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The amplitudes for the tree-level scattering of the open string tachyons, generalised to the field
of p-adic numbers, define the p-adic string theory. There is empirical evidence of its relation to the
ordinary string theory in the p — 1 limit. We revisit this limit from a worldsheet perspective and
argue that it is naturally thought of as a continuum limit in the sense of the renormalization group.
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The p-adic string theory was proposed[l] with a math-
ematical motivation and with a hope that the ampli-
tudes of these theories, considered for all primes, will
relate to those of the ordinary strings through the adelic
relation|2]. While this idea remains to be realized, the
early papers|ll]-[4] worked out the details of this theory.
In particular, all the tree-level tachyon amplitudes were
computed from which the spacetime effective theory of
the tachyonic scalar was obatined and the solutions of its
equation of motion were studied. Subsequently a ‘world-
sheet” understanding was developed[5]-|9] (see |10] for a
review). More recently it has come into focus through the
realization that the exact spacetime theory of its tachyon
allows one to study the process of tachyon condensation.
In Ref.[11l], the solitons of the effective theory of the p-
adic tachyon[3] were identified with the D-branes and
shown that the tachyon behaves according to the con-
jectures by Sen[12]. (Henceforth we will refer to the p-
adic string as p-string and its tachyon as p-tachyon for
brevity.)

An unexpected relation emerges with the ordinary
bosonic open string in the p — 1 limit[13] (see also
the prescient comments in Ref.[5]), when the effective
action of the p-tachyon turns out to approximate that
obtained from the boundary string field theory|14, (1]
(BSFT) of ordinary strings. BSFT was useful in proving
the Sen conjectures|13, [16, [17]. This correspondence re-
mains even after a noncommutative deformation of the
p-tachyon effective action. In fact, thanks to it one can
find ezact noncommutative solitons in BSFT (of the or-
dinary string theory) at all values of the deformation
parameter|18].

However, this relation in the p — 1 limit is empirical.
Moreover, strictly p can only take discrete values. In this
Letter, we consider the issue from a worldsheet point of
view to advocate that the limit is to be understood in
terms of a sequence of string theories based on (algebraic)
extensions of increasing degree of the p-adic number field
Q,. We argue that each of these provide a discretiza-
tion of the ordinary worldsheet (the disk or UHP) and
their effective actions relate to each other in terms of the
renormalization group (RG). There is a natural contin-
uum limit in which the RG transformed effective value
of p tends to one. A preliminary version of these ideas
was presented in the ‘12th Regional Conference on Math-

ematical Physics’ held in Islamabad, Pakistan|[19].

Recall that the tree-level scattering amplitude of IV on-
shell ordinary open-string tachyons of momenta k; (i =
1,--+,N), k2 = 2,3 k; = 0 is given by the Koba-Nielsen
formula in which the integrals are over the real line R
and the integrand only involves absolute values of real
numbers:

N
A = [TLaster™* = I Je - 6™
i=4

4<i<j<N
(1)

Except for Ay, the rest cannot be computed analytically.
Ref.[1l] considered the above problem over the local field
of p-adic numbers Q,,, to which it admits a ready exten-
sion. In order to describe it, let us digress briefly.

On the field of rational numbers Q, the familiar norm
is the absolute value. The field R of real numbers arise
as the completion of Q when we put in the limit points
of all Cauchy sequences, in which convergence is decided
by the absolute value norm. However, it is possible to
define other norms on Q consistently. To this end, fix
a prime number p and determine the highest powers
n1 and ns of p that divides respectively the numera-
tor z; and denominator zo in a rational number z7/zs,
(21, 22 coprime). The p-adic norm of z1/z2, defined as:
|21/22|, = p"*™™, satisfies all the required properties,
indeed even a stronger version of the triangle inequality.
The field Q,, is obatined by completing Q using the p-adic
norm. Any p-adic number § € Q,, has a representation
as a Laurent-like series in p:

E=p" (So+&p+&p®+--), (2)

where, N € Z is an integer, &, € {0,1,--- ,p—1}, & #0
and [¢], = p~ V. Deatils of materia p-adica are available
in e.g., [20]-22]; some essential aspects are reviewed in
a.

