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The sensitivity of next-generation gravitational-wave detectors such as Advanced LIGO and
LCGT should be limited mostly by quantum noise with an expected technical progress to reduce
seismic noise and thermal noise. Those detectors will employ the optical configuration of resonant-
sideband-extraction that can be realized with a signal-recycling mirror added to the Fabry-Perot
Michelson interferometer. While this configuration can reduce quantum noise of the detector, it
can possibly increase laser frequency noise and intensity noise. The analysis of laser noise in the
interferometer with the conventional configuration has been done in several papers, and we shall
extend the analysis to the resonant-sideband-extraction configuration with the radiation pressure
effect included. We shall also refer to laser noise in the case we employ the so-called DC readout
scheme.

I. INTRODUCTION

Gravitational waves are ripples of space-time curvature, predicted by Einstein’s general theory of relativity. At-
tempts to detect these waves directly have been on-going for several decades, initially with resonant-mass detectors,
and recently also with laser interferometers. Currently, several large-scale ground-based detectors, such as LIGO [1]
in the US, VIRGO [2] and GEO600 [3] in Europe, and TAMA300 [4] in Japan, have begun operation, and may detect
gravitational waves in next few years. LIGO, VIRGO, and TAMA300 detectors are the Michelson interferometer with
a Fabry-Perot cavity in their orthogonal arms (left panel of Fig. 1). The Michelson interferometer is controlled to keep
the anti-symmetric port dark fringe so that all the differential signal caused by gravitational waves would appear at
that port, or the signal extraction port, while the incident beam, together with all its intensity and phase fluctuations,
is reflected back toward the laser. The reflected light can be reinjected to the interferometer via a power-recycling
mirror located between the laser and the interferometer. In this idealized situation, there will be no laser noise. In
reality, however, inevitable mismatches between the two arms, e.g., in optical losses, storage time, length, etc., will
couple laser noise into the detection port, and may consequently affect the sensitivity of the interferometer.

With the operation of first-generation detectors, development of next-generation detectors, with much better sensi-
tivity, such as Advanced LIGO [5][6] in the US and LCGT [7] in Japan, is underway. In addition to the employment
of more advanced seismic isolation systems and higher quality optics, improvement in sensitivity in next-generation
detectors is achieved by lowering quantum noise, which is in turn realized by increasing optical power circulating in
the arm cavities (lowering shot noise), using heavier test masses (lowering radiation-pressure noise), and using the
optical technique of resonant-sideband-extraction, or RSE [8]. In RSE configurations, arm cavity finesse is much
higher than in first-generation detectors. This alone will lower detection bandwidth significantly, but by adding a
signal recycling mirror at the detection port (Fig. 1), one can modify the optical response function flexibility. For
example, if the signal recycling cavity, i.e., the cavity formed by the signal-recycling mirror and the average position of
the two front mirrors, is kept resonant for the carrier light, then the effective reflectivity of the front mirrors decreases
for the signal sidebands and one can broaden the detection bandwidth. One can also detune the signal-recycling
cavity from resonance, optical sensitivity is then improved around a particular frequency. The former configuration
is often referred to as broadband RSE and the latter detuned RSE (See reference [10] for details). In detuned RSE
configurations, the signal light coming out from the dark port of the Michelson interferometer, after being reinjected
back into the arms with a phase shift, will beat with the carrier light and modulate light amplitude in the arms, and
hence radiation-pressure forces exerted on the mirrors. This so-called optical spring effect will improve the sensitivity
at the opto-mechanical resonant frequency in addition to the improvement at the optical resonant frequency [11].
Advanced LIGO will employ detuned RSE and LCGT will start operation with the broadband RSE configuration
with the possibility of changing to detuned RSE in the future.

Laser noise of the power-recycled Fabry-Perot Michelson interferometer has been analyzed by Camp et al and by
Sigg et al in references [12][13], and laser noise of the RSE interferometer has been analyzed by Mason in reference [14].
These analyses focus on the imperfection of the arms and the filtering effect in the recycling cavities. In 2001, the
radiation pressure effect of the detuned RSE interferometer was reported by Buonanno and Chen [11]. The signal and
quantum fluctuation coming out from the interferometer are reinjected with a phase shift and experience the optical
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FIG. 1: Power-recycled Fabry-Perot Michelson interferometer (left) and power-recycled RSE interferometer (right). The figure
is what has been used in reference [9].

spring effect. Laser noise will experience the same effect, and besides, frequency noise can be converted to intensity
noise via an rms fluctuation of the arm cavities, and both that noise and original intensity noise result in radiation
pressure noise even if the configuration is broadband RSE. In this paper, we study laser noise of both broadband
and detuned RSE configurations with all the radiation pressure effects taken into account. We will consider both the
conventional RF modulation-demodulation readout scheme, in which reference light is provided by RF sidebands [15]
and the DC readout scheme, in which reference light is provided by utilizing mismatches between the arms [16]. Our
results will provide guidance in the design of next-generation interferometers. They are also given in analytic forms,
which will help intuitive understanding of laser-noise coupling.

Our paper is organized as follows: in Sec. II, we give a brief review of the analysis of laser noise in power-recycled
Fabry-Perot Michelson interferometers, putting it into the quadrature representation, and combining the effect of
radiation pressure. In Sec. III, we go on to study laser noise in RSE configurations, and apply our results to possible
plans for Advanced LIGO and LCGT. In Sec. IV, we summarize our main conclusions.

II. LASER NOISE OF A CONVENTIONAL INTERFEROMETER

Laser noise in low-power Fabry-Perot Michelson interferometers has been studied systematically by Camp et al. [12]
and Sigg et al. [13]. These, combined with classical radiation pressure noise coupled through arm imbalances [17],
already give us all the necessary results for such configurations. In this section, we collect these results, and put them
into the quadrature representation, which is convenient for subsequent analysis of RSE configurations.

In the following, after discussing signal generation and input laser noise in the quadrature representation (Sec. II A),
we shall deal separately with all possible channels laser noise can couple into the output of a Fabry-Perot Michelson
interferometer, namely: (i) optical coupling from the bright port to the dark port (with mirrors fixed), around carrier
frequency (Sec. II B), (ii) optical coupling from the bright port to the dark port (with mirrors fixed), around upper
and lower RF modulation frequencies (Sec. II C), (iii) coupling from laser (intensity) noise to mirror motion, and then
to the output light at around carrier frequency (Sec. II D).

A. Signal generation and input laser noise in the quadrature representation

For interferometers with arm lengths much shorter than the wavelength of gravitational waves, the effect of the wave
can be regarded solely as tidal forces acting on mirror-endowed test masses. In interferometric gravitational-wave
detectors, we measure the differential motions induced by these tidal forces.

We consider a power-recycled Fabry-Perot Michelson interferometer with input carrier amplitude E0 and frequency
ω0, power recycling gain (in amplitude),

gpr =

√

1 − r2R
1 − rRr0

, (1)
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where r0 and rR are the reflectivity of an arm cavity and the power-recycling mirror, respectively. The carrier, after
being amplified by power recycling, split by the beamsplitter, and phase-modulated by a sinusoidal differential mirror
motion of ±ℜ{x(ω)e−iωt}, will produce the following two reflected fields after each gets reflected again from the
beamsplitter, before they are to be recombined:

E
(±)
ref ≃ 1

2
gprE0e

−iω0t
[
1 ± δ(ω)e−iωt ∓ δ∗(ω)eiωt

]
. (2)

Here the amplitude of the upper and lower sidebands generated by mirror motion is given by

δ(ω) =
ω0x(ω)

c

N

1 − iω/ωc
, (3)

with

N = 4/T, ωc = Tc/(4L) . (4)

The factor N can roughly be regarded as the number of round trips an average photon takes during its life time
in the cavity, this gives a signal amplification effect in low frequencies. The quantity ωc, the cavity pole frequency,
corresponds to the average photo life time; as we see from Eq. (3), sensitivity drops when motion frequency ω is
comparable to or larger than ωc, because phase modulation can change sign during a photon life time.

