi = (w, v, u). Since ∂xµ

∂w
is the tangential vector to the cone and hence null, the

components of the cone metric can be reduced to a two-dimensional metric γAB :

γ00 = 0, (28)

γ0A = 0, (29)

γ22 = b2

v4f2

(
w2f 4

1 + 2wf2f
2
1 sin w cos w + f 2

2 sin2 w + f2f
2
1 sin4 w

)
, (30)

γ23 = b2f 3
1 sin2 w(w − sin w cos w)

v4(u2 + 1)
, (31)

γ33 = b2f 2
1 sin2 w

(
4v2 − f 2

1 sin2 w
)

v4(u2 + 1)2
, (32)
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where we have introduced the two functions

f1(v) = v2 − 1, f2(v) = 6v2 − 1 − v4, (33)

which are useful to compactify expressions.
In general, the γAB form an one-dimensional sequence of positive-definite two-

dimensional metrics on the cone, parametrized by the affine parameter w. They represent
metric spheres in the neighbourhood of the vertex w = 0, but become progressively deformed
for increasing parameter w. On some subsets of the cone the inner metric degenerates
additionally, i.e., the two-dimensional determinant γ becomes zero. This signifies an
intersection of light rays forming the cone, if the zero of γ is not caused by a coordinate
singularity. At focal points or caustics geodesics with infinitesimally differing values of u, v

meet, while at crossover or keel points (we have taken the latter notation from a paper by Riesz
[28]) the intersecting geodesics may have quite different transversal parameters. Sets of focal
points form in general two-dimensional focal surfaces on a null hypersurface. For the Gödel
cone, the determinant γ can be represented in a compact form:

γ ≡ |γAB | = h2, (34)

h ≡ 2b2f1p(v,w) sin w

(u2 + 1)
√

f2v3
, (35)

p(v,w) ≡ f 2
1 w cos w + f2 sin w (36)

(abbreviations are deliberately chosen in this paper to compactify expressions). The simple
expression for γ allows us to pick up the cone singularities easily. Apart from the vertex
w = 0, γ vanishes periodically for w = nπ, n an integer, which is similar to the behaviour of
light cones in a closed Robertson–Walker model with the time extended to several cycles. But
in contrast to the RW case, the two-dimensional spacelike surfaces w = const do not shrink
to points at w = nπ, n �= 0, but rather to spacelike lines, the keel lines, discussed in section 5.
Further zeros of γ are given by p(v,w) = 0, which is the equation of the focal surfaces, also
discussed in section 5. The remaining zeros of γ are given by f1 = 0 or v = 1, corresponding
to the exceptional pole rays, and µ → ∞. The latter is related to a coordinate singularity.

For later use, it is appropriate to introduce a second function q(v,w), with the property
of being not negative:

q(v,w) ≡ 4(1 + f1) − f 2
1 sin2 w. (37)

q vanishes if and only if f2/f
2
1 = − cos2 w. Since the lhs is not negative, the condition q = 0

holds only for cos w = 0 (or w = (1 + 2n)π/2, n integer), and for f2 = 0, or v = 1 +
√

2.
Since at these points also p = 0, the equation q = 0 represents curves on the light cone, where
the equator rays v = 1 +

√
2 meet the nth focal surface (section 4). With q, the intrinsic cone

metric can also be written as

γ22 = b2

v4f2 cos2 w
(p2 − 2pf2 sin3 w + qf2 sin4 w), (38)

γ23 = b2f1 sin2 w

v4(u2 + 1) cos w
(p − q sin w), (39)

γ33 = b2f 2
1 sin2 w

v4(u2 + 1)2
q, (40)

allowing us to check easily that the rank of γik indeed becomes 1 (i.e. |γAB | = 0, but not all
γAB = 0) at caustics p = 0.
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The range and the geometrical meaning of the transversal cone coordinates u and v must
now be discussed. Apparently, u may take all values out of the range (−∞,∞). For a real
z-coordinate, the function f2 = 6v2 − 1 − v4 cannot have negative values, so v is restricted
to an interval (vmin, vmax), where vmin = 1/(1 +

√
2) and vmax = 1 +

√
2. If v belongs to this

range, so does 1/v. However, the substitution (27) shows that two different pairs (u, v) might
represent the same null geodesic. Also two different geodesics might be represented by the
same (u, v)-pair.

