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A class of models called p-adic strings is useful in understanding the tachyonic instability of string
theory. These are found to be empirically related to the ordinary strings in the p! 1 limit. We propose
that these models provide discretization for the string worldsheet and argue that the limit is naturally
thought of as a continuum limit in the sense of the renormalization group.
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Although string theory is the leading candidate for a
consistent quantum theory of gravity and enormous
progress has been made in the subject, it is fair to say
that the basic principles of the theory are not well under-
stood. The standard computational tools of the theory give
a limited understanding of nonperturbative issues, e.g., the
tachyonic instabilities present in certain backgrounds of
bosonic and superstring theories. Under these circumstan-
ces, simplified toy models can provide important insight.
One such model is the p-adic string theory proposed in
Ref. [1]. In these theories, defined for prime numbers p, the
only excitation is the scalar field corresponding to the
instability, for which all the amplitudes can be computed
at the tree level [1–4]. Hence, the spacetime effective
theory of the tachyonic scalar is known exactly. This
allows one to analyze the instability through the process
of tachyon condensation [5] and check for the validity of
the conjectures by Sen [6].

Unexpectedly, the ordinary bosonic open string emerges
in the p! 1 limit [7], in which the effective action of the
p tachyon turns out to approximate that obtained from the
boundary string field theory (BSFT) [8,9] of ordinary
strings. BSFT was useful in proving the Sen conjectures
[7,10,11]. This relation in the p! 1 limit, however, is
empirical. Moreover, strictly p can take only discrete
values. In this Letter, we consider the issue from the point
of view of the string worldsheet. We advocate that the
limit is to be understood in the sense of real space renor-
malization group (RG) transformation. We argue that (for
any prime p) there is a sequence of string theories,
each providing a lattice discretization to the ordinary
worldsheet [the disk or the upper half-plane (UHP)] with
a natural continuum limit in which the RG transformed
effective value of p tends to one. Thus, we find a physical
interpretation of what were thought to be esoteric mathe-
matical models of string theory. A preliminary version of
these ideas was presented in the ‘‘12th Regional
Conference on Mathematical Physics’’ held in Islamabad,
Pakistan [12].

Recall the Koba-Nielsen formula for the tree-level scat-
tering amplitude of N on-shell open-string tachyons of
momenta ki (i � 1; . . . ; N):

 A N �
Z YN

i�4

d�ij�ijk1�ki j1� �ijk2�ki
Y

4�i<j�N

j�i � �jjki�kj ;

(1)

where k2
i � 2,

P
ki � 0, the integrals are over the real

numbers R, and the integrand involves only absolute val-
ues. Except for A4, the integrals cannot be computed
analytically. Faced with a similar situation, mathemati-
cians often broaden the scope of the analysis by extending
the problem to related structures. A close analog of R is the
local field of p-adic numbers Qp. In order to describe this
field, let us digress briefly.

We are familiar with the absolute value norm on the field
of rational numbers Q. However, it is possible to define
other norms on Q consistently. To this end, fix a prime
number p and determine the highest powers n1 and n2 of p
that divides, respectively, the numerator z1 and denomina-
tor z2 in a rational number z1=z2, (z1, z2 coprime). The
p-adic norm of z1=z2, defined as jz1=z2jp � pn2�n1 , sat-
isfies all the required properties, indeed even a stronger
version, of the triangle inequality: jx� yjp �
max�jxjp; jyjp�. Because of this last property, the distances
are called ultrametric, a notion that is natural in measuring
distances between generations or the multiple near-
degenerate vacua of systems such as spin glasses [13].

If we complete Q by putting in the limit points of all
Cauchy sequences, in which convergence is decided by the
absolute value norm, we get R. Instead, if we use the
p-adic norm, we arrive at the field Qp. Any p-adic number
� 2 Qp has a representation as a Laurent-like series in p:

 � � pN��0 � �1p� �2p2 � � � ��; (2)

where N 2 Z is an integer, �n 2 f0; 1; � � � ; p� 1g, �0 �

0, and j�jp � p�N. Details of materia p-adica are available
in, e.g., Refs. [14–16]; some essential aspects are reviewed
in Ref. [17].

