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We present a new method for the calculation of black hole perturbations induced by extended sources in
which the solution of the nonlinear hydrodynamics equations is coupled to a perturbative method based on
Regge-Wheeler/Zerilli and Bardeen-Press-Teukolsky equations when these are solved in the frequency
domain. In contrast to alternative methods in the time domain which may be unstable for rotating black
hole spacetimes, this approach is expected to be stable as long as an accurate evolution of the matter
sources is possible. Hence, it could be used under generic conditions and also with sources coming from
three-dimensional numerical relativity codes. As an application of this method we compute the gravita-
tional radiation from an oscillating high-density torus orbiting around a Schwarzschild black hole and
show that our method is remarkably accurate, capturing both the basic quadrupolar emission of the torus
and the excited emission of the black hole.
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I. INTRODUCTION

It is well-known that matter falling into a black hole, or
orbiting around it, is a source of gravitational radiation.
The detection of these waves, and of the imprint they carry
on the excitation of the black hole quasinormal modes
(QNM), would provide an invaluable test of general rela-
tivity in the strong-field regime. This process can be
studied using the theory of black hole perturbations, the
origin of which dates back to 1957 when Regge and
Wheeler [1] showed that the axial perturbations of a
Schwarzschild black hole can be studied by solving a radial
equation in the frequency domain, the angular part of the
perturbation being known in terms of a suitable expansion
in tensor spherical harmonics.

Among the many dedicated to this subject, two papers
can be considered as milestones in the theory of black hole
perturbations. The first one is by F. Zerilli [2], who derived
the radial equation governing the polar perturbations of a
Schwarzschild black hole, thus completing the work of
Regge and Wheeler (see [3] for a recent review). The
second one is by S. Teukolsky [4], who achieved the
formidable task of reducing the equations for the perturba-
tions of a Kerr black hole to a master radial equation. Both
the Zerilli and the Teukolsky equations were derived in the
frequency domain.

The theory of black hole perturbations has been devel-
oped largely to study the stability properties of black holes
and to determine the gravitational signals emitted by point
particles moving near black holes on different orbits (see
for instance [5] and references therein). In addition, it has
been used to evaluate back-reaction effects on the orbital
motion of a point particle moving around a nonrotating
black hole [6].

Although it clearly represents only a toy-model, the
point-particle approximation has been very useful to study
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a number of phenomena that occur in the neighborhood
of black holes and it has also been applied to study stellar
perturbations [7,8]. However, if one wants to investigate
realistic astrophysical processes, in which finite-size ef-
fects and internal dynamics need to be properly taken
into account, the point-particle approximation is certainly
too crude. Therefore, several attempts have been made
towards a more realistic description. In Ref. [9], for in-
stance, the point particle orbiting a black hole was treated
as having a spin angular momentum, while in Ref. [10]
the infalling matter was assumed to be a finite size sphere
of dust. Furthermore, in Ref. [11] a semianalytic method
was developed to study the radial infall of a shell of dust;
while this latter approach has the advantage of being easily
generalizable to sources with arbitrary shapes, it has the
serious drawback that it can be applied only to sources
in which the matter configurations are freely falling onto
the black hole. It is worth stressing that in all cases
mentioned above the black hole is assumed to be nonrotat-
ing.

Alternative and more general approaches to treat ex-
tended sources have recently been developed by
Papadopulous and Font [12] and by Nagar et al. [13], by
combining perturbative approaches with fully multidimen-
sional hydrodynamical calculations. In Ref. [13], in par-
ticular, the polar perturbations of a Schwarzschild black
hole induced by an oscillating, thick accretion disk (a
torus) have been studied by solving the inhomogenous
Zerilli equation in the time domain. The source terms
were computed self-consistently by using the results of
two-dimensional (2D) simulations in which the relativistic
hydrodynamical equations were solved for a torus oscillat-
ing in the Schwarzschild, unperturbed background. The
purpose of that work was to compare the gravitational
signal found by solving the Zerilli equation, with the one
-1 © 2006 The American Physical Society
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found using the standard quadrupole formalism applied to
the oscillating torus.

In this paper we develop a new approach to study the
perturbations of a Schwarzschild black hole excited by
extended matter sources, by solving the inhomogeneous
Bardeen-Press-Teukolsky (BPT) equation [14,15] in the
frequency domain. Also in this case the source for the
perturbative equations is the result of independent 2D
hydrodynamical simulations in the time domain. Because
of the combined use of both time and frequency domains
approaches, we refer to this as to a hybrid approach.

There are at least three good reasons why our hybrid
approach may be preferable over a pure time-domain
approach as the one used in [13]. Firstly, the Regge-
Wheeler and the Zerilli equations (hereafter RWZ equa-
tions) cannot be generalized to rotating black holes,
whereas the BPT equation admits such a generalization,
i.e., the Teukolsky equation. (We recall that the Teukolsky
equation is not separable in the time domain because the
eigenvalues of the angular functions are frequency depen-
dent; this is not the case in the frequency domain where the
equation is indeed separable.) Secondly, although the BPT
equation is intrinsically unstable when integrated in the
time domain, its integration does not offer any numerical
difficulty when performed in the frequency domain.
Thirdly, it is a common experience that by removing the
error in the time integration of a system oscillating around
its equilibrium state, a frequency-domain approach im-
proves the overall accuracy. The work presented here
serves therefore to develop a new procedure for the solu-
tion of the BPT equation with extended matter sources,
whose generalization will allow to reach a long-standing
goal: i.e., the study of the gravitational-wave emission
from an extended source perturbing a rotating black hole.

While the mathematical apparatus behind our hybrid
approach is well-know, our numerical implementation is
more innovative and to test it against an astrophysically
realistic and computationally complex configuration we
have here also considered the gravitational-wave emission
from a high-density torus oscillating in its orbital motion
around a Schwarzschild black hole. This is the same source
considered in Ref. [13] and thus offers the possibility of
comparing for the same test case our hybrid approach with
one which is instead in the time domain only.

