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Abstract. We developed a control scheme of homodyne detection. To operate the homodyne
detector as easy as possible, a simple Michelson interferometer is used. Here a motivation
that the control scheme of the homodyne detection is developed is for our future experiment
of extracting the ponderomotively squeezed vacuum fluctuations. To obtain the best signal-
to-noise ratio using the homodyne detection, the homodyne phase should be optimized. The
optimization of the homodyne phase is performed by changing a phase of a local oscillator for
the homodyne detection from a point at which a signal is maximized. In fact, in this experiment,
using the developed control scheme, we locked the Michelson interferometer with the homodyne
detector and changed the phase of the local oscillator for the homodyne detection. Then, we
measured signals quantity changed by changing the phase of the local oscillator for the homodyne
detection. Here we used the output from the homodyne detection as the signal.

1. Introduction
Quantum noise is one of the noises in gravitational wave detectors. The quantum noise consists
of shot noise and radiation pressure noise. A point at which the radiation pressure noise equals
the shot noise is called the standard quantum limit (SQL) [1]. In the next-generation detectors,
the sensitivity of the detector will be limited by the quantum noise at most of the frequencies.
When the quantum noise can be regarded as vacuum fluctuations entering an interferometer from
its anti-symmetric port [2, 3], the vacuum fluctuations will be ponderomotively squeezed [4] by
back action force of mirror motion due to the fluctuating radiation pressure on test masses.
The radiation pressure is attributed to the vacuum fluctuations. In case of detecting the
ponderomotively-squeezed vacuum fluctuations along with the gravitational waves using a
conventional readout scheme, with which the signal is maximized, the sensitivity is limited
by the SQL. However, by using homodyne detection that is one of the quantum nondemolition
devices [5], with which the SQL can be overcome, the sensitivity will be able to beat the SQL,
since an optimization of the homodyne phase makes it the best signal-to-noise ratio.

There, in this experiment, we developed a control scheme of the homodyne detection.
To operate the homodyne detector as easy as possible, a simple Michelson interferometer is
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used. Here a part of the operation of the homodyne detector would be basically the same as
the Michelson interferometer with the homodyne detector, even if an interferometer such as
Fabry-Perot Michelson interferometer were used to extract the ponderomotive squeezing in the
future experiment. To obtain the best signal-to-noise ratio using the homodyne detection, the
homodyne phase should be optimized. The optimization of the homodyne phase is performed
by changing a phase of a local oscillator for the homodyne detection from a point at which a
signal is maximized. In fact, in the experiment, using the developed control scheme, we locked
the Michelson interferometer with the homodyne detector and changed the phase of the local
oscillator for the homodyne detection. Then, we measured signals quantity changed by changing
the phase of the local oscillator for the homodyne detection. Here we used the output from the
homodyne detection as the signal.

2. Extraction of ponderomotively-squeezed vacuum fluctuations using a Michelson
interferometer
In the experiment, to confirm the operation of the homodyne detection as easy as possible, the
simple Michelson interferometer is used. A motivation that the control scheme of the homodyne
detection is developed is for our future experiment of extracting the ponderomotively squeezed
vacuum fluctuations. There, in this section, we verify whether the sensitivity can experimentally
circumvent the SQL utilizing the ponderomotive squeezing in case of using the simple Michelson
interferometer.

2.1. Input-output relations for a Michelson interferometer
We derive input-output relations for vacuum fluctuations entering and leaving the anti-
symmetric port of the Michelson interferometer, referred to the journal [6], with arm lengths
� ∼ 10 cm, a beam splitter mass M ∼ 1 kg, and end mirror masses m. The fields of the vacuum
fluctuations entering the anti-symmetric port are expressed by two quadrature amplitudes a1(Ω)
and a2(Ω) which are made by the combination of annihilation operators a±(ω0 ± Ω) [7, 8], as
shown in Figure 1. Modulation at a frequency Ω = 2π × 1 kHz of carrier light is attributed
to mirror motion produced by radiation pressure due to the vacuum fluctuations and the
gravitational waves. Laser light with power I0 ∼ 1 W and an angular frequency ω0 ∼ 1.8×1015 Hz
of a perfectly coherent state is injected from the symmetric port of the Michelson interferometer.
Here the interferometer’s noise assumes to be only the quantum noise. The gravitational waves
with the amplitude h are regarded as coming into the interferometer. Since in this calculation
all the losses are neglected, the reflectivity of the end mirror rE is 1.