A natural way to parametrize a light cone is to take the angular coordinates (θ, φ) at the
sky of an observer sitting at the vertex and comoving with the fluid. As usual, θ ranges from
0 (north pole) to π (south pole), and φ from 0 to 2π . To find the relation between the sky
coordinates and (u, v) we have used a method which is exclusively based on the intrinsic cone
metric. Leaving the details for appendix B, the result is

u2 = 1 − cos φ

1 + cos φ
, v2 =

√
2 + sin θ√
2 − sin θ

,

(41)

cos φ = 1 − u2

1 + u2
, sin θ =

√
2
v2 − 1

v2 + 1
.

u ranges from u = 0 for φ = 0 to ∞ at φ = π , jumps there to −∞, and increases to zero
at φ = 2π . v starts from v = 1 at the north pole (θ = 0), increases to vmax = 1 +

√
2 at

the equator (θ = π/2) and decreases to 1 at the south pole (θ = π). As explained in the
appendices, only the partial interval (1, vmax) is used for v. A point on the sphere is fixed
by a pair (u, v) together with the sign of ε. This ensures that a pair (u, v) from the u-range
(−∞,∞) and v-range (1, vmax) is a one-to-one map of the light rays in the northern, resp.
southern, hemisphere. The exceptional ray with v = 1, ε = 1 corresponds to the north pole
and the antipodal ray with v = 1, ε = −1 to the south pole.

Transforming the inner metric γik to angular coordinates θ, φ simplifies neither its form
nor other relations very much, so we continue to work with u and v as transversal coordinates.

In the chosen representation, the equator is given by v = vmax = 1 +
√

2 and geodesics
sent out in these directions (orthogonal to the rotation axis) always lie in the plane z = 0.
Since here f2 = 0, the cone metric becomes singular, its determinant γ tends to infinity.
This is a coordinate singularity: the angular coordinates are regular along the equator, but the
functional determinant

∣∣ ∂(θ,φ)

∂(v,u)

∣∣ suffers from a diverging factor f
−1/2
2 . If carefully treated, this

divergence will not cause trouble.

4. Rotation coefficients and invariants

4.1. Geometries on null hypersurfaces

The local differential geometry of null hypersurfaces such as a cone was described in some
detail in [7, 8]; see also [25, 26]. We summarize the points most important for us. This
geometry is formulated in terms of the rotation coefficients of a certain class of triads, defined
as follows. At every regular point P of the cone, there exists a unique direction εi, i = 1, 2, 3,
the direction of the null geodesic passing that point. εi satisfies γikε

k = 0 and is given up
to a factor by εi = δi

1 in the coordinate system (u, v,w) used in the last section. The two
other directions, which are spacelike at regular points and orthogonal to each other, may
be combined linearly to form a complex vector t i . We have t iεkγik = 0 and normalize t i

such that t i t kγik = 0, t i t̄ kγik = 1. The transversal directions t i are determined only up to a
transformation t ′i = eiω(t i − κ̄εi), ω real and κ complex. Note that εi is also subject to a
change ε′i = λεi (λ real), since the running parameter along a ray may be chosen arbitrarily
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(it need not be an affine parameter). The covariant components of the transversal directions
are given by ti = γikt

k and γi , where γi is defined by t iγi = 0, εiγi = 1. This completes the
covariant triad. The rotation coefficients divergence ρ, shear σ as well as other coefficients
are given in terms of the derivatives of the triad:

ρ + iυ = εi tk(t̄ i,k − t̄ k,i ), (42)

σ = εi t̄ k(t̄ i,k − t̄ k,i ), (43)

τ = t̄ i t k(t̄ i,k − t̄ k,i ), (44)

χ = 1
2 t̄ iεk(γi,k − γk,i), (45)

iϕ = 1
2 t̄ i t k(γi,k − γk,i). (46)

τ is related to the intrinsic geometry of the two-dimensional wave surfaces w = const, with w

here as an affine parameter of the generating null geodesics. The coefficients χ and ϕ reflect
properties of the triad, which are geometrically not relevant. In particular, if γi is chosen as
gradient, as we will do here for simplicity, both χ and ϕ are zero. A change of the triad

t ′i = eiωti, γ ′
i = 1

λ
γi + κti + κ̄ t̄ i , t ′i = eiω(t i − κ̄λεi), ε′i = λεi

produces a change of the rotation coefficients as follows:

ρ ′ = λρ,

σ ′ = λ e−2iωσ,

τ ′ = e−iω(τ + iδ̄ω − iκλDω − iκλυ + κ̄λσ − κλρ),

υ ′ = λ(υ + Dω),

χ ′ = 1

2
e−iω

(
2χ +

δ̄λ

λ
− κρλ + iυκλ − κ̄λσ + λDκ

)
,

iϕ′ = 1

λ
iϕ +

1

2

(
κ̄τ − κτ̄ + δκ − δ̄κ̄

)
+

1

2
κ

(
2χ̄ +

δλ

λ
− iκ̄λυ − κλσ̄ + λDκ̄

)

− 1

2
κ̄

(
2χ +

δ̄λ

λ
+ iκλυ − κ̄λσ + λDκ

)
.