To this scope, we recall that the possibility that ex-
tremely dense and massive accretion tori form around a
black hole has been considered in recent years, initially as
a possible explanation of �-ray bursts [16]. In these sys-
tems, a torus of mass Mt � 0:1–1M� and mean density as
high as�1011–1012 g=cm3, forms around a black hole of a
few solar masses. The torus can be located within a few
tens of km from the horizon and could also be subject to a
dynamical instability which would induce its accretion
onto the black hole on a dynamical timescale (see
[17,18] and references therein). High-density tori could
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be generated in many astrophysical scenarios (see [16,18]
for a general overview): in the coalescence of black hole-
neutron star or neutron star binaries, as shown by several
numerical simulations [19] in the collapse to a black hole
of a rapidly rotating supramassive neutron star [20,21], as a
byproduct of collapsars, that is, massive stars in which iron
core-collapse does not produce an explosion, but forms a
black hole [22]. As discussed in [18], these systems can be
created with event rates comparable to that of core-
collapse supernovae. In addition, because the tori have an
intrinsically large quadrupole moment, even small-
amplitude oscillations would produce gravitational signals
that may be detectable by ground based interferometers
Virgo and LIGO [18]. As a result, the calculation of the
gravitational waves from these tori does not only represent
a useful testbed for our novel approach, but it also offers
the opportunity for a more accurate calculation of the
emission from a realistic and intense source of gravita-
tional radiation.

The gravitational radiation emitted by a torus oscillating
around a black hole was first computed in Ref. [18] within
the Newtonian quadrupole formalism. However, the quad-
rupole formalism may not be able to describe a system with
such a high energy density, and located so close to a black
hole horizon with sufficient accuracy. In particular, the
possible excitation of the black hole QNM cannot be
revealed by the quadrupole approach. The same system
has been studied in [13], where the perturbed equations
have been integrated in the time domain and no excitation
of the black hole quasinormal modes (QNMs) was found.
Conversely, as we will later discuss, our hybrid method
applied to the same system allows to catch the excitation of
the black hole quasinormal modes, though the peak they
produce in the energy spectrum is much smaller than that
corresponding to the torus oscillation.

The plan of the paper is as follows: in Sec. II we review
the main equations which describe the perturbations of a
Schwarzschild black hole in the RWZ and in the BPT
approaches when these are expressed in the frequency
domain. Furthermore, we also recall the expression of the
gravitational energy flux computed within the Newtonian
quadrupole formalism. In Sec. III we present the analytical
and numerical setup of our approach for the solution of
both the perturbative and general relativistic hydrodynam-
ics equations. Finally, in Sec. IV we discuss the results of
the numerical integrations for the representative case of an
oscillating torus, while in Sec. V we draw our conclusions.
A number of Appendices contain details on the form of the
source functions employed for the solution of the pertur-
bative equations.
II. A BRIEF REVIEW OF BLACK HOLE
PERTURBATIONS IN THE FREQUENCY DOMAIN

In what follows we briefly summarize the relevant equa-
tions needed to describe the perturbations of a
-2
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Schwarzschild spacetime in the RWZ and in the BPT
formulations, as they will later be used in our hybrid
approach. We will also write the expression of the energy
flux computed within the Newtonian quadrupole approxi-
mation since it will be used for comparison with the
corresponding quantities computed within the perturbative
approaches.

A. The RWZ approach

In the RWZ approach [1,2], the equations describing the
radial behavior of the perturbations of a Schwarzschild
black hole are reduced to two wave equations after ex-
panding all perturbed tensors in tensorial spherical har-
monics and after separating the radial from the angular
part. In particular, they are expressed for two suitable
combinations of the components of the perturbed metric
tensor and which are referred to as the Zerilli function,
~Z���‘m , and the Regge-Wheeler function, ~Z���‘m , respectively.
Hereafter we will indicate with a ‘‘tilde’’ all the perturba-
tive variables that have a time dependence which is not
explicitly indicated and with ‘, m the indices of the spheri-
cal harmonic decomposition.

Since the system we will consider, namely, the oscillat-
ing torus perturbing the spherically symmetric black hole
spacetime, is axially symmetric, the perturbations are also
axially symmetric, and hence in what follows we will
consider m � 0, with the Zerilli and Regge-Wheeler func-
tions expressed as ~Z���‘ �r; t�, ~Z���‘ �r; t�, with ‘ � 2.

Their Fourier transforms are simply given by

 Z�	�‘ �r;!� 

1

2�

Z
ei!t ~Z�	�‘ �r; t�dt; (2.1)

and satisfy the inhomogeneous wave equations

 L �	�Z�	�‘ � S�	�‘ ; (2.2)

where the upper index ‘‘�’’ refers to the Zerilli equation,
the ‘‘�’’ one to the Regge-Wheeler equation, and the
symbol L�	� is just a shorthand for the differential operator

 L �	� 
 @2
r� �!

2 � V�	�: (2.3)

Note that in order to provide mathematically consistent
boundary conditions at the event horizon, the latter is
moved to negative spatial infinity in terms of the ‘‘tortoise’’
radial coordinate r� 
 r� 2M ln�r=2M� 1�, and that the
Zerilli and Regge-Wheeler potentials in Eq. (2.2) have
explicit expressions given, respectively, by

 V��� 

2�r� 2M�

r4��r� 3M�2
��2��� 1�r3 � 3M�2r2

� 9M2�r� 9M2
; (2.4)

 V��� 

2�r� 2M�

r4 ���� 1�r� 3M
: (2.5)
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Here � 
 �‘� 1��‘� 2�=2, while S�	�‘ �r;!� are suitable
combinations of the components of the stress-energy ten-
sor of the extended matter source, after having been ex-
panded in tensor spherical harmonics and Fourier
transformed in time. Explicit expressions for the source
functions S�	�‘ �r; !� can be found in Appendix A 1.

Equations (2.2) can to be solved numerically by impos-
ing outgoing boundary conditions at spatial infinity (i.e.,
r; r� ! 1), and ingoing boundary conditions at the event
horizon (i.e., r � 2M; r� ! �1). The energy spectrum of
the gravitational radiation measured by a distant observer
and integrated over the solid angle, can then be expressed
in terms of the asymptotic amplitude of Z���‘ and Z���‘ as

 

dEZRW

d!
�
X1
l�2

dE‘
d!

