
Ann. Henri Poincaré 7 (2006) 1 – 20
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On the T 3-Gowdy Symmetric
Einstein-Maxwell Equations

Hans Ringström

Abstract. Recently, progress has been made in the analysis of the expanding direc-
tion of Gowdy spacetimes. The purpose of the present paper is to point out that
some of the techniques used in the analysis can be applied to other problems. The
essential equations in the case of the Gowdy spacetimes can be considered as a
special case of a wider class of variational problems. Here we are interested in the
asymptotic behaviour of solutions to this class of equations. Two particular mem-
bers arise when considering the T 3-Gowdy symmetric Einstein-Maxwell equations
and when considering T 3-Gowdy symmetric IIB superstring cosmology. The main
result concerns the rate of decay of a naturally defined energy. A subclass of the
variational problems can be interpreted as wave map equations, and in that case
one gets the following picture. The non-linear wave equations one ends up with
have as a domain the positive real line in Cartesian product with the circle. For
each point in time, the wave map can thus be seen as a loop in some Riemannian
manifold. As a consequence of the decay of the energy mentioned above, the length
of the loop converges to zero at a specific rate.

1 Introduction

1.1 Background

In the study of the expanding direction of cosmological models, the results can
roughly be divided into two groups; small data results and results obtained for
cases with symmetry. This is due to the fact that analyzing Einstein’s equations in
general seems to be out of reach at this time. In this paper, we shall be concerned
with a situation in which there is symmetry, but we shall consider general data
within the given symmetry class. In [2], Gowdy introduced a class of vacuum
spacetimes with a two dimensional group of isometries, see also [1], and in [3] the
fundamental global existence result was proved. The symmetry is consistent with
the following topologies on the spatial Cauchy surfaces: T 3, S2 × S1, S3 and the
Lens spaces. Since one only expects there to be an expanding direction in the case of
T 3-topology, we shall only be concerned with this case here. In the vacuum case, the
essence of the equations is contained in a wave map problem, where the target is the
hyperbolic plane. If one considers the Einstein-Maxwell equations under the same
symmetry conditions, one obtains a similar variational problem, [5], but, at least
in the form given in [5], it is not a wave map problem. Finally, when considering
IIB superstring cosmology under the above sort of symmetry condition, one ends
up with a wave map problem similar to the vacuum case, the only difference being
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the target, see [4]. Recently, progress has been made concerning the asymptotic
behaviour of Gowdy spacetimes in the expanding direction, see [6], i.e., in the
special case that one has a wave map problem with the hyperbolic space as a
target. In fact, it turned out to be possible to carry out quite a detailed analysis of
the corresponding wave map equations. The question then arises if the analysis can
be generalized to other targets, and if there is a relation between the geometry of
the target and the type of results obtained in the Gowdy case. Furthermore, it is of
interest to analyze the Einstein-Maxwell case, in which the problem, at least as it
is formulated in [5], is not in wave map form. The analysis in [6] consists of several
steps, the first one being that of obtaining decay for the energy. For each point in
time, the wave map can be viewed as a loop in the target space, and the fact that
the energy decays implies that the length of the loop with respect to the metric on
the target space converges to zero at a specific rate. The second step consists of a
detailed analysis of the behaviour of the solution, but this depends strongly on the
symmetries of the target, so it can not be expected to be generalized very easily.
That is not to say that nothing can be done, but in this paper we are only going to
consider the decay of the energy. The focus of the current paper is on the resulting
variational problem, and we shall not consider the consequences of the conclusions
obtained in this paper on the space time geometry. In fact the consequences for
the corresponding spacetimes are not particularly far reaching. What is done here
should rather be understood as a first step in analyzing the asymptotics. The
ultimate goal is of course to prove strong cosmic censorship and also to prove
that the spatial variations die out, so that there is spatial homogenization in the
expanding direction. Note that this has been done in the case of T 3-Gowdy and
in that case, proving the type of decay estimate that are given in this paper
was a crucial first step to proving causal geodesic completeness in the expanding
direction.

1.2 Generalities

We will throughout consider the Euler-Lagrange equations corresponding to a
Lagrangian density of the form

L = L1 + L2, (1)
where

L1 =
t

2
ḡαβ(f){−fα

t f
β
t + fα

θ f
β
θ }

and

L2 =
1
2
h̄γδ(f){−gγ

t g
δ
t + gγ

θ g
δ
θ}.

Here θ ∈ S1, t ∈ R+ = (0,∞), ḡαβ defines a smooth map from R
n1 to the

symmetric positive definite n1 × n1 matrices and h̄γδ defines a smooth map from
R

n1 to the symmetric positive definite n2 × n2 matrices. If L2 = 0, the arguments
below all go through; one only has to set all terms involving h̄ to zero. In that
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case, the relevant equations are those of a wave map problem. In fact, consider a
map from R+ × T 2 with the metric

g0 = −dt2 + dθ2 + t2dφ2 (2)

to R
n1 with some metric ḡ. Then the wave map equations corresponding to such

a map which is independent of the φ-variable are the same as the Euler-Lagrange
equations corresponding to the Lagrangian density L1 above.

Assume from now on that f : R+ × S1 → R
n1 and g : R+ × S1 → R

n2 satisfy
the Euler-Lagrange equations corresponding to L. Define H and Ĥ by

tH = Ĥ = Ĥ1 + Ĥ2 (3)

where Hi and Ĥi, i = 1, 2, are defined by

tH1 = Ĥ1 =
t

2

∫
S1
ḡαβ{fα

t f
β
t +fα

θ f
β
θ }dθ, tH2 = Ĥ2 =

1
2

∫
S1
h̄αβ{gγ

t g
δ
t +gγ

θ g
δ
θ}dθ.