The last two equations show that χ = 0 and ϕ = 0 are preserved for κ, λ satisfying
δκ − δ̄κ̄ + κ̄τ − κτ̄ = 0, δλ/λ2 + Dκ̄ − κ̄(ρ + iν) − κσ̄ = 0. Coordinate invariant statements
are formulated in terms of those functions of the rotation coefficients and their derivatives,
which are invariant with respect to the allowed transformations of the triad. The group of
allowed triad transformations defines the type of null surface geometry in the spirit of Felix
Klein’s ‘Erlangen program’ [17]. The most important geometries are the just outlined inner
geometry and the affine geometry, where the concept of an affine parameter for the rays is
given as additional geometrical element. For other geometries on null hypersurfaces and for
more details we refer to [7] or [8], and for a similar definition of null surface geometries the
papers by Penrose [25, 26] should be consulted.

4.2. Application to the Gödel cone

We first determine the rotation coefficients for the Gödel cone. The divergence is calculated
from ρ = − 1

4γ

∂γ

∂w
and may be written as

ρ = − cot 2w − q

2p cos w
, (47)
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with the functions p(v,w), q(v,w) defined by (36) and (37). The divergence tends to ±∞ at
w = nπ (keels) and p = 0 (focal surfaces) and becomes zero at the two-dimensional surfaces

− tan 2w

2w
= f 2

1

f2
(48)

between focal surfaces and keels: since the rhs of this equation is not negative, the range of
w, where ρ = 0 is possible, and hence the position of a zero-divergence surface, is restricted
by the condition

(2m − 1)
π

4
� w � m

π

2
, m = 1, 2, 3, . . . . (49)

The amount of shear follows most easily from another general relation |σ |2 = ρ2 −
det

(
∂γAB

∂w

)/
(4γ ):

|σ |2 = q2

4p2 cos2 w
+

8v2 cos2 w + q(2 sin2 w − 3)

2p sin w cos2 w
+

1

4 sin2 w cos2 w
− f 2

1

4v2
. (50)

Like the divergence, also the shear goes to infinity at focal surfaces and keels. The
remaining non-vanishing coefficients may be calculated from (42)–(44); the details are given in
appendix A. Splitting σ into real and imaginary parts, σ = σ1 + iσ2, one obtains

σ1 = − 1

sin 2w
+

f 2
1 sin 2w

2q
+

q

2p cos w
, (51)

σ2 = f 2
1

√
f2 sin2 w

2vq
, (52)

ν = −f 2
1

√
f2 sin2 w

2vq
, (53)

τ = i
√

f2(v
2 + 1)

(
2v2 − f 2

1 sin2 w
)

bf1p
√

2q
. (54)

The triad has been chosen so that the resulting rotation coefficients look as simple as
possible. There exists in general one (and only one) first-order inner invariant of a null
hypersurface, i.e., an invariant function formed from the rotation coefficients alone, without
derivatives. This is the quantity j = ρ

|σ | or any function of j . It is useful to consider 1/j 2,
which measures the anisotropic behaviour of the generators around a given one:

1/j 2 = pf 2
1 (4v2 sin w − p) sin2 w cos2 w + v2(p − q sin w)2

v2(p(2 sin2 w − 1) − q sin w)2
. (55)

At caustics p = 0 (and keel points with w = nπ ) this gives j 2 = 1 or j = ±1, depending
on the sign of ρ. Along the two exceptional rays (pole rays), the shear vanishes and the
anisotropy measure 1/j 2 is zero, in accordance with the symmetry properties of the cone.

From the rotation coefficients and their derivatives, one may also form some second-order
invariants. The purely transversal projections of the four-dimensional Ricci and Weyl tensor
onto the cone are closely related to them. The Ricci and Weyl tensor projections are—without
any addition of further embedding quantity—equal to similar projections related to an intrinsic
Riemann tensor Rikl

m of the null hypersurface,

t kεlεiRkli.
mt̄m ≡ ω = Dρ − ρ2 − σ σ̄ , (56)

t̄ kεlεiRkli.
mt̄m ≡ ψ = Dσ − 2σ(ρ − iυ). (57)



1280 G Dautcourt and M Abdel-Megied

A straightforward calculation gives

ω = (v2 + 1)2

4v2
, (58)

ψ = f 2
1

(
4 cos2 w

q
− 1

2v2
+ 2i

√
f2 sin w cos w

vq

)
. (59)