In the quadrature representation, instead of using upper and lower modulation sidebands, we consider amplitude
and phase modulations. For example, for a carrier frequency of ω0, modulation frequency of ω, and upper and lower
sidebands a(±ω), we would like to have

ℜ
{
e−iω0t

[
a(ω)e−iωt + a(−ω)eiωt

]}
= ℜ

[√
2a1(ω)e−iωt

]

cosω0t+ ℜ
[√

2a2(ω)e−iωt
]

sinω0t . (5)

In this way, if we superimpose a reference light of A cosω0t, the fields a1,2(ω) will then become Fourier components of
amplitude and phase modulations. For this reason, they can be called amplitude and phase quadratures, respectively.
Equation (5) corresponds to the definitions of

a1(ω) ≡ a(ω) + a∗(−ω)√
2

, a2(ω) ≡ a(ω) − a∗(−ω)√
2i

. (6)

We usually use a 2-dimensional vector, a to jointly represent the two quadratures, a1 and a2.
Returning to the response to gravitational-wave-induced motion, if we denote the quadrature-vector representation

of the output field as b, then from Eqs. (2) and (6), we deduce

(
b1
b2

)

sig

=

√
2gprE0ω0x

L(ωc − iω)

(
0
1

)

, (7)

where the top and the bottom are the amplitude and the phase quadrature, respectively. Intuitively, this means that
the output signal light corresponds to a phase modulation to the carrier.

We now turn to the description of the input laser, and its noise, in the quadrature picture. Frequency noise is
regarded as phase-modulated sidebands to the carrier light, which is derived in the following way with δν as frequency
fluctuation of the laser:

dφ(t)

dt
= ω0 −

∫ +∞

0

(
2πδν(ω)e−iωt + 2πδν∗(ω)eiωt

) dω

2π
; δν∗(ω) = δν(−ω)

→ φ(t) = ω0t−
∫ +∞

0

(
2πδν(ω)

−iω e−iωt +
2πδν∗(ω)

iω
eiωt

)
dω

2π

→ Ein(t) = E0e
−iφ = E0e

−iω0t

(

1 +

∫ +∞

0

πδν(ω)

ω
e−iωt dω

2π
−

∫ +∞

0

πδν∗(ω)

ω
eiωt dω

2π

)

. (8)

Intensity noise is amplitude-modulated sidebands to the carrier light, expressed with P and δP as the laser intensity
and its fluctuation, respectively:

|Ein(t)|2 ~ω0 = P +

∫ +∞

0

(
δP (ω)e−iωt + δP ∗(ω)eiωt

) dω

2π
; δP ∗(ω) = δP (−ω)

→ Ein(t) = E0e
−iω0t

(

1 +

∫ +∞

0

δP (ω)

4P
e−iωt dω

2π
+

∫ +∞

0

δP ∗(ω)

4P
eiωt dω

2π

)

. (9)
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Here, Ein is the amplitude of the electric field with each fluctuation, and ~ is the Planck constant. From Eqs. (6), (8),
and (9), we have

(
l1
l2

)

=
E0√

2

[
2πδν

ω

(
0
1

)

+
δP

2P

(
1
0

)]

, ω 6= 0 . (10)

as input laser noise in the quadrature representation.

B. Differential Arm-Cavity Reflectivity: Laser noise around DC

In this section, we consider the mirrors as held fixed, i.e., their positions not modified by laser noise, and calculate
the transfer function from laser noise around the carrier frequency to the detection port. Without any imperfections
between two arm cavities, the asymmetry length ∆ℓ between the distances from the front mirrors to the beamsplitter
would be the only reason for laser noise to leak through the signal extraction port. This asymmetry is used in allowing
RF sidebands to propagate to the detection port, and in both Advanced LIGO and LCGT will give negligible effects
to laser noise. Instead, we focus on the following mismatches between the two cavities: ∆ǫ, mismatch in optical
losses, ∆T , mismatch in front-mirror power transmittance, and ∆LD, the microscopic mismatch in arm lengths (i.e.,
the deviation from resonance). Note that the macroscopic mismatch in arm length (i.e., in multiples of half optical
wavelength) is very small, and can be neglected. Fractional mismatch will be less than ∼ 10−6.

The reflectivity of each arm cavity can be expressed in terms of its front-mirror power transmittance T , macroscopic
length L (integer multiple of half wavelength), microscopic length ∆L (deviation from resonance), and optical loss ǫ,
as a function of sideband frequency ω:

rcav =

1 − 2

T

(

ǫ± ∆ǫ

2

)

− sc

(

1 ± ∆ωc

2ωc
± ω0∆L

2ωL

)

1 + sc

(

1 ± ∆ωc

2ωc
± ω0∆L

2ωL

) , (11)

where

sc ≡
−iω
ωc

. (12)

We have expanded up to leading order in T , ωL/c and ω0∆L/c; the cavity pole frequency ωc has been given in Eq. (4).
The differential reflectivity, which corresponds to twice the transfer function from the bright port to the dark port, is
then

∆rcav(ω) =
ξ

1 + sc
+

2sc
(1 + sc)2

∆F
F +

2i

(1 + sc)2
ω0∆LD

ωcL
, ξ ≡ 2∆ǫ/T . (13)

Here, instead of (∆ǫ,∆T,∆LD) we have chosen to use (ξ,∆F/F ,∆LD) to characterize mismatches between the arms.
Note that ξ describes the contrast defect, i.e., reflectivity imbalance between the two arms even if the interferometer
is locked precisely and has no fluctuation.

Now in order to obtain laser noise at the detection port, we must also calculate laser noise incident on the beam-
splitter. We obtain, after generalizing Eq. (1) to non-zero frequencies:

tpr(ω) = gpr
1 + sc
1 + scc

, scc = −iω/ωcc , ωcc =
1 + r0rR
1 + rR/r1

ωc . (14)

Here ωcc is the cavity pole of the power-recycled arm cavity, with r1 the reflectivity of the front mirror. Note that tpr

is suppressed significantly from its DC value (gpr), as ω exceeds ωcc. This filtering occurs because the bandwidth of
the power-recycling cavity at the carrier frequency is small due to the fact that the power-recycling cavity length is
set to the anti-resonant condition for the carrier light and only the light in the bandwidth of the arms will have a π
phase shift and resonate in the recycling cavity.

Combining Eqs. (13) and (14), transfer function from the bright port to the dark port is

T (ω) =
1

2
tpr(ω)∆rcav(ω) =

gpr

2(1 + scc)

[

ξ +
2sc

1 + sc

∆F
F +

2i

1 + sc

ω0∆LD

ωcL

]

. (15)
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According to Appendix A of Ref. [18] [i.e., applying Eqs. (6) on the output quadrature fields, using the single sideband
transfer function to relate to the input single sidebands, and the applying the inverse of Eqs. (6) to relate to the input
quadrature fields], the quadrature transfer matrix T can be written in terms of upper and lower sideband transfer
functions T (±ω), as

T (ω) =
1

2

[
T (ω) + T ∗(−ω) iT (ω) − iT ∗(−ω)

−iT (ω) + iT ∗(−ω) T (ω) + T ∗(−ω)

]

. (16)

As a consequence, laser noise at the dark port is
(
b1
b2

)

ca

= T (ω)

(
l1
l2

)

=
gprE0

2
√

2(1 + scc)








ξ +
2sc

1 + sc

∆F
F − 2

1 + sc

ω0∆LD

ωcL

2

1 + sc

ω0∆LD

ωcL
ξ +

2sc
1 + sc

∆F
F














δP

2P

2πδν

ω






. (17)

In the above equation, diagonal terms in the transfer matrix couples laser intensity noise to output amplitude quadra-
ture, and laser frequency noise to output phase quadrature; non-diagonal terms do the opposite. Taking the limit of
ω → 0 with δP/2P → 1 and δν → 0, we obtain the carrier amplitude at the dark port

(
B1

B2

)

=
gprE0

2
√

2






ξ

2ω0∆LD

ωcL




 . (18)