Then
dĤ

dt
=

1
t

∫
S1

L1dθ and
dH

dt
= −1

t

∫
S1
ḡαβf

α
t f

β
t dθ −

1
t
H2. (4)

Note that as a consequence,H is monotonically decaying, but that it is not a priori
clear that it tends to zero as t tends to infinity. Another important consequence
of the geometric setting is the following. Let

A =
t

2
ḡαβ(fα

t + fα
θ )(fβ

t + fβ
θ ) +

1
2
h̄γδ(g

γ
t + gγ

θ )(gδ
t + gδ

θ), (5)

B =
t

2
ḡαβ(fα

t − fα
θ )(fβ

t − fβ
θ ) +

1
2
h̄γδ(g

γ
t − gγ

θ )(gδ
t − gδ

θ). (6)

Then
(∂t − ∂θ)A = (∂t + ∂θ)B =

1
t
L1. (7)

Note that (4) is in fact a consequence of (7). Finally, it will be convenient to
introduce the notation

K1 = ḡαβf
α
t f

β
t , P1 = ḡαβf

α
θ f

β
θ ,

and
H1,K =

1
2

∫
S1

K1dθ, H1,P =
1
2

∫
S1

P1dθ.

1.3 Metrics

We shall consider metrics of the form

ḡ =
l∑

i=1

dP i ⊗ dP i +
m∑

j=1

QjdQj ⊗ dQj (8)

+
n∑

k=1

Rk


dRk +

m∑
j1,j2=1

αk
j1j2Q

j1dQj2


 ⊗


dRk +

m∑
j1,j2=1

αk
j1j2Q

j1dQj2


 ,
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where

Qj = exp

[
l∑

i=1

αj
iP

i

]
, Rk = exp

[
l∑

i=1

βk
i P

i

]
,

where αj
i , β

k
i and αk

j1j2 are constants. Most arguments will require these constants
to satisfy some algebraic relations which we now define.

Definition 1.1 Consider a metric of the form (8). We shall say that it scales if
αk

j1j2
�= 0 implies

Rk = Qj1Qj2 . (9)

Furthermore, we shall say that the metric is ordered if αk
j1j2

�= 0 for some k, j1
and j2 implies that αk′

j′2j1
= 0 for all k′ and j′2.

Remark. Note that if n = 0, then the metric scales and is ordered. The motivation
for the terminology scales is as follows. Define a map by

P i → P i + ∆i, Qj → Qj exp

[
−1

2

l∑
i=1

αj
i∆

i

]
, Rk → Rk exp

[
−1

2

l∑
i=1

βk
i ∆i

]
,

where ∆i ∈ R, i = 1, . . . , l. This map is an isometry of (8) if the metric scales.
We shall also assume that the metric h̄ has a special form.

Definition 1.2 Let ḡ be a metric of the form (8) and let n1 = l+m+n. A smooth
map h̄ from R

n1 to the set of symmetric positive definite n2 × n2 matrices will be
called a ḡ-metric if h̄ only depends on (P,Q) ∈ R

l+m and if there are constants
C1 and C2 such that∣∣∣∣∂h̄γδ

∂P i
(P,Q)V γW δ

∣∣∣∣ ≤ C1h̄γδ(P,Q)(V γV δ +W γW δ), (10)∣∣∣∣(Qj)−1/2 ∂h̄γδ

∂Qj
(P,Q)V γW δ

∣∣∣∣ ≤ C2h̄γδ(P,Q)(V γV δ +W γW δ) (11)

for arbitrary (P,Q) ∈ R
l+m, V,W ∈ R

n2 and i, j. (In the second inequality, there
is no summation on j).

When considering Einstein’s vacuum equations with Gowdy T 3-symmetry,
one obtains a problem of the form above, with L2 = 0 and ḡ given by

gH = dP 2 + e2PdQ2.

The corresponding Riemannian manifold is in fact isometric to hyperbolic space.
In [4], Makoto Narita considered T 3-Gowdy symmetric IIB superstring cosmology,
and the relevant problem that arises in this case is of the above type, with L2 = 0
and ḡ defined by gH + gHS , where

gHS = dφ2 + dβ2 + e
√

3β+φdχ2 + e−
√

3β+φdσ2
2 + e2φ(dσ1 − χdσ2)2.
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Note that in this case, the equations for (φ, χ, β, σ1, σ2) and the equations for
(Q,P ) decouple, so that the relevant metric to consider is gHS . Furthermore, the
metrics gH and gHS scale and are ordered. Note also that (m + 1)-dimensional
hyperbolic space falls into the above category with L2 = 0. However, the corre-
sponding wave map problem has no physical interpretation as far as we are aware.
Finally, the Einstein-Maxwell-Dilaton-Axion system considered in [5] is the Euler-
Lagrange equations corresponding to L, with

ḡ = dZ2 + 4dφ2 + e−2ZdX2 + e4aAφdκ2

and
h̄ = 4e−2aMφ

[
eZdω2 + e−Z(dχ−Xdω)2

]
.