To calculate an intrinsic curvature tensor of a null hypersurface as in (56) and (57), one
needs an affine connection in spite of the missing unique contravariant metric tensor. We again
refer to [7, 8] and note only shortly that in general the resulting affine connection and hence
the inner Riemann tensor depend on the triad. Independence holds only for special projections
such as (56) and (57). ω, ψ are nevertheless not yet affine or inner invariants of the cone,
they are densities, and one has to apply suitable factors of ρ or |σ | to generate invariants of
the affine geometry. To obtain invariants of the inner geometry, one has to take a certain linear
combination of these affine invariants. If we define

I = I1 + iI2 = i

(
ω

ρ|σ | − ψ

σ |σ | +
1

j
− j

)
= i

|σ |
(

Dρ

ρ
− Dσ

σ

)
+

2ν

|σ | , (60)

then this quantity is a second-order differential invariant of the inner geometry. A short
calculation gives for the real part I1 = (Ds + 2ν)/|σ | (where s is the argument of σ such that
σ = |σ | eis)

|σ |3I1 = f 2
1

√
f2(4v2 sin w − p)

4pv3
. (61)

I1 is a measure of the rotation of the two shear directions (defined as directions to neighbouring
rays with extremal distance change, [7]) with regard to the generator congruence. The
imaginary part, which can also be written as I2 = Dj/ρ, is slightly more complicated and
may be represented as

|σ |3I2 = i0 + i1p + i2p
2 + i3p

3

4p2v2 sin2 w cos w(q sin w + p(1 − 2 sin2 w))
(62)

with

i0 = 4v2q2(q − 2v2) sin2 w,

i1 = f 4
1 (v2 + 1)2 sin7 w − 8v2f 2

1 (v2 − 3)(3v2 − 1) sin5 w

+ 64v4
(
f 2

1 − v2
)

sin3 w − 64v6 sin w, (63)

i2 = −2f 2
1 f2 sin4 w + 12v2f2 sin2 w + 8v4(1 − 2 sin2 w),

i3 = −f2 sin w.

The Gaussian curvature K = −2τ τ̄ + δτ + δ̄τ̄ (see [7]) of the two-dimensional surfaces
w = const is in general not an invariant of null hypersurfaces. The only exception is Killing
horizons (sometimes called ‘totally geodesic null hypersurfaces’, see, e.g., Hajicek [15]),
defined by the condition that the inner metric admits a Killing symmetry with the generators
as Killing vectors. In all other cases, K depends on the chosen foliation and is not significant
for the cone geometry: a change of the affine parameter as w̄ = a(u, v)w (keeping the vertex
at w̄ = 0) leads to a different curvature K̄ . K is only invariant under transformations of the
transversal parameters xA′ = f A(xB). For our foliation w = const an explicit calculation
gives

K = k1

p2
+

k2

p3
(64)
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with

k1 = (
32v6 − f 6

1 sin2 w
)/(

b2f 2
1

)
, (65)

k2 = 4f2v
2(v2 + 1)2 sin w

(
sin2 wf 2

1 − 2v2)/(
b2f 2

1

)
. (66)

K generally tends to zero for large w, apart from spikes at focal surfaces p = 0.
In [7, 8], points on a given ray have been classified according to the focusing behaviour

of neighbouring geodesics. A point on a ray was called elliptic, if the spatial distance to all
neighbouring rays either increases or decreases, and hyperbolic, if some rays converge and
others diverge. The sign of ρ2 − |σ |2 distinguishes both types of points. A positive sign
(or j 2 > 1 at points with non-vanishing shear |σ |) corresponds to elliptic points. Evidently,
near the vertex at w = 0 all points on all rays are elliptic; this is also seen from an expansion of
j near the vertex, j ≈ −6v2

/(
f 2

1 w2
)
. Zeros or infinities of ρ2 − |σ |2 along a ray may signify

the transition from elliptic to hyperbolic points (or vice versa, a point with ρ2 − |σ |2 = 0 will
be called parabolic). It is not difficult to verify that ρ2 − |σ |2 can be written as

ρ2 − |σ |2 = 2
(
2v2 − f 2

1 sin2 w
)

p sin w
− f2

4v2
. (67)

Thus caustic singularities (p = 0 or w = nπ ) can be transition points on a ray. We illustrate
this for the two pole rays (v = 1) and for the equator rays (v = 1 +

√
2). For pole rays

ρ2 − |σ |2 = cot2 w, all ray points are elliptic, with the exception of isolated parabolic points
at w = nπ + π/2; hence no proper transition point exists. In the case of equator rays, we have
ρ2 − |σ |2 = 2 cot 2w/w; here all points with w = π(2n − 1)/4, n an integer, are transition
points, including also non-caustic points.