��������r;r�!1

�
X1
l�2

1

8

�‘� 2�!

�‘� 2�!
�!2�Z���‘ �

2 � �Z���‘ �
2
: (2.6)
B. The BPT approach

In the BPT approach [14,15], the perturbations of the
Weyl scalar ��4, which describes the outgoing gravita-
tional radiation, are expanded in spin-weighted spherical
harmonics �2S

�
‘m and integrated over the solid angle d� �

sin�d�d�

 

~� ‘m�r; t� �
Z
d��2S

�
‘m�#;��r

4� ~�4�t; r; #;��: (2.7)

Also in this case, being the perturbing stress-energy tensor
axially symmetric the only nonvanishing components are
those with m � 0 and hence perturbed Einstein equations
take the form of inhomogeneous wave equations

 L BPT�‘�r;!� � �SBPT
‘ �r;!�; (2.8)

where �‘�r;!� is the Fourier transform of ~�‘�r; t�, the
symbol LBPT is just a shorthand for the differential opera-
tor,

 L BPT 
 �2@r
1

�
@r �U�r�; (2.9)

with � 
 r�r� 2M� and the potential U having explicit
form

 U 

r4!2 � 4i�r�M�r2!

�
� 8i!r� 2�: (2.10)

As for the RWZ equation, the source terms SBPT
‘ �r;!� are

suitable combinations of components of the stress-energy
tensor after having been expanded in spin-weighted spheri-
cal harmonics and Fourier transformed. Explicit expres-
sions for the source functions S�	�‘ �r; !� can be found in
Appendix A 2.
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Equation (2.8) can be integrated numerically imposing
the same boundary conditions discussed for the RWZ
equation. In this case, the energy spectrum of the gravita-
tional radiation collected by a distant observer and inte-
grated over the solid angle is expressed as

 

dEBPT

d!
�
X1
‘�2

dE‘
d!

��������r�!1
�
X1
‘�2

8�2

!2

���������‘

r3

��������2
: (2.11)
C. The Newtonian quadrupole approximation

The Newtonian quadrupole approximation is based on
the assumptions that the gravitational field is weak, that the
velocity of matter in the source is much smaller than the
speed of light, and that the source itself is small compared
to the characteristic wavelength of the emitted gravita-
tional radiation. In this approach, then, the amplitude of
the gravitational wave is estimated in terms of the quadru-
pole tensor associated to the source

 ~q ij 

Z
V

~T00�t; ~x�xixjd3x �i; j � 1; 2; 3�: (2.12)

where T is the stress-energy tensor of the matter source.
The resulting gravitational-wave energy spectrum is then
given by

 

dEquad

d!
�

4�
5
!6
X
ij

jQij�!�Qij�!�j (2.13)

where Qij�!� is the Fourier transform of the traceless
quadrupole tensor ~Qij

 

~Q ij 
 ~qij �
1

3
�ij
X
kl

�kl~qkl: (2.14)

As we will comment more extensively in Sec. IV, we
will compare expressions (2.6), (2.11), and (2.13) for the
gravitational emission coming from an oscillating torus
and point out the respective advantages and disadvantages.
III. THE HYBRID APPROACH

We will now give a general and brief account of our
hybrid approach, sketching its most relevant parts and its
numerical implementation. We will first discuss how to
construct the components of the stress-energy tensor,
needed as source terms in the perturbative equations,
through the solution of the 2D hydrodynamic equations
in a Schwarzschild background. We will then illustrate how
to find the solution of the RWZ and BPT equations once the
sources are known in the frequency domain.
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A. Computing the sources from the hydrodynamic
equations

As mentioned in the Introduction, any realistic and
extended matter source whose dynamics goes beyond the
elementary free-fall from infinity, will need to be described
through the solution of the general relativistic hydrody-
namics equations on the background black hole spacetime.
In particular, this is accomplished by computing at the
different spacetime points covered by a numerical grid,
the components of the stress-energy tensor T���t; r; ��

necessary for the calculation of the sources ~S�	�‘ and ~SBPT
‘ .

For a matter source represented by a perfect fluid with
four-velocity u and described by the stress-energy tensor

 T�� 
 �e� p�u�u� � pg�� � �hu�u� � pg��; (3.1)

where g�� are the coefficients of the metric which we
choose to be Schwarzschild. Here, e, p, �, and h � �e�
p�=� are the proper energy density, the isotropic pressure,
the rest-mass density, and the specific enthalpy, respec-
tively. In practice, all of these quantities are computed by
the solution of the conservation equations for the stress-
energy tensor and baryon number density

 r�T
�� � 0; (3.2)

 r���u�� � 0; (3.3)

where r indicates the covariant derivative in the back-
ground Schwarzschild spacetime, together with an equa-
tion of state (EOS) relating the pressure to other
thermodynamical quantities. For simplicity we will here-
after model the fluid as ideal with a polytropic p � 	�� �
�
��� 1�, where 
 � e=�� 1 is the specific internal
energy, 	 is the polytropic constant and � is the adiabatic
index.

In order to preserve their conservative nature, we cast
Eqs. (3.2) and (3.3) in the form of a flux-conservative
hyperbolic system after introducing suitable ‘‘conserved’’
variables rather than in terms of the ordinary fluid, or
‘‘primitive’’, variables. In this case, Eqs. (3.2) and (3.3)
assume the form [23]

 

@U�w�
@t

�
@�

�����������
�g00
p

Fr�w�

@r

�
@�

�����������
�g00
p

F��w�

@�

�S�w�;

(3.4)

where U�w� � �D; Sr; S�; S��, Fi and S are the state-
vector, the fluxes and the sources of the evolved quantities,
respectively, (see [17] for the explicit expressions for Fi

and S in a Schwarzschild spacetime). The following set of
equations

 D 
 ��; Sj 
 �h�2vj; (3.5)

together with the ideal-fluid EOS provide the relation
between the conserved and primitive variables in the vector
w � ��; vi; 
�. Here � 
 �ut � �1� v2��1=2, where v2 


�ijvivj is the Lorentz factor measured by a local static
-4



HYBRID APPROACH TO BLACK HOLE PERTURBATIONS . . . PHYSICAL REVIEW D 73, 124028 (2006)
observer. Note that the covariant components of the three-
velocity are defined in terms of the spatial 3-metric �ij to
be vi � �ijv

j, where vi � ui=�ut. (Although in axisym-
metry, we evolve also the azimuthal component of the
equations of motion, so that the index j takes the values
j � r; �;�.)

