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Optimal Source Tracking and Beaming of LISA
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Abstract. We revisit the directionally optimal data streams of LISA first introduced in Nayak etal.
It was shown that by using appropriate choice of Time delay interferometric (TDI) combinations, a
monochromatic fixed source in the barycentric frame can be optimally tracked in the LISA frame.
In this work, we study the beaming properties of these optimal streams. We show that all the three
streamsv+,×,0 with maximum, minimum and zero directional SNR respectively are highly beamed.
We study in detail the frequency dependence of the beaming.
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1. INTRODUCTION

The space-based gravitational wave (GW) mission LISA [1] — Laser Interferometric
Space Antenna — consists of three identical space-crafts forming an equilateral triangle
of side 5×106 km following heliocentric orbit trailing the Earth by 20◦. The plane of
LISA makes an angle of 60◦ with the plane of the ecliptic. Each space-craft completes
one orbit around the sun as well as in LISA plane in one year. The mission is aimed
at detecting and analyzing the low frequency GW signals in the frequency range of
0.1mHz−1Hz. The astrophysical sources for the LISA include galactic binaries, super-
massive black-holes (BH), extreme mass ratio inspirals, intermediate mass BHs.

Due to LISA’s rotational as well as orbital motion, a fixed source in the barycentric
frame appears to follow a specific track in its sky. This introduces amplitude modu-
lation, frequency modulation, and phase modulation in the 6Doppler data streams. A
large number of interferometric configurations, having different frequency and angular
response, can be constructed from these data streams which makes LISA not just a single
detector but a network of interferometers.

The choice of the combination of the data streams depend on the which question one
wishes to address. In Ref. [2], we addressed the question of directional optimality in
LISA i.e. for a given sky location, which LISA data stream gives maximum SNR. It
was shown that the directional optimality condition gives three data streams: (1)v+ –
with maximum directional SNR, (2)v× – with minimum directional SNR, (3)v0 – with
zero directional SNR. It was shown that the data streamv+ optimally tracks the source
motion (in the LISA sky) of a fixed source in the barycentric frame. Here,tracking
involves appropriate choice of data combinations (switch combinations as source moves)
which gives maximum SNR in that direction. Tracking known monochromatic binaries
with such streams could give information about the source distance, polarizations. For
an unknown distant source, it would amount to ’looking’ in a specific direction in a
particular frequency band.

http://arxiv.org/abs/gr-qc/0608138v1


In this work, we study the beaming property of the optimal data streams (in particular,
v+) for a monochromatic source tracked for a year. We show thatv+,v×andv0 are
beamed, i.e. they are sensitive towards the tracking direction. The beam-width depends
on the frequency under consideration. We study the nature ofthis dependence.

The paper is organized as follows: In Sec 2, we review the TDI.In the first half of Sec.
3, we summarize the main results of Ref.[2] pertaining to thedirectionally optimal TDI
streams. In the later half of Sec 3, we discuss the beaming properties of the directional
streams followed by conclusion in Sec. 4.

2. TDI DATA STREAMS

The 6 LISA Doppler data streamsWm
σ , where m = 1,2,3,σ = ±, [see Fig.11] are

obtained by letting the laser beams from each space-craft totravel towards two other
space-crafts and are beaten with the on board laser.m corresponds to the arm index and
(−)+ indicates the laser beam traveling in the (anti-)clockwisedirection.
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FIGURE 1. The LISA constellation

These Doppler data streams contain the phase fluctuation noise of the master laser
(∆ν/ν0 ≃ 10−13/

√
Hz) which is several orders of magnitude higher than the LISA

designed sensitivity level ofh∼ 10−22. Using TDI technique,Wm
σ can be combined by

appropriately delaying them with time delay operators to construct laser noise-free data
streams Ref. [3]. The TDI scheme is based on the principle of sagnac interferometry —
the light-beam is split and made to travel along two paths in opposite direction of equal
length which are then subtracted to remove the laser noise. In TDI, equal path difference
is achieved by adding Doppler-streams with appropriate time delay operators which are
then added (or subtracted) to obtain laser noise free data stream.

Any laser noise-free data combination can be written asD = ∑3
m=1 ∑σ=±ρmσWm

σ ,
whereρmσ are polynomials of time-delay operatorsEm : EmCj(t) = Cj(t −Lm) andCm
are the laser phase noise fluctuation at the space-craftm. The Sagnac TDI combinations
{α,β ,γ,ζ} in terms of{ρm+,ρm−} are given by2

α = {E2,1,E1E2,−E3,−E1E3,−1} β = {E2E3,E3,1,−1,−E1,−E1E2} ,(1)
γ = {1,E1E3,E1,−E2E3,−1,−E2} ζ = {E3,E1,E2,−E2,−E3,−E1} . (2)

1 W1
+ = U3,W2

+ = U1,W3
+ = U2,W1

− = −V2,W2
− = −V3,W3

− = −V1of [3]
2 This set forms a generator set for an algebraic module of all laser noise free data combinations Ref. [3].



