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A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those
regions of the computational domain where a physical singularity may develop. We here challenge this
paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black
holes without excision. We show that this choice, combined with suitable gauge conditions and the use of
minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this
allows for the calculation of the waveforms well beyond what was previously possible, providing
information on the black-hole ringing and setting a new mark on the present knowledge of the
gravitational-wave emission from the stellar collapse to a rotating black hole.
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Numerical relativity simulations have recently recorded
important breakthroughs, which have allowed for long-
term stable and accurate calculations of curved and highly
dynamical spacetimes, thus increasing their potential for
providing physically relevant predictions for gravitational-
wave astronomy. Behind this rapid progress are various
novel approaches, some of which involve the dropping of
assumptions or techniques that were considered to be
important or simply necessary. First, the dismissal of the
3� 1 ADM formulation of the field equations, which, after
large-scale efforts [1], has shown not to have the stability
properties necessary for long-term fully three-dimensional
(3D) simulations. In lieu of the ADM equations, new
formulations have been either reconsidered (as in the
case of the conformal and traceless formulation of the
ADM equations [2]) or investigated for the first time in
3D simulations (as in the case of the harmonic formulation
of the Einstein equations [3]). Both approaches have been
shown to provide long-term stability on time scales suffi-
ciently large to evolve accurately a large class of space-
times, including black holes [3–5] and neutron stars [6,7].
Second, the abandoning of the use of numerical grids with
uniform spacing, in lieu of which several codes now use
mesh-refinement techniques (either fixed [8] or with adap-
tivity [4]). This conceptually simple but technologically
challenging improvement allows concentration of compu-
tational resources where the truncation error needs to be
the smallest, while saving them where they may not be
needed. In turn, nonuniform grids have allowed us to place
the outer boundaries of the computational domain at very
large distances, thus reducing the influence of inaccurate
outer-boundary conditions and making it possible to have
the wave zone within the domain and to extract there the
precious gravitational-wave signal [9]. Third, for some
years now, successful long-term 3D evolutions of black-
hole vacuum spacetimes have been possible only thanks to
the use of excision techniques (see, e.g., Ref. [10] for a first

example), that is, by ignoring the spacetime regions inside
black-hole horizons. These are causally disconnected from
the outside and should have no effect on the rest of the
evolution as long as a suitable treatment of the equations is
made at the excision surface. Furthermore, recent simula-
tions of the collapse of rotating neutron stars to Kerr black
holes [7,11] have shown the effectiveness of excision
techniques also for spacetimes with matter, where they
were applied separately to the field equations and to the
hydrodynamical equations. In those simulations, in fact,
the use of excision has extended considerably the lifetime
of the simulations, allowing for an accurate investigation of
the dynamics of the trapped surfaces formed during the
collapse and for the extraction of the first gravitational
waveforms from 3D collapse to rotating black holes [9].

Although the assumption that a region of spacetime that
is causally disconnected can be ignored without this affect-
ing the solution in the remaining portion of the spacetime is
certainly true for signals and perturbations travelling at
physical speeds, numerical signals, such as gauge waves
or constraint violations, may travel at velocities larger than
that of light and thus leave the physically disconnected
region. Indeed, this is what is commonly observed when
excising a topologically spherical surface in Cartesian
coordinates within a conformal and traceless formulation
of the Einstein equations and without the massive use of
numerical dissipation as in Ref. [3].