Coming back to the amplitudes (1), Freund and Olson
[1] modified these by replacing the absolute values by
p-adic norms and the real integrals by integrals over Qp.
These are, by definition, the amplitudes for the scattering
of N open p-string tachyons. The benefit is that all of these
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integrals over Qp can be evaluated analytically.
Equivalently, the tree-level effective action of the open
p-string tachyon T is known exactly [3,4]: In terms of a
rescaled and shifted field ’ � 1� gsT=p,

 L p �
p2

g2�p� 1�

�
�

1

2
’p��1=2��’�

1

p� 1
’p�1

�
: (3)

We emphasize that, in the above, the boundary of the
open p-string worldsheet is p-adic, but the spacetime in
which the p-string propagates is the usual one. Once one
arrives at the spacetime action (3), however, it can be
extrapolated to all integers. Incidentally, there is also an-
other extrapolation, unrelated to this, in which the
Veneziano amplitude A4 (expressed in terms of the
gamma function) is modified to be valued in Qp [18–20].

The equation of motion from (3) admits the constant
solutions ’ � 1 (unstable vacuum with the D-brane) and
’ � 0. There is no perturbative open-string excitation
around the latter, and, hence, it is to be identified as the
(meta)stable closed p-string vacuum. There are also soli-
ton solutions. For any (spatial) direction, there is a local-
ized Gaussian lump [3]. When identified as the different
D-m-branes, the descent relations between these confirm
the Sen conjectures [5].

If one substitutes p � 1� � in (3) and takes the limit
�! 0, one obtains [7] (see also the prescient comments in
Ref. [21]), after a field redefinition ’ � e�T=2, the effec-
tive action of the tachyon of the ordinary open-string
theory calculated from BSFT [8,9]. In fact, after a non-
commutative deformation of (3), the Gaussian soliton of
p-string theory generalizes to a one-parameter family of
exact solutions. In the limit p! 1, one finds a solution to
the ordinary string theory, for all values of the deformation
parameter [22]. (The noncommutativity in ordinary strings
comes from a constant B-field background. Attempts to
find the worldsheet origin of it in p-string theory were
made in Refs. [23,24].)

At first sight, the relation to the ordinary strings is all the
more surprising and counterintuitive from the point of view
of the p-string ‘‘worldsheet.’’ In fact, the worldsheet itself,
the boundary of which is Qp, is not in the least obvious
[25,26]. At tree level, the analog of the unit disk or the UHP
of the usual theory is an infinite lattice with no closed
loops, i.e., a uniform tree Bp in which p� 1 edges meet
at each vertex (see Fig. 1). This is the familiar Bethe lattice
Bp, known in the context of Qp as the Bruhat-Tits tree. Its
boundary, defined as the union of all infinitely remote
vertices, can be identified with Qp. To see this, one may
use, e.g., the representation (2), in which case the integerN
chooses a branch along the dotted path (in Fig. 1) and the
infinite set of coefficients �n determine the path to the
boundary. On the other hand, the tree Bp is the (discrete)
homogeneous space PGL�2;Qp�=PGL�2;Zp�. This con-
struction parallels the case of the ordinary string theory.

The worldsheet action on Bp is the natural discrete
lattice action for the free massless scalars X�. The action
of the Laplacian at a site z 2 Bp is r2X��z� �P
iX

��zi� � �p� 1�X��z�, where zi are the p� 1 nearest
neighbors of z. It was shown in Ref. [25] that, starting with
a finite Bethe lattice and inserting the tachyon vertex
operators on the boundary, one recovers the prescription
of Refs. [1,3] in the thermodynamic limit.

Naively, the lattice is one-dimensional for p � 1.
However, the relation to the ordinary string is through the
limit p! 1, and it is not apparent how to make sense of
this for the discrete variable p. This is the problem we will
address in the following. First, we claim that Bp gives a
discretization of the disk or UHP. However, in Bp, the
number of sites up to some generation n from an origin C
(say) grows exponentially for large n:

 N n � exp�n lnp�: (4)

Therefore, its formal dimension is infinite. Indeed, the
mean field theory of model systems on Bethe lattices is
exact.