The ζ combination is termed as symmetrized sagnac due to its symmetric structure
and is insensitive to GW at low frequencyf << 1/L = 60 mHz (L = 16.7 sec.).

The noise vector for any combinationD is given by

ND = (2
√

Sp f(ρD
m+ + µD

m+),2
√

Sp f(ρD
m− + µD

m−),
√

SoptρD
m+,

√
SoptρD

m−) (3)

where the polynomialsµm± are defined asµ3− = (E3ρ3+ −ρ3−)/2 = −µ2+. The rest
µmσ can be obtained by cyclic permutations. TheSp f = 2.5×10−48( f/1Hz)−2Hz−1 and
theSopt = 1.8×10−37( f/1Hz)2Hz−1 are the one-sided power spectral densities (PSD)
of the proof-mass noise and optical-path noise respectively [1]. In the frequency domain
Em = exp(iΩLm).

For simplicity, throughout this work, we assume the three arms of LISA to be equal
i.e. Lm ≡ L. This helps in simplifying the expressions of TDI streams and are exact for
low frequencies. However for higher frequencies, the abovesimplification leads to small
discrepancies. Nevertheless, one can easily extend this for unequal-arm interferometry.

A set of TDI data streams which diagonalizes the noise covariance matrixN(I) ·N∗
(J)

are [4]:Y(1) = (α +β −2γ)/
√

6,Y(2) = (β −α)/
√

2,Y(3) = (α +β +γ)/
√

3. Y(1),Y(2)

andY(3) are known as E,A and T in the LISA literature.

3. DIRECTIONAL DATA STREAMS

As mentioned in the introduction, the threeY(I)’s give different frequency as well
as angular response. A large number of TDI data streams∑α(I)( f ,θL,φL)Y(I) with
different angular and frequency responses can be constructed from them. The choice
of a combination depends on the question one wishes to address. In Ref. [2], we asked
the following question: If one wants to observe a particularsky location{θB,φB}, in
a given frequency bin, which∑α(I)Y

(I) TDI data stream would be optimal (maximum
SNR)? We first briefly summarize the results of Ref. [2].

The GW response ofY(I) expressed in frequency domain is

h(I)(Ω) = F (I)
+ (Ω)h+(Ω)+F(I)

× (Ω)h×(Ω) , (4)

where, the antenna pattern functionsF(I)
+,× in terms of the transfer function of each

Doppler data stream is

F (I)
+,×(Ω) = i ∑

m,σ
ρ(I)

mσ ∆φm exp(iΩ(ŵ· âm))Sinc(kmσ ∆φm)ξm;+,× , (5)

where ŵ is the direction vector to the source in the LISA frame,∆φm = ΩLm/2,
km∓ = 1∓ ŵ · n̂ appears in the accumulated phase due to GW oscillation as thelaser
travels from one space-craft to another (anti-)clockwise direction, âm is the normal
vector from LISA centre to each armm and ξm;+× are the responses of each arm to
the two GW polarizations.

The SNR maximization for a particular direction is a constrained optimization prob-
lem. The data combinations are obtained from the eigen-vectors of the SNR squared



matrix (averaged over the polarizations)

ρ(I)
(J)

=
(

f (I)
+ f ∗+(J) + f (I)

× f ∗×(J)

)

(Ω) (6)

where f (I)
+,× = H0F (I)

+,×/n(I), H2
0 is the average signal energy over the GW polarization

andn2
(I) is the noise PSD ofY(I). The eigen-values are the instantaneous squared SNR

for the optimal data streams. The 3 eigen vectors are given by:

~V+ = c+
~f+ +c× ~f× , ~V× = c∗× ~f+−c+

~f×, ~V0 = ~f+
∗× ~f×

∗
, (7)

where the coefficientc× = ~f×
∗ · ~f+ and

c+ =
1
2

[

|~f+|2−|~f×|2 +

√

(|~f+|2−|~f×|2)2 +4|~f+ · ~f×
∗|2

]

= snr2+−|~f×|2 = −(snr2×−|~f+|2) . (8)