The vacuum fluctuations that leave the anti-symmetric port are expressed by quadrature
amplitudes b1 and b2. The quadrature amplitudes b1,2 are obtained by

b1 = a1 e2iΩ�/c, (1)

b2 = (a2 −KMI a1) e2iΩ�/c +
√

2KMI
h

hSQL
eiΩ�/c, (2)

where

hSQL =

√
4h̄

mrΩ2�2
(3)

is square root of noise spectral density hSQL for the gravitational-wave signal at the SQL, and

KMI =
4I0ω0

mrc2Ω2
, mr =

Mm

M + m
, (4)

are a coupling constant that converts the input a1 into the output b2, because of the mirror
motion, and reduced mass mr.
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2.2. Possibility of extraction of ponderomotively-squeezed vacuum fluctuations using a simple
Michelson interferometer
From the quadrature amplitudes b1,2, a noise spectral density of the Michelson interferometer,
in case of using the conventional readout scheme, is obtained by

Sh =
h2

SQL

2

(
1

KMI
+ KMI

)
. (5)

The noise spectral density achieves the SQL, where the coupling constant KMI = 1.
In case of using the homodyne detection, the noise spectral density is obtained by

Sh =
h2

SQL

2KMI

(
1 + (cot η −KMI)

2
)

, (6)

where η is homodyne phase. When the homodyne phase is optimized to η = arccotKMI, the
sensitivity can obtain the best signal-to-noise ratio. Here the homodyne phase η is adjusted
to the frequency at the SQL. Then the sensitivity of the Michelson interferometer will be able
to beat the SQL. On this condition, we calculate how much mass of the end mirror is needed
to beat the SQL. The frequency at the SQL is set to ΩSQL = 2π × 1 kHz. From the result of
the calculation, it is found we need the end mirror masses m ∼ 1 ng. Since use of the masses
m ∼ 1 ng in the experiment is not realistic, we need to use an interferometer other than the
Michelson interferometer. Now we start to calculate experimental parameters to beat the SQL
using Fabry-Perot Michelson interferometer. From the result of the calculation, the realistic
parameter can be obtained. In the proceeding, the calculation is not described.
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Figure 1. Schematic of homodyne de-
tection introduced into a Michelson inter-
ferometer. Vacuum fluctuation that en-
ters the anti-symmetric port of the Michel-
son interferometer is drawn by quadrature
amplitudes a1,2. Output vacuum, pon-
deromotively squeezed by the interaction
of the Michelson interferometer, is drawn
by an ellipse with the quadrature ampli-
tude b1,2 along with a gravitational-wave
signal. The signal-to-noise ratio is opti-
mized when the relative phase between
the local oscillator and the amplitude of
the field from the interferometer is set to
η = arccotKMI.

3. Development of a control scheme for homodyne detection using a Michelson
interferometer
We see from equation (6) that the homodyne phase should be adjusted to η = arccotKMI to
make the sensitivity the best signal-to-noise ratio. To be locked at the point that the homodyne
phase is optimized, the phase of the local oscillator is changed from the point that the signal is
maximized, as shown in Figure 1. In the experiment, to confirm the operation of the homodyne
detection as easy as possible, we used the Michelson interferometer. Even if in the future the
interferometer such as the Fabry-Perot Michelson interferometer is used, we think the part of
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the control of the homodyne detector is basically the same as the control using the Michelson
interferometer. In this section, we describe the developed control scheme for the Michelson
interferometer with the homodyne detector.