Here we use capital B1,2 to emphasize the fact that they are amplitudes of sinusoidal fields, instead of Fourier
components. Below the arm cavity pole frequency (including DC), behavior of the transfer matrix T can be understood
very easily in the quadrature picture: the contrast defect ξ induces differential rescalings of the input carrier vector
(including its low-frequency fluctuations), it therefore causes a difference between the reflected vectors that is directly
proportional to the input one; on the other hand, because cavity detuning causes rotation of output quadratures,
∆LD induces differential rotations of the input vector, thereby causing a difference between the reflected vectors that
is 90◦ rotated from the input vector. More explanations are given in Fig. 2. This is a superposition of quadratures
at the carrier and at audio sideband frequencies, which then is equivalent to the way of description with what is
called phasor-diagram [8]. Other possible fluctuation fields are amplitude and phase fluctuation of an oscillator that
generates the RF modulation, which may appear via an imbalance of the upper and the lower RF sidebands [12], but
they are not described in Fig. 2

C. Laser noise around RF sidebands

It is necessary to prepare a reference light at the signal extraction port to obtain the gravitational-wave signal with
its phase information. What is usually done in a conventional interferometer is to arrange an electro-optic modulator
between the laser and the power-recycling mirror and to prepare a macroscopic difference (= ∆ℓ) between distances
from the beamsplitter to the two front mirrors, so that RF phase-modulated sidebands appear at the signal extraction
port. The amplitude of the RF-sideband field at the signal extraction port is defined to be ΓE0 with E0 the input
carrier amplitude. In this paper, we only consider RF modulation-demodulation schemes with a single modulation
frequency.

Because RF sidebands were initially generated from the noisy input laser, when they propagate into the detection
port, they will carry laser-noise sidebands around RF modulation frequencies (see Fig. 2). These laser-noise sidebands
will generate laser noise in the output, by beating with carrier light coming out from the detection port. As we
demonstrate in Appendix B, under certain reasonable assumptions, we can describe the effect of an entire modulation-
demodulation scheme using two vectors, one at DC and the other in the frequency band of gravitational waves,

(
B1

B2

)

RF

= ΓE0

(
sin ζ
cos ζ

)

,

(
b1
b2

)

RF

= ΓE0

[
2πδν

ω

(
− cos ζ
sin ζ

)

+
δP

2P

(
sin ζ
cos ζ

)]

, (19)

in the sense that the signal of the modulation-demodulation scheme will be

SGRF =

(
B1

B2

)

RF

•
(
b1
b2

)

sig

, (20)
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while laser noise of the scheme will be

LNRF =

(
B1

B2

)

RF

•
(
b1
b2

)

ca

+

(
B1

B2

)

ca

•
(
b1
b2

)

RF

. (21)

Here • means the operation to take an inner product of two vectors. It must be emphasized here that the fields BRF

and bRF are not quadrature fields directly describing RF sideband fields or their laser-noise sidebands, which oscillate
at around ωm. Instead, these effective fields were obtained taking into account also the demodulation procedure. In
some sense, they are down-conversions of RF fields into the DC region, via demodulation (see Appendix B).

In Fabry-Perot Michelson interferometers, we have ζ = 0, and

(
B1

B2

)

RF

= ΓE0

(
0
1

)

,

(
b1
b2

)

RF

= ΓE0

[

−2πiδν

ω

(
1
0

)

+
δP

2P

(
0
1

)]

. (22)

The RF sidebands are fixed in the phase quadrature in the case of the balanced configuration but not in a detuned
RSE [19], which will be calculated in Sec. III. The RF sidebands experience a filter of the power-recycling cavity but
the cavity pole of the filter is higher than the observation frequencies so that the effect is negligible.

RF SB and IN on it

Signal

FN on rms fluctuation

rms fluctuation of L-

FN on finesse difference

contrast defect

FN on contrast defect

Phase

Ampllitude

Signal

IN on rms fluctuation

rms fluctuation of L-

IN on finesse difference

contrast defect IN on contrast defect

Phase

Ampllitude

RF SB and FN on it

FIG. 2: Frequency noise (left) and intensity noise (right) on the phasor diagram with the leaked carrier light at the dark port.

Inserting Eqs. (17), (18), and (22) into Eq. (21), we obtain laser frequency noise and intensity noise:

FNconv = ΓgprE
2
0

π√
2ω

{(
1

1 + scc
− 1

)

ξ +
2sc

(1 + scc)(1 + sc)

∆F
F

}

δν,

= ΓgprE
2
0

π√
2ω

{ −scc
1 + scc

ξ +
2sc

(1 + scc)(1 + sc)

∆F
F

}

δν, (23)

INconv = ΓgprE
2
0

1

2
√

2

ω0∆LD

ωcL

{
1

(1 + scc)(1 + sc)
+ 1

}
δP

P
. (24)

On the other hand, the signal output obtained from Eqs. (7) and (20) is

SGconv = ΓgprE
2
0

√
2ω0x

Lωc(1 + sc)
. (25)

Signal-referred frequency noise and intensity noise are then

hFN
conv =

π

2ω0

{−scc(1 + sc)

sc(1 + scc)
ξ +

2

1 + scc

∆F
F

}

δν, (26)

hIN
conv =

1 + (1 + sc)(1 + scc)

1 + scc

∆LD

4L

δP

P
. (27)

Note that here we assume the RF readout scheme, and the DC readout scheme will be explained later in Sec. III D.
Figure 3 (left) shows the calculated result. Frequency noise on the carrier and on the RF sidebands are cancelled each
other at the low frequencies, and that on the RF sidebands are dominant at the high frequencies. The parameters
used here are L = 3 km, F = 1250, and the power-recycling gain g2

pr ≃ 10, which are the anticipated parameters for
the LCGT interferometer without its signal-recycling mirror. The same parameters with the signal-recycling mirror
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FIG. 3: Frequency noise (left) and intensity noise (right) of the power-recycled Fabry-Perot Michelson interferometer, calculated.
Here the transfer function from each fluctuation to the equivalent strain sensitivity are shown.

will be used later. Contrast defect of 26 mW at the dark port is assumed, which is derived from the differential
cavity reflectivity of ξ = 0.012 or the round-trip loss difference of ∆ǫ = 30 ppm. In the case of AdLIGO without the
signal-recycling mirror, contrast defect would be 55 mW with ξ = 0.012. The contrast defect in the current detectors
is higher than this value but can be realized with the installation or the improvement of an output mode-cleaner,
which is used to filter out junk light that makes contrast defect large in the current detectors. The finesse difference
of 0.5 % is assumed, which is also challenging compared with 1 ∼ 2 % that is the value of the current detectors. As
for the rms fluctuation, ∆LD = 10−13 m is assumed.

D. Laser noise coupled through radiation pressure imbalance

The results shown in Eqs. (26) and (27) coincide to the results in references [12][13], and we are going to extend the
analysis to the RSE configurations. Before the extension to the RSE, however, we shall take into account laser noise
through radiation pressure imbalances, which would appear in next-generation interferometers with a high-power
laser.

The radiation pressure force is proportional to fluctuation of the power in the cavity:

Frp =
2∆Warm

c
, (28)

where the power fluctuation in each arm is

∆W (i)
arm =

1

1 + scc
t2BS

4
√

2IBS

T

δP

4P
(inline arm) , (29)

∆W (p)
arm =

1

1 + scc
r2BS

4
√

2IBS

T

δP

4P
(perpendicular arm) . (30)

Here IBS is the power at the beamsplitter, rBS and tBS are the reflectivity and the transmittance of the beamsplitter,
respectively. The motion of the mirror in differential mode of the arm cavities is given by Xrp = −4∆Warm/mcω

2

with the consideration of effective mass µ = m/2 in each cavity, where m is the mass of each mirror. At the dark
port appears intensity noise due to the differential motion of two arm cavities only if the parameters are unbalanced.
Adding the power-recycling cavity and assuming the imbalance σ = r2BS − t2BS in the beamsplitter, the mass difference
m±∆m/2, and the cavity pole difference ωc±∆ωc/2, which is equivallent to the finesse difference F∓∆F/2, between
Eqs (29) and (30), we have

bimb =
1

(1 + sc)(1 + scc)

√
2gprE0IBSω0

mω2L2ω2
c

δP

P

[

σ +
∆ωc/ωc

(1 + sc)2
+

∆m

2m

]

. (31)

in the phase quadrature at the dark port. We can simplify the output vector as

bimb =
tprE0√

2

(
δP

4P

)

κe2iβ

[

σ +
∆ωc/ωc

(1 + sc)2
+

∆m

2m

] (
0
1

)

, (32)
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with κ as the coupling coefficient of the radiation pressure effect, and β as the phase shift of the audio sidebands in
the arm cavity:

κ =
IBS/ISQL · 2ω4

c

ω2(ω2 + ω2
c )

, (33)

ISQL =
mL2ω4

c

4ω0
, (34)

β = arctan

(
ω

ωc

)

. (35)

These parameters, which have been introduced in reference [20], will be used in the extension to the RSE system. The
meaning of ISQL is the light power, with which quantum radiation pressure noise will be as large as the shot noise
level at the cavity pole frequency. Here we neglect the influence of a pendulum that is used to make a suspended
mirror nearly free-mass beyond the resonant frequency (∼ 1 Hz).