To have some idea of the cone structure, we follow a typical ray with 1 < v < 1 +
√

2,

u arbitrary, from the vertex w = 0 down the cone (we consider the past light cone, where an
increasing affine parameter w means decreasing time). Near the vertex, the cone resembles
the Minkowski light cone with ρ = −1/w, zero shear and exclusively elliptic points. All
neighbouring rays recede from the chosen ray. Along the ray, |ρ| decreases from ρ = −∞
at w = 0 and |σ | increases from zero, until a first transition point is reached, where both are
equal. At the transition point, the invariant j has increased from −∞ at w = 0 to j = −1.
Behind this point a domain of hyperbolic points begins, where some neighbouring rays start
to decrease their distance to the chosen ray. The next significant point on the ray is the
zero-divergence point, where also j reaches zero for the first time. After passing this point, ρ

is positive and increases faster than |σ |. Thus, a second transition point is encountered with
j = 1, ending the domain of hyperbolic points. Behind the transition point a region of elliptic
points begins, all rays converge towards our ray, preparing for a meeting at the first focal point.
At the focal point, both ρ and |σ | tend to infinity; their quotient j jumps from 1 to −1.

Behind the focal point, ρ increases from large negative values, passing a second zero-
divergence point in the interval 3π/4 < w < π , until the first keel point is reached at w = π .
The whole region between focal surface and keel consists again of hyperbolic points. Behind
the keel point the cycle starts again, with changed positions of the transition and focal points
relative to the zero-divergence and keel points.

5. Focal sets

5.1. Keels

The most impressive singularities of the Gödel cone are those at w = nπ (figure 2), the
keel points. They correspond to ‘points of the first kind’ on the light cone of Ozsváth and
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Figure 3. The keel lines w = nπ appear as a sequence of isolated sphere segments with increasing
length, if projected into the pseudo-Euclidean plane z–t. Shown are the keel segments for the
future and past cone (n = 1 . . . 6, b = 1). The t-axis is the projection of the observer worldline.
The endpoints of the keel lines lie on the exceptional ray in the northern hemisphere (z > 0) and
on its antipodal ray in the southern hemisphere (z < 0). These rays are plotted as straight lines.
The keel endpoints are also the intersection points of the nth keel line with the nth focal surface.
Every point on a keel line (which is parametrized by v) is an intersection point of all generators
with different parameters u (and the same v). In particular, the intersection of the keel with the
t-axis corresponds to equator rays v = vmax, the only rays which return to the observer worldline.

Schücking’s anti-Mach-metric [20]. At the keel point all rays with equal v and different u
meet. A one-dimensional set of connected keel points is denoted as a keel line. Every integer
n gives a keel line with the spacetime coordinates

tkeel = nπb(v2 + 1)√
2v

, xkeel = 0, ykeel = b, zkeel = −nπbε
√

6v2 − 1 − v4

√
2v

.

(68)

Thus, keel lines can be considered as circle segments in the pseudo-Euclidean z−t plane with
a length L increasing with n (figure 3).

Their endpoints lie on the exceptional ray and its antipode. For n = 0, the keel lines
shrink to the vertex P0, and for n �= 0 the observer worldline crosses the keel lines only for
equator rays v = vmax. It is easily checked that the keel lines are spacelike but not geodesic in
the Gödel geometry. The components of the tangential vector dxµ/dv are(

dxµ

dv

)
keel

= nπb

v2
√

2

(
1 − v2, 0, 0,

ε(v4 − 1)√
6v2 − v4 − 1

)
, (69)

and its norm is b2n2π2f 4
1

/
(v4f2). The first normal of the keel (the binormal does not exist)

is the timelike unit vector

n
µ

1 = 1√
2(v2 − 1)

(v2 + 1, 0, 0, ε
√

6v2 − 1 − v4), (70)
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the (first) curvature is found as

k1 = 4v4

nbπ(v2 − 1)3
. (71)

It diverges at the two endpoints v = 1 of the keel lines. Here also the otherwise spacelike
tangential vector degenerates to zero. The invariant total length of a keel segment, ranging
over the full observer sphere, is however finite and given by

L =
∫

ds = 2nπb

∫ 1+
√

2

1

(v2 − 1)2

v2
√

6v2 − v4 − 1
dv ≈ 2.396 28 nπb. (72)

The divergence of the integrand at the equator v = 1+
√

2 arises from the coordinate singularity
there, but the integral converges (we could equally well have integrated from v = 1/(1 +