By the change of variables ψ = 2φ, the metric ḡ has the form (8). Furthermore
h̄ is a ḡ-metric. Note that the equations (14) and (15) in [5] contain a mistake;
expressions of the form

Ẋ(Xω̇ − χ̇) +X ′(Xω′ − χ′)

appear where expressions of the form

Ẋ(Xω̇ − χ̇) −X ′(Xω′ − χ′)

should appear. The Einstein-Maxwell equations are a special case of the above,
when one puts κ = φ = 0 and lets the constants aA = aM = 0. Note also that one
can put the Maxwell part to zero. The equations for the Dilaton-Axion then de-
couple and has a form very similar to that of Gowdy. Analyzing the asymptotics in
this case should for this reason be very similar to the analysis of Gowdy presented
in [6].

1.4 Equations

Let ḡ be of the form (8), let h̄ be a ḡ-metric and let the corresponding Lagrangian
density be defined by (1). Before writing down the equations, let us define

Ak = Rk
t +

m∑
j1,j2=1

αk
j1j2Q

j1Qj2
t and Bk = Rk

θ +
m∑

j1,j2=1

αk
j1j2Q

j1Qj2
θ .

The equations come in blocks. Let us start with the equations that come from
varying Rk. We get

∂t(tRkAk) − ∂θ(tRkBk) = 0. (12)

For the P i:s, we have

∂t(tP i
t ) − ∂θ(tP i

θ) =
t

2

m∑
j=1

αj
iQj

[
(Qj

t )
2 − (Qj

θ)
2
]

+
t

2

n∑
k=1

βk
i Rk[(Ak)2 − (Bk)2]

+
1
2
∂h̄γδ

∂P i
(gγ

t g
δ
t − gγ

θ g
δ
θ) (13)
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For the Qj :s, we have

∂t(tQjQj
t ) − ∂θ(tQjQj

θ) + t

n∑
k=1

Rk
m∑

o=1

(αk
oj − αk

jo)(Q
o
tA

k −Qo
θB

k) (14)

=
1
2
∂h̄γδ

∂Qj
(gγ

t g
δ
t − gγ

θ g
δ
θ),

where we have used (12). Note that second derivatives of Q appear in (12), but
that these can be eliminated using (14). Finally, for the gγ , we have

∂t(h̄γδg
δ
t ) = ∂θ(h̄γδg

δ
θ). (15)

1.5 Results

In Section 2, we prove that given smooth initial data for (12)–(15) at some t0 ∈ R+,
there is a unique smooth solution defined for all t ∈ R+. The argument concerning
the decay of the energy is in a natural way divided into two parts. First we prove
that we get the desired decay if the energy is small enough to start with, and then
we prove that the energy always decays to zero. Since the conditions for the small
data result are weaker than for the large data result, we write it down here.

Proposition 1 Fix a metric ḡ of the form (8), which scales, and a ḡ-metric h̄. Then
there is an ε > 0 such that if H(t0) ≤ ε for a solution to (12)–(15), where t0 ∈ R+

and H is defined in (3), there is a T and a C such that

H(t) ≤ C

t

for all t ≥ T .

Note that in [6], it was proved that if L2 = 0 and ḡ = gH , then

|tH(t) − cH | ≤ C

t
,

and that cH = 0 if and only if the solution is independent of θ. Note that t2H(t) is
constant for solutions that are independent of θ. Proving the opposite implication
is however more difficult. The decay obtained in Proposition 1 can in other words
not be improved in general. In the above example, H = H1, and so one could
of course hope that H2 satisfies a better decay estimate. The following, rather
uninteresting, example shows that this in not the case in general. Let h̄ be the
standard Riemannian metric on R. Then g1 satisfies the standard wave equation
on the cylinder. Since g1(t, θ) = t is a solution of this equation, we cannot improve
the estimate for H2 in general. For large data, we also need to require that the
metric be ordered.
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Theorem 1 Consider a solution to (12)–(15) corresponding to a metric ḡ of the
form (8), which scales and is ordered, and a ḡ-metric h̄. Let H be defined by (3).
Then there is a C and a T such that

H(t) ≤ C

t
for all t ≥ T .

Let us consider the case L2 = 0. Then for a fixed t, the solution defines a loop
in the Riemannian manifold (Rl+m+n, ḡ), and the length of the loop with respect
to this Riemannian metric is given by∫

S1
(ḡαβf

α
θ f

β
θ )1/2dθ ≤ (2π)1/2

(∫
S1
ḡαβf

α
θ f

β
θ dθ

)1/2

≤ 2π1/2H1/2 ≤ Ct−1/2.

2 Global existence

The arguments in this section are of course standard, but we wish to prove the
following for the sake of completeness.

Theorem 2 Consider the Euler-Lagrange equations corresponding to L defined in
(1), where ḡ is of the form (8) and h̄ is any smooth mapping from R

l+m+n to the
symmetric positive definite n2×n2 matrices for some n2 ∈ N. Given smooth initial
data given at some t0 ∈ R+, there is a unique smooth solution to these equations
on all of R+.

Proof. Let A and B be defined by (5) and (6) and let

F1(u, θ) = A(u, θ − u), F2(u, θ) = B(u, θ+ u), Ei(u) = sup
θ∈S1

Fi(u, θ)

and
E = E1 + E2.