In this Letter we challenge the paradigm of singularity
excision and show that accurate numerical simulations can
be carried out even in the absence of an excised region and
independently of whether the spacetime is vacuum and the
singularity modeled as a ‘‘puncture’’ [4,5]. In addition, we
show that the absence of an excised region improves
dramatically the long-term stability, allowing for the cal-
culation of the gravitational waveforms well beyond what
previously possible and past the black-hole quasi-normal-
mode (QNM) ringing.
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The simplest and most impressive way to prove the
improvements resulting from not excising the region inside
the apparent horizon (AH) is to reconsider the same initial
data of Ref. [9], which lead to gravitational collapse to
rotating black holes. More specifically, we consider rotat-
ing relativistic stars calculated as equilibrium solutions of
the Einstein equations, with a polytropic equation of state
p � K��, with � � 2 and with the polytropic constant
initially set to KID � 100 [12]. To illustrate the collapse
for the range of neutron stars rotating either very slowly or
near the mass-shedding limit, we consider two representa-
tive models, indicated as D1 and D4 in Ref. [11], with
different initial angular momenta. The first one is a slowly
rotating star of mass M � 1:67M�, circumferential equa-
torial radius Re � 11:43 km and a � J=M2 � 0:21, where
J is the angular momentum; the second one has M �
1:86M�, Re � 14:25 km and is rotating close to the
mass-shedding limit with a � 0:54.

The numerical methods used for these evolutions are the
same as discussed in Ref. [9]. In particular, we use a
conformal and traceless formulation of the ADM equations
[13], which are solved with fourth-order finite-difference
operators, while we evolve the hydrodynamical equations
with the WHISKY code [14], implementing high-resolution
shock-capturing (HRSC) techniques with a variety of ap-
proximate Riemann solvers and reconstruction algorithms
and an overall second-order truncation error [11]. The
numerical grid setup makes use of the same mesh refine-
ment implemented in the numerical infrastructure de-
scribed in Ref. [8]. Besides a fixed number of refinement
levels which are present already on the initial slice, new
refined levels are added at predefined positions during the
evolution. More specifically, as the star collapses, the in-
nermost (most refined) grid box is progressively further
refined with box-in-box grids, the final one having a reso-
lution of �x ’ 0:02M; the outermost grid, instead, which is
not further refined, has a resolution of �x ’ 1:5M, suffi-
cient to capture the details of the gravitational radiation. In
this way, our outer boundaries are placed at ’ 165M, so as
to minimize the influence of our imperfect outer-boundary
conditions on the very small gravitational-wave signal. We
note that the ‘‘switching-on’’ of different levels of resolu-
tion does have a small but appreciable effect on its dynam-
ics, essentially due to the necessary interpolation to the
new refined grids, which also changes the growth time of
the most unstable, exponentially growing mode. This effect
is negligible in the evolution of the matter but can influence
the waveforms. To provide a direct comparison with
Ref. [9], we have here followed the same approach.

Figure 1 summarizes the dynamics of the matter for
model D4 by showing the time evolution of the maximum
of the rest-mass density �max (continuous lines) and of the
total rest mass M� (dashed lines) when normalized to their
initial values (a similar behavior is observed also for the
slowly rotating model D1). The evolution obtained without
excision is to be contrasted with the one in which the
excision is made (the used excision technique is described

in detail in Ref. [15]) and which is indicated with thick
lines. In that case, the excision was started soon after an
AH [16] was found (this is marked with circles on the two
curves) and the corresponding evolution terminated at t *

77M, when the code crashed with large violations in the
Hamiltonian constraint. Note that while the maximum
values for the rest-mass density attained during the evolu-
tion are comparable in the two cases, the evolution without
excision can be carried out to much later times (i.e. t *

300M) without appreciable loss of accuracy or sign of
instability. Indeed, as the matter collapses and concentrates
over a very few grid points (and ultimately on only one),
the high accuracy of the HRSC methods is able to conserve
the rest mass to very high precision with a loss of less than
0.2% up to when the rest-mass density distribution is
diffused as a result of the poorly resolved gradients.

While very little extra is needed for the evolution of the
hydrodynamical quantities in the absence of an excision
algorithm, a stable evolution of the Einstein equations
requires at least two important ingredients. The first one
is represented by gauge conditions for the lapse function �
with suitable singularity-avoidance properties. Our experi-
ence has shown that hyperbolic K-driver slicing conditions
of the form @t� � �f����2�K � K0�, with f > 0 and K0

being the trace of the extrinsic curvature at t � 0, are
essential to ‘‘freeze’’ the evolution in those regions of the
computational domain inside the AH, where the metric
functions experience the growth of very large gradients.
In practice, we confirm that using the generalized
‘‘1� log’’ slicing condition [17] as obtained by setting
f � 2=� provides the desired singularity avoidance and
is computationally efficient. With a good choice for the
slicing condition, the results do not depend sensitively on
the gauge condition for the shift. We have found that the