Coming back to the Koba-Nielsen amplitudes, Freund
et al modified these by replacing the absolute values by
p-adic norms and the real integrals by integrals over Q,,.
These are, by definition, the amplitudes for the scattering
of N open p-string tachyons. The benefit is that all these
integrals over Q,, can be evaluated analytically. Equiva-
lently the tree level effective action of the open p-string
tachyon T is known ezactly|3, 4]: in terms of a rescaled
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and shifted field ¢ =1 + gsT"/p:

J4 1 _1p
r = Ph-1) | 2¥P
We emphasize that in the above, the boundary of the
the open p-string worldsheet is valued in Q,, but the
spacetime in which the p-string propagates is the usual
one. Once one arrives at the spacetime action (Bl), how-
ever, it can be extrapolated to all integers. Incidentally,
there is also another extrapolation, unrelated to this, in
which the Veneziano amplitude (expressed in terms of the
gamma function) is modified to be valued in Q,,[23][21].
The equation of motion from @) admits the constant
solutions ¢ = 1 (unstable vacuum with the D-brane)
and ¢ = 0. There is no perturbative open string exci-
tation around the latter, and hence is to be identified as
the (meta-)stable closed p-string vacuum. There are also
soliton solutions. For any (spatial) direction, there is a
localized gaussian lump[d]. When identified as the dif-
ferent D-m-branes, the descent relations between these
confirm the Sen conjectures|11].
If one substitutes p = 1+ € in (@) and takes the limit
e — 0, one obtains[l3], after a field redefinition ¢ =
e~T/2 the effective action of the tachyon of the ordinary
open string theory calculated from BSFT[14, [15]. After a
noncommutative deformation of (@), the gaussian soliton
of p-string theory generalizes to a one-parameter family
of solitons, which are exact solutions to the equation of
motion. In the limit p — 1, one finds an exact solu-
tion to the ordinary string theory, where the noncommu-
tativity comes from a constant B-field background|1&].
(Refs.[26, 27] attempt to find the worldsheet origin of
the noncommutativity in p-string theory.)
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FIG. 1: The ‘worldsheet’ of the 3-adic string Bs, 0Bs = Q.
The dotted line is the path from the boundary points 0 to co.

At first sight the relation to the ordinary strings is all
the more surprising and counter-intuitive from the point
of view of the p-string ‘worldsheet’. In fact, the ‘world-
sheet’ itself, the boundary of which is Q,,, is not in the
least obvious|q, [9]. At tree level, the analog of the unit
disk or the UHP of the usual theory, is an infinite lat-
tice with no closed loops, ¢.e., a uniform tree B, in which
p + 1 edges meet at each vertex (see Fig. [l). This is the
familiar Bethe lattice B, known in the context of Q,, as
the Bruhat-Tits tree. Its boundary, defined as the union

of all infinitely remote vertices, can be identified with
Q,,- To see this, one may use e.g., the representation @
in which case, the integer IV chooses a branch along the
dotted path (in Fig.[) and the infinite set of coefficients
&, determine the path to the boundary. On the other
hand, the tree B, is the (discrete) homogeneous space
PGL(2,Q,)/PGL(2,Zy). This construction parallels the
case of the ordinary string theory.

The Polyakov action on the ‘worldsheet’ B, is the nat-
ural discrete lattice action for the free massless fields
X#". The action of the laplacian at a site z € B, is
V2XH(z) = >, XH(z;) — (p + 1)X*(2), where, z; are
the p + 1 nearest neighbors of z. It was shown in [g]
that starting with a finite Bethe lattice and inserting the
tachyon vertex operators on the boundary, one recovers
the prescription of [, ] in the thermodynamic limit.

Naively the lattice is one dimensional for p = 1. How-
ever, the relation to the ordinary string is through the
limit p — 1 and it is not apparent how to make sense
of this for the discrete variable p. This is the problem
we will address in the following. First, we claim that
By, gives a discretization of the disk/UHP. This does not
seem possible because in By, the number of sites upto
some generation n from an origin C (say) grows expo-
nentially for large n:

N, ~ exp(n Inp). (4)

Therefore, its formal dimension is infinite. Indeed, Bethe
lattices are used in calculating the results in the upper
critical dimension of model theories. For example, for a
free scalar field theory with arbitrary interactions (from,
say, vertex operators) the upper critical dimension is two.
One would expect to get this from a Bethe lattice.