By (7), we have

|F1(u1, θ) − F1(u0, θ)| =
∣∣∣∣
∫ u1

u0

∂uF1(u, θ)du
∣∣∣∣ =

∣∣∣∣
∫ u1

u0

1
u
L1(u, θ − u)du

∣∣∣∣
≤

∣∣∣∣
∫ u1

u0

1
2u
E(u)du

∣∣∣∣ ,
and similarly for F2. Taking supremum over θ and then adding, we get

E(u1) ≤ E(u0) +
∣∣∣∣
∫ u1

u0

1
u
E(u)du

∣∣∣∣ .
For u1 ≥ u0, we can apply Grönwall’s lemma to obtain

E(u1) ≤ u1

u0
E(u0) (16)
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for all u1 ≥ u0. In order to analyze the case u1 ≤ u0, define

h(u) = E(u0) −
∫ u

u0

1
v
E(v)dv.

Then
h′ = − 1

u
E ≥ − 1

u
h.

This implies
E(u1) ≤ u0

u1
E(u0)

for all u1 ≤ u0. Thus E is bounded on compact subintervals of R+. Consequently,
P is bounded on such intervals, so that Qj and Rk are bounded on compact
subintervals of R+. Consequently, the sup norm of P andQ and the first derivatives
of P and Q are bounded on compact subintervals of R+. Due to the form of the
metric, this can then be used to get control of R and its first derivatives. Finally,
we get control of the gγ since we have control over h̄γδ(P,Q,R). Using this together
with energy estimates, one can control the higher order derivatives in L2, and thus
one obtains global existence. �

3 Small data

For the purposes of this section, we fix a metric ḡ of the form (8), which scales,
and a ḡ-metric h̄. Consider a solution to (12)–(15). Let us first note some facts
concerning the spatial variation of different objects. We shall use the notation

〈P i〉 =
1
2π

∫
S1
P idθ.

and

Q̄j = exp

[
l∑

i=1

αj
i 〈P i〉

]
, R̄k = exp

[
l∑

i=1

βk
i 〈P i〉

]
.

We shall also use the notation

Āk = Rk
t +

m∑
j1,j2=1

αk
j1j2〈Qj1〉Qj2

t , B̄k = Rk
θ +

m∑
j1,j2=1

αk
j1j2〈Qj1〉Qj2

θ

and
B̂k = Rk − 〈Rk〉 +

m∑
j1,j2=1

αk
j1j2〈Qj1〉(Qj2 − 〈Qj2〉).

Lemma 1 Consider a solution to (12)–(15). Then for t ≥ t0 > 0,

‖P i − 〈P i〉‖C0(S1,R) ≤ CH
1/2
1 , (17)

‖1 −Qj(Q̄j)−1‖C0(S1,R), ‖1 − Q̄j(Qj)−1‖C0(S1,R) ≤ CH
1/2
1 , (18)

‖1 −Rj(R̄j)−1‖C0(S1,R), ‖1 − R̄j(Rj)−1‖C0(S1,R) ≤ CH
1/2
1 , (19)
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‖(Qj)1/2(Qj − 〈Qj〉)‖C0(S1,R) ≤ CH
1/2
1 , (20)

‖(Rk)1/2B̂k‖C0(S1,R) ≤ CH
1/2
1 , (21)

(Q̄j)1/2|〈Qj
t 〉| ≤ CH

1/2
1,K , (22)∫

S1
Rk|Āk|2dθ ≤ CH1,K , (23)∫

S1
Rk|B̄k|2dθ ≤ CH1. (24)

Remark. The constants depend upon H , but they decrease as H decreases. Note
also that H decreases with time.

Proof. The inequality (17) is obvious, and (18), (19) are immediate consequences
of this. Note also that as a consequence of the first inequality, there are positive
constants c1, c2 such that

c1Q̄j ≤ Qj ≤ c2Q̄j , c1R̄j ≤ Rj ≤ c2R̄j (25)

for all t ≥ t0. Let us consider (20). We have

‖(Qj)1/2(Qj − 〈Qj〉)‖C0(S1,R) ≤ C‖(Q̄j)1/2(Qj − 〈Qj〉)‖C0(S1,R)

≤ C

∫
S1

|(Q̄j)1/2Qj
θ|dθ

≤ C

∫
S1

|(Qj)1/2Qj
θ|dθ

≤ C

[∫
S1

Qj(Qj
θ)

2dθ

]1/2

.

Let us estimate∫
S1

R̄k(Āk)2dθ ≤
∫

S1
R̄kĀkAkdθ (26)

+
m∑

j1,j2=1

|αk
j1j2 |

∫
S1

R̄k|(Qj1 − 〈Qj1〉)Qj2
t Ā

k|dθ

≤
∫

S1
R̄k(Ak)2dθ

+
m∑

j1,j2=1

|αk
j1j2 |

∫
S1

R̄k|(Qj1 − 〈Qj1〉)Qj2
t |{2|Ak|

+
m∑

j′1,j′2=1

|αk
j′1j′2

(Qj′1 − 〈Qj′1〉)Qj′2
t |}dθ

≤
∫

S1
Rk(Ak)2dθ + CH

1/2
1 H1,K + CH1H1,K ,
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where we have used (9), (19), (20), (25) and Hölder’s inequality. Consequently, we
obtain (23) after an applying (25). The proof of (24) is similar. Consider (21). We
have

‖(Rk)1/2B̂k‖C0(S1,R) ≤ C‖(R̄k)1/2B̂k‖C0(S1,R)