3.1. Experimental setup
The experimental setup is shown in Figure 2. Laser light (Nd:YAG 1064nm) with power
I0 ∼ 200 mW and an angular frequency ω0 is split at a 50:50 beam splitter, BS1 called in
Figure 2. Reflected light is the local oscillator for the homodyne detection. Transmitted light
is phase modulated at an angular frequency ωm ∼ 2π × 18.8 MHz. The modulated laser electric
field Ein is

Ein = E0 ei (ω0t+m cos ωmt)

� E0 eiω0t
[
J0(m) + iJ1(m) eiωmt + iJ1(m) e−iωmt

]
, (7)

where E0e
iω0t is the laser electric field, m is the modulation depth, and Jn is the nth order Bessel

function. In the calculation, the approximation, Jn(m) ∼ 1/n! (m/2)2 (m � 1), is used. The
modulated beam is incident into the Michelson interferometer, and then recombines at a 50:50
beam splitter, BS3 called in Figure 2. The recombined light at the anti-symmetric port and the
local oscillator are split at a 50:50 beam splitter, BS2 called in Figure 2. Using the transmitted
and reflected light from the BS2 beam splitter, the homodyne detection is performed. The
output signal from the homodyne detection is

VHD =
1
2
|Eout + ELO|2 + |Eout − ELO|2 = 2Re [E∗

out ELO] , (8)

where Eout is the recombining electric field at the anti-symmetric port, and ELO is the electric
field of the local oscillator. Note that all of the optics in the experiment are fixed on the table.

3.2. Development of a control scheme
The Michelson interferometer introducing the homodyne detector has two longitudinal degrees
of freedom to be controlled. One is the differential length change l− in the arm of the Michelson
interferometer, and the other is the differential length change L− in an arm of Mach-Zehnder
interferometer, where the differential length change is given by L− = (L1 − l+)−L2. The inline
and perpendicular arm lengths are given by �i and �p, respectively. Common and differential
mode changes of the arm lengths are given by �+ = �p + �i and �− = �p − �i, respectively. As
shown in Figure 2, the gravitational-wave signals from the homodyne signal output VGW can be
obtained. The homodyne signal output VGW from equation (8) is obtained by

VGW = −|E0|2 sin η sin φ, (9)

where the phase φ = ω0l−/c is the differential phase shift of the Michelson interferometer, and
the phase η = ω0L−/c is the differential phase shift of the Mach-Zehnder interferometer. We can
also extract the demodulated signals VQhd = −m/2|E0|2 sin α sin η cos φ of the quadrature phase
and VIhd = −m/2|E0|2 cos α cos η sinφ of the in-phase from the RF portion of the homodyne
signal.

Here when the Michelson interferometer is operated on dark fringe at the anti-symmetric
port, we verify whether the two longitudinal degrees of freedom can be controlled. Then the
derivation of the output signal VGW becomes ∂VGW/∂φ ∝ sin η. The demodulated signals VQhd

of the quadrature phase and VIhd of the in-phase become VQhd ∝ sin α sin η and VQhd ∝ 0,
respectively. To control the two longitudinal degrees of freedom, the phase η should be locked
around η ∼ 0. If so, the homodyne signal output VGW almost cannot be obtained. There a DC

467



offset to the differential signal of the Michelson interferometer is added, as shown in Figure 2.
The Michelson interferometer is locked at an operating point that moves a little from dark
fringe. Then the phase η can be locked around η ∼ π/2 that the signals are maximized. Since
the derivation of the homodyne signal output is ∂VGW/∂φ ∝ cos (φoff), where the phase shift φ
adding the DC offset is given by φoff , the Michelson interferometer can be locked.