The numerical code used in our computations is the
same used in ref. [18] and it performs the numerical
integration of system (3.4) using upwind high-resolution
shock-capturing (HRSC) schemes based on approximate
Riemann solvers. Exploiting the flux-conservative form of
Eqs. (3.4), the time evolution of the discretized data from a
time-level n to the subsequent one n� 1 is performed
according to the following scheme
 

Un�1
i;j � Un

i;j �
�t
�r
�F̂ri�1=2;j � F̂ri�1=2;j�

�
�t
��
�F̂�i;j�1=2 � F̂�i;j�1=2� ��tSi;j; (3.6)

where the subscripts i, j refer to spatial �r; �� grid points, so
that Un

i;j 
 U�ri; �j; tn�. The intercell numerical fluxes,
F̂ri	1=2;j and F̂�i;j	1=2, are computed using Marquina’s ap-
proximate Riemann solver [18]. A piecewise-linear cell
reconstruction procedure provides second-order accuracy
in space, while the same order in time is obtained with a
conservative two-step second-order Runge-Kutta scheme
applied to the above time update.

Our computational grid consists of Nr � N� � 250�
84 zones in the radial and angular directions, respectively,
covering a computational domain extending from rmin �
2:1 to rmax � 30 and from 0 to �. The radial grid is
logarithmically spaced in terms of the tortoise coordinate
with the maximum radial resolution at the innermost grid
being �r � 6� 10�4. As in Ref. [18], we use a finer
angular grid in the regions that are usually within the torus
and a much coarser one outside. The boundary conditions
adopted, the treatment of the vacuum region outside the
torus with a low density atmosphere, and the procedure for
recovering physical variables from the conserved quanti-
ties D and Si are the same as those used in Ref. [18]. The
interested reader is referred to that work for further details.

B. Solution of the RWZ and BPT equations

Before solving Eq. (2.2) with ingoing wave boundary
condition at the horizon and outgoing wave boundary
condition at infinity, we determine the solution of the
corresponding homogeneous equation

 L �	�Z�	�‘ � 0 (3.7)

for an assigned value of!, finding two particular solutions,
Z�	�in‘ , Z�	�out

‘ , which satisfy, respectively, ingoing wave
boundary conditions at the horizon

 Z�	�in‘ �r� ! �1; !� � e�i!r� ; (3.8)
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and outgoing wave boundary conditions at infinity

 Z�	�out
‘ �r� ! 1; !� � ei!r� : (3.9)

Since they are independent solutions, their Wronskian

 W� 
 Z�	�out
‘

�
@Z�	�in‘

@r�

�
�

�
@Z�	�out

‘

@r�

�
Z�	�in‘ (3.10)

is constant. The solution of the inhomogeneous Eqs. (2.2),
Z�	�‘ , is then found as a convolution integral of the source
with Z�	�in‘ and Z�	�out

‘
 

Z�	�‘ �r;!� �
Z�	�out
‘

W�

Z r

2M
dr0

Z�	�in‘ S�	�‘ r02

�

�
Z�	�out
‘

W�

Z 1
r
dr0

Z�	�out
‘ S�	�‘ r02

�
: (3.11)

At spatial infinity the Zerilli function can be written as [24]

 Z�	�‘ �r; !� !A�	�
‘ �!�e

i!r; (3.12)

where

 A �	�
‘ �!� 


1

W�

Z 1
2M
dr
Z�	�in‘ S�	�‘ r2

�
: (3.13)

In this way, the functions A���
‘ and A���

‘ represent the
amplitudes of the gravitational radiation with polar and
axial parity and, as expressed by (2.6), they both contribute
to the gravitational spectrum

 

dERWZ

d!
�
X1
‘�2

1

8

�‘� 2�!

�‘� 2�!
�!2�A���

‘ �
2 � �A���

‘ �
2
:

(3.14)

As done for the RWZ equations, also for the BPT
Eq. (2.8) we first solve the corresponding homogeneous
equation

 L BPT�‘�r; !� � 0 (3.15)

for an assigned value of ! and find two independent
solutions which satisfy, respectively, the condition of a
pure ingoing wave at the black hole horizon and of a
pure outgoing wave at infinity

 �in
‘ �r� ! �1; !� � �2e�i!r� ; (3.16)

 �out
‘ �r� ! 1; !� � r3ei!r� ; (3.17)

where the correcting factors � and r3 in (3.16) and (3.17)
are the result of the asymptotic expansion of the BPT
equation [14,15].

The solution �‘�r; !� of the inhomogeneous Eq. (2.8)
has a form analogous to the one for the RWZ Eqs. (3.11)
and also in this case for r� ! 1 it can be expressed as

 �‘�r�; !� !ABPT
‘ �!�r3ei!r� ; (3.18)

with
-5
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 A BPT
‘ �!� � �

1

W

Z 1
2M
dr0

�in
‘ S

BPT
‘ �r;!�

�2 (3.19)

where the Wronskian is now defined as

 W 

1

�

�
�in
‘

�
@�out

‘

@r

�
�

�
@�in

‘

@r

�
�out
‘

�
: (3.20)

Also in this case, the complex amplitude ABPT
‘ describes

the gravitational-wave amplitudes with polar and axial
parity, so that the gravitational spectrum (2.11) becomes

 

dEBPT

d!
�
X1
‘�2

8�2

!2 jA
BPT
‘ j2: (3.21)

It is important to note that the solutions �in=out
‘ of the

homogeneous Eqs. (3.16) and (3.17), can be expressed in
terms of the solutions Z���in=out

‘ of the corresponding ho-
mogeneous RWZ Eqs. (3.7) through the Chandrasekhar
transformation [25]
 

�in=out
‘ �

r3

8!

�����������������
�‘� 2�!

�‘� 2�!

s �
V���Z���in=out

‘ � 2
�
r� 3M

r2 � i!
�

�

�
�

r2 Z
���in=out
‘;r � i!Z���in=out

‘

��
: (3.22)

In what follows we will use this transformation to avoid the
resolution of (3.15).