≤ C

∫
S1

(R̄k)1/2|B̄k|dθ ≤ CH
1/2
1

where we have used (24), (25) and Hölder’s inequality. Estimate

2π|(Q̄j)1/2〈Qj
t 〉| ≤

∫
S1

(Q̄j)1/2|Qj
t |dθ ≤ C

∫
S1

(Qj)1/2|Qj
t |dθ ≤ CH

1/2
K ,

where we used (25) and Hölder’s inequality. �

Define

Γ1 =
1

2t2

l∑
i=1

∫
S1

(P i − 〈P i〉)tP i
t dθ. (27)

Lemma 2 Consider a solution to (12)–(15) and let Γ1 be defined by (27). Then

|Γ1| ≤ C

t
H (28)

and
dΓ1

dt
≤ −2

t
Γ1 +

1
2t

∫
S1

(|Pt|2 − |Pθ|2)dθ +
C

t
H3/2. (29)

Proof. The inequality (28) follows from (17) and the definition of H and Γ1. Let
us compute

dΓ1

dt
= −2

t
Γ1 +

1
2t

∫
S1

|Pt|2dθ − π

t
|〈Pt〉|2 +

1
2t2

l∑
i=1

∫
S1

(P i − 〈P i〉)∂t(tP i
t )dθ

≤ −2
t
Γ1 +

1
2t

∫
S1

|Pt|2dθ +
1

2t2

l∑
i=1

∫
S1

(P i − 〈P i〉)tP i
θθdθ +

C

t
H3/2

≤ −2
t
Γ1 +

1
2t

∫
S1

(|Pt|2 − |Pθ|2)dθ +
C

t
H3/2,

where we have used (10), (13) and (17). �

Let

Γ2 =
1

2t2

n∑
k=1

∫
S1

R̄kB̂ktĀkdθ. (30)
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Lemma 3 Consider a solution to (12)–(15) and let Γ2 be defined by (30). Then

|Γ2| ≤ C

t
H (31)

and
dΓ2

dt
≤ −2

t
Γ2 +

1
2t

n∑
k=1

∫
S1

Rk
[
(Ak)2 − (Bk)2

]
dθ +

C

t
H3/2. (32)

Proof. Let us start by proving (31). Note first that

‖(R̄k)1/2B̂k‖C0(S1,R) ≤ C‖(Rk)1/2B̂k‖C0(S1,R) ≤ CH1/2,

where we have used (21) and (25). Consider∫
S1

(R̄k)1/2|Āk|dθ ≤ C

∫
S1

(Rk)1/2|Āk|dθ ≤ CH1/2

by (23) and Hölder’s inequality. Combining the above two inequalities, we obtain
(31). Compute

dΓ2

dt
= −2

t
Γ2 +

1
2t

n∑
k=1

∫
S1

l∑
i=1

βk
i 〈P i

t 〉R̄kB̂kĀkdθ +
1
2t

n∑
k=1

∫
S1

R̄kB̂k
t Ā

kdθ

+
1

2t2

n∑
k=1

∫
S1

R̄kB̂k∂t(tĀk)dθ.

Note that |〈P i
t 〉| ≤ CH1/2, so that∣∣∣∣∣ 1

2t

n∑
k=1

∫
S1

l∑
i=1

βk
i 〈P i

t 〉R̄kB̂kĀkdθ

∣∣∣∣∣ ≤ C

t
H3/2,

where the argument to prove the last inequality is the same as the proof of (31).
Compute

B̂k
t = Āk − 〈Āk〉 +

m∑
j1,j2=1

αk
j1j2〈Qj1

t 〉(Qj2 − 〈Qj2〉).

Note that
m∑

j1,j2=1

αk
j1j2

∫
S1

R̄k〈Qj1
t 〉(Qj2 − 〈Qj2〉)Ākdθ ≤ CH3/2

by (9), (20), (22), (23), (25) and Hölder’s inequality. Since we also have∫
S1

R̄k(Āk − 〈Āk〉)Ākdθ ≤
∫

S1
R̄k(Āk)2dθ − 2πR̄k〈Āk〉2,
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the relevant object to study is∫
S1

R̄k(Āk)2dθ ≤
∫

S1
Rk(Ak)2dθ + CH3/2,

where we have used (26). Adding up the above observations, we get

dΓ2

dt
≤ −2

t
Γ2 +

1
2t

n∑
k=1

∫
S1

Rk(Ak)2dθ +
1

2t2

n∑
k=1

∫
S1

R̄kB̂k∂t(tĀk)dθ +
C

t
H3/2.

Note that

∂t(tAk) − ∂t(tĀk) =
m∑

j1,j2=1

αk
j1j2 [(Q

j1
t − 〈Qj1

t 〉)tQj2
t + (Qj1 − 〈Qj1〉)∂t(tQ

j2
t )].

Estimate ∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1
t − 〈Qj1

t 〉)tQj2
t dθ

∣∣∣∣ ≤ CtH3/2,

where we have used (9), (21), (22), (25), and Hölder’s inequality. Estimate∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)∂t(tQ
j2
t )dθ

∣∣∣∣
=

∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)(Qj2 )−1[∂t(tQj2Qj2
t )

− t

l∑
i=1

αj2
i P

i
tQj2Qj2

t ]dθ

∣∣∣∣∣
≤

∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)(Qj2 )−1∂t(tQj2Qj2
t )dθ

∣∣∣∣ + CtH2.