Figure 3 (right) shows the calculated result of intensity noise, where 0.5 % of the cavity-pole imbalance is included.
Classical radiation pressure noise via the imbalance is the largest at low frequencies.

III. LASER NOISE IN RSE INTERFEROMETERS

As is reported in reference [11], in detuned RSE configurations, signal light reflected by the signal-recycling mirror
and reinjected back into the interferometer will beat with the incident beam, modulate the radiation-pressure force
acting on the test masses, thereby modifying test-mass dynamics. Quantum-noise-limited gravitational-wave sensi-
tivity is significantly influenced by this feedback mechanism. In particular, in addition to the optical resonance due
to detuning, there can also exist another resonance, at a lower frequency, around which gravitational-wave sensitivity
is also enhanced. Laser noise in RSE configurations will also experience the feedback effect due to signal recycling.
As we shall see in this section, in both broadband and detuned RSE configurations, intensity noise due to contrast
defect and frequency noise due to arm-length imbalance will both beat with carrier light in the arm cavities and cause
classical radiation pressure noise.

Besides analyzing features of laser noise coupling, we also study the so-called DC readout schemes, in which the local
oscillator is provided by (partially intentional) arm imbalances. In these schemes, on the one hand, arm imbalance
must be big enough, in order to provide a strong enough local oscillator, on the other hand, it must be small enough
such that laser noise remain suppressed compared to more fundamental noise sources, e.g., quantum noise.

A. AC laser noise coupling

We shall use the input-output relation of the RSE interferometer described in reference [11], which consists of the
propagation of quantum fluctuation and that of the signal in the phase quadrature. Here we can concentrate on the
classical part of the equation that includes laser noise. Besides, the propagation of the signal, or classical noise, in
the amplitude quadrature can also be derived in the same way, which is shown in reference [21]. The output of a
conventional power-recycled Fabry-Perot Michelson interferometer is given by

(
b1
b2

)

ca+sig

= e2iβ

(
1 0
−κ 1

) (
d1

d2

)

+

√
2gprE0ω0x

L(ωc − iω)

(
0
1

)

+ T

(
ℓ1
ℓ2

)

+

(
0
bimb

)

. (36)

The first term of the right member expresses the field entering to the interferometer from its dark port (see Fig. 4).

FPMI

b

d

bRSE

SR-mirror

BRF

FIG. 4: Input-output relation of laser noise in the signal-recycling cavity.
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The matrix in that term shows the coupling of a component in the amplitude quadrature to the phase quadrature
through the radiation pressure effect. Here a possible imbalance of κ in the two arm cavities is neglected. With the
signal-recycling mirror, the signal and laser noise that appear at the dark port of the Michelson interferometer are
reinjected to the interferometer:

(
d1

d2

)

= ρ

(
cos 2φ − sin 2φ
sin 2φ cos 2φ

) (
b1
b2

)

ca+sig

. (37)

Here ρ is the amplitude reflectivity of the signal recycling mirror, and φ detuning phase of the signal recycling
cavity from anti-resonance (φ = π/2 for the broadband RSE). Then the signal and laser noise leak out the RSE
interferometer:

(
b1
b2

)

RSE

= τ

(
cosφ − sinφ
sinφ cosφ

) (
b1
b2

)

ca+sig

, (38)

where τ is the amplitude transmittance of the signal recycling mirror. For the moment, we only use Eq. (36) for
non-zero, i.e., AC, frequencies, for which laser noise will be evaluated. Subtleties arise DC, because there must be
pendulum restoring force and control forces that balance the DC radiation pressure from the carrier. For AC, we really
mean frequencies above ∼ 1Hz, and the slow drifting behavior of ∆LD, as first mentioned in Sec. II B and treated
in Appendix. A, takes place below this frequency. As discussed in Appendix A, we use (∆LD)rms for calculating AC
laser noise spectrum. We postpone discussion of DC light to Sec. III B.

Solving Eqs. (36) - (38), we obtain the AC coupling of laser noise

(
b1
b2

)

RSE

=
τgprE0

M

(
D11 D12

D21 D22

) [(
a1

a2

)

+

√
2ω0x

L(ωc − iω)

(
0
1

)]

, (39)

where

M = 1 + ρ2e4iβ − 2ρe2iβ
(

cos 2φ+
κ

2
sin 2φ

)

,

D11 = (1 − ρe2iβ) cosφ− ρe2iβκ sinφ ,

D12 = −(1 + ρe2iβ) sinφ ,

D21 = (1 + ρe2iβ) sinφ− ρe2iβκ cosφ ,

D22 = (1 − ρe2iβ) cosφ . (40)

Here the input vector a = (T l + bimb)/gprE0 indicates the input laser noise field around the carrier frequency in a
conventional interferometer, normalized by the input field. We shall write down the components again:

a1 = − πδν√
2ω

2

(1 + scc)(1 + sc)

ω0∆LD

ωcL
+

δP

4
√

2P

{
ξ

1 + scc
+

2sc
(1 + scc)(1 + sc)

∆F
F

}

(41)

a2 =
πδν√
2ω

{
ξ

1 + scc
+

2sc
(1 + scc)(1 + sc)

∆F
F

}

+
δP

4
√

2P

1

(1 + scc)(1 + sc)

{
2ω0∆LD

ωcL
+ κ(1 + sc)

2

[

σ +
∆ωc/ωc

(1 + sc)2
+

∆m

2m

]}

. (42)

As discussed in Appendix B, RF sidebands and laser noise around them will be downconverted by the demodulation
process, and provide an effective local oscillator and effective noise contributions. In the most general case, one has,
at the detection port:

(
B1

B2

)

RF

= ΓE0

(
sin ζ
cos ζ

)

, (43)

(
b1
b2

)

RF

= ΓE0

[
2πδν

ω

(
− cos ζ
sin ζ

)

+
δP

2P

(
sin ζ
cos ζ

)]

. (44)

These are the same equations as is written in Eq. (19). In broadband RSE configuration planned for LCGT, the upper
and the lower RF sidebands are balanced, and one can only detect the output phase quadrature, with ζ = π/2. In
most detuned RSE configurations, the sidebands are unbalanced (i.e., one of them much stronger than the other), and
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can be regarded as a single sideband. The quadrature of the effective RF local oscillator ζ is equal to the demodulation
phase, which can assume any value.

The readout quadrature, or readout phase, represented by ζ above, plays an important role in the next-generation
gravitational-wave detectors that accommodate a high-power laser. As is shown in references [11][19][20][22], quantum
noise in any configuration and the signal in detuned configurations change the frequency response with the readout
phase ζ, which can be chosen to optimize the signal-to-noise ratio to gravitational-wave signals. The variation can be
seen either with RF readout or DC readout. In detuned RSE configurations, where we can tune the readout phase,
it is desirable that laser noise not limit the sensitivity with any readout phase.

B. DC light at the detection port

In order to study laser noise, and to understand the DC readout scheme, the output DC light leaking to the
detection port must be calculated. This involves the initial arm-length mismatch, the slow drift of arm lengths, arm
length offset introduced by control system, and the feedback of light by the signal-recycling mirror. Here for DC, we
really mean frequencies below 1 Hz, in which the slow drift of arm cavity lengths is dramatic (see Appendix. A).