The tacit assumption above is that the embedding is in
an Euclidean space. On the other hand, in a d-dimensional
hyperbolic space with the metric ds2

H � dr2 �
R2

0sinh2�r=R0�d�2
d�1, the volume of a ball of radius R

(R	 R0, the radius of curvature) also grows exponentially
for large R:

 vol d�R� � exp
�
d� 1

R0
R
�
: (5)

This suggests a natural embedding of Bp in hyperbolic
spaces. Parametrizing

 p � 1�
a
R0
�d� 1� (6)

and considering the limit a! 0 so that p! 1, the for-
mulas (4) and (5) agree for limn!1

a!0
na � R, from which a is

seen as the lattice spacing. Thus, a uniform Bethe lattice
Bp can be used to discretize a hyperbolic space of constant
negative curvature. Moreover, p! 1 provides a natural
continuum limit. This is true, in particular, when the di-
mension d � 2, the case of our interest. In fact, the embed-
ding of Bp into the unit disk or UHP equipped with, say,

oo 0
C

p=3

C C C C−2 −1 1 2

FIG. 1. The worldsheet of the 3-adic string B3, @B3 � Q3.
The dotted line is the path from the boundary points 0 to 1.
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the Poincaré metric, is isometric. It is related to the hyper-
bolic tiling of the disk or UHP and often has an interesting
connection with the fundamental domains of the modular
functions of SL�2;C� and its subgroups [27].

The standard way to obtain a continuum limit from a
lattice regularization is to go to lattices with smaller lattice
spacings and eventually consider the limit in which this
becomes vanishingly small. Suppose we start with the
black sublattice in Fig. 2, the boundary of which is Q3.
In comparing this to the full lattice, we see that between
two neighboring black nodes there are two gray nodes,
which in turn branch further so that the full lattice is similar
to the black one. One can associate this process to a very
precise mathematical construction related to Qp.

The p-adic field (like R) is not closed algebraically.
That is, not all roots of polynomials with coefficients in
the field belong to it. For R, one can adjoin a root of x2 �
1 � 0 and extend to the algebraically closed (and com-
plete) field of complex numbers C. It is said to be an index
two extension; i.e., C is a two-dimensional vector space
over R. The story is more complex for Qp, for which there
are infinitely many algebraic extensions none of which is
closed. Now consider a finite extension �Q�n�p of index n.
There are several such, and an integer e, called the rami-
fication index, partially distinguishes between them. It
turns out that e divides n, so that f � n=e is again an
integer [14–16]. For simplicity, we consider first an exten-
sion for which e � n (it is called totally ramified). The
lattice associated with this extension can be obtained from
the original Bethe lattice of Qp through the process de-
scribed in the last paragraph. Namely, start with the black
lattice for Qp and introduce (e� 1) new nodes between the
existing ones. Connect (infinite) gray branches to these so
that the tree is uniform with coordination number p as
before. In the other cases when e < n, one also needs to
introduce an infinite number of new edges and nodes so
that the resulting tree is uniform with coordination number
pf [25,26].

In the extended field �Q�n�p , there is a special element �,
called the uniformizer, that plays the role of p for Qp.

Specifically, any element of �Q�n�p can be expressed as a
Laurent series in terms of� [just like (2)], and the norms of
its elements are integer powers of �. In particular, for p 2

�Q�n�p :

 p ’ �e; (7)

where the approximate equality indicates the leading term
in the expansion. Parametrizing both p and � as in (6), the
lattice spacing a0 of �B�n�p is related to a of Bp as a ’ na0, as
is apparent from the construction. Thus, for larger and
larger extensions, � ’ p1=e approaches the value 1 for
any p. The corresponding lattices provide finer discretiza-
tions and a passage to the continuum limit.

The construction of the previous section suggests a way
to understand the limit p! 1 through a sequence of string
theories based on the extensions of Qp. For simplicity, let
us consider a totally ramified extension. Apparently, there
is a puzzle, because the tachyon amplitudes (1) for this turn
out to be exactly the same as those for Qp. This is because
the coefficients in the Laurent expansions of both are from
the same set; the lattices are similar; therefore, the mea-
sures that affect the integrals work out to be identical [3].
Hence, the effective actions of the tachyon of these two
theories are identical. String theories based on extensions
of Qp were already considered in Refs. [1,3]; indeed, the
very first paper on p-adic string theory [1] dealt with the
quadratic extensions of Qp. In analogy with ordinary
strings, it was thought to be a theory of closed strings.
The theories based on higher extensions were called even
more closed strings. In hindsight, it is natural to think of all
of these as open strings.