C. Combining the two approaches

Having described the distinct approaches for the calcu-
lation of the sources in the time domain and the solution of
the perturbative equations in the frequency domain, we
now discuss how to combine the two methods within our
hybrid approach. Since the methodology applies un-
changed whether we are considering the solution of the
RWZ or of the BPT equations, we will drop this distinction
in what follows.

Assume therefore that the solution of the hydrodynam-
ical Eqs. (3.2) and (3.3) as illustrated in Sec. III A has
provided the components of the stress-energy tensor
T���t; r; �� for all the spacetime events that are relevant.
The first step for the effective calculation of the sources
consists then in the removal of the angular dependence.
This is done by calculating for the different values of ‘, the
integrals over the 2-sphere of the stress-energy tensor
components, as given in Eqs. (A11)–(A17) and (A33)–
(A35) to compute the following quantities

 

~A ‘; ~A�1�‘ ; ~B�0�‘ ; ~B‘; ~Q‘; ~F‘;

~D‘; ~T�n��n�‘; ~T�n�� �m�‘; ~T� �m��n �m�‘:

(3.23)

As a result, all of the above quantities are functions of �t; r�
only and are evaluated at the discrete spacetime points ri,
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tj, where ri coincide with the radial gridpoints of the 2D
code. The time levels tj � j�t 2 �0; T
, on the other hand,
are chosen so that T � �, where � is the typical timescale
for the problem (e.g., the torus oscillation timescale for the
problem at hand and T=� ’ 100), and �t� � (e.g.,
�t=� ’ 10�2–10�3). We note that in general the solution
of the hydrodynamical equations does not take place on
equally spaced spacelike hypersurfaces since the time step
is automatically adjusted on the basis of the dynamics of
the matter source. As a result, the evaluation of the func-
tions (3.23) on the equally spaced time levels tj requires in
general an interpolation process.

Once the interpolated timeseries for the functions (3.23)
have been constructed at each gridpoint ri, these are
Fourier transformed yielding the corresponding
frequency-domain functions
 

A‘; A�1�‘ ; B�0�‘ ; B‘; Q‘; F‘; D‘;

T�n��n�‘; T�n�� �m�‘; T� �m��n �m�‘ (3.24)

which are evaluated at the points �ri; !j�, with !j �

j�! � j2�=T. The functions (3.24) are then suitably
combined as in Eqs. (A20), (A21), and (A32) to provide
the compact forms for the source terms in the frequency
domain, S�	�‘ �ri; !j�, SBPT

‘ �ri; !j�.
The next step consists of integrating the homogeneous

Eqs. (3.7) to find the two independent solutions (3.8) and
(3.9). The numerical solution is found using a 4th-order
Runge-Kutta integrator with adaptive stepsize and with
boundary conditions given by expressions (3.8) and (3.9).
Using the newly computed RWZ solutions Z�	�in=out

‘ �ri; !j�

and the transformation (3.22), it is possible to also compute
the two independent solutions of the homogeneous BPT
Eq. (3.15), �in=out

‘ �ri; !j�. Finally, the amplitude of the
emitted gravitational wave can be computed by numeri-
cally evaluating the integrals (3.13) and (3.19), which then
yield the energy spectra (3.14) and (3.21).

With the exception of the handling of the solution of the
relativistic hydrodynamical equations, the procedure de-
scribed so far for the combination of the time and
frequency-domain approaches is straightforward and with
minimal computational requirements. However, great at-
tention needs to be paid in to avoid unphysical results. In
particular, even when the timeseries extend over several
tens of dynamical timescales and the time sampling is also
very high, the calculation of the Fourier transforms can be
inaccurate and this can be problematic particularly at very
large frequencies. Indeed, we have found that the energy
spectrum can become divergent at frequencies above a few
kHz even when the hydrodynamical evolution is carried
out over �100 dynamical timescales.

The reason for this is most easily seen within the Green’s
function approach; in this case, in fact, when ! increases
above a few kHz, the Wronskian of the homogeneous
solutions tends to zero very rapidly. At least in principle,
-6



HYBRID APPROACH TO BLACK HOLE PERTURBATIONS . . . PHYSICAL REVIEW D 73, 124028 (2006)
this rapid decay should be compensated by an equivalent
decrease of the source function S�	�‘ or SBPT

‘ such that the
wave amplitude would remain finite. In practice, however,
this is not necessarily the case and if the decay in the source
functions is not sufficiently rapid, because for instance
their values at high frequencies are not sufficiently accu-
rate, this would inevitably lead to the high-frequency di-
vergences we have observed. Fortunately, a simple solution
to this otherwise serious problem is possible. In the limit of
an infinite time integration interval, in fact, it is possible to
replace the Fourier transform at a given frequency ! of a
timeseries h�t� with the Fourier transform of its time
derivative divided by !, i.e.

 h�!� �
i

!

�
1

2�

Z 1
�1

dh�t�
dt

ei!tdt
�
; (3.25)

This identity, which is strictly true if h�t� � 0 for t! 	1,
can be exploited to compensate the loss of accuracy in the
Fourier transform. As a result, in our approach, and before
Fourier transforming the source terms A‘; A

�1�
‘ ; . . . in (3.23),

we compute their first and second time derivatives, evalu-
ate the corresponding Fourier transform and finally divide
the result by !2. This method effectively removes the
divergence appearing at large frequencies and has proven
to work well also in the case in which the timeseries is, in
practice, finite.
IV. A REPRESENTATIVE EXAMPLE: AN
OSCILLATING HIGH-DENSITY TORUS

The procedure discussed in the previous two Sections is
totally generic and could in principle be used to investigate
the perturbations induced on a Schwarzschild spacetime by
an extended matter source when the latter dynamics is
simulated consistently in more than one spatial dimension.
However, as mentioned in the Introduction, we will here
concentrate on a proof of its effectiveness by considering
the perturbations induced by a nonselfgravitating torus
orbiting and oscillating around a Schwarzschild black
hole. The latter will be simulated with the 2D general
relativistic code discussed in Sec. III A.