FIG. 1 (color online). Evolution of the normalized maximum
of the rest-mass density �max (solid line) and of the total rest-
massM� (dashed line) for model D4. Circles indicate the times at
which the AH is first found and thick lines the results obtained
with excision.
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use of the ‘‘Gamma-driver’’ shift conditions discussed in
Ref. [11] is sufficient to compensate for the ‘‘slice stretch-
ing’’ induced by the singularity-avoiding slicing.

The second important ingredient is the introduction of
an artificial dissipation of the Kreiss-Oliger type [18] on
the right-hand sides of the evolution equations for the
spacetime variables and the gauge quantities (no dissipa-
tion is introduced for the hydrodynamical variables). This
is needed mostly because all the field variables develop
very steep gradients in the region inside the AH. Under
these conditions, small high-frequency oscillations (either
produced by finite-differencing errors or by small reflec-
tions across the refinement boundaries) can easily be am-
plified, leave the region inside the AH and rapidly destroy
the solution. In practice, for any time-evolved quantity u,
the right-hand side of the corresponding evolution equation
is modified with the introduction of a term of the type
Ldiss�u� � �"�x3

i @
4
xiu, where " is the dissipation coeffi-

cient, which is allowed to vary in space. We have experi-
mented with configurations in which the coefficient was
either constant over the whole domain or larger for the grid
points inside the AH. No significant difference has been
noticed between the two cases. Much more sensitive is,
instead, the choice of the value of ". In the simulations
reported here we have set " � 0:01 for model D1 and " �
0:0075 for D4, respectively. However, smaller values (e.g.
" � 0:005) are not sufficient to yield the long-term stabil-
ity discussed here, while larger values (e.g. " � 0:05 and
" � 0:01, respectively) alter significantly the waveforms,
which would not match the ones obtained without dissipa-
tion until the latter can be computed.

In the region within the AH, as a consequence of large
gradients in the spacetime variables, which cannot be
resolved sufficiently despite the use of several mesh-
refinement levels, the solution of the Einstein equations
becomes increasingly inaccurate as the collapse proceeds.
Figure 2 offers a measure of this loss of accuracy by
showing the time evolution of the L2 norm of the
Hamiltonian-constraint violation for model D1. To distin-
guish the different amplitudes of the errors, the violation
has been computed separately for the domain inside the
AH and for the rest of the grid.

First, the two errors are considerably different in ampli-
tude, the one inside the AH being much larger. Second, the
sudden decrease in the long-dashed and continuous lines at
the time of AH formation at t ’ 60M is due to the fact that
some grid points (those with the largest violations) are no
longer included in the calculation of the L2 norm. Third,
the violation outside the AH grows only at a slow pace over
the remaining evolution. Finally, shown with circles is the
violation for a high-resolution simulation. The values are
rescaled to second order before AH formation (when the
dominant truncation error comes from hydrodynamics and
the HRSC methods used are only second-order) and to
third order afterwards (when the smooth accretion flow
of the atmosphere boosts the accuracy of the hydrodynam-

ics to third order). No convergence of the violation is seen
inside the AH. Overall, Fig. 2 shows that the solution of the
Einstein equations inside the AH is by and large incorrect,
but these errors remain confined within the AH and do not
contaminate the overall accuracy of the simulation. Shown
for comparison in the inset is the violation computed when
the singularity is excised, showing an exponential growth
soon after the AH is found.

Note that the ability to perform these long-term evolu-
tions cannot be related in any manner to the use of a
puncture prescription for the physical singularity, as re-
cently done in simulations of binary black holes [4,5].
However, it is possible that the stability provided here by
the singularity-avoiding gauge and made numerically more
robust by the use of dissipation is closely related to the one
discussed for punctures [19].