Equation (36) should be modified by taking the limit of ω → 0. One can see there is a term with κ, which becomes
infinity by taking the limit of ω → 0 (see Eq.(33)). In reality, however, because of pendulum restoring force, ω2 in
the denominator should be replaced by ω2 − ω2

p, where ω2
p is the pendulum frequency. Actual quantity κ0 shall be

prepared (In Advanced LIGO, κ0 can be ∼ 104–106).
Now the DC components can be divided to three parts. One is the term that has κ0 in its numerator. This is a

radiation pressure offset induced by contrast defect. The rest part of contrast defect is the second one, which stays
there even if κ = 0. It leaks to the detection port with a phase shift due to the detuning of the signal-recycling cavity.
The other is the term that is proportional to ∆L̃D. Equation (39) becomes (ω → 0; δP/2P → 1, δν → 0, bimb → 0,
and x→ 0)

(
B1

B2

)

RSE

=
gprE0

2
√

2







τξ(1 − ρ) cosφ

Mfree
− τ(1 + ρ) sinφ

Mdc

2ω0(∆L̃D + ∆L̃cd)

Lωc

τξ(1 + ρ) sinφ

Mfree
+
τ(1 − ρ) cosφ

Mdc

2ω0(∆L̃D + ∆L̃cd)

Lωc







, (45)

where

Mfree = M (ω = 0, κ = 0) = 1 + ρ2 − 2ρ cos 2φ , (46)

Mdc = M (ω = 0) = 1 + ρ2 − 2ρ cos 2φ− κ0ρ sin 2φ , (47)

and we have defined

∆L̃cd = −Lωc

2ω0

ξκ0ρ(cos 2φ− ρ)

Mfree
(48)

as the offset of the arm cavities from their resonance in the differential mode caused by radiation pressure of contrast
defect reinjected through the signal-recycling mirror. This offset should be cancelled out by feedback control with an
electric offset, which appears in ∆L̃ctrl. Note that ∆L̃ctrl is not only the control offset to cancel radiation pressure
force and also includes the offset to drive the mirrors to the operation points from their initial suspension points.
Even with feedback controls, there still remains a microscopic mismatch in the arm length that we have also seen in
the calculation in Sec. II B as the rms fluctuation. Here it is written by ∆L̃rms.

In the calculations above, ∆L̃cd, ∆L̃ctrl, and ∆L̃rms are written in their free displacements of the differential mode
before feedback from the optical spring. One can see a suppression factor in the second terms of Eq. (45), which
means the offset displacements in the differential mode are suppressed by the spring. It also means that, in the case
we want to add the control offset to cancel the radiation pressure or to choose a quadrature of the DC readout scheme,
we need to impose big force to move rather small displacement that is actually seen.

In fact, it is the actual displacement that we need for calculating laser noise coupling. We shall define the total
actual displacement in the differential mode:

∆LD = ∆Lctrl + ∆Lrms + ∆Lcd

=
Mfree

Mdc

(

∆L̃ctrl + ∆L̃rms + ∆L̃cd

)

. (49)
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Equation (45) becomes

(
B1

B2

)

RSE

=
gprE0

2
√

2






τξ(1 − ρ) cosφ

Mfree
− τ(1 + ρ) sinφ

Mfree

2ω0∆LD

Lωc
τξ(1 + ρ) sinφ

Mfree
+
τ(1 − ρ) cosφ

Mfree

2ω0∆LD

Lωc




 . (50)

When ∆Lrms = ∆Lctrl = 0, i.e., the arm lengths are originally perfectly matched in absence of RSE, and there is
no control force applied, Eqs. (45) and (48) give,

(
B1

B2

)

RSE

=
τgprE0ξ

2
√

2Mdc

[
(1 − ρ) cosφ− κ0ρ sinφ
(1 + ρ) sinφ− κ0ρ cosφ

]

. (51)

For broadband RSE (φ = π/2), Eq. (51) with the approximation κ0 ≫ 1 becomes
(
B1

B2

)

RSE

= gprE0
τξ

2
√

2(1 + ρ)2

(
−κ0ρ
1 + ρ

)

(broadband RSE) (52)

In this situation, contrast defect light drives significant amount of mirror motion, due to the absence of optical-spring
suppression. Result from Eq. (52) can often become unphysical, if κ0τξ becomes larger than unity, because there
should not be more light emerging from the detection port than input on the beamsplitter, and our perturbative
approach fails. A control system must be applied to cancel that effect. For detuned RSE configurations, with φ not
too close to π/2 (more specifically, (φ− π/2) ≫ 1/κ0), Eq. (51) becomes

(
B1

B2

)

RSE

= gprE0
τξ

2
√

2 sin 2φ

(
sinφ
cosφ

)

(detuned RSE). (53)

In this situation, the resulting mirror motion due to fed-back contrast-defect light is suppressed by optical spring, yet
if φ is too close to π/2, the output light might still be a significant fraction of all the light incident on the beamsplitter.

Contrast defect 

with RP effect

Contrast defect 

                  light

RF sideband

amp. quad.

phase quad.

Contrast defect 

with RP effect

RF sideband

Offset light 

by control

RF sidebandRemained light

rms fluctuation

control

Contrast defect 

                  light

rms fluctuation

ζ

FIG. 5: DC components of the carrier light and the RF sidebands at the dark port of the RSE interferometer. The offset light
caused by radiation pressure of the reinjected contrast defect light can be suppressed by the control system.

A control force must be applied to the differential mode, to allow us to tailor the quadrature at which the carrier
emerges at the detection port. As is shown in Fig. 5, when the feedback control with the readout phase ζ works, a
part of the offset caused by radiation pressure that corresponds to the same quadrature to the RF sidebands can be
suppressed and the rest part on the other quadrature remains still with rms fluctuation of the control. The remained
carrier light due to the contrast defect and its radiation pressure offset should be given by

(
B1

B2

)

RSE−rem

=
gprE0

2
√

2

(
τξ′ cos ζ
−τξ′ sin ζ

)

, (54)

which quadrature is orthogonal to that of RF sidebands in a readout phase of ζ:
(
B1

B2

)

RF

= ΓE0

(
sin ζ
cos ζ

)

.

To realize this situation, the free displacement due to the control should be

∆L̃ctrl = −∆L̃cd − Mdc

Mfree

sin (φ + ζ) + ρ sin (φ − ζ)

cos (φ + ζ) − ρ cos (φ− ζ)

Lωcξ

2ω0
, (55)
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which corresponds to an actual displacement of

∆Lctrl =

[
κ0ρ(cos 2φ− ρ)

Mfree
− sin (φ + ζ) + ρ sin (φ − ζ)

cos (φ + ζ) − ρ cos (φ− ζ)

]
Lωcξ

2ω0
. (56)

Now the remained carrier light has a modified contrast defect amplitude ξ′ instead of ξ;

ξ′ =
ξ

cos (φ− ζ) − ρ cos (φ+ ζ)
. (57)

In our notation, any quadrature is achievable, in principle, except:

ζforbidden = arctan

(

−1 − ρ

1 + ρ
cotφ

)

. (58)

As ζ approaches ζforbidden, amplitude of the output DC light becomes very high, which will increase the contribution
of laser noise around RF sidebands.
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FIG. 6: Laser noise of the broadband RSE (top) and the detuned RSE (bottom).