In order to construct the background initial model for the
torus, which we subsequently perturb, we consider a per-
fect fluid described by the stress-energy tensor (3.1) and in
circular nongeodesic motion with four-velocity u� �
�ut; 0; 0; u�� � ut�1; 0; 0;��, where � � ��r; �� 

u�=ut is the coordinate angular velocity as observed
from infinity. Enforcing the conditions of hydrostatic equi-
librium and of axisymmetry simplifies the hydrodynamics
equations considerably and for a nonselfgravitating fluid
these reduce to Bernoulli-type equations

 

rip
e� p

� �riW �
�ril

1��l
; (4.1)
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where i � r, �,W 
 ln�ut� and l 
 �u�=ut is the specific
angular momentum.

The simplest solution to Eqs. (4.1) is the one with l �
const:, since in this case the equipotential surfaces can be
computed directly through the metric coefficients and the
value of the specific angular momentum. Note that at any
point in the �r; �� plane, the potential W can either be
positive (indicating equipotential surfaces that are open)
or negative (indicating equipotential surfaces that are
closed). The caseW � 0 refers to that special equipotential
surface which is closed at infinity (see Refs. [17,18] for
details). local extrema on the equatorial plane of closed
equipotential surfaces mark the radial positions of the cusp,
rcusp, and of the ‘‘ center’’ of the torus, rc. At these radial
positions the specific angular momentum must be that of a
Keplerian geodesic circular orbit which can effectively be
used to calculate the position of both the center and the
cusp.

Stationary solutions with constant specific angular mo-
mentum are particularly useful since in this case the angu-
lar velocity is fully determined as � � lgtt=g�� and if a
polytropic EOS is used, the Bernoulli Eqs. (4.1) can be
integrated analytically to yield the rest-mass density (and
pressure) distribution inside the torus as

 ��r; �� �
�
�� 1

	�
�exp�Win �W� � 1


�
1=���1�

; (4.2)

whereWin 
 W�rin; �=2�. Clearly, different configurations
can be built depending on the value chosen for l, with
finite-extent tori resulting when lms < l < lmb, with lmb �

4, lms � 3
��������
3=2

p
being the specific angular momenta corre-

sponding to orbits that are marginally bound or marginally
stable, respectively.

The configurations built in this way have a large quad-
rupole moment but being stationary they do not produce
any time-varying perturbation to the background space-
time. Because of this we introduce parametrized perturba-
tions that would induce a small outflow through the cusp
and excite a quasiharmonic behavior in the hydrodynam-
ical variables (the interested reader is referred to Refs. [26–
29] for a detailed discussion of the harmonic properties of
this type of oscillations). More specifically, we modify the
stationary equilibrium configuration with a small radial
velocity which we have expressed in terms of the radial
inflow velocity characterizing a relativistic spherically
symmetric accretion flow onto a Schwarzschild black
hole, i.e., the Michel solution [30]. Using 
 to parameter-
ize the strength of the perturbation, we have specified the
initial radial (covariant) component of the three-velocity as

 vr � 
�vr�Michel: (4.3)

As a result of the introduction of the initial perturbation,
the torus acquires a linear momentum in the radial direc-
tion pushing it towards the black hole. When this happens,
-7



FIG. 1. Harmonic behavior of an oscillating torus. Both panels
refer to model (c) of Table I which was perturbed with a radial
velocity having 
 � 0:05. The left panel shows the time varia-
tion of the maximum rest-mass density normalized to its initial
value for a representative portion of the timeseries. The right
panel shows the power spectral density (PSD) calculated over
100 orbital timescales, with the eigenfrequency of the f mode
indicated with a vertical dashed line at 227 Hz.
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the pressure gradients become stronger to counteract the
steeper gravitational potential experienced as the torus
moves inward, thus increasing the central density and
eventually pushing the torus back to its original position.
The resulting oscillations are essentially harmonic in the
fundamental f-mode of oscillation but other, higher-order
pmodes are also excited and appear at frequencies that are
in a ratio of small integers [26–29]. This is summarized in
the two panels of Fig. 1 which refer to model (c) of Table I
which was perturbed with a radial velocity having 
 �
0:05 and evolved for several tens of the orbital timescale
torb � 1:86 ms. The left panel shows as a function of time
TABLE I. Main properties of the constant angular momentum toro
left to right the columns report: the name of the model, the star-to-hol
momentum ‘ (normalized to M), the inner and outer radii of the toro
radial position of the center rcentre (all radii are in units of the gravita
torb, expressed in milliseconds. The last two columns indicate the d
model, respectively, both in cgs units. All of the models share the
� � 4=3.

Model Mt=M 	 (cgs) ‘ rin rout

(c) 0.1 0:96� 1014 3.8000 4.576 15.889
(e) 0.1 7:0� 1013 3.7845 4.646 14.367
(f) 0.1 1:0� 1014 3.8022 4.566 16.122
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the variation of the maximum rest-mass density (i.e., the
rest-mass density at the center of the torus �c) normalized
to its initial value for a representative portion of the times-
eries. The right panel, on the other hand, shows as a
function of the frequency � 
 !=�2��, the power spectral
density (PSD) in arbitrary units of the timeseries calculated
over about 100 orbital timescales. Indicated with a vertical
dashed line at �� � 227 Hz is the eigenfrequency of the
fundamental (f) mode of oscillation and smaller peaks at
integer and semi-integer multiples of �� are also visible and
are referred to the first overtones (see Ref. [29] for a
discussion of these modes).

As the simulation is carried out and the hydrodynamical
equations are solved along the lines discussed in Sec. III A,
the source functions (3.23) are calculated at the different
radial gridpoints and stored as distinct output. Once the
dynamics has been followed for a sufficient time-span
comprising several tens orbital timescales, the simulation
in the time domain is stopped and the values of source
functions (3.23) throughout the simulated spacetime are
read-in at the different radial positions. This marks the
begin of the analysis in the frequency domain, which first
produces the source functions (3.24) and then proceeds to
the solution of the perturbation Eqs. (2.2) and (2.8) along
the lines discussed in Sec. III B. The results of the hybrid
approach are then summarized in Figs. 2–4 which show
the energy spectrum of the emitted gravitational radiation
as a function of the frequency.