√
2)

to v = 1 with the same result).
It is of interest to study the behaviour of rotation coefficients and in particular differential

invariants near the singularities p = 0 and w = nπ . A power series expansion around keel
points w = nπ, n �= 0, leads to

ρ = − 1

2(w − nπ)
− 2v2

nπf 2
1

+ o((w − nπ)), (73)

|σ | = 1

2|w − nπ | − 2v2

nπf 2
1

U(w − nπ) + o(w − nπ), (74)

j = −U(w − nπ) +
8v2

nπf 2
1

(w − nπ)) + o((w − nπ)2) (75)

for small w − nπ , where U(x) is the step function, U(x) = 1 for x > 0 and −1 for x < 0.
While the ray divergence as well as the shear amount individually have first-order poles at
focal or keel points, their invariant quotient j remains finite, but jumps from + 1 to −1, if w

increases. For the second-order invariants I1, I2 one obtains near keel points:

I1 = −2f 2
1

√
f2

v3
(−1)n(w − nπ)3 + o((w − nπ))4, (76)

I2 = 16v2

nπf 2
1

(−1)n(w − nπ) + o((w − nπ)2). (77)

Thus the complex invariant I = I1 + iI2 vanishes here.

5.2. Focal surfaces

As already discussed in previous sections, apart from the keel lines also focal singularities
exist (we shall not discuss coordinate singularities). In geometrical optics, a caustic (set of
focal points) is the locus where the rays have an envelope and the intensity a singularity. Here
focal points are similarly defined as points of intersection of infinitesimally close geodesics,
which satisfy the relations xµ(u + δu, v + δv,w + δw) − xµ(u, v,w) = 0, where xµ(u, v,w)

is the cone congruence (23)–(26). Expanding, we have

∂xµ

∂u
δu +

∂xµ

∂v
δv +

∂xµ

∂w
δw = 0 (78)
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for suitable displacements δu, δv, δw. Let us assume v �= 1 (we leave out the exceptional
rays) and sin w �= 0 (no keel points are considered). We can then eliminate the displacements
from (78) and obtain two relations, which must be satisfied for the coordinates u, v,w of focal
points on the cone:

p(v,w)r(u, v,w) = 0, (79)

p(v,w)s(u, v,w) = 0. (80)

Here r = ∑
riu

i and s = ∑
siu

i are polynomials of fourth order in u, ri and si are
polynomials in v,w, sin w and cos w. A closer inspection shows that with the restrictions
sin w �= 0, v �= 1, r and s cannot vanish simultaneously; thus we conclude that focal points
are given by p(v,w) = 0 or

(v2 − 1)2w cos w + (6v2 − 1 − v4) sin w = 0,

which might also be written as

− tan w

w
= f 2

1

f2
= 1

2
tan2 θ. (81)

Alternatively, focal points can be considered as the critical points of the map (u, v,w) → xµ,
i.e, points where the rank of the Jacobian matrix is not maximal [3]. This leads to the same
condition (81). Equation (81) is the equation of two-dimensional surfaces on the cone. It is
similar to the condition for ‘points of the second kind’ on the Ozsváth–Schücking cone [20].
Note also the similarity of this equation to the equation for zero-divergence surfaces (48).
As in this case we conclude that focal surfaces can only occur in regions where the affine
parameter w is confined to the intervals

(2n − 1)
π

2
� w � nπ, n = 1, 2, 3, . . . , (82)

since only here is −tan w/w not negative. Thus the focal set decays into an infinite number of
separated two-dimensional sheets. The circular functions generate quasi-periodic behaviour
with similar but not identical shapes for the sheets.

If we solve (81) for v, we find

v2 = 1 +
2(sin w + (−1)n+1

√
2 sin2 w − w sin w cos w)

sin w − w cos w
. (83)

If w is in the interval (82), the square root is real. Since v2 − 1 varies only between 0 and
2 + 2

√
2 ≈ 4.8284, the quotient in (83) must fit into this interval. This is achieved by choosing

the sign of the square root as indicated.
Keels and focal surfaces are not completely separated. Every keel line w = nπ has two

common points with the nth sheet of focal surfaces, corresponding to the keel line endpoints
w = nπ, v = 1. These common points lie on the exceptional null ray and its antipode
respectively; see also figure 3.

If (83) is inserted into equations (23)–(26), one obtains an explicit representation
x

µ

focal(u,w) = xµ(u, v[w], w) of the focal surfaces. The tangential directions at the point
(u,w) on a focal surface are spanned by the spacelike vector ∂x

µ

focal

/
∂u and the vector

kµ = ∂xµ

∂w
+

dv∗

dw

∂xµ

∂v
+

dv∗

dw

∂xµ

∂u

(u2 + 1)

f1 cos w
, (84)

where v∗(w) is the function defined by (83). kµ is in general spacelike on the cone, but
becomes a null vector at focal surfaces. We expect that the curves to which kµ is tangent are
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non-geodesic null curves (see [6] for an excellent discussion of non-geodesic null lines in the
Minkowski spacetime).