Finally, the additional carrier that emerges due to ∆L̃rms is given by

(
B1

B2

)

RSE−rms

=
τgprE0

2
√

2Mdc

2ω0∆L̃rms

ωcL

[
−(1 + ρ) sinφ
(1 − ρ) cosφ

]

. (59)

C. RF readout for RSE configurations

Laser noise with RF readout in the RSE configuration is obtained from the sum of the beat of effective RF local
oscillator in Eq. (43) with laser noise around DC in Eq. (39), and beat of DC light in Eqs. (54) and (59) with effective
RF laser noise in Eq. (44), that is,

(SG + LN)RSE−RF =

(
B1

B2

)

RF

•
(
b1
b2

)

RSE

+

[(
B1

B2

)

RSE−rem

+

(
B1

B2

)

RSE−rms

]

•
(
b1
b2

)

RF

, (60)
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where the signal is included. Signal-referred laser noise is obtained by taking the ratio from the noise component to
the signal in Eq. (60). The result is

hrse =
ωc − iω√

2ω0

(D11a1 +D12a2) sin ζ + (D21a1 +D22a2) cos ζ)

D12 sin ζ +D22 cos ζ

+
ωc − iω√

2ω0

M

D12 sin ζ +D22 cos ζ

{

− πδν

2
√

2ω
ξ′ +

1

Mdc

√
2ω0∆L̃rms

ωcL

(
sin (φ+ ζ) + ρ sin (φ− ζ)
cos (φ+ ζ) − ρ cos (φ − ζ)

)

•
(
πδν/ω
δP/4P

)}

.

(61)

Numerical results with RF readout are shown in Fig. 6. The parameters for the broadband RSE are L = 3 km,
m = 30 kg, ρ = 0.82, g2

pr = 10, and ζ = π/2, which are the parameters for LCGT [23], and the parameters for the

detuned RSE are L = 4 km, m = 40 kg, ρ = 0.96, g2
pr = 16, φ = π/2 − 0.04, and ζ = π/2 − 0.04, which are the

parameters for Advanced LIGO (φ and ζ are not decided yet, so just an example).

D. DC readout scheme

Since unbalanced RF sidebands increase the contribution of phase noise of the RF oscillator, the conventional
readout scheme with RF demodulation is not good with a detuned configuration. Advanced LIGO will use the so-
called DC readout scheme, in which the local oscillator is not RF sidebands but carrier light leaked to the dark port due
to arm imbalances [16]. This scheme is useful even with initial LIGO interferometers, since there are many practical
advantages [24] and it is the easiest way to remove additional quantum noise at the demodulation process [25]. Based
on results given in the previous sections, we study laser noise with the DC readout scheme.

Offset light

rms fluctuaion 

          (negligible)

Contrast defect 

                  light

Reference light 

  of DC readout

readout phase

amp. quad.

phase quad.

FIG. 7: Readout quadrature is determined by the ratio of offset light and contrast defect light.

1. DC readout for conventional configurations

As is shown in Eq. (18), for conventional configurations, DC light appears not only in the amplitude quadrature due
to contrast defect, but also in the phase quadrature due to differential mismatch in arm lengths, ∆LD (Fig. 7). Also it
is possible with DC readout to decrease quantum radiation pressure noise as the price for paying for the sensitivity at
high frequencies, if one chooses a quadrature different from the phase quadrature [20]. In currently operating power-
recycled Fabry-Perot Michelson interferometers, however, the readout quadrature should be the phase quadrature
since the sensitivity is not limited by radiation pressure noise at low frequencies. The offset length ∆LD should meet

∆LD ≫ ξωc

ω0
L (62)

to make the readout quadrature close to the phase quadrature. With the LCGT parameters without the signal-
recycling mirror, for example, ∆LD needs to be at least 10−10 ∼ 10−11 m, which is larger than its rms fluctuation.

While intensity noise may increase due to the raise of ∆LD, frequency noise on the reference light is filtered out at
high frequencies unlike that on the RF sidebands and total frequency noise is suppressed. From eqs. (7), (17), and
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(18), frequency noise and the signal with DC readout is derived:

FNconv−dc = g2
prE

2
0

πδν√
2ω

2ω0∆LD

ωcL

{[
1

1 + scc
− 1

(1 + sc)(1 + scc)

]

ξ +
2sc

(1 + scc)(1 + sc)

∆F
F

}

= g2
prE

2
0

πδν√
2ω

ω0∆LD

ωcL

2sc
(1 + scc)(1 + sc)

{

ξ +
2∆F
F

}

, (63)

SGconv−dc = g2
prE

2
0

2ω0∆LD

ωcL

√
2ω0x

Lωc(1 + sc)
. (64)

Therefore the signal-referred frequency noise level is

hFN
conv−dc =

π

2ω0

1

1 + scc

{

ξ +
2∆F
F

}

δν. (65)

Intensity noise is derived as well:

INconv−dc = g2
prE

2
0

δP

4
√

2P

1

1 + scc

{(
ω0∆LD

ωcL

)2
4

1 + sc
+ ξ

[

ξ +
2sc

1 + sc

∆F
F

]

+2κe2iβ(1 + sc)

[

σ +
∆ωc/ωc

(1 + sc)2
+

∆m

2m

]}

, (66)

and the signal-referred intensity noise level is given by the ratio of Eqs. (66) and (64). The calculated results are
shown in Fig. 8. Both frequency noise and intensity noise decrease at high frequencies and a difference of frequency
noise at low frequencies depends on the loss difference and the arm imbalances.
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FIG. 8: Laser noise with the DC and the RF readout scheme.

2. DC readout for RSE configurations.

We have discussed in detail in the previous section the DC light emerging from the detection port, in particular
the fact that the quadrature ζ of DC output light can be tailored by the control system. It was shown that ζ can
take any value, except ζforbidden [Cf. Eq. (58)]. In the case of broadband RSE, changing the readout phase from π/2
makes it possible to remove quantum radiation pressure noise at particular frequency as well as in the conventional
configuration [10][26], but here we shall assume the readout phase of π/2 for simplicity. The DC light at the dark
port of the broadband RSE interferometer with additional offset ∆LD(∼ 10−11 m) is obtained from Eq. (50):

(
B1

B2

)

BRSE

= gprE0
τ

1 + ρ

(
−2ω0∆LD/ωcL

ξ

)

, (67)

and signal-referred laser noise is

hbrse−dc =

(
D11a1 +D12a2

D12
+
D21a1

D12

ξωcL

2ω0∆LD

)
ωc − iω√

2ω0

. (68)
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FN on offset

IN on offset
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∆Lrms

∆Lcd

ξ

FIG. 9: Phasor diagram of the light field at the detection port with the DC readout scheme. The reference light to probe the
signal is the sum of contrast defect and the offset light excluding rms fluctuation (left panel). Laser noise is obtained from the
calculation of the couplings between dc components and ac components of contrast defect and the offset light including rms
fluctuation (middle panel). The offset light consists of rms fluctuation, radiation pressure offset due to contrast defect, and the
control light (right panel). Here rms fluctuation should be so small as not to change the readout phase.

The first term is laser noise coupled with the offset light and the second term is laser noise coupled with contrast
defect. Here we assume that the low-frequency drift of ∆LD due to the rms fluctuation component can be negligible.
Transfer function of frequency fluctuation to the dark port is given by hn/δν with δP → 0 and that of intensity
fluctuation is given by hn/(δP/P ) with δν → 0.

In the case of detuned RSE with DC readout, it is known that the sensitivity with the readout phase (6= ζ) being
π/2 is better at low frequencies but worse at the frequency of the best sensitivity than that with the readout phase
being 0 [10][11]. The radiation pressure offset can be completely removed, with a sufficient control gain, by choosing
ζ = φ(∼ π/2), in which case the arm length mismatch only contains the drift, after suppression from the optical
spring: ∆LD = ∆Lrms ∼ 10−13 m. If we choose ζ to be far from φ, for example ζ = 0, then the actual mismatch
∆LD is larger, because an artificial imbalance needs to be introduced to create a local oscillator. For example, ζ = 0
and φ = π/2 − 0.04, Eq. (56) yields

∆Lcd + ∆Lctrl (ζ = 0) = −
(

1 + ρ

1 − ρ

)
Lωcξ tanφ

2ω0
≃ −2 × 10−9 m . (69)

On one hand, having ∆Lcd + ∆Lctrl ≫ ∆Lrms is often required to make the readout quadrature stable, on the other
hand, ∆LD(= ∆Lcd + ∆Lctrl + ∆Lrms) should not be so big as to contribute significantly to laser noise. This will
limit the range of available readout quadratures.