The first figure, in particular, has been computed within
the Newtonian quadrupole formalism through expression
(2.13) and being a faithful mirror of the hydrodynamical
quantities, it shows a main peak at 227 Hz as well as the
smaller peaks already discussed for the right panel of
Fig. 1. Note that despite the use of the procedure described
at the end of Sec. III C, the very steep dependence on the
frequency as !6 of the energy spectrum [cf. Eq. (2.13)],
produces an incorrect but finite growth at high frequencies,
where the accuracy in the calculation of the sources is
smaller. Of course, being rooted in a Newtonian approxi-
mation, the energy spectrum in Fig. 1 shows no sign of a
contribution coming from the QNMs of the black hole that,
for a mass of M � 2:5M� are expected at � � 4:828 kHz
for the the fundamental ‘ � 2-QNM.
idal neutron star models used in the numerical calculations. From
e mass ratio Mt=M, the polytropic constant 	, the specific angular
idal neutron star rin and rout, the radial position of cusp rcusp, the
tional radius rg), and the orbital period at the center of the torus
ensity at the center of the torus and the average density of each
same mass for the black hole, M � 2:5M� and adiabatic index

rcusp rcentre torb (ms) �centre (cgs) h�i (cgs)

4.576 8.352 1.86 1:14� 1013 4:73� 1011

4.646 8.165 1.80 1:61� 1013 6:43� 1011

4.566 8.378 1.87 1:10� 1013 4:48� 1011
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FIG. 4. Same as Fig. 2 but obtained integrating the BPT
equation in the frequency domain for ‘ � 2 and using Eq. (2.11).

FIG. 2. Gravitational-wave energy spectrum produced by an
oscillating, high-density torus orbiting around a 2:5M�
Schwarzschild black hole. The radiation has been computed
for the ‘ � 2 mode using Eq. (2.13) within the Newtonian
quadrupole approximation.
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Figure 3 shows instead the equivalent gravitational-
wave energy spectrum resulting from the hybrid approach
employing the solution of the RWZ equations
[cf. Eq. (2.6)] for ‘ � 2. A number of interesting features
should be noted. Firstly, at low frequencies the spectra
derived through the perturbative approach shows a rather
FIG. 3. Same as Fig. 2 but derived integrating the RWZ
equations in the frequency domain for ‘ � 2 and using Eq. (2.6).
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good agreement with the quadrupole spectrum given in
Fig. 2. This confirms what already noted in [13] and that, at
least for this type of sources, the quadrupole approach
captures the most important qualitative features of the
energy spectrum. Secondly, the spectrum is not diverging,
nor growing at large frequencies as a result of the use of the
transformation (3.25). Finally and most importantly, the
spectrum is not monotonically decreasing but shows a
distinctive and broad peak at �� 4:4 kHz, rather close to
the position of the expected fundamental ‘ � 2 QNM of
the black hole and which we interpret as the excitation of
the QNMs of the black hole resulting from the perturba-
tions induced by the oscillating torus. Although its contri-
bution is energetically very small (i.e. less that 2� 10�4 of
the total emitted energy is produced at frequencies larger
than 2 kHz), the ability to isolate this peak is of great
importance to assess the validity of the hybrid approach
and to prove its effectiveness in modelling black hole
spacetimes. The presence of such a peak, in fact, is ex-
pected on the basis of simple considerations but was not
detectable in the complementary work of Nagar et al. [13]
based on a time-domain perturbative approach despite the
corresponding PSD reached values was well below the
ones at which our black hole peak appears (cf. Fig. 3
with the left panel of Fig. 1 in Ref. [13]).

Finally, we show in Fig. 4 the gravitational-wave energy
spectrum resulting from the hybrid approach employing
the solution of the BPT equation [cf. Eq. (2.11)] for ‘ � 2.
As expected, much of what found for the RWZ equations
continues to hold when the hybrid approach is computed
using the BPT equation, namely: very good match with the
quadrupole approximation at low frequency where most of
-9
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the energy is emitted and the appearance of a broad peak
associated with the black hole quasinormal ringing.
V. CONCLUSIONS

We have presented a new hybrid approach to study the
perturbations of a Schwarzschild black hole excited by
extended matter sources in which the solution in the time
domain of the relativistic hydrodynamical equations in a
multidimensional spacetime is coupled to the solution in
the frequency domain of either the Regge-Wheeler/Zerilli
equations or of the Bardeen-Press-Teukolsky equations.

We believe that our hybrid approach may be preferrable
over a pure time-domain approach based on the RWZ
equations for at least three different reasons. Firstly, the
Regge-Wheeler and the Zerilli equations cannot be gener-
alized to rotating black holes, whereas the BPT equation
admits such a generalization. Secondly, the BPT equation
is intrinsically unstable when integrated in the time domain
but its solution is regular computed in the frequency do-
main. Thirdly, for a system undergoing small oscillations
around an equilibrium state, a frequency-domain approach
is expected to be significantly more accurate than one
based in the time domain, especially at high frequencies,
where the black hole contributions are expected to emerge.
Within this framework, therefore, the work presented here
serves as a first step towards the study of the gravitational-
wave emission from an extended source perturbing a rotat-
ing black hole.

As a test of its effectiveness and to provide a close
comparison with what has been done so far in perturbative
approaches based in the time domain, i.e., Ref. [13], we
have considered as extended source to the perturbation
equations the oscillations of a high-density torus orbiting
around a Schwarzschild black hole. The dynamics of the
torus has been followed numerically using a 2D numerical
code solving the general relativistic hydrodynamics equa-
tions using HRSC schemes in spherical polar coordinates.

Overall, the results of our study show that the hybrid
approach (either with the RWZ equations or with the BPT
one) works remarkably well, producing an energy spec-
trum of the emitted gravitational radiation which contains
both the basic quadrupolar emission of the torus as well as
the excited emission of the black hole. The latter feature
was completely washed out in the complementary time-
domain approach of Ref. [13].