In the experiment, to control the differential length change of the Michelson interferometer,
we extracted the demodulated signal VQmi of the quadrature phase from the symmetric port of
the Michelson interferometer. The derivation ∂VQmi/∂φoff is obtained by

∂VQmi

∂φoff
= −m

2
|E0|2 sinα cos β, (10)

where α and β are given by ωm�−/c and ωm�+/c, respectively. In order to obtain the maximum
signals, the local oscillator phase of the Michelson interferometer is adjusted to make the phase
shift β zero. Here from equation (9) it is found that the differential length change of the
Michelson interferometer can be also extracted from the homodyne signal output VGW. When the
experiment to beat the SQL utilizing the ponderomotive squeezing is started, the extraction from
the homodyne signal output VGW would be better than the extraction from the symmetric port of
the Michelson interferometer. To control the length change of the Mach-Zehnder interferometer,
we extracted the demodulation signal VImz of the in-phase from the RF portion of the homodyne
signal, as shown in Figure 2. The derivation ∂VImz/∂η is

∂VImz

∂η
= −m

2
|E0|2 cos α sin (φoff). (11)

From the result of the calculation mentioned above, the Michelson interferometer was locked
using the control signal from equation (10), and the Mach-Zehnder interferometer was locked
using the control signal from equation (11). Also, the ponderomotively-squeezed vacuum
fluctuations along with the gravitational-wave signals can be detected from the homodyne output
signal VGW of equation (9).
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Figure 2. Schematic of the experimental
setup. We call each of the 50:50 beam
splitters BS1, BS2, and BS3. For the
Michelson interferometer, the inline and
perpendicular arm lengths are given by
�i and �p, respectively. Common and
differential mode changes of the arm
lengths are given by �+ = �p + �i and
�− = �p − �i, respectively. For the Mach-
Zehnder interferometer, the laser path
lengths of the transmitted and reflected
light divided by BS1 are given by L1 and
L2, respectively.

4. Experimental results
Using the control scheme described in Section 3, we locked the Michelson interferometer with
the homodyne detector at the point that the maximum homodyne signal output is obtained. To
obtain the best signal-to-noise ratio using the homodyne detection, the homodyne phase should

468



be optimized. The optimization of the homodyne phase is performed by changing a phase of a
local oscillator for the homodyne detection from a point at which a signal is maximized. The
phase of the local oscillator for the homodyne detection was changed by a DC offset added to
the demodulation signal of the in-phase.

In the experiment, first when the DC offset was not added, we confirmed the maximum
homodyne signal was obtained. Next, by adding the DC offset to the demodulation signal
of the in-phase continuously, in proportional to sin η from equation (9), we confirmed the
homodyne signal output quantity was changed continuously. In Figure 3, the homodyne signal
output quantities, when the Michelson interferometer with the homodyne detector was locked
at arbitrary homodyne phases, are shown.
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Figure 3. By adding the DC offset
to the demodulation signal of the in-
phase continuously, in proportional to
sin η from equation (9), we confirmed
the homodyne signal output quantity was
changed continuously. In this Schematic,
the homodyne signal output quantities,
when the Michelson interferometer with
the homodyne detector was locked at
arbitrary homodyne phases, are shown.

5. Summary and future plan
Using the control scheme described in Section 3, we locked the Michelson interferometer with
the homodyne detector at the point that the maximum homodyne signal output is obtained.
We think a part of the operation of the homodyne detector would be basically the same as the
Michelson interferometer with the homodyne detector, even if an interferometer such as Fabry-
Perot Michelson interferometer were used to extract the ponderomotive squeezing in the future
experiment.

By the way, in case of using the Michelson interferometer to beat the SQL utilizing the
ponderomotively-squeezed vacuum fluctuations, as described in Section 2, we need the end
mirror masses m = 1 ng on the conditions of the laser power I0 ∼ 1 W and the frequency
ΩSQL = 2π × 1 kHz at the SQL. The parameters are severe. In the future, we will start the
experiment using the Fabry-Perot Michelson interferometer. From the result of calculating the
experimental parameters, it is found that the parameters are realistic. Here the calculation is
not described.
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