Consider (14). Let us estimate∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)(Qj2 )−1∂θ(tQj2Qj2
θ )dθ

∣∣∣∣ ≤ CtH3/2

by arguments similar to ones given above, after one has carried out a partial
integration. Some of the remaining terms in (14) give rise to terms of the form∣∣∣∣

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)(Qj2 )−1tRk′
(Qo

tA
k′ −Qo

θB
k′

)dθ
∣∣∣∣

which can be estimated by

Ct

∫
S1

∣∣∣(Rk)1/2B̂k(Qj1)1/2(Qj1 − 〈Qj1〉)(Qo)1/2(Rk′
)1/2(Qo

tA
k′ −Qo

θB
k′

)
∣∣∣ dθ

≤ CtH2,
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where we have used the facts that Rk′
= Qj2Qo and Rk = Qj2Qj1 whenever terms

of the above form appear. Finally, we have to estimate∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)(Qj2 )−1 ∂h̄γδ

∂Qj2
(gγ

t g
δ
t − gγ

θ g
δ
θ)

∣∣∣∣ ≤ CtH2,

where we have used (9), (11), (20), (21) and (25). We conclude that∣∣∣∣αk
j1j2

∫
S1

R̄kB̂k(Qj1 − 〈Qj1〉)∂t(tQ
j2
t )dθ

∣∣∣∣ ≤ CtH3/2.

Thus

1
2t2

n∑
k=1

∫
S1

R̄kB̂k∂t(tĀk)dθ ≤ 1
2t2

n∑
k=1

∫
S1

R̄kB̂k∂t(tAk)dθ +
C

t
H3/2.

Let us estimate∫
S1

R̄kB̂k∂t(tAk)dθ =
∫

S1
R̄kB̂k(Rk)−1[∂t(tRkAk) − t

l∑
i=1

βk
i P

i
tRkAk]dθ

≤
∫

S1
R̄kB̂k(Rk)−1∂θ(tRkBk)dθ + CtH3/2

≤
l∑

i=1

βk
i t

∫
S1

R̄kB̂kP i
θB

kdθ −
∫

S1
tR̄kB̄kBkdθ + CtH3/2

≤ −
∫

S1
tRk(Bk)2dθ + CtH3/2,

where the arguments to prove the last inequality are standard by now. We conclude
that

1
2t2

n∑
k=1

∫
S1

R̄kB̂k∂t(tĀk)dθ ≤ − 1
2t

n∑
k=1

∫
S1

Rk(Bk)2dθ +
C

t
H3/2.

The lemma follows. �
Define

Γ3 =
1

2t2

m∑
j=1

∫
S1

Q̄j(Qj − 〈Qj〉)tQj
tdθ. (33)

Lemma 4 Consider a solution to (12)–(15) and let Γ3 be defined by (33). Then

|Γ3| ≤ C

t
H (34)

and
dΓ3

dt
≤ −2

t
Γ3 +

1
2t

m∑
j=1

∫
S1

Qj [(Qj
t )

2 − (Qj
θ)

2]dθ +
C

t
H3/2. (35)
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Proof. The inequality (34) follows from (20), (25) and Hölder’s inequality. Similarly
to earlier arguments, we have

dΓ3

dt
≤ −2

t
Γ3 +

1
2t

m∑
j=1

∫
S1

Qj(Qj
t )

2dθ

+
1

2t2

m∑
j=1

∫
S1

Q̄j(Qj − 〈Qj〉)∂t(tQ
j
t )dθ +

C

t
H3/2.

Consider∫
S1

Q̄j(Qj − 〈Qj〉)∂t(tQ
j
t )dθ =

∫
S1

Q̄j(Qj − 〈Qj〉)(Qj)−1[∂t(tQjQj
t )

− t

l∑
i=1

αj
iP

i
tQjQj

t ]dθ

≤
∫

S1
Q̄j(Qj − 〈Qj〉)(Qj)−1∂t(tQjQj

t )dθ

+ CtH3/2.

Let us use (14). We need the estimate∣∣∣∣
∫

S1
Q̄j(Qj − 〈Qj〉)(Qj)−1tRk(Qo

tA
k −Qo

θB
k)dθ

∣∣∣∣ ≤ CtH3/2,

where we have used the fact that Rk = QjQo whenever terms of the above form
appear. Furthermore, we have∣∣∣∣

∫
S1

Q̄j(Qj − 〈Qj〉)(Qj)−1 ∂h̄γδ

∂Qj
(gγ

t g
δ
t − gγ

θ g
δ
θ)dθ

∣∣∣∣ ≤ CtH3/2,

where we have used (11), (20) and (25). What remains to be considered is then∫
S1

Q̄j(Qj − 〈Qj〉)(Qj)−1∂θ(tQjQj
θ)dθ

= −
∫

S1
tQ̄j(Qj

θ)
2dθ +

l∑
i=1

αj
i t

∫
S1

Q̄j(Qj − 〈Qj〉)P i
θQ

j
θdθ

≤ −
∫

S1
tQj(Qj

θ)
2dθ + CtH3/2.

Adding up, we get

1
2t2

m∑
j=1

∫
S1

Q̄j(Qj − 〈Qj〉)∂t(tQ
j
t )dθ ≤ − 1

2t

m∑
j=1

∫
S1

Qj(Qj
θ)

2dθ +
C

t
H3/2.

The lemma follows. �
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Proof of Proposition 1. By (4), we know that H is monotonically decaying, so we
shall assume t0 ≥ 1. Furthermore, all constants depend on H , but they decrease
as H decreases. Consequently, if we demand that ε ≤ 1, all the constants that
depend on H become numerical constants. Define

Γ = Γ1 + Γ2 + Γ3.