Note that the orthogonal pair of{~V+,~V×} is obtained by the linear combination of~f+
and~f× and hence lie in{~f+, ~f×} — polarization — plane. The 2×2 matrix which trans-
forms{~f+, ~f×} to {~V+,~V×} is traceless-hermitian. Naturally, the direction orthogonal to
this plane contains no signal, i.e. a data stream obtained from~V0 (orthogonal to{~f+, ~f×}
plane) is a null stream. Hence, the triplet{~V+,~V×,~V0} gives complete directional in-
formation of the GW signal. The tracking coefficients for theoptimal data streams are

α(I)+,×,0 = V(I)∗
+,×,0/n(I). In summary, the data stream (i)v+ ≡ α(I)+Y(I) gives maximum

directional SNR i. e. snr+, (ii) v× ≡ α(I)×Y(I) gives the smallest non positive SNR i.

e. snr× and (iii) v0 ≡ α(I)0Y
(I) gives zero directional SNR. At low frequency,c× = 0

andv+ tracks the+ polarization whilev× tracks the× polarization of GW, hence their
subscripts [2].
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FIGURE 2. (a) Source coordinates{XL(t),YL(t),ZL(t)} in LISA frame for a fixed source atφB =
200◦ for variousθB. (b) LISA Sensitivity for various data streams while tracking source at{θB,φB} =
{60◦,200◦} andH0 = 1, T = 1 year.

3.1. Source tracking and Integrated SNR

Due to LISA’s motion, a fixed direction ˆwB = {θB,φB} in barycentric frame appears
to follow a track{θL(t),φL(t)} in LISA’s sky, see Fig. 2(a). We track the direction



and obtain the integrated SNR as follows: We choose the optimal data combination
pertaining to the source direction{θL(t; ŵB),φL(t; ŵB)}, at each time step, in LISA frame
(including Doppler shift correction to the frequency). Thecorresponding SNR at each
time-step is referred to as instantaneous SNR i.e. snr+,×. We integrate the instantaneous
SNR as given below

SNR2
+,×(ŵB) =

∫ T

0
snr2+,×(θL(t;ŵB),φL(t;ŵB))dt . (9)

The network SNR while tracking ˆwB over 1 year period is obtained by summing the
squared integrated SNR’s of the individual data streams3

SNR2
Net(ŵB) = SNR2

+(ŵB)+SNR2
×(ŵB) =

3

∑
I=1

SNR2
I (ŵB) . (10)

In Fig.2(b), we plot the LISA sensitivityS= 5/SNRint for a monochromatic source
tracked with several data combinations. SNRint is the integrated SNR along the source
track (in LISA frame) for a given combination. For switchingcombination, e.g. optimal
streamsv+,×, SNRint = SNR+,×.

Fig.2(b) displays the following features: (i) At low frequencies (f ≤ 3 mHz),v+, v×
have similar sensitivities and are proportional tof−2 (similar toY(1,2)); the data stream
Y(3) (= ζ ) is insensitive to GW. (ii) Above 25 mHz, allY(I)’s become comparable in
their sensitivities. The wavelength of GW(λGW) is comparable toL. This introduces
geometry dependent features in the LISA sensitivity curve.For example,Y(3) combina-
tion is most sensitive whenfgw = fL = 1/L = 60 mHz or multiples offL. Asv+ contains
contribution fromY(I), this feature also appears in its sensitivity, see Fig.3(a). The dips
in the integrated SNR ofv+ correspond to the zeros ofY(3) (at f = (2n−1) fL/2 mHz,
n is a positive integer).

3.2. Beaming of Optimal Stream

Although, tracking ˆwB with a network comprising ofY(I) — NetY — and with a
network ofv+ andv× — Net+,× — gives the same integrated (as well as instantaneous)
SNR [see, for instance, Eq.(10) and Fig.2(b)], we show in this section that they possess
completely different beaming properties.

To demonstrate this, we divide the sky in the barycentric frame in 1 square degree
patches. We observe each of this patch with the data streamsY(I) and integrate the
squared SNR for a year along its track in the LISA frame (H0 = 1). In order to perform
the same exercise withv+, v×, v0, we choose to track an arbitrary source direction
{θB,φB} = {60◦,200◦}. In Fig. 4,5(a), contour plots of integrated squared SNR are
drawn (in barycentric frame) for all the data streams. The SNR is normalized with
respect to SNR+. The observations and the implications are as follows:

3 Note that SNR2Net(ŵB) can also be obtained by summing the squared SNR’s of the individual data

streams (trace ofρ (I)
(J)) and integrating the resultant.
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FIGURE 3. (a) SNR ofv+ andY(I) vsf, (b) SNR+/SNRNetvs f for tracking{θB,φB} = {60◦,200◦}.