Being totally generic, the formalism and methodology
presented here is could be used under more general con-
ditions and, in particular, also with sources coming from
3D numerical relativity codes as long as an accurate evo-
lution of the matter sources is possible. Future work in this
line of research will therefore comprise both the extension
of the present results to 3D codes, as well as the general-
ization of the perturbative formalism to the Teukolsky
equation in order to model the gravitational emission of
rotating black holes when perturbed by extended sources.
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APPENDIX A: GENERIC SOURCE TERMS

1. Source for the RWZ equations

The source of the RWZ Eqs. (2.2), S�	�‘ �r;!�, can be
expressed in terms of the components of the stress-energy
tensor T���t; r; �; �� as follows. We first decompose T�� in
tensor spherical harmonics for the elevant components

 Ttr�r; t� �
i���
2
p

X
‘m

~A�1�‘mY
‘m; (A1)

 Trr�r; t� �
X
‘m

~A‘mY‘m; (A2)

 Tta�r; t� �
ir��������
2�0
p

X
‘m

� ~B�0�‘mY
‘m

;a � ~Q�0�‘mS
‘m
a �; (A3)

 Tra�r; t� �
r��������
2�0
p

X
‘m

� ~B‘mY‘m;a � ~Q‘mS‘ma �; (A4)

 Tab�r; t� �
r2���

2
p

X
‘m

�
~G‘mY‘m�ab �

~F‘mZ
‘m
ab � i ~D‘mS

‘m
ab������������

2��0
p

�
;

(A5)

where a � �, �, �ab 
 diag�1; sin2�� is the metric tensor
of the sphere, Y‘m are the scalar spherical harmonics,
Y‘m;a 
 @Y‘m=@xa and � 
 �‘� 1��‘� 2�=2, �0 

‘�‘� 1�. The matrices

 S‘ma � ��Y
‘m

;�= sin�; sin�Y‘m;��; (A6)

 Z‘mab �
W‘m X‘m;
X‘m �sin2�W‘m

� �
; (A7)

 S‘mab �
�X‘m= sin� sin�W‘m

sin�W‘m sin�X‘m

� �
; (A8)

with

 W‘m � Y‘m;�� � cot�Y‘m;� �
m2

sin2�
Y‘m; (A9)

 X‘m � 2im�Y‘m;� � cot�Y‘m�; (A10)

are vector and tensor spherical harmonics, and collect all of
the angular dependence.
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Next, using the orthogonality properties of Y‘m, S‘ma ,
S‘mab , Z‘mab and the axial symmetry of the stress-energy
tensor it is possible to show that only the m � 0 harmonics
contribute to the expansion (A5) and that

 

~A ‘ � 2�
Z
d� sin�Y‘0Trr; (A11)

 

~A �1�‘ � �i
���
2
p

2�
Z
d� sin�Y‘0Ttr; (A12)

 

~B �0�‘ � �i�12�
Z
d� sin�Tt�Y‘0

;�; (A13)

 

~B ‘ � �12�
Z
d� sin�Tr�Y‘0

;�; (A14)

 

~Q‘ � �12�
Z
d� sin�

1

sin�
Tr�Y‘0

;�; (A15)

 

~F ‘ � �22�
Z
d� sin�

�
T�� �

1

sin2�
T��

�
W‘0; (A16)

 

~D‘ � �i�22�
Z
d� sin�

�
�

2

sin�
T��

�
W‘0; (A17)

where

 �1 


���
2
p

r
������
�0
p ; (A18)

 �2 

1

r2
������������
4��0
p : (A19)

In terms of the Fourier transform of these quantities, the
source terms S�	�‘ �r;!� are
 

S����r; !� � �0A�1� � �1A
�1�
;r � �A� �B� �F� 
2B

�0�
;rr

� 
1B
�0�
;r � 
0B�0�; (A20)

 S����r;!� � �1��g00D�;r � �Q; (A21)

with

 �0 � 4�
���
2
p M�r� 2M����� 3�r� 3M�

r��r� 3M�2!
; (A22)

 �1 � 2�
���
2
p �r� 2M�2

!��r� 3M�
; (A23)

 � � 4�
�r� 2M�2

�r� 3M
; (A24)

 � � 4�

������
2

�0

s
�r� 2M�2

�r� 3M
; (A25)

 � � �
8�����������
��0
p �r� 2M�; (A26)
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2 � �4�

������
2

�0

s
r�r� 2M�2

!��r� 3M�
; (A27)

 
1 ��4�

������
2

�0

s
�r� 2M��3�r2� 15Mr� 4M�r� 24M2�

!��r� 3M�2
;

(A28)
 


0 � 4�

������
2

�0

s
1

!

�

�
�r� 2M���2r2 � 3M�r� 12Mr� 12M2�

r��r� 3M�2

�
!2r3

�r� 3M

�
; (A29)

 � � �8�i

������
2

�0

s
�r� 2M�2

r2 ; (A30)

 �1 � i
8�����������
��0
p �r� 2M�: (A31)
2. Source for the BPT equation

The source of the BPT Eq. (2.8), SBPT
‘ �r; !�, can be

expressed in terms of the components of the stress-energy
tensor as follows (see [15,31])

 SBPT
‘ �r;!� � �

������������
2��0
p

r4T�n��n� ‘

�
��������
2�0
p

�D�

�
r5

�
T�n�� �m� ‘

�

�
�

2r
D�

�
r6

�
D��rT� �m�� �m� ‘�

�
; (A32)

where D� 
 d=dr� � i!, and T�n��n� ‘, T�n�� �m� ‘, T� �m�� �m� ‘

are the Fourier transform of the following quantities

 

~T �n��n� ‘ 

Z
d�0S‘0���T��n�n�; (A33)

 

~T �n�� �m� ‘ 

Z
d��1S‘0���T

��n� �m�; (A34)

 

~T � �m�� �m� ‘ 

Z
d��2S‘0���T�� �m� �m�; (A35)

where d� � sin�d�d� is the solid angle and the one-
forms n�, �m� are defined as

 n� 

1

2

�
1�

2M
r
; 1; 0; 0

�
; (A36)

 �m� 
 �
1���
2
p �0; 0; r;�ir sin��: (A37)

Here, �sS‘m��;�� are the spin-weighted spherical harmon-
ics and we have considered only those withm � 0 because
of the underlying axisymmetry in the perturbations.
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