By (28), (31) and (34), we have

|Γ| ≤ C

t
H, (36)

where C depends on H . By (4), (29), (32), (35) and (36), we have

d(H + Γ)
dt

≤ −1
t
(H + Γ) +

C

t2
H +

C

t
H3/2,

for t ≥ t0. Due to (36) there is a T ≥ t0 such that

1
2
H ≤ H + Γ ≤ 2H

for t ≥ T . Thus, if we let E = H + Γ, then

dE
dt

≤ −1
t
E +

C

t2
E +

C

t
E3/2, (37)

for t ≥ T . For ε small enough, CE1/2(t) ≤ 1/2 for all t ≥ T . Then

dE
dt

≤ − 1
2t
E +

C

t2
E ,

so that E ≤ Ct−1/2. Inserting this information into (37), we get the conclusion
that

dE
dt

≤
(
−1
t

+
C

t2
+

C

t5/4

)
E ,

and the proposition follows. �

4 Large data

In this section it will be necessary to make the additional assumption that the
metric is ordered. We shall use the notation

J1 = {j1 : ∃k, j2 : αk
j1j2 �= 0}.

Note that if j1 ∈ J1, then αk
j2j1

= 0 for all j2 and k (assuming that the metric ḡ of
the form (8) is ordered). In the proof of Theorem 1, it will be convenient to know
the following facts.
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Lemma 5 Consider a solution to (12)–(15). Then

1
t

∫
S1
Pt · 〈Pt〉dθ ∈ L1([t0,∞)) (38)

1
t2

∫
S1

QjQj
t(Q

j − 〈Qj〉)dθ ∈ L1([t0,∞)) (39)

1
t

∫
S1

RkAk〈Āk〉dθ ∈ L1([t0,∞)) (40)

1
t
αk

j1j2

∫
S1

RkAk〈Qj1
t 〉(Qj2 − 〈Qj2〉)dθ ∈ L1([t0,∞)) (41)

1
t
αk

j1j2

∫
S1

RkAk(Qj1 − 〈Qj1〉)Qj2
t dθ ∈ L1([t0,∞)) (42)

for all t0 > 0.

Proof. Note that (4) implies that

1
t
H1,K +

1
t
H2 ∈ L1([t0,∞)) (43)

for every t0 > 0. Estimate

1
t

∣∣∣∣
∫

S1
Pt · 〈Pt〉dθ

∣∣∣∣ =
2π
t
|〈Pt〉|2 ≤ 1

t

∫
S1

|Pt|2dθ ≤ 2
t
H1,K ,

proving (38) due to (43). Note that∣∣∣∣
∫

S1
QjQj

t(Q
j − 〈Qj〉)dθ

∣∣∣∣ ≤ CH1,

by (20) and Hölder’s inequality. Since H is bounded to the future, we have (39).
Estimate∣∣∣∣

∫
S1

RkAk〈Āk〉dθ
∣∣∣∣ ≤ C

∣∣∣∣
∫

S1
(Rk)1/2|Ak|dθ

∣∣∣∣
∣∣∣∣
∫

S1
(Rk)1/2|Āk|dθ

∣∣∣∣ ≤ CH1,K ,

where we have used (25), (23) and Hölder’s inequality. We conclude that (40) holds
since (43) is true. The statements (41) and (42) can be proven by similar methods
after taking (9) into account. �

The statements of the above lemma, and similar results which have not been
stated, will be used without further comment in the following.

Proof of Theorem 1. Due to Proposition 1, all we need to prove is that H converges
to zero. One way of doing so is to prove that t−1H ∈ L1([t0,∞)) for some t0 > 0.
In fact, since H is monotonically decaying, it has to converge to some c0 ≥ 0,
and if c0 > 0, we get a contradiction to the integrability of t−1H . Note that we
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have (43), so that all we need to prove is that t−1H1,P ∈ L1([t0,∞)) for some
t0 > 0. Let us compute

∫ t

t0

1
s

∫
S1

Qj[(Qj
t )

2 − (Qj
θ)

2]dθds (44)

=
∫ t

t0

1
s

∫
S1

Qj [Qj
t∂t(Qj − 〈Qj〉) − (Qj

θ)
2]dθds + . . .

= −
∫ t

t0

1
s2

∫
S1

[∂t(sQjQj
t) − ∂θ(sQjQj

θ)](Q
j − 〈Qj〉)dθds+ . . .

=
∫ t

t0

1
s

∫
S1

n∑
k=1

Rk
m∑

o=1

(αk
oj − αk

jo)(Q
o
tA

k −Qo
θB

k)(Qj − 〈Qj〉)dθds

−
∫ t

t0

1
s2

∫
S1

1
2
∂h̄γδ

∂Qj
(gγ

t g
δ
t − gγ

θ g
δ
θ)(Q

j − 〈Qj〉)dθds+ . . .

= −
∫ t

t0

1
s

∫
S1

n∑
k=1

Rk
m∑

o=1

(αk
oj − αk

jo)Q
o
θB

k(Qj − 〈Qj〉)dθds + . . .

Here, and below, . . . represents functions of t that converge to some finite number
as t → ∞. Note in particular that the terms that arise from the endpoints t0
and t when carrying out a partial integration with respect to s fall into this class.
Consider ∫ t

t0

1
s

∫
S1

Rk[(Ak)2 − (Bk)2]dθds.