The tacit assumption above is that the embedding
is in an Fuclidean space. On the other hand, in a
d-dimensional hyperbolic space with the metric ds% =

dr? + R sinh® () d3_, the volume of a ball of ra-
0

dius R (R >> Ry, the radius of curvature) also grows
exponentially for large R:

volg(R) ~ exp (d 1;01 R) . (5)

This suggests a natural embedding of B, in hyperbolic
spaces. Parametrizing

a
=14+—(d-1 6

P11, )

and considering the limit a — 0 so that p — 1, the
formulas @) and (H) agree for lim na = R, from which

a—0

a is seen as the lattice spacing. Thus a uniform Bethe
lattice B, can be used to discretize a hyperbolic space of
constant negative curvature. Moreover, p — 1 provides a
natural continuum limit. This is true, in particular, when
the dimension d = 2, the case of our interest. In fact the
embedding of B, into the unit disk/UHP equipped with,
say, the Poincaré metric), is isometric. It is related to



the hyperbolic tessellation of the disk/UHP and often has
interesting connection with the fundamental domains of
the modular functions of SL(2,C) and its subgroups|2§)].

//

FIG. 2: The lattice with spacing a’ leads to a coarse grained
one with spacing @ = ma’ (m = 3 here), when the ‘grey’
branches are integraded out.

The standard way to obtain a continuum limit from
a lattice regularization is to go to lattices with smaller
lattice spacings and eventually consider the limit in which
this becomes vanishingly small. Suppose we start with
the ‘black’ sublattice in Fig. B the boundary of which
is Q3. In comparing this to the full lattice, we see that
between two neighbouring ‘black’ nodes there are two
‘grey’ nodes, which in turn branch further so that the
full lattice is similar to the ‘black’ one. What, if any,
is the relation of the full lattice to Q3?7 To answer this
question, we need to recall some facts about Q,,.

The field Q,, (like R) is not closed algebraically. That
is, not all roots of polynomials with coefficients in the
field belong to it. For R, one can adjoin a root of 22+1 =
0 and extend to the algebraically closed (and complete)
field of complex numbers C. It is said to be an index two
extension, i.e., C is a two dimensional vector space over
R. The story is more complex for Q,,, for which there
are infinitely many algebraic extensions none of which

is closed. Now consider a finite extension Gz()n) of index
n. There are several such and an integer e, called the
ramification index partially distinguishes between them.
It turns out that e divides n, so that f = n/e is again
an integer|20]-[22]. First, we will consider a so called
totally ramified extension for which e = n. The Bruhat-
Tits tree for such extensions can be obtained from the
original one of Q,, through the process described in the
last paragraph. Namely, to get the tree for a totally

ramified extension Q](Dn), start with the ‘black’ tree for
Q, and introduce (e— 1) new nodes between the exisiting
ones. Connect (infinite) ‘grey’ branches to these so that
the tree is uniform with coordination number p as before.
In the other cases when e < n, one also needs to introduce
an infinite number of new edges and nodes so that the
resulting tree is uniform with coordination number p/ [d,

In Gén), there is a special element m, called the uni-

formizer, that plays the role of p for Q,,. Specifically, any

ey .
element of Q,, "~ can be expressed as a Laurent series in

terms of 7 (just like (@), and the norms of its elements

are integer powers of 7. In particular, for p € Gz()n)
p o~ 7, (7)

where the approximate equality indicates the leading
term in the expansion. Parametrizing both p and 7 as in

@), o’ of E;n) is related to a of B, as a ~ nd/, as is ap-
parent from the construction. Thus for larger and larger
extensions m ~ p'/¢ approaches the value 1 for any p.
The corresponding lattices provide finer discretizations
and a passage to the continuum limit.

The construction of the previous section suggests a
way to understand the limit p — 1 through a sequence
of string theories based on the extensions of Q,. For
simplicity let us consider a totally ramified extension.
Apparently there is a puzzle. The tachyon amplitudes
for the totally ramified extension Q(e:n), turn out to be
exactly the same as those for Q,! This is because the
coefficients in the Laurent expansions of both are from
the same set; the trees are similar, therefore, the mea-
sures that affect the integrals work out to be identicall3].
Hence, the effective action of the tachyon of these two
theories are identical. String theories based on exten-
sions of Q,, were already considered in [1, ], indeed the
very first paper on p-adic string theory|l] dealt with the
quadratic extensions of Q,. In analogy with ordinary
strings, it was thought to be a theory of closed strings.
The theories based on higher extensions were called even
more closed strings! In hindsight, it is natural to think
of all these as open strings.