Figure 9 will help us to calculate laser noise in the detuned RSE configurations with DC readout. The reference
light to probe the signal is remained carrier component that consists of contrast defect and the offset light excluding
rms fluctuation. As is explained in Appendix A, rms fluctuation is actually not a DC component but drifting at very
low frequencies. The remained light should be bigger enough than rms fluctuation, otherwise the readout quadrature
changes from time to time and causes problems in a data analysis of observed gravitational waves. Laser noise can be
obtained from the calculation of the couplings between DC components and AC components of contrast defect and
the offset light including rms fluctuation. Splitting bRSE, shown in Eq. (39), into its signal component and its noise
component, one can write the output AC component of the detection with DC readout as

(SG + LN)RSE−DC =

(
B1

B2

)

RSE−rem

•
(
b1
b2

)

RSE−sig

+

[(
B1

B2

)

RSE−rem

+

(
B1

B2

)

RSE−rms

]

•
(
b1
b2

)

RSE−noise

. (70)

Signal-referred laser noise is

hrse−dc =
(D11a1 +D12a2) cos ζ − (D21a1 +D22a2) sin ζ

D12 cos ζ −D22 sin ζ

ωc − iω√
2ω0

− (1 + ρ) sinφ(D11a1 +D12a2) − (1 − ρ) cosφ(D21a1 +D22a2)

D12 cos ζ −D22 sin ζ

√
2(ωc − iω)∆Lrms

MdcωcLξ′
. (71)

The second term should be small and negligible unless we set ∆Lctrl = −∆Lcd and the readout phase to be same as
the quadrature of contrast defect light.

It is very important to say that we should not use ζ that is shown in Eq. (71) as the readout phase to calculate
quantum noise using the definition of reference [11] since we have changed the definition in order to use the same
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equations for laser noise. The true readout phase in detuned RSE configuration with the DC readout scheme is

ζDC = ζ − π

2
, (72)

and Eq. (71) is rewritten as

hrse−dc =
(D11a1 +D12a2) sin ζDC + (D21a1 +D22a2) cos ζDC

D12 sin ζDC +D22 cos ζDC

ωc − iω√
2ω0

+
(1 + ρ) cosφ(D11a1 +D12a2) + (1 − ρ) sinφ(D21a1 +D22a2)

D12 sin ζDC +D22 cos ζDC

√
2(ωc − iω)∆Lrms

MdcωcLξ′
. (73)

Here we shall comment on the fundamental property of rms fluctuation. So far, an rms fluctuation term has been
treated like DC light such as a contrast defect component or a control offset, and laser noise coupled via rms fluctuation
has been linearly summed with other components. Sometimes this can be not true since the rms fluctuation term
is not DC light but sum of low-frequency components that will couple with laser noise at the frequencies around
a measurement frequency. Rigorously speaking, contribution of laser noise via rms fluctuation would be square-
summed if we integrate the output of the detector longer than the time-scale of the drift in order to accumulate the
gravitational-wave signal (see Appendix A). In fact it depends on the way of data analysis, and the difference would
be negligible in the cases with DC readout since rms fluctuation should be sufficiently smaller than the offset light.
In the following calculation, we use the linear-sum assumption as has been written in this paper.

E. Stabilization to the quantum level

We shall see how much we can stabilize δν and δP before the comparison of laser noise with the detector sensitivity.
Intensity stabilization is done by feeding back the intensity fluctuation of picked-off light before the injection to the
interferometer. The quantum limit can be improved with the amount of the light that, on the other hand, should
be small not to shave too much power used for the interferometer and not to saturate the output of photodetectors.
Here we assume 100 mW. Shot-noise-limited sensitivity to measure the intensity fluctuation of 100 mW light is
∼ 5.5 × 10−9 (W/W

√
Hz), which is derived from

δP

4P

√

Ipick

~ω0
= 1 (quantum fluctuation) . (74)

Frequency of the laser is stabilized to a common-mode motion of the arm cavities, which is measured by the signal
detected at the bright port. The common-mode signal includes both frequency noise and the common-mode motion at
the same time, and the high-frequency component is fed back to the laser so that the frequency is stabilized up to the
level of the common-mode motion. This cut-off frequency can be lower than the observation band of the gravitational-
wave detector so that one may assume, for simplicity, the stability is limited by the common-mode motion at all the
frequencies. A difference between the signal detected at the bright port and that detected at the dark port is that
the carrier light reflected back to the bright port increases shot noise by the proportion to the RF sidebands used as
the reference light. The quantum-noise-limited sensitivity of the common mode is

hcom =

√

4~

κcommω2L2

[(

κcom
1 + sc
1 + scc

δP

4P

)2
IBS

~ω0
+

(
1 + κ2

com

)
+

(
Amp[Carrier + junk light]

Amp[SB]

)2
]1/2

, (75)

with common-mode radiation pressure noise of shot-noise-limited intensity noise included. Here κcom is

κcom =
IBS/I

′
SQL · 2ω4

cc

ω2(ω2 + ω2
cc)

, (76)

I ′SQL =
mL2ω4

cc

4ω0
. (77)

Thus, quantum-noise-limited frequency-fluctuation level is given by 4ω/π · hcom/
√

8~/κcommω2L2. Assuming the
proportion of the reference light to the total light at the bright port to be 10 %, we will have the fluctuation level of
∼ 3 × 10−9 Hz/

√
Hz at 100 Hz, for example.
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F. Comparison of laser noise and detector sensitivity

We have derived the transfer function of the light fluctuation to the dark port output and the fluctuation level of
the light that is stabilized to the quantum noise level. Now we shall compare the laser noise level to the sensitivity of
next generation detectors that should be nearly limited only by quantum noise. Figure 10 shows the results.
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FIG. 10: Quantum noise and laser noise of the broadband RSE (left), the detuned RSE with ζ or ζDC = π/2 (top-right), and
the detuned RSE with ζ or ζDC = 0 (bottom-right). Additional quantum noise at the demodulation process of RF readout is
not included, which would possibly be removable in several ways [25][27].

In the case of the broadband RSE, laser noise is mostly smaller than the quantum noise level. Frequency noise
is larger than quantum noise at frequencies below 10 ∼ 20 Hz, but seismic noise, which is not described here, will
anyway limit the sensitivity at the frequencies.

In the case of the detuned RSE, laser noise can limit the sensitivity if ζ is close to zero. This is due to the fact
that the particular readout phase that gives the leaked carrier light at the dark port infinity is close to zero; see
Eq. (58). Since the readout phases of RF readout (ζ) and DC readout (ζDC) are different by π/2, laser noise with
either scheme exceeds the level of quantum-noise-limited sensitivity and the other one does not in the observation
band. Changing the readout phase between 0 and π/2, we see laser noise start invading the sensitivity at around the
optical-spring frequency when the readout phase becomes higher than ∼ π/2−0.004 with DC readout, and lower than
∼ 0.2 with RF readout. The optical-spring dip is steep and the highest narrow-band sensitivity could be achieved at
the frequency when the readout phase is close to zero. On the other hand, the sensitivity at low frequencies is better
with the readout phase close to π/2. The readout phase should be chosen carefully with a consideration of laser noise
due to our calculation and target gravitational-wave sources.

We have checked a consistency of the laser noise spectrum to the sign of the parameters used. Sometimes there
appears or disappears a peak resulting from the cancellation of laser noise coupling via different paths, but the
difference is trivial.

IV. SUMMARY

In this paper, we have provided analytical calculations of laser noise in RSE interferometers with high optical power.
We have done so by combining previous results of conventional interferometers, putting them into the quadrature
representation, and then taking into account signal recycling. Because of high optical power, laser noise can couple
to the detection port not only optically, but also through driving mirror motions. The latter effect can be dramatic
at low frequencies. In particular, laser phase noise, coupled to the dark port via arm-length mismatch, will modulate
carrier amplitude in the arms, after being re-injected back into the interferometer by the signal recycling mirror. As
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our result suggests, this noise can be larger than quantum noise below ∼ 10 – 20 Hz. Fortunately, this is nearly the
edge of the observation band.

In the DC readout schemes, because we only have control of arm length, while contrast defect between the two arms
provides a fixed output light, there is one quadrature which cannot be reached by adjusting differential control. In
order to achieve detection quadratures close to the forbidden one, a rather big arm-length mismatch will be needed,
which will in turn increase laser noise. This eventually limits the accessible DC readout quadrature.