Considering the invariants near focal surfaces, it turns out that j jumps from +1 to −1
with increasing w—this is the same behaviour as in keel points. Near the nth focal surface
p = 0 we may write with the step function U(p):

j = (−1)nU(p)(1 − 4 cos2 w
(
f 2

1 sin2 w − 2v2
)

q2 sin w
p) + o(p2). (85)

Note that with increasing w the function p(v,w) reaches zero at the nth focal surface from
positive (negative) values, if n is odd (even). A similar calculation for the invariants I1, I2

gives

I1 = 8(−1)n+1f 2
1

√
f2 cos3 w sin w

vq3
p2 + o(p3), (86)

I2 = 8 cos2 w
(
2v2 − f 2

1 sin2 w
)

q2 sin w
|p| + o(p2) (87)

near the focal surfaces p = 0.
This shows that at both focal and keel points, the complex invariant I = I1 + iI2 vanishes,

while j is 1, modulo a sign. The same result holds for the Oszváth–Schücking lightcone [20],
see [1].
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Appendix A. A triad on the Gödel cone

For an explicit calculation of the rotation coefficients (42)–(44), one needs the components of
a suitable triad εk, tk, t̄ k and γk, tk, t̄ k on the light cone. We have already chosen εi = δi

1. The
inner metric is given in terms of the triad by

γik = ti t̄ k + t̄ i tk. (A.1)

Comparing this expression with (28)–(32) shows that ti = δA
i tA, t i = δi

AtA,A = 2, 3. It is not
difficult to verify that

t2 = b sin w(p − q sin w)

v2 cos w
√

2q
+ i

bp

v

√
2

qf2
, (A.2)

t3 =
√

qbf1 sin w√
2v2(u2 + 1)

(A.3)

reproduces equations (38)–(40). For the contravariant components, we use the normalization
conditions t i t kγik = 0, t i t̄ kγik = 1 and obtain

t2 = i
v

2bp

√
f2q

2
, (A.4)

t3 = v2(u2 + 1)

bf1 sin w
√

2q
+ i

v(u2 + 1)
√

f2(q sin w − p)

2bf1 cos w
√

2qp
. (A.5)
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The non-vanishing rotation coefficients may then be found from

ρ + iν = −t2 t̄2,1 − t3 t̄3,1, (A.6)

σ = −t̄2 t̄2,1 − t̄3 t̄3,1, (A.7)

τ = (t̄2t3 − t̄3t2)(t̄2,3 − t̄3,2). (A.8)

Appendix B. Observer sky and cone parametrization

In sky coordinates θ, φ any cone metric can be expanded in powers of an affine parameter w∗

near the vertex (see, e.g., [7]):

γ ∗
θθ = w∗2

2
+ o(w∗4), γ ∗

θφ = o(w∗5), γ ∗
φφ = w∗2

2
sin2 θ + o(w∗4).

A similar expansion of the Gödel cone metric in powers of w gives

γ22 = 4w2b2f 2
1

v2(u2 + 1)2
+ o(w4), γ23 = o(w5), γ33 = 16w2b2

f2
+ o(w4).

The coordinates (u, v,w) are related to (θ, φ,w∗), and this coordinate transformation should
take approximately the form θ = θ(u, v), φ = φ(u, v),w∗ = w/m(u, v) near the vertex, i.e.,
for small w. For the transformation functions, we thus obtain the differential equations(

∂θ

∂u

)2

+

(
∂φ

∂u

)2

sin2 θ = 8b2f 2
1 m2

v2(u2 + 1)2
, (B.1)

∂θ

∂u

∂θ

∂v
+

∂φ

∂u

∂φ

∂v
sin2 θ = 0, (B.2)

(
∂θ

∂v

)2

+

(
∂φ

∂v

)2

= 32b2m2

f2
, (B.3)

which can easily be solved, if we assume θ = θ(v), φ = φ(u). Then (B.2) is already satisfied
and the other two give

(u2 + 1)
∂φ

∂u
= 2

√
2f1bm

v sin θ
,

∂θ

∂v
= 4

√
2ε1bm√
f2

,

where ε1 = ±1. The second equation here shows that m depends on v only; the first equation
then says that both sides must be equal to a constant k1 independent of u and v. Integrating,
we first obtain

u = tan(φ/k1).