Returning to the apparent paradox, the resolution
comes from the following. In taking a continuum limit,
one is not really interested in the results separately for
the two theories, but rather in comparing the degrees of
freedom of the coarse-grained lattice from the fine one
from the perspective of a (real space) RG. In order to
do this, only the degrees of freedom on the ‘grey’ nodes
and branches (see Fig. B) should be integrate out. This
leaves one with the ‘black’ sublattice with some effective
interaction between these residual degrees of freedom. A
rescaling of the lattice so that the spacing a — ba = a’
completes the RG transformation.

Let us see the effect of these on the Poisson kernel on
the Bethe lattice. It is more transparent for the Dirichlet
problem for which the Green’s function is|q]

p p—d(z,w)7 (8)

where d(z,w) is the number of steps in lattice units be-
tween the sites z,w. Since the spacing in By, is e = n

times that in E](Dn), dp = edg(n) = ed and after inte-

grating out the intermediate sites, Dog = pgp_lp*ez('sz).

When the lattice is rescaled, the original form of the ker-
nel is recovered with the substitution p — 7 = p'/°.
The Green’s function A (z,w) for the Neumann problem




is roughly the logarithm of D(z,w)[q], so the same ar-
gument holds there as well. Thus the effect of the RG
transformation on the tachyon action (@) is to replace
p — 7 = p*/¢. The action for the ordinary bosonic string
is obtained in the limit e — oo, which is a continuum
limit in the sense of RG.

The above argument can be straightforwardly ex-
tended to any finite extension of Q,,. Let us also note that
only the unramified extension (e = 1) is unique; there are
several partially and totally ramified extensions differing
in the details of the structure of the field. However, the
associated Bruhat-Tits trees, which are the objects of in-
terest to us, are specified only by the values of e and f.
It is not clear to us if the non-uniqueness has any role to
play for the string theories based on these fields.

Further evidence comes from the problem of a ran-
dom walk on a Bethe lattice, for which Ref.|29] found
an exact solution. This goes over to the solution of the
Brownian motion on a hyperbolic space of constant neg-
ative curvature in the (formal) limit p — 1. Thus the
Green’s function for the diffusion equation on the hyper-
bolic disk/UHP can be obtained as a continuum limit
from the Bethe lattice. The well known relation between
the kernel of the diffusion equation and the Green’s func-
tion of a free scalar field theory, can be to used obtain the
latter. We are interested in a diffeomorphism and Weyl
invariant free scalar field theory coupled to the metric
on the disk/UHP. There are also marked points corre-
sponding to asymptotic states given by vertex operators
on its boundary. Only hyperbolic metrics can be con-
sistently defined on such a surface. Further, with the
freedom from diffeomorphism and Weyl invariance, the

metric can be made one of constant negative curvature.
In the worldsheet functional integral, therefore, the con-
tribution is from such a surface. The continuum limit
of a scalar field theory on a Bethe lattice would seem to
give a good approximation.

In summary, we have argued that the observation that
the effective field theory of the tachyon of the p-adic
string approximates that of the ordinary string in the
p — 1 limit, can be understood in terms of RG flow on
a sequence of open string theories based on (algebraic)
extensions of increasing degree of the p-adic field. Each
of these theories provides a discretization of the tree-level
worldsheet of the ordinary string and the p — 1 limit is
a continuum limit in the sense of (real space) RG.

A few brief closing remarks. First, in the p-adic dis-
cretization, the ‘worldsheet’ is isometric to the disk/UHP
with a metric of constant negative curvature. This is a
solution to the equation of motion of Liouville field the-
ory, and is interpreted as the DO-brane[31]. Secondly,
there is a more standard discretization in terms of large
N random matrices. The zeroes of the partition function
of of the Ising and Potts models on random lattices from
1 x 1 matrices and on Bethe lattices are identicall3(],
suggesting some kind of complimentarity in the two dis-
cretizations. Finally, the p — 1 limit in terms of a set
of theories based on extensions of Q, may be useful in
finding the ‘closed’ strings of the p-adic theory.
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