Note that

Ak = B̂k
t + 〈Āk〉 −

m∑
j1,j2=1

αk
j1j2〈Qj1

t 〉(Qj2 − 〈Qj2〉)

+
m∑

j1,j2=1

αk
j1j2(Q

j1 − 〈Qj1〉)Qj2
t .

This can be used to conclude that∫ t

t0

1
s

∫
S1

Rk(Ak)2dθds =
∫ t

t0

1
s

∫
S1

RkAkB̂k
t dθds+ . . .

= −
∫ t

t0

1
s2

∫
S1
∂t(sRkAk)B̂kdθds+ . . .

Note that

Bk = B̂k
θ +

m∑
j1,j2=1

αk
j1j2(Q

j1 − 〈Qj1〉)Qj2
θ
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so that

−
∫ t

t0

1
s

∫
S1

Rk(Bk)2dθds

=
∫ t

t0

1
s2

∫
S1
∂θ(sRkBk)B̂kdθds

−
m∑

j1,j2=1

αk
j1j2

∫ t

t0

1
s

∫
S1

RkBk(Qj1 − 〈Qj1〉)Qj2
θ dθds.

Using (12), we get

∫ t

t0

1
s

∫
S1

Rk[(Ak)2 − (Bk)2]dθds (45)

= −
m∑

j1,j2=1

αk
j1j2

∫ t

t0

1
s

∫
S1

RkBk(Qj1 − 〈Qj1〉)Qj2
θ dθds+ . . .

Summing (44) over j ∈ J1, we obtain

∑
j1∈J1

∫ t

t0

1
s

∫
S1

Qj1 [(Qj1
t )2 − (Qj1

θ )2]dθds

=
∑

j1∈J1

n∑
k=1

m∑
j2=1

∫ t

t0

1
s

∫
S1

Rkαk
j1j2Q

j2
θ B

k(Qj1 − 〈Qj1〉)dθds + . . .

Summing (45) over k, we obtain

n∑
k=1

∫ t

t0

1
s

∫
S1

Rk[(Ak)2 − (Bk)2]dθds

= −
∑

j1∈J1

n∑
k=1

m∑
j2=1

αk
j1j2

∫ t

t0

1
s

∫
S1

RkBk(Qj1 − 〈Qj1〉)Qj2
θ dθds+ . . .

In other words

∫ t

t0

1
s

∫
S1




n∑
k=1

Rk[(Ak)2 − (Bk)2] +
∑
j∈J1

Qj1 [(Qj1
t )2 − (Qj1

θ )2]


 dθds = . . .

We conclude that

1
t

∫
S1




n∑
k=1

Rk(Bk)2 +
∑

j1∈J1

Qj1(Qj1
θ )2


 dθ ∈ L1([t0,∞)) (46)
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for all t0 > 0. Consider (44). Estimate

|αk
oj |
t

∫
S1

Rk|Qo
θB

k(Qj − 〈Qj〉)|dθ ≤ C

t

∫
S1




n∑
k=1

Rk(Bk)2 +
∑

j1∈J1

Qj1(Qj1
θ )2


 dθ,

by Hölder’s inequality since o ∈ J1 and (9) and (20) hold. Since

‖(Qj)1/2(Qj − 〈Qj〉‖C0(S1,R) ≤ C

[∫
S1

Qj(Qj
θ)

2dθ

]1/2

,

cf. the proof of (20), we can proceed similarly to the above in order to prove that

|αk
jo|
t

∫
S1

Rk|Qo
θB

k(Qj − 〈Qj〉)|dθ ≤ C

t

∫
S1




n∑
k=1

Rk(Bk)2 +
∑

j1∈J1

Qj1(Qj1
θ )2


 dθ.

This information can then be used together with (44) and (46) in order to prove
that

1
t

∫
S1




n∑
k=1

Rk(Bk)2 +
m∑

j=1

Qj(Qj
θ)

2


 dθ ∈ L1([t0,∞)). (47)

Finally let us consider∫ t

t0

1
s

∫
S1

[|Pt|2 − |Pθ|2]dθds = −
∫ t

t0

1
s2

∫
S1

[∂t(sPt) − ∂θ(sPθ)] · (P − 〈P 〉)dθds

+ . . . = . . . ,

where we have used (10), (13), (43) and (47) in order to obtain the last equality.
Due to this fact, (43) and (47), we conclude that t−1H ∈ L1([t0,∞)), and the
theorem follows. �

5 Conclusions

In this paper, we have demonstrated that some of the arguments of [6] can be
generalized to other situations. One rather fundamental question has however not
been answered. Namely, what is the property of the target space (in the case
L1 = 0 and the problem is of wave map type) that implies the decay of the energy?
What we would like to have is of course a geometric condition. It is interesting to
note that the arguments are not very geometric. Consider for instance the proof
of Theorem 1. Due to (4), we know that t−1H1,K + t−1H2 ∈ L1([t0,∞)) for all
t0 > 0. Geometrically, it would then seem natural to consider the limit of∫ t

t0

1
s
(H1,K −H1,P )ds
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as t → ∞. It is however not clear to us how to do something sensible with this
expression. Instead, we first prove (46) and then proceed to consider the other parts
of the potential energy. In other words, we divide the potential energy into different
parts, without there being any clear geometric interpretation of this division, and
then successively arrive at the desired conclusion. Note also that it is here that
the condition that the metric be ordered comes in. Finally, let us observe that
the presence or absence of L2 in the Lagrangian density (assuming that h̄ is a
ḡ-metric) does not make any significant difference as far as the complexity of the
argument is concerned.
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