The differential equation for θ follows as

1

sin θ

∂θ

∂v
= 2ε1k1v

f1
√

f2
(B.4)

and is solved by

tan
θ

2
= k2

(
f1

1 + v2 +
√

f2

)ε1k1/2

, (B.5)

where k2 is a second constant. To obtain a real square root of f2, v had to be confined to the
interval vmin = 1/(1 +

√
2) through vmax = 1 +

√
2. We refer to (vmin, 1) as the min interval

and to (1, vmax) as the max interval.
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To determine the coefficients k1, k2 in equation (B.5), we must face the possibility that
they differ in different parts of the sphere.

The symmetry properties suggest that the poles of the observer sphere are related to the
local rotation axis and are thus given by v = 1. We consider (B.5) near the north pole and
assume that the v belong to the max range. Expanding the rhs in powers of small v − 1,
one obtains k2((v − 1)/2)ε1k1/2; thus the sign of ε1k1 must be positive to ensure that the rhs
vanishes for v → 1, as does the lhs. We also conclude that k2 > 0. A similar conclusion is
reached for the min range of v: apart from the positive sign of ε1k1, also k2(−1)ε1k1/2 must be
positive and real. (Note, the min-interval of v is obtained from the max-interval by applying
the map v → 1/v, the expression within the bracket in (B.5) attains the factor −1 under this
map.) Using the identity tan

(
θ
2

)
tan

(
π
2 − θ

2

) = 1, one can easily repeat the calculation near
the south pole. It is seen that the lhs of (B.5) diverges there, thus also the rhs diverges, and
this requires ε1k1 < 0, holding again for min as well as for max ranges of v. Furthermore, we
have for the max (min) range k2 > 0 (k2(−1)−k3/2 > 0).

Moving now from the north pole towards the equator, assuming the max interval, v as well
as θ increase until v = vmax is reached, which corresponds to a θmax = 2 arctan [k2/2ε1k1/2].
θmax cannot represent the other pole θ = π , since the lhs of (B.5) diverges at θ = π , while
the rhs here is regular. Thus, only part of the sky is covered by v values in the max range.
It is convenient to assume that this part is the northern hemisphere, i.e., θmax = π/2. This
fixes k2 by k2 = 2ε1k1/4. If we had started our walk in the min region of v, taking v = 1 at
the north pole and decreasing v to the equator, we would have obtained a similar conclusion.
Also the min range covers the sphere only from the pole to the equator; here k2 is fixed by
k2 = 2ε1k1/4(−1)−ε1k1/2. Our walk could have started from the south pole, reaching the equator
from the south, but the results for k2 are the same.

Further conclusions depend on k1. Mapping the (0, 2π) interval of φ to the range (0,∞)

of u would mean k1 = 4, but this cannot be correct: since the meridians φ = 0 and φ = 2π

and hence u = 0 and u = ∞ coincide, the corresponding rays must represent the same
spacetime points, which is wrong, as a discussion of (23)–(26) shows. The correct choice is
k1 = 2, which maps (0, 2π) to the u-interval (−∞,∞) in the sense that (0, π) is mapped
to (0,∞) and (π, 2π) to (−∞, 0). Since the subsets (v, u → ∞) and (v, u → −∞) in
the parameter space of u and v describe the same rays, there is no matching problem here.
Taking only max regions for the v-values and assuming ε1 = 1, k2 = √

2 for the northern
and ε1 = −1, k2 = 1/

√
2 for the southern hemisphere will satisfy our conditions. Note that

the northern and southern hemispheres need separate copies of the max interval. u covers the
range (−∞,∞), and the sign ε1 turns out to be equal to ε in equation (26). Thus the pair
(θ, φ) is related to a pair (u, v) by

tan
θ

2
=

( √
2(v2 − 1)

v2 + 1 +
√

6v2 − v4 − 1

)ε

, tan
φ

2
= u, (B.6)

where ε = 1 (−1) in the northern (southern) hemisphere. Equation (B.6) may be inverted.
Thus finally we have

v2 =
√

2 + sin θ√
2 − sin θ

, u2 = 1 − cos φ

1 + cos φ
, (B.7)

valid for the whole sphere. We can completely discard the min regions. Rays with v from
the min region are also light cone rays, but the transformation v → 1/v, u → −1/u leads
to identical rays, compare equation (27); thus already all rays are covered, if we confine the
discussion to max intervals. It should nevertheless be noted that another parametrization is
possible, which makes use of min-intervals.
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[4] Arnold V I 1990 Singularities of Caustics and Wavefronts (Dordrecht: Kluwer)
[5] Barrow J D and Tsagas C G 2004 Dynamics and stability of the Gödel universe Class. Quantum
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