Besides a long-term stability and the possibility of fol-
lowing the collapse well beyond what was possible with
the use of excision techniques, the most dramatic advan-
tage produced by the approach suggested here can be
appreciated in the study of the gravitational radiation pro-
duced during the collapse. As in Ref. [9], we have ex-
tracted the gravitational-wave information through an
approach in which the spacetime is matched with the non-
spherical perturbations of a Schwarzschild black hole de-
scribed in terms of gauge-invariant odd Q�o�‘m and even-

parity ��e�‘m metric perturbations, where ‘,m are the indices
of the angular decomposition. In Fig. 3 we report the
lowest-order multipoles Q�20 � ���e�20 , where � ����������������������������������������

2�‘� 2�!=�‘� 2�!
p

. The left panel, in particular, shows
the signal detected by an observer at a distance of 42M for
the slowly rotating model D1; the right panel, instead,

FIG. 2 (color online). Evolution of the L2 norm of the
Hamiltonian-constraint violation for model D1. Different curves
refer to the violation computed only inside the AH (short-dashed
line), only outside it (continuous line) or when the excision is
made (long-dashed line in the inset). The circles show the
rescaled violation for a higher resolution.
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shows the same multipole extracted at 37M for the rapidly
rotating model D4. In both cases the thick lines refer to the
evolutions carried out with the excision technique and
terminate when the code crashed (cf. left panel of Fig. 1
in Ref. [9]). This comparison shows that it is now possible
to detect the complete gravitational-wave signal produced
by the collapse of a relativistic star to a rotating black hole
well beyond what was previously possible in either 2D [20]
or 3D simulations [9]. The estimated error on the phase is
& 1% and & 5% on the L2 norm of the amplitude.

Figure 3 also highlights that the signal can be rather
different both in amplitude and form in the two cases with
the exception of the final parts, when the signal is domi-
nated by the black-hole QNM ringing. This happens be-
tween ’ 80M and ’ 120M, where the signal we extract
matches very well with a perturbative one computed using
the frequencies given in Ref. [21] for the angular momenta
and masses of our models. The very good agreement with
the perturbative results is an important confirmation of the
accuracy of our results, which are intrinsically plagued by
the extreme weakness of the emitted gravitational radia-
tion. Furthermore, the richness of details in the two wave-
forms opens the prospects that a careful characterization of
the waveforms will provide important information on the
properties of the black hole as well as on those of the
collapsing matter [22].

A straightforward analysis of the now-complete
gravitational-wave signal computed in these simulations
allows us to improve the estimates provided in Ref. [9] for
the detectability of the gravitational collapse of a uni-
formly rotating polytropic star at a distance of 10 kpc.
More specifically, the energy efficiency in the emission
of gravitational radiation is ED1=M � 3:3	 10�7 and
ED4=M � 3:7	 10�6, with an overall accuracy of

10%. The resulting signal-to-noise ratios are then:
�S=N�Virgo

D1�D4 ’ 0:27� 2:1, �S=N�advLIGO
D1�D4 ’ 1:2� 11, and

�S=N�Dual
D1�D4 ’ 3:3� 28 for detectors such as Virgo/

LIGO, advanced LIGO, or Dual [23].
In conclusion, we have presented the first 3D calcula-

tions of the gravitational collapse of uniformly rotating
stars to black holes without excision. This choice, together

with suitable gauge conditions and the use of minute
numerical dissipation, improves dramatically the long-
term stability of the evolutions, providing the most accu-
rate waveforms of this process to date. While our approach
represents a challenge to the paradigm of singularity ex-
cision, it does not necessarily imply that all excision tech-
niques should be expected to lead to instabilities. Rather, it
highlights that, for a conformal traceless formulation of the
Einstein equations and in highly dynamical spacetimes, the
excision of a spherical surface in Cartesian coordinates
may be more of a problem than a solution.
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FIG. 3 (color online). Lowest gauge-invariant multipole for a slowly rotating star (left panel) and a rapidly rotating one (right panel).
Thick lines refer to evolutions carried out with excision and terminate at a code crash, while the circles indicate the AH formation time.
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