(i) The data streamsv+, v× andv0 are all beamed. In other words, the beam pattern of
these streams peaks towards the tracking direction, whereas theY(I) streams are sensitive
to a large fraction of the sky; see, for instance, Fig. 4(b), 5(a). The contours of the
integrated SNR while tracking a particular direction give the point spread function (psf)
of the source. In the language of the GW data analysis literature, these contours can be
related to the ambiguity function in the source location parameter space. The width of
the psf determines the size of the template.
(ii) Net+,× gives the same integrated SNR as that of NetY. However, Net+,× is highly
beamed as opposed to NetY. The complimentary feature of Net+,× andv0 is apparent
from the bright and dark patch centered around the tracking direction [see for instance,
Fig. 4(b), 5(a)]. This property can have a possible immediate application in LISA data
analysis. In LISA, we expect to observe a large number of GW sources from different
sky locations in nearby frequency bins. Thus, with the combination of Net+,× and its
complementary null streamv0, one could systematically suppress other sky directions
without compromising on SNR.
(iii) In the low frequency (f < 10 mHz), Net+,× does not show beaming and gives the
same beam pattern as that of NetY. This is because the angular response ofY(1),(2) is
that of a single Michelson interferometer. The streamY(2) differs from theY(1) by 45◦

rotation [see [2],Fig.4 (a)] which makes the pattern azimuthal invariant after tracking.
Further, the angular response of any TDI combination will belimited by the signal
antenna angular pattern (size of earth’s orbit∼ λGW).
(iv) In Fig. 4(b) and 5(a),v+ and Net+,× are beamed along the tracking direction
{60◦,200◦}. At 50 mHz (being closer tof ∼ fL) , as opposed to at 25 mHz,Y(3) is
more sensitive compared toY(1),(2).

One would expect that beam-width of the optimal streams is a monotonically decreas-
ing function of frequency. However, we find super-imposed oscillations on the monoton-
ically decreasing behavior in the beam-width[see, Figs. 5(b),6]4. Below, we summarise

4 In order to test this, we choosev+ (maximum SNR) to track the source at different frequencies.This is
because, it is shown in Fig.3(b)„ forf > 25 mHz,v+ contributes more than 80% to Net+,×.
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FIGURE 4. Integrated squared SNR at (a)f = 10 mHz, (b) f = 25 mHz and tracking{θB,φB} =
{60◦,200◦} with various data streams.

(a) (b)

.

FIGURE 5. Tracking{θB,φB} = {60◦,200◦}: Integrated squared SNR (a) atf = 50 mHz for various
data streams, (b)forv+ at different frequencies.

the features of Fig. 6: At low frequencies (< 25 mHz), the overall beam-width ofv+

decreases monotonically and is dominated byY(1,2). At frequencies above 25 mHz, one
observes modulation pattern in the beam-width (with frequency fL). More importantly,
at f ∼ n fL, Y(3) contributes a large fraction to SNR+ as compared to the other twoY’s,
see Fig.3(a). Hence, the beam-width ofv+ is expected to carry the features ofY(3).

As we know,Y(3) is completely symmetric between the 3 arms. Its angular response is
insensitive in the neighborhood of LISA’s zenith as well as its equatorial plane whereas
it is sensitive in the polar window ofθL : {30◦,60◦}. A source atθB = 90◦ follows



a circular track in LISA sky withθL = 60◦, see Fig.2(a). Hence, the source’s track
coincides with the sensitive part ofY(3) beam-pattern which explains its maximum
integrated sensitivity alongθB = 90◦. As frequency increases, especially nearf = n fL,
due to the symmetry ofY(3), for all θL, the integrated antenna pattern ofY(3) becomes
invariant to azimuthφB, see Fig.4(b),5(a) which results in increase in the beam-width.
This explains the sudden increase of solid angle atn fL in Fig.6.

From Fig.6, one can estimate the number of non-overlapping patches (templates)
required to cover the entire sky. For instance, atf ∼ 10 mHz, one requires 20 such
patches whereas atf = 30 mHz, this number goes to 60.

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency f in Hz

Be
am

−w
idth

 in 
sol

id a
ng

le

FIGURE 6. Tracking{θB,φB} = {60◦,200◦} with v+: beam-width (obtained at 90% level)vs f.

4. CONCLUSIONS

In this work, we have studied the beaming properties of directionally optimal data
streamsv+,v× andv0 which contain the complete information of the GW signal in a
particular direction. We have shown that they are beamed (after tracking the source for a
year) and could be useful in eliminating certain sky directions or for consistency checks
in LISA data analysis.
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