Returning to the apparent paradox, the resolution comes
from the following. In taking a continuum limit, one is not
really interested in the results separately for the two theo-
ries but, rather, in comparing the degrees of freedom of the
coarse-grained lattice from the fine one from the perspec-
tive of a (real space) RG. In order to do this, only the
degrees of freedom on the gray nodes and branches (see
Fig. 2) should be integrated out. This leaves one with the
black sublattice with some effective interaction between
these residual degrees of freedom. A rescaling of the lattice
so that the spacing a! ba � a0 completes the RG
transformation.

Let us see the effect of these on Green’s function for the
Laplace equation on the Bethe lattice. It is more transpar-
ent for the Dirichlet problem, for which we have [25]

 D �z; w� �
p

p2 � 1
p�d�z;w�; (8)

where d�z; w� is the number of steps in lattice units be-
tween the sites z and w. Since the spacing in Bp is e � n
times that in �B�n�p , dB � ed �B�n� 
 e �d and after integrating
out the intermediate sites, Deff � �p=�p2 � 1��p�e �d�z;w�.
When the lattice is rescaled, the original form of the kernel
is recovered with the substitution p! � � p1=e. The
Green’s function N �z; w� for the Neumann problem is
roughly the logarithm of D�z; w� [25], so the same argu-
ment holds there as well. Thus, the effect of the RG trans-

a’ a’ a’

FIG. 2 (color online). The lattice with spacing a0 leads to a
coarse-grained one with spacing a � ma0 (m � 3 here), when
the gray branches are integrated out.

PRL 97, 151601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

151601-3



formation on the tachyon action (3) is to replace p! � �
p1=e. The action for the ordinary bosonic string is obtained
in the limit e! 1, which is a continuum limit in the sense
of RG.

The above argument can be straightforwardly extended
to any finite extension of Qp. Let us also note that only the
unramified extension (e � 1) is unique; there are several
extensions differing in the details of the structure of the
field. However, the associated lattices, which are the ob-
jects of interest to us, are specified only by the values of e
and f. It is not clear to us if the nonuniqueness has any role
to play for the string theories based on these fields.

Further evidence comes from the problem of random
walk on a Bethe lattice, for which Ref. [28] found an exact
solution. This goes over to the solution of the Brownian
motion on a hyperbolic space of constant negative curva-
ture in the (formal) limit p! 1. Thus, the Green’s function
for the diffusion equation on the hyperbolic disk or UHP
can be obtained as a continuum limit from the Bethe
lattice. The well known relation between the kernel of
the diffusion equation and the Green’s function of a free
scalar field theory can be to used obtain the latter. We are
interested in a diffeomorphism and Weyl invariant free
scalar field theory coupled to the metric on the disk or
UHP. There are also marked points corresponding to
asymptotic states given by vertex operators on its bound-
ary. Only hyperbolic metrics can be consistently defined on
such a surface. Further, with the freedom from diffeomor-
phism and Weyl invariance, the metric can be made one of
constant negative curvature. In the worldsheet functional
integral, therefore, the contribution is from such a surface.
The continuum limit of a scalar field theory on a Bethe
lattice would seem to give a good approximation.

In summary, we have argued that the observation that the
effective field theory of the tachyon of the p-adic string
approximates that of the ordinary string in the p! 1 limit
can be understood in terms of RG flow on a sequence of
open-string theories. Each of these theories provides a
discretization of the tree-level worldsheet of the ordinary
string and the p! 1 limit is a continuum limit in the sense
of (real space) RG. They also have a mathematically
precise description in terms of algebraic extensions of
increasing degree of the p-adic field.

A few brief closing remarks. First, the discretization
here is quite different from the standard one in terms of
large N random matrices. However, the zeros of the parti-
tion function of the Ising and Potts models on random
lattices from 1
 1 matrices and on Bethe lattices are
identical [29], suggesting some kind of complementarity
between the two approaches. Second, the Bethe lattice
worldsheet is isometric to the disk or UHP with a metric
of constant negative curvature. This is a solution to the
equation of motion of the Liouville field theory and is
interpreted as the D0-brane [30]. Finally, the p! 1 limit
in terms of a sequence of theories based on lattices with

smaller spacings may be useful in finding the ‘‘closed’’
strings of the p-adic theory.
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