In the RF readout scheme, one would also have DC light emerge at the orthogonal quadrature of the RF readout
quadrature. If the required DC quadrature is close to the forbidden one, then the output DC light will be very high
in amplitude, and will increase laser noise. This constrains the RF readout phase.
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APPENDIX A: RMS FLUCTUATION

In gravitational-wave interferometers, the microscopic arm length mismatch ∆LD will drift slowly at ∼ 1 Hz, with a
magnitude of ∼ 10−13 m — despite the seismic isolation system and low-frequency control system. Such a magnitude
may cause significant amount of laser noise to couple to the detection port; in DC readout schemes, it may also cause
the readout quadrature, therefore the signal transfer function, to fluctuate significantly. Strictly speaking, we have
a non-linear problem. The output of our detector will also have non-stationary response to gravitational waves, as
well as non-stationary noise — at a time scale of ∼ 1 second. Such non-stationarity will affect detections of different
gravitational-wave sources in a different way. To be most conservative, one has to choose appropriate configurations
and readout schemes, and impose the appropriate requirements on the level of drift, in such a way that the drift does
not contribute significantly to the readout quadrature phase, nor to the laser-noise coupling.

Here we provide a rough analysis on the effect of the drift, which will give us an idea of what it means for the drift
component of ∆LD to be small compared to other contributions. First let us evaluate the noise spectrum, assuming
an output with the form

N(t) = n1(t) + ηn(t)n2(t) , (A1)

where n1,2(t) are stationary noises that originate from input laser noises, while ηn(t), which varies slowly, is induced
by drifting. We assume all three random processes to have zero expectation value, and that ηn(t) is statistically
independent from n1,2(t). The autocorrelation function of N can be written as

CN (t, t′) = 〈[n1(t) + ηn(t)n2(t)] [n1(t
′) + ηn(t′)n2(t

′)]〉 = Cn1
(t− t′) + Cηn

(t− t′)Cn2
(t− t′) . (A2)

This means N is stationary, with a spectrum of

SN (f) = Sn1
(f) +

∫

df ′Sηn
(f ′)Sn2

(f − f ′) . (A3)

If the noise spectrum of n2 does not vary around f at the scale of ∼ 1 Hz, we can then extract Sn2
(f) out of the

integral, and write

SN(f) ≈ Sn1
(f) + 〈η2

n〉Sn2
(f) . (A4)

This suggest that, as far as the laser-noise spectrum is concerned, we should replace the drift component of ∆L by
∆Lrms, and add it to other noise contributions by quadrature. For the signal, we assume a signal output of

h(t) + ηs(t)g(t) (A5)

where h(t) and g(t) depend on the amplitude of the gravitational wave, and ηs(t) is a slowly varying component due
to drifting, which has zero expectation value. Note that ηs(t) is correlated with ηn(t). Suppose a template function
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s(t) is applied to the signal output, then the signal contribution to the detection statistic is

S =

∫ t0+T

t0

s(t) [h(t) + ηs(t)g(t)] dt , (A6)

where t ∈ [t0, t0 + T ] is the duration of the possible signal. For small-duration signal (i.e., with T ≪ 1 second) with
signal arrival rate far lower than 1Hz, the the signal component will depend on the instantaneous value of ηs(t0), we
could then write

S ∼
∫ T

0

s(t)
[

h(t) ± 〈
√

η2
s 〉g(t)

]

dt . (A7)

For longer signals with signal arrival rate far lower than 1 Hz, we could use the above as a conservative estimate,
because the integral in Eq. (A6) now averages away some fluctuations in ηs(t). This means the signal contribution
should be calculated assuming the drift component of ∆LD to take constant values within (−∆Lrms,+∆Lrms), added
linearly to other contributions.

APPENDIX B: DOWNCONVERSION OF RF SIDEBANDS AND LASER NOISE AROUND RF

FREQUENCY

In this section, we consider the down-conversion of laser noise around RF sidebands during demodulation process.
For the input laser, the optical field after RF phase modulation can be written as

ℜ
{
[1 + α(t) + iψ(t)]

[
1 + Γine

−iωmt − Γine
iωmt

]
E0e

−iω0t
}
, (B1)

where α and ψ are the input laser amplitude and phase noises in the time domain and Γin is the input RF modulation
depth. At the detection port, we first consider only the RF sidebands and the laser-noise sidebands around them.
Assuming that bright-port–dark-port transfer function does not depend on frequency at around ω0 ± ωm (but the
transfer function around ω0 + ωm may well differ from that around ω0 − ωm), we can write the output RF fields as

ERF(t) = ℜ
{

[1 + α(t) + iψ(t)]
[

Γ+eiγ+

e−iωmt + Γ−eiγ−

eiωmt
]

E0e
−iω0t

}

=

(
cosω0t
sinω0t

)

•
[

Γ+
R(γ+ − ωmt)

︸ ︷︷ ︸

upper sideband
modulation

+ Γ−
R(γ− + ωmt)

︸ ︷︷ ︸

lower sideband
modulation

]

E0

[
1 + α(t)
ψ(t)

]

︸ ︷︷ ︸

input laser

. (B2)

Here Γ+,− ∈ ℜ are upper and lower modulation depths at the detection port, and γ+,− ∈ ℜ represent phases of the
sidebands; R is a rotation matrix, defined by

R(θ) ≡
(

cos θ − sin θ
sin θ cos θ

)

(B3)

In the phasor diagram, the quadrature representation of Eq. (B2) (its second line)is very easy to understand: the
input laser with noises (last bracket) is being modulated to form an upper sideband and a lower sideband; they both
rotate with frequency ωm, but in opposite directions. Note that we have only considered laser noise “inherited” from
the input laser, i.e., upconverted to around the RF sidebands during phase modulation. Other fluctuations of the light
is not considered, e.g., the intrinsic fluctuation of the input laser at around the RF frequency, which is not important.

On the other hand, output fields around the carrier can be written as

Ecarrier(t) =

(
cosω0t
sinω0t

)

•
[
B1 + b1(t)
B2 + b2(t)

]

ca

. (B4)

The output photocurrent, given by i(t) = 2ERF(t)Ecarrier(t), averaged over time scales longer than 1/ω0, is

i(t) =

[
B1 + b1(t)
B2 + b2(t)

]

ca

•
[
Γ+

R(γ+ − ωmt) + Γ−
R(γ− + ωmt)

]
E0

[
1 + α(t)
ψ(t)

]

. (B5)
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During demodulation, i(t) is mixed with sin(ωmt + δd), and then with its acoustic components extracted. This is
equivalent to making the following substitution in Eq. (B5),

[
Γ+

R(γ+ − ωmt) + Γ−
R(γ− + ωmt)

]
→ ωm

2π

∫ 2π/ωm

0

[
Γ+

R(γ+ − ωmt) + Γ−
R(γ− + ωmt)

]
sin(ωmt+ δd)dt

= Γ

(
sin ζ − cos ζ
cos ζ sin ζ

)

. (B6)

This is possible because the integrand always has equal diagonal terms, and non-diagonal terms with opposite signs.
Generically, varying the demodulation phase δd can give us any arbitrary ζ. However, in special case of balanced

sidebands, or Γ+ = Γ−, we will only be able to obtain ζ = (π − γ+ − γ−)/2, regardless of δd.
Using Eq. (B6), Eq. (B5) can be written as

i(t) =

[
B1

B2

]

RF

•
[
b1(t)
b2(t)

]

ca

+

[
B1

B2

]

ca

•
[
b1(t)
b2(t)

]

RF

+ (static or second-order terms) , (B7)

with
[
B1

B2

]

RF

≡ ΓE0

(
sin ζ
cos ζ

)

,

[
b1(t)
b2(t)

]

RF

≡ ΓE0

(
sin ζ − cos ζ
cos ζ sin ζ

) [
α(t)
ψ(t)

]

(B8)

Here the quantities Γ and ζ are not true modulation depth and modulation phase, but the result of weighted averaging
done within the time interval of 